乳酸链球菌素的研究进展

合集下载

乳酸链球菌素的研究进展

乳酸链球菌素的研究进展
31 in产 生 菌 的 筛选 .Ns i
用涉及丝 氨酸 脱水成 脱氢丙氨 酸和 苏氨酸 脱水成 B一
Ns in产生菌最早是从发酵 的牛奶 中分离 出来 , i 随后 产生菌。 在筛选菌株过程中 , 以根 可
甲基脱氢丙氨酸 ,然后 半胱氨酸的巯基侧链与脱氢丙氨 在各种乳制品 、一些植物材料和河水 中发现 了 Nin的 s i 表1 部分允许使 用 Nin的 国家和地 区及其应 用领域 s i


的第 2 位氨基酸不 同, Nin 7 在 s A中是组氨酸 , s Z中 i Nin i
肽聚糖 的生物合成 。另外 , s Ni i n对敏感菌的净菌程度还
是天冬氨酸 。 uh n等人克隆和测定 了 N s A结构基 取决于培 养基的缓冲性 、 B cma in i 抑菌物 的浓度 、 指示菌种类以及 因D NA序列以后 ,发现成熟分子中的脱氢丙氨酸 、 Nin的添 加 浓度 。 8一 s i 甲基脱氢丙氨酸 、 羊毛硫 氨酸和 B一甲基 羊毛硫氨酸 等 3Ns .in的提 取 方 法 i 稀有氨基酸是经翻译后修饰产生的。这种翻译后修饰作
1Ns . in的分 子结 构 i
合成产生抑 制作用 , 引起细胞裂解 。 对芽孢的作用是在孢 子出现膨胀 的起始阶段抑制其发芽 , 导致孢子不能存活。
乳酸链球菌素 的乡 式 为 C 4 - 8N403 S ,含有 1 ̄I 8 2 77 2
3 个氨基酸残基 , 4 相对分子量为 3 1 道 尔顿 , 50 前体分子 有研究认为 , in单体 中的脱氢并 氨酸 ( h ) 甲基脱 Ns i D a和 含有 5 个氨基酸残基 , 中 2 个残基位于引导区 ,4 7 其 3 3 个 氢并氨酸( b 可以与敏 感细胞膜 中的某些酶 的巯基发 Dh )

乳酸链球菌素抑菌原理

乳酸链球菌素抑菌原理

乳酸链球菌素抑菌原理1. 乳酸链球菌素抑菌原理的研究背景乳酸链球菌素是一种天然产生的抗菌物质,具有广谱的抗菌活性。

近年来,乳酸链球菌素引起了广泛的研究兴趣,因为它在食品工业、医药领域和生物防治中具有重要的应用前景。

了解乳酸链球菌素抑菌原理对于深入挖掘其应用潜力具有重要意义。

2. 乳酸链球菌素的发现与特性乳酸链球菌是一种常见的益生菌,在发酵食品中起到重要作用。

研究人员发现,某些乳酸链球菌在发酵过程中产生一种特殊物质,即乳酸链球菌素。

与其他常见抗生素不同,乳酸链球菌素不会引起耐药问题,并且对多种致病微生物具有较强的杀灭作用。

3. 乳酸链球菌素与微生物相互作用研究发现,当某些致病微生物与乳酸链球菌素接触时,乳酸链球菌素会与微生物的细胞膜发生相互作用,导致细胞膜的破坏。

乳酸链球菌素通过破坏微生物的细胞膜结构,导致细胞内外物质交换紊乱,从而引起微生物的死亡。

4. 乳酸链球菌素抑菌机制的研究进展近年来,科学家们对乳酸链球菌素抑菌机制进行了深入研究。

他们发现,乳酸链球菌素通过与微生物表面的脂质结合,并进入细胞内部。

一旦进入细胞内部,乳酸链球菌素会靶向作用于微生物的DNA、RNA和蛋白质合成过程中的关键环节。

这些靶向作用会导致微生物基因表达异常、代谢紊乱和蛋白质合成受阻等一系列变化。

5. 乳酸链球菌素对不同类型微生物的抑制效果不同类型的微生物对于乳酸链球菌素具有不同的敏感性。

研究发现,乳酸链球菌素对于一些常见的致病菌,如大肠杆菌、金黄色葡萄球菌和肺炎链球菌等具有较强的抑制效果。

此外,乳酸链球菌素还对一些耐药菌株具有一定的抑制作用,这为抗药性微生物的防治提供了新思路。

6. 乳酸链球菌素在食品工业中的应用潜力由于乳酸链球菌素在食品工业中具有广谱抗菌活性和较好的稳定性,因此它被广泛应用于食品保鲜和防腐中。

研究人员发现,在奶制品、肉制品和面包等食品中添加适量乳酸链球菌素可以显著延长其保质期,并有效抑制食源性致病微生物的生长。

乳酸链球菌素的研究进展

乳酸链球菌素的研究进展

No.1.2006乳酸链球菌素(Nisin)是世界上公认安全的防腐剂,是一种由微生物代谢所产生的具有很强杀菌作用的天然代谢产物。

乳酸链球菌素本身具有许多优良性质:首先,容易被人体消化道中的一些蛋白酶和胰蛋白酶所降解,不会在体内蓄积而引起不良反应,并且对食品的色、香、味等无不良影响[1-2]。

使用它还可以降低杀菌温度,减少热处理时间,因此能改进食品的营养价值、风味、结构、颜色等性状,同时还可节省能耗。

Nisin本身具有热稳定性,并耐酸、耐低温贮藏,Nisin作为一种理想的天然防腐剂获得越来越广泛的应用。

1乳酸链球菌素的研究现状1.1乳酸链球菌素的分子结构乳酸链球菌素(Nisin)的分子式为C143H228N42O37S7,含有34个氨基酸残基,分子量为3510Da。

Nisin在天然状态下主要有两种形式,分别为NisinA和NisinZ[3],它们之间的差别在于氨基酸顺序中第27位氨基酸不同,在NisinA中是组氨酸,在NisinZ中是天冬氨酸,在其基因结构上的第148位脱氧核苷酸不同是造成差别的根本原因。

一般而言,在同样浓度下,NisinZ的溶解度和抑菌能力比NisinA要强。

1.2乳酸链球菌素的性质1.2.1物理和化学性质Nisin的溶解性、稳定性都与溶液的pH值密切相关。

Nisin的溶解度随pH值的下降而提高,pH值2.5时溶解度为12%,pH值为5.0时下降到4%,在中性及碱性条件下几乎不溶解[4]。

实验结果表明,Nisin在酸性条件下极为稳定,pH2.0条件下可耐受高温处理(121℃,15min),而无活力损失,而在中性或碱性条件下即发生失活。

1.2.2生物学特性当α-胰蛋白酶、胰酶制剂和枯草杆菌肽作用Nisin后,会使其失去活性,但羧肽酶A、羧肽酶E、肠肽酶、胃蛋白酶和胰蛋白酶对Nisin无作用。

Hurst报道,Nisin对α-凝乳蛋白酶、胰酶、李红,赵春燕*(沈阳农业大学,沈阳110161)摘要:乳酸链球菌素是某些乳链球菌产生的一种多肽物质,是一种高效、无毒副作用的天然生物防腐剂。

乳酸链球菌素在肉制品中应用的研究进展

乳酸链球菌素在肉制品中应用的研究进展

5 1 0 2 2 5 ,C h i n a ;2 . C o H e g e o f F o o d S c i e n c e ,S o u t h C h i n a A g i r c u l t u r a l U n i v e r s i t y ,G u ng a z h o u ,G u ng a d o n g 5 1 0 42 6 ,C h i n a )
Re s e a r c h P r o g r e s s o f Ap p l i c a t i o n o f Ni s i n i n Me a t P r o d u c t s
B A I We i - d o n g ,S H E N P e n g ,Q I A N Mi l l ,L I U L i - w e i
( 1 . C o l l e g e o f L i g h t I n d u s t r y a n d F o o d,Z h o n g k a i Un i v e r s i t y o f Ag r i c u l t u r e a n d En g i n e e r i n g ,Gu ng a z h o u,Gu ng a d o n3年 1 月
农产 品加工 ( 学刊) A c a d e mi c P e r i o d i c a l o f F a r m P r du o c t s P r o c e s s i n g
N o . 1
A b s t r a c t : Ni s i n i s a s a f e  ̄ e ic f i e n t n a t u r l a p r e s e r v a t i v e w i t h n o s i d e e f e c t s .I n t h i s p a p e r ,t h e Ni s i n ’ S s t r u c t u r e,

乳酸链球菌素_Nisin_抑菌作用及其抑菌机理的研究

乳酸链球菌素_Nisin_抑菌作用及其抑菌机理的研究
试验菌发酵培养基:改良的 M17G 培养基[4]。 指 示 菌 培 养 基 :细 菌 用 牛 肉 膏 蛋 白 胨 培 养 基(加 入 1.0%K2HPO4,自然 pH);金黄色葡萄球菌用 LB 液体培 养基;酵母菌用 YPG 培养基;真菌用 PDA 培养基。 1.2 试验方法 1.2.1 抑菌谱的测定 将 30℃培养 12h 的 T0625 菌株发酵液调为 pH2.5, 90℃加 热 30min,5400r/min 离 心 12min [5],收 集 上 清 液 。
收稿日期: 2008-01-04 作者简介: 吕淑霞(1963-),女,辽宁省人,教授,主要从事食品微生物安全性检测方面的研究工作。
2008 No.9
·88· S erial No.186
China Bre wing
Research Report
抑 菌 谱 的 测 定 采 用 杯 碟 法 。调 节 指 示 菌 浓 度 ,细 菌 为 107cfu/mL,真菌、酵母菌为 104cfu/mL。在指示菌培养基上 加入 0.2mL 指示菌悬液,L 棒涂匀。待干燥后放置牛津杯。 取发酵上清液 0.1mL 加入牛津杯内,适温培养一定时间, 测量抑菌圈直径。 1.2.2 乳酸链球菌素的提取纯化
按 1.2.4 操作,加入提取物后测定 0h、3h 和 9h 时培养 液的电导率值,同时设正常培养 0h、3h 和 9h 时金黄色葡 萄球菌培养液的电导率值为对照。 1.2.7 乳酸链球菌素对金黄色葡萄球菌培养液蛋白含量的
影响
同 1.2.4 操作,加入提取物后采用考马斯亮蓝 G-250 法 测定 0h、3h 和 9h 时培养液的蛋白质含量,同时设正常培养 0h、3h 和 9h 时金黄色葡萄球菌培养液的蛋白质含量为对照。 1.2.8 金黄色葡萄球菌菌体蛋白 SDS-PAGE 电泳分析

乳酸菌的研究进展

乳酸菌的研究进展
ph值降低可缩短肠内容物在肠道的滞留时间使变异原如一葡萄糖苷酶一葡萄糖苷酸酶硝基还原酶偶氮还原酶和7一脱羟基酶等及早排出体43破坏致癌物抑制产生致癌物质的细菌增殖抑制硝胺产生或抑制涉及硝胺合成的硝基还原酶如干酪乳杆菌能抑制乳酪中硝酸盐转化为硝酸胺嗜酸乳杆菌可显著降低高肉食大鼠粪便硝酸基和述
乳酸菌的研究进展
广东省佛山市三水区乐平镇动物防疫检疫站 叶 红 曾 敏
[摘 要] 乳酸菌是应用最早、 最广泛的饲用微生态制剂, 具有多种益生作用。本文从乳酸菌的粘附、 活性物质、 免疫赋活作用、 抗肿 降低胆固醇和降血压作用进行综述, 为开发新型绿色的饲用乳酸菌奠定扎实的基础。 瘤作用、 [关键词] 乳酸菌 活性物质 可溶性肽 1. 竞争性排斥病原菌的粘附 乳酸菌能与肠粘膜上皮细胞结合,占据有害菌肠粘膜上皮细胞结 从人体分离的嗜酸乳杆 合位点, 对有害菌起屏障作用。Conway [1]报道, 菌 (L. acidophilus ADH)对人的回肠上皮细胞和猪的回肠上皮细胞都具 有较好的粘附性,且粘附率显著高于从乳制品中分离的保加利亚乳杆 菌(L. bulgaricus)和嗜热链球菌(S. thermophilus), 对猪的结肠和盲肠上皮 细胞的粘附率也以嗜酸乳杆菌最高, 嗜热链球菌显著低于两株乳杆菌。 Conway 同时还指出实验中的乳酸菌的粘附都是非特异性的 。Gopal 报 道三株饲用微生态制剂菌株, 鼠李糖乳杆菌 (L. rhamnosus DR20), 嗜酸 乳杆菌(L. acidophilus HN017)和乳酸双歧杆菌(B. lactisDR10)对人肠道上 皮细胞系 HT- 29, Caco- 2 和 HT29- MTX 有极强的粘附力,而且三株乳 H7 对肠细胞的侵袭能力和细胞结合能力 。 酸菌都能降低 E.coli O157: Pascual 发现用浓度为 l05C

高效液相色谱仪法检测乳酸链球菌素含量的研究

高效液相色谱仪法检测乳酸链球菌素含量的研究

《高效液相色谱仪法检测乳酸链球菌素含量的研究》一、引言在当今的生物医药领域,乳酸链球菌素(Lactobacillus)作为一种重要的生物活性物质,具有抗菌、抗氧化和抗炎等多种生物功能,因此备受关注。

为了更好地研究和应用乳酸链球菌素,科研人员需要一种准确、快速、稳定的检测方法。

而高效液相色谱仪法(HPLC)作为一种常用的分析方法,在乳酸链球菌素含量检测中具有广泛的应用前景。

二、乳酸链球菌素的生物活性及检测方法综述1. 乳酸链球菌素的生物活性乳酸链球菌素是一种由乳酸链球菌产生的多肽类物质,具有多种生物活性,包括抗菌、调节免疫功能、抗氧化等,因此被广泛应用于食品、药品和保健品等领域。

2. 乳酸链球菌素检测方法综述目前常用的乳酸链球菌素检测方法包括生物学法、免疫学方法和色谱法等。

其中,色谱法中的HPLC方法因其检测灵敏度高、分离效果好、定量准确等优点,成为乳酸链球菌素检测的首选方法之一。

三、HPLC方法在乳酸链球菌素检测中的应用1. 样品前处理在使用HPLC方法检测乳酸链球菌素含量时,首先需要对样品进行前处理。

常见的前处理方法包括提取、浓缩和净化等,通过前处理可有效提高样品中乳酸链球菌素的浓度,提高检测灵敏度。

2. 色谱条件优化在乳酸链球菌素的HPLC检测中,色谱条件的优化对于检测结果的准确性和稳定性至关重要。

包括流动相的选择、柱温、流速、检测波长等参数的优化,都能够有效地提高检测效果。

3. 标准曲线的建立为了定量分析样品中乳酸链球菌素的含量,需要建立标准曲线。

通过制备不同浓度的乳酸链球菌素标准溶液,利用HPLC方法测定其峰面积,建立标准曲线并进行定量分析。

四、乳酸链球菌素HPLC检测方法的优势与挑战1. 优势HPLC方法在乳酸链球菌素检测中具有灵敏度高、分离效果好、定量准确等优点,能够满足科研和生产中的实际需求。

2. 挑战在实际应用中,乳酸链球菌素的HPLC检测也面临着样品前处理复杂、色谱条件优化难度大等挑战,需要科研人员不断进行改进和优化。

天然防腐剂乳酸链球菌素的研究进展

天然防腐剂乳酸链球菌素的研究进展

天然防腐剂乳酸链球菌素的研究进展摘要:乳酸链球菌素是由乳酸链球菌产生的一种高效、无毒、安全、无副作用的天然食品防腐剂。

本文简单的介绍了乳酸链球菌素的理化性质及其防腐特性在食品工业中的应用和未来的发展趋势。

关键词:乳酸链球菌素理化性质应用发展趋势世界上每年约有20%以上的粮食及食品因腐败变质而造成巨大浪费和经济损失,变质食品还会危及人的身体健康,因食品变质导致食物中毒的事件时有发生,所以,在食品工业中,防腐剂是一个重要的添加剂。

食品防腐剂按来源不同可分为三类:天然防腐剂、化学合成防腐剂、生物防腐剂。

由于化学防腐剂一般在较低的pH介质中以分子状态存在,并有一定的副作用,在允许的使用量下,对食品风味仍有一定的影响,所以难以满足现代食品加工的需要。

20世纪50年代以后,生物防腐剂的出现,以高效、低毒、天然的特征弥补了化学合成防腐剂的不足,具有广阔的发展前景。

乳酸链球菌素,又称乳球菌肽或乳链菌肽,英文名为 Nisin。

是目前用于食品中为数较少的生物防腐剂之一。

乳酸链球菌素是Rogers于1982年首次发现的。

1914年,Mattick和Hirsch证明该物质可抑制许多革兰氏阳性菌,并将这种活性物质称为Nisin。

1969年,FAO/WHO联合食品添加剂专家委员会确认乳酸链球菌素可作为食品防腐剂。

由于乳酸链球菌素对许多革兰氏阳性菌,特别对产孢子的革兰氏阳性菌有很强的活性,加之它对人体安全无毒,展示了乳酸链球菌素在食品工业中的前景。

一、理化性质乳酸链球菌素属于N型血清的某些乳酸链球菌产生的一种多肽物质,相对分质量为3348,分子式为C143H228N42O37S7。

乳酸链球菌素为白色或略带黄色的易流动粉末,略带咸味。

纯的乳酸链球菌素的等电点约为pH9,其中水中的溶解度随pH值的下降而显著提高,在pH值为2.5时,溶解度为12%;pH值为5.0时,溶解度为4%;在中性或碱性条件下几乎不溶解。

将乳酸链球菌素溶于pH值为6.5HCL中时,可经121摄氏度加热30分钟而不丧失抑菌活性,在pH值为6.5时丧失90%以上的活性。

乳酸链球菌素的研究现状

乳酸链球菌素的研究现状

乳酸链球菌素的研究现状乳酸链球菌素的生产及研究现状吴江乳酸链球菌素(Nisin) 是从乳酸链球菌发酵产物中提制的一种多肽抗菌素类物质,是一种世界公认的安全的天然生物性食品防腐剂和抗菌剂。

1944 年Mattick 和Hirsch 发现血清学N 群中的一些乳酸链球菌能产生蛋白类抑菌物质,命名为N-inhibitory Substance 即N 群抑菌物质,简称为Nisin。

1953 年由英国的阿普林和巴雷特公司首次以商品的形式出售了这种新的防腐剂———乳酸链球菌素。

1969 年,FAO/ WHO 食品添加剂联合专家委员会批准Nisin作为一种生物型防腐剂应用于食品工业。

1988 年美国食品和药物管理局(FDA) 也正式批准将Nisin应用于食品中。

我国在GB2760 —86 中批准Nisin可用于罐藏食品、植物蛋白食品、乳制品、肉制品中。

迄今为止,Nisin 已在全世界约60 多个国家和地区被用作防腐剂。

1.乳酸链球菌素的生产1.1 菌种的筛选和改良乳酸链球菌广泛存在于天然牛奶及乳酪和酸奶中, 从牛奶场取生牛奶样品, 加以稀释, 然后在含有检测菌及吐温20 为扩散剂的固体检测培养基表面进行涂布, 在30 ℃培养24h 后, 测量抑菌圈直径, 挑取抑菌圈直径与菌落直径比较大的菌株再进行平板划线分离, 选取单个菌落接至试管斜面保存, 然后, 逐一测定菌株的Nisin 效价。

这样便筛选出产Nisin 的乳酸链球菌菌株。

若想获取高产菌株, 可对原始菌株再进行诱变处理。

1.2 培养基和培养条件不同的乳酸链球菌株,其Nisin 的效价也有显著的变化,所适应的发酵条件也各有所不同,国内外这方面的研究较多,综合来看,在C 源上,最适合的主要为蔗糖和可溶性淀粉,其添加量随菌株的不同也各有所不同。

最适N 源,主要为酵母膏,添加量1 %左右,另外酵母膏及吐温80对细胞的生长及Nisin 的产生均有利。

最适P 源普遍认为KH2PO4最合适,添加量一般≤5 % ,使用KH2PO4主要有两方面优点:即可创造良好的pH环境;可提高Nisin 的产生。

天然食品防腐剂——乳酸链球菌素

天然食品防腐剂——乳酸链球菌素

天然食品防腐剂——乳酸链球菌素©2009-3-23国家食物与营养咨询委员会缪存影(浙江师范大学化学与生命科学学院,金华321004)摘要:本文介绍了乳酸链球菌素的理化性质、抗菌机理、安全性及检测方法的研究进展,综述了乳酸链球菌素在食品工业中的应用现状。

关键词:食品防腐剂;乳酸链球菌素;抗菌机理;检测方法;应用防腐剂作为食品保鲜和贮藏的重要食品添加剂,其安全性日益受到食品加工行业的关注与重视。

在食品加工中采用纯天然的食品防腐剂、保鲜剂,生产出满足消费者需求的绿色食品,这将是防腐剂研究开发领域的重点。

乳酸链球菌素(Nisin)是一种乳酸菌代谢所产生的具有很强杀菌作用的天然代谢产物,被认为是一种高效、天然、绿色食品防腐剂。

1 乳酸链球菌素的研究开发动态早在1928年,美国学者Rogers和Whitter首先发现乳酸链球菌的代谢产物能抑制乳酸杆菌的生长;1933年,Whitehead及其合作者观察到,野生乳酸链球菌能抑制干酪制作中乳酸菌的生长和酸的产生,并发现抑制乳酸菌生长的乳酸链球菌代谢产物实质上是一种多肽,并分离出这种物质;1947年,Mattick和Hirsch研究发现血清学N群中的一些乳酸链球菌产生具有蛋白质性质的抑制物,证明该物质可抑制许多革兰氏阳性菌,并将其命名为“NISIN”,取自“Ninhibitorv substance”。

1953年乳酸链球菌素的第一批商业产品——Nisaplin在英国面市,Nisin作为商品进入市场;1969年联合国粮农组织和世界卫生组织(FAO/WHO)食品添加剂联合专家委员会确认Nisin可作为食品添加剂;1971年,Gross和Morell阐明了Nisin分子的完整结构;1988年,Buchman等克隆了编码Nisin前体的结构基因并测定了DNA序列;1991年,Mulders等发现Nisin有2个天然变异体——NisinA和NisinZ。

我国于1990年开始批准使用Nisin。

天然防腐剂——乳酸链球菌素的研究进展

天然防腐剂——乳酸链球菌素的研究进展
很 强 杀菌 作 用 的小 肽 。
1 结 构 和 特 性
1 1 结 构 .
乳 酸 链 球 菌 素 ( in 的 分 子 式 为 c H:N: Ns ) i 。 0 由 3 , , 4个 氨基 酸 残 基 组 成 。 随着 研 究 的 深入 , S 人们 已经发 现 Ns in有 6种 类 型 , i 分别 为 A、 c、 B、 D、
据统 计 , 全世 界 约有 1 % ~2 % 的食 品 损 失 源 0 0
早 在 12 98年 , 国 R gr 人 发 现 乳 酸 链 球 菌 美 oe 等 的代谢 产物 能 抑 制保 加利 亚 乳 杆菌 , 其 后 的 2 在 0多 年 里 , 多 科 学 家对其 结 构 、 能 等进 行 了深 入 的研 许 功 究 。 18 99年联 合 国粮 食 及 农 业 组 织 ( A / F O WHO) 、 食 品添 加 剂联 合专 家委 员 会 对 Ns in给 予 食 品 防 腐 i 剂 的 国际 承 认 后 , 今 为止 , 有英 、 、 等 5 迄 已 美 法 0多 个 国家 和 地 区批 准 Ns in作 为 食 品 防 腐 剂 , 国 也 i 我 在 19 90年批 准 使用 。 中国科 学 院微 生物 研 究 所 、 中 国食 品发酵 工 业研 究 所 和浙 江 天 台制 药厂 银 象分 场
成 孔 洞 。N s in是一 个 带 正 电荷 的 阳离 子分 子 , 缺 i 在
的分 子 内环 , 中一个 称 为羊 毛 硫氨 酸 , 他 4个 是 其 其

乏 阴离 子 墨 磷 脂 的情 况 下 , in起 阴 离 子选 择 载体 Ns i
的作 用 ; 当存 在 阴离 子 膜磷 脂 时 , in吸 附在 膜 上 , Ns i 利 用 离子 问 相互 作 用 , 其 分 子 的 C末 端 和 N末 端 及 对 膜 结构 产 生作 用 形成 穿 膜 “ 道 ” 从 而 引 起胞 内 孔 , 物 质 泄漏 , 致 细胞 解 体死 亡 。 导

乳酸链球菌素

乳酸链球菌素

Nisin乳酸链球菌素Nisin是从乳酸链球菌发酵产物中提制的一种多肽抗菌素类物质,是一种世界公认的安全的天然生物性食品防腐剂和抗菌剂。

早在1928年,Rogers和whittier就发现乳酸链球菌的代谢产物能够抑制部分革兰氏阳性菌的生长。

1944年Mattick和Hirsch发现血清学N群中的一些乳酸链球菌能产生蛋白类抑菌物质,命名为N_inhibitorySubstance即N群抑菌物质,简称为Nisin]。

1951年,Hirsch等人应用Nisin到食品保藏中,成功的抑制了由产气梭状芽孢杆菌引起的奶酪腐败,极大改善了奶酪的品质。

1953年由英国的阿普林和巴雷特公司首次以商品的形式出售了这种新的防腐剂———乳酸链球菌素。

1969年,FAO/WHO食品添加剂联合专家委员会批准Nisin作为一种生物型防腐剂应用于食品工业。

1988年美国食品和药物管理局(FDA)也正式批准将Nisin应用于食品中。

我国在GB2760—86中批准Nisin可用于罐藏食品、植物蛋白食品、乳制品、肉制品中。

迄今为止,Nisin已在全世界约60多个国家和地区被用作防腐剂。

1.Nisin的特性1.1分子结构Nisin分子由34个氨基酸残基组成,分子式为C143H228N42O37S7,分子量为3510。

Nisin分子结构中包含5种稀有氨基酸即ABA、DHA、DHB、ALA-S-ALA和ALA-S-ABA,它们通过硫醚键形成五个内环,其活性分子常为二聚体或四聚体。

二聚体分子量为7000,四聚体分子量为14000。

经过几十年的研究,人们已发现Nisin分子有6种类型,它们分别是A、B、C、D、E、Z,其中以NisinA和Z两种类型的研究最为活跃。

NisinA与NisinZ的差异仅在于氨基酸顺序上第27位氨基酸的种类不同。

NisinA是组氨酸(His),而NisinZ是天门冬酰胺(Asn)。

资料表明,同样浓度下NisinZ的溶解度和抗菌能力都比NisinA强。

天然食品防腐剂——乳酸链球菌素

天然食品防腐剂——乳酸链球菌素

天然食品防腐剂——乳酸链球菌素©2009-3-23国家食物与营养咨询委员会缪存影(浙江师范大学化学与生命科学学院,金华321004)摘要:本文介绍了乳酸链球菌素的理化性质、抗菌机理、安全性及检测方法的研究进展,综述了乳酸链球菌素在食品工业中的应用现状。

关键词:食品防腐剂;乳酸链球菌素;抗菌机理;检测方法;应用防腐剂作为食品保鲜和贮藏的重要食品添加剂,其安全性日益受到食品加工行业的关注与重视。

在食品加工中采用纯天然的食品防腐剂、保鲜剂,生产出满足消费者需求的绿色食品,这将是防腐剂研究开发领域的重点。

乳酸链球菌素(Nisin)是一种乳酸菌代谢所产生的具有很强杀菌作用的天然代谢产物,被认为是一种高效、天然、绿色食品防腐剂。

1 乳酸链球菌素的研究开发动态早在1928年,美国学者Rogers和Whitter首先发现乳酸链球菌的代谢产物能抑制乳酸杆菌的生长;1933年,Whitehead及其合作者观察到,野生乳酸链球菌能抑制干酪制作中乳酸菌的生长和酸的产生,并发现抑制乳酸菌生长的乳酸链球菌代谢产物实质上是一种多肽,并分离出这种物质;1947年,Mattick和Hirsch研究发现血清学N群中的一些乳酸链球菌产生具有蛋白质性质的抑制物,证明该物质可抑制许多革兰氏阳性菌,并将其命名为“NISIN”,取自“Ninhibitorv substance”。

1953年乳酸链球菌素的第一批商业产品——Nisaplin在英国面市,Nisin作为商品进入市场;1969年联合国粮农组织和世界卫生组织(FAO/WHO)食品添加剂联合专家委员会确认Nisin可作为食品添加剂;1971年,Gross和Morell阐明了Nisin分子的完整结构;1988年,Buchman等克隆了编码Nisin前体的结构基因并测定了DNA序列;1991年,Mulders等发现Nisin有2个天然变异体——NisinA和NisinZ。

我国于1990年开始批准使用Nisin。

乳酸链球菌素(Nisin)的特性及应用

乳酸链球菌素(Nisin)的特性及应用

1Nisin的概述乳酸链球菌素——Nisin从1980年起被FDA允许用作食品添加剂[1]。

Nisin最早发现于1928年[2],1947年被命名为Nisin[3],第一次商业化应用是在1957年,由Aplin&Barrett出品,其产品被命名为Nisaplin。

目前,已经有超过60个国家和地区批准Nisin作为一种纯天然食品防腐剂和保鲜剂使用,被广泛用于乳制品、肉制品、罐装食品、酒精饮料、酱菜和巧克力中。

Nisin在1971年由Gross和Morrell确定为含有34个氨基酸的小分子肽,存在翻译后修饰,一般带有一个羊毛硫氨基酸,四个β-甲基羊毛硫氨基酸和一些不常见的氨基酸残基如脱氢丙氨酸和脱氢酪氨酸。

Nisin通常带有硫醚键形成的分子内环,这种环状结构,是其破坏细胞膜完整性的一个重要的性质,这种环状结构维持了肽的刚性,并保护它不受蛋白酶和热降解的影响[4-5]。

Nisin对部分革兰氏阳性菌如单增李斯特菌(Listeria monocytogenes)、金黄色葡萄球菌(Staphylococcus aureus)、蜡样芽孢杆菌(Bacillus cereus)、植物乳杆菌(Lactobacillus plantarum)和藤黄微球菌(Micrococcus luteus)等具有较强的抑制作用,其本身是一种无臭无色无味的低毒物质[6-9]。

一般认为Nisin对芽孢的杀灭作用大于对营养型微生物的杀灭作用,这是由于它具有抑菌作用而非杀菌作用[10]。

Nisin有多种不同的类型,A、Z、F、Q和U型等,Nisin Z和A的区别在于第27位的氨基酸由组氨酸变为天冬酰胺(His27Asn),Nisin P由Streptococcus suis和Streptococcus gallolyticus subsp.pasteurianus产生[11-12]。

乳酸链球菌素(Nisin)的特性及应用■李仲玄程强姚蒙蒙胡聪买尔哈巴·艾合买提王晓冰张日俊斯大勇*(中国农业大学饲料生物技术实验室动物营养学国家重点实验室,北京100193)摘要:乳酸链球菌素(Nisin)是食品药品监督管理局(FDA)允许用作食品添加剂的天然肽类细菌素,其在畜牧和医学中同样具有巨大的应用前景,但Nisin在应用中仍存在较多问题,例如它的降解、与食品成分的相互作用均会限制它的使用,文章简要讨论Nisin在应用中存在的问题以及新进展和新前景。

乳酸链球菌素研究现状及在畜产品加工中的应用

乳酸链球菌素研究现状及在畜产品加工中的应用

色体上 。 支持前一种观点 的主要证据是 K zk14) 1 . 创 造经 济效 益 oa(97 . 3 7
返 货成 本 一 i n成本 = 0 Ns i l 0 2
在研究 产 N s i n菌株 的 突变 现象 时发 现 , 先 以原 元 一2 i 若 2 5元= 7 。 表 明添加 Ns 95元 in不但 降低 了成 i
长食 品贮 藏 时 间 , 可减 少或 部 分 取 代 某些 化 学 还
1 经济 效益分 析 . 7
1 . 添加 N s .1 7 in的经 济 成本 按 照 10I /g的 i 5 g xk
Ns i n亦可抑 制一 些革 兰 阴性 菌 的生长 ,如 沙 门氏 合成 防腐 剂 , 济效益 十分 显著 。 i 经
m n对链 酶蛋 白酶不 敏感 。 i
1 抑茵谱 . 3
ቤተ መጻሕፍቲ ባይዱ
1 产 品功效 . 6
乳 酸链 球 菌素 能有 效地 抑 制 引起 食 品腐 败 的 细菌 和孢 子 , 延长 食 品货 架期 ; 同时 又是 一种 食 品
Ns i n能够 抑制 大部分 革 兰阳性菌 及其 芽孢 的 i
生 长 与繁 殖 , 葡 萄球 菌属 、 球 菌 属 、 状 芽 孢 品质改 良剂 , 降低食 品灭菌 温度 , 短食 品灭菌 如 链 梭 可 缩 杆 菌属 和 芽 孢 杆菌 属 的细 菌 , 别 是 对 金 黄 色 葡 时 间 , 特 节省 能 耗 , 节省 工 时 , 降低 生产 成本 , 高食 提
膜 上 , 以抑 制 细 菌 细胞 壁 中肽 聚 糖 等 的 生物 合 1 . 降低 返 货 成本 可 .2 7 内物 质外泄 , 起细胞 裂解[ 引 6 1 。
1 Ns . i n合成 的遗传 学研 究 5 i

天然食品防腐剂——乳酸链球菌素

天然食品防腐剂——乳酸链球菌素

天然食品防腐剂——乳酸链球菌素天然食品防腐剂——乳酸链球菌素2008.4(总第151期)山东食品发酵天然食品防腐剂乳酸链球菌素刘国信(山西省阳城县畜牧局山西048100)摘要乳酸链球菌素是一种多肽类化合物,进入人体后易被蛋白酶分解,是一种高效安全的天然食品防腐剂.由于它能有效地抑制引起食品腐败的革兰氏阳性茵的生长和繁殖,可用于肉制品,乳制品,植物蛋白食品,罐装食品的防腐保鲜,目前在国内外已得到广泛应用.关键词乳酸链球菌素食品防腐作用前言乳酸链球菌素(ninhibiforysubstance,缩写为Nisin)也叫乳酸链球菌肽或尼生素,是从链球菌属(Streptococcus)的乳酸链球菌发酵产物中提取的一类多肽化合物.由于N!sin是一种多肽,进入人体后易被蛋白酶分解,因此是一种高效,无毒,安全的天然食品防腐剂.它能有效地抑制引起食品腐败的革兰氏阳性菌的生长和繁殖,尤其对产生芽孢的革兰氏阳性菌有特效,可用于肉制品,乳制品,植物蛋白食品,罐装食品的防腐保鲜.由于乳酸链球菌具有卓越的抑菌防腐功能, 以及它对人体无毒副作用,因而在国内外已得到广泛应用.1乳酸链球菌素的性质乳酸链球菌素是一种多肽,吸附于细胞上.迄今研究表明它的分子量是3500,正常情况下以二聚体状态存在.在分子组成中,乳酸链球菌素含有羊毛硫氨酸,B一甲基羊毛硫氨酸,脱氢丙氨酸,B一甲基脱氢丙氨酸4种不常见的氨基酸. 乳酸链球菌素溶解性和稳定性依赖于溶液的pH,在中性pH或碱性条件下乳酸链球菌素极难溶解,并且即使在室温下也会失活,因此添加乳酸链球菌素防腐的食品必须是酸性的,而且在加工和贮存中这种酸性能够保持稳定.乳酸链球菌素的抑菌活性表现在对许多革兰氏阳性菌具有抑制作用.如能抑制肉毒梭状芽孢杆菌,金黄色葡萄球菌,溶血性链球菌,利斯特氏菌,嗜热脂肪芽孢杆菌等的生长和繁殖,尤其对产生芽孢的革兰氏阳性菌有特效.这一特性使得它可广泛地用于经热处理的包装食品中作为防腐剂,如可用于肉制品,ffLN品,植物蛋白食品,罐装食品的防腐保鲜.乳酸链球菌素作用方式在分子水平上与阳离子多肽类抑菌物质一样,它的初级作用点在细胞膜上,它的作用方式像是一种阳离子表面活性去污剂.它作用的第一步可能是被细菌细胞吸收, 进而引起溶菌作用和细胞质释放,或抑制肽聚糖的合成,从而抑制了革兰氏阳性细菌的生长.大量的研究实验表明,乳酸链球菌素对于实验动物没有毒性作用.人们很久以来食用含有产生乳酸链球菌素的乳酸菌和乳酪也没有出现明显的变态反应.因此,乳酸链球菌素用于食品是安全的.FAO(世界粮农组织)*NWHO(世界卫生组织)早在1969年就已经允许乳酸链球菌素在食品中使用.2在肉类制品中的作用乳酸链球菌素可广泛应用于肉类,鱼类的防腐保鲜.据研究,在不影响香肠,火腿色泽和防腐效果的情况下加入一定量的乳酸链球菌素,可使亚硝酸盐含量明显降低.在鱼类防腐方面,乳ShandongFoodFermentation——51——山东食品发酵l2008.4(总第151期)酸链球菌素还具有延迟熏制鱼中存在的肉毒梭菌芽孢毒素形成的作用.目前,在香肠生产中普遍使用亚硝酸钠(NaNO),硝酸钠(NaNO)作为发色剂,并以此抑制肉毒梭状芽孢杆菌的生长繁殖.虽然亚硝酸钠的致癌性问题引起了国际上的高度重视,但至今国内外仍在继续使用.其原因是亚硝酸盐对保持香肠制品的色,香,味有特殊的作用,更重要的原因是亚硝酸盐对肉毒梭状芽孢杆菌有抑制作用.如果要降低亚硝酸钠的使用量,就必须在工艺上采取相应的杀菌防腐措施,以保证有效地防止肉毒中毒. 为此,如用少量的亚硝酸钠(O.04g/kg)作为发色剂,而采用乳酸链球菌素来抑制肉毒梭状芽孢杆菌等细菌的生长繁殖,可确保在减少亚硝酸钠使用量的情况下,防止肉毒中毒.研究试验表明,乳酸链球菌素对于实验动物没有毒性作用,而其抑菌效果却大大优于亚硝酸钠.使用乳酸链球菌素可降低亚硝酸钠的使用量.从乳酸链球菌素的抑菌效果及产品成本等方面综合考虑,乳酸链球菌素还可取代山梨酸钾作为猪肉丝的防腐剂(其适宜添加量为0.4g/kg), 并能提高其产品质量.总的来说,乳酸链球菌素添加于肉类制品中具有如下作用:2.1降低pH值,减少腐败,改善肉制品结构乳酸菌利用碳水化合物发酵产生乳酸,降低制品的pH值至4.8,5.2,使肌肉蛋白质变性形成胶状组织,增加肉块间的结着力,并提高制品的硬度与弹性,使灌肠制品具有可切薄片的特性.由于pH值接近肌肉蛋白质的等电点,肌肉的保水力减弱,可提高灌肠干燥速率,降低水分活性,又因pH值迅速下降,不仅可抑制肉毒杆菌及其他病原体微生物增殖或产生毒素,亦可防止腐败微生物的滋长,提高产品的得率.2.2促进发色由于乳酸菌发酵产酸,pH值降低,促进亚硝酸盐的分解,使NO与肌红蛋白结合,形成稳定的亚硝肌基红蛋白,可使制品呈现亮红色.2-3降低亚硝酸盐残留量,减少亚硝胺的形成由于乳酸菌发酵产酸,降低pH值,促进亚硝酸盐的还原作用,降低了亚硝酸盐残留量,从而可减少亚硝酸盐与二级胺反应生成致癌物质——亚硝胺.2.4抑制病原微生物的生长和毒素的产生.由于乳酸的产生,pH值的降低,可抑制各种不良微生物的生长繁殖,同时乳酸菌产生的抗菌物质——Bacteliocin对沙门氏菌,金黄色葡萄球菌和肉毒杆菌有抑制作用.2.5提高制品的营养价值,促进良好风味的形成制品在发酵过程中,由于蛋白质的分解作用,提高了游离氨基酸的含量和蛋白质的消化率,同时在发酵过程中形成了酸类,醇类,碳水化合物,游离氨基酸和核苷酸等风味物质,使制品的营养价值和风味都能得到改善.3在乳制品中的作用由微生物引起的牛奶污染长期以来被认为是不可避免的,它直接影响到牛奶的食用安全,并缩短货架寿命.虽然采用巴氏消毒和冷藏是杀死有毒细菌,延长货架寿命的一种方法,但因其不能杀死细菌孢子,而这些细菌孢子在经过消毒过程后仍然能生存下来,并继续生长,从而限制了消毒后乳制品的保存期.从目前的大量实验看,乳酸链球菌素无疑是乳酪类制品的一种优良防腐剂,它可以有效地防止大量存在于这类食品中的厌氧梭菌的芽孢萌发和毒素的形成;也可用于含乳品的奶油糖果,巧克力类食品的防腐.4在罐头食品中的作用罐头食品中含有耐热芽孢菌,如嗜脂肪芽孢杆菌和解糖梭状芽孢杆菌等.由于一般罐头杀菌消毒处理不能将它们杀死,在温度条件适宜时这些芽孢还会萌发,导致罐头食品腐败变质,从而造成损失.而在罐头食品中应用乳酸链球菌素, 可有效地防止其腐败变质.由于乳酸链球菌素在碱性条件下不稳定,其活性随pH下降而升高,因而可成功用于高酸食品的防腐.对于非酸罐头食品也可添加乳酸链球菌素而减轻罐头热处理,得到同样的防腐效果,并使产品的营养价值和风味得到提高.——52——ShandongFoodFermentation2008.4(总第151期)5在酒精饮料方面的应用乳酸链球菌素对革兰氏阴性菌,酵母或霉菌几乎无抑制作用,因此在生产啤酒,果酒,烈性酒精饮料时,一起加入乳酸链球菌素与酵母,可抑制这些酒饮料中的革兰氏阳性菌.最近英国和德国进行的研究表明,乳酸链球菌素在酒精饮料工业方面具有广阔的应用前景.在浓度达到100国际单位/毫升时,乳酸链球菌素对乳酸杆菌及其他一些乳酸菌等主要腐败性细菌,均有较好的抑制作用.此外,乳酸链球菌素还可用于有机酸,多山东食品发酵糖,氨基酸和维生素等工业发酵中,以防止革兰氏阳性菌污染发酵过程.据此,目前人们已在考虑把乳酸链球菌素作为发酵工业生产的一种辅剂,而不仅仅限于控制发酵中的杂菌.参考文献[1】侯振建编着.食品添加剂及其应用技术.北京.化学工业出版社.2004年.250页;【2]陈家华编着.食品保鲜新技术.上海.上海科学技术文献出版社.1997年.57,6O页;果瞄饮料将有国椽作为健康饮料的重要一员,醋饮料经过10多年的发展,已经初具规模,全国多达300多个品种,但由于没有统一的行业标准,不少产品以食醋和果汁勾兑而成,市场产品质量良莠不齐.随着果醋饮料国家标准征求意见稿的发布,这一现状有望改变.尽管市场上有多达300种醋饮料,但只能称之为品类,而非品牌.目前市场上大多数醋饮料产品都是区域性品牌,规模都在数千万元左右.而且由于行业没有统一的标准,导致市场上的产品质量难以得到保障.数据显示,在欧美,日本等发达国家,果醋饮料已占到醋类消费总量的50%.日本人均醋类消费是1.8kg/年,美国为1.4kg/年,而我国醋类的人均年消费量仅为0.2kg,仅相当于日本的1/9,美国的1/7.由全国食品工业标准化技术委员会饮料分委会负责的果醋饮料国家标准征求意见稿已完成,征求意见截止~U2008年11月15日.该标准规定,果醋饮料应该用经发酵制成的果醋调制,禁止用未发酵的柠檬酸,苹果酸,酒石酸,醋酸作为辅料调制果醋饮料.业内人士认为,果醋饮料国家标准的出台有望规范醋饮料行业,这也将加速醋饮料行业洗牌.有专家认为,我国的水果资源虽十分丰富,但加工转化能力较低,水果由于生产季节的原因,往往是淡季太少,而旺季太多,造成了极大的资源浪费.充分利用水果资源开发果醋饮料产品的生产,发展与推广果醋酿造技术,不仅为缓解果滞销和果品资源的加工利用提供了一条有效的解决途径,还可以繁荣市场,成为一个新的经济增长点,既符合国家的产业政策,又部分解决了鲜果的销售问题.我国苹果,梨栽培面积和产量均居世界首位,但是我国苹果,梨加工业起步较晚,我国90%以上的苹果,梨是鲜食品种,缺少加工品种,而先进国家加工品种一般在50%以上,如美国有45%,阿根延有50%,德国则有高达75%的果品产量用于加工果酒,果醋等产品.而我国苹果,梨加工水平低,加工产品少,高附加值产品少,对原料的综合利用程度低,今后应积极研究和开发果酒,果醋等产品.ShandongFoodFermentation——53——。

乳酸链球菌素抑菌机理 及其在食品保鲜中的创新应用

乳酸链球菌素抑菌机理 及其在食品保鲜中的创新应用

乳酸链球菌素抑菌机理及其在食品保鲜中的创新应用下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!本店铺为大家提供各种类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you! In addition, this shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!1. 介绍乳酸链球菌素是一种抑菌剂,具有广泛的抑菌活性和稳定性,被广泛应用于食品保鲜领域。

乳酸链球菌素的研究进展

乳酸链球菌素的研究进展

乳酸链球菌素的研究进展Research and Development of Nisin◎ 李 梵(河南省食品药品审评查验中心,河南 郑州 450000)Li Fan(Henan Food and Drug Evaluation and Inspection Center, Zhengzhou 450000, China)摘 要:防腐剂是食品中使用比较广泛的添加剂,乳酸链球菌素是一种高效、无毒的纯天然生物防腐剂。

本文主要研究了乳酸链球菌素的结构及理化性质、抑菌机理及其在食品行业中的应用。

关键词:乳酸链球菌素;防腐剂;食品Abstract :Preservative is used widely in food additives, nisin which it is a high-efficiency and non-poisonous effect natural biopreservative. This paper reviewed the research progress in physical and chemical structure of nisin properties, antibacterial mechanism and application in the food industry.Key words :Nisin; Preservative; Food 中图分类号:TS202.3乳酸链球菌素是一种天然的防腐剂,英文名字是Nisin,是N 型血清中的乳酸链球菌通过代谢过程合成的一种小肽,这种小肽的杀菌作用非常强,不具有毒性,可以作为食品防腐剂[1]。

1 乳酸链球菌素的结构及理化性质1.1 结构乳酸链球菌素是由核糖体合成的小蛋白质抗菌素,包含常见氨基酸(丝氨酸、苏氨酸和半胱氨酸)转录后修饰引进的脱氢残留(脱氢丙氨酸和脱氢酪氨酸)和硫醚交联的羊毛硫氨酸和β-甲基羊毛硫氨酸。

乳酸链球菌素序列

乳酸链球菌素序列

乳酸链球菌素序列
乳酸链球菌素序列是一种重要的生物活性多肽,具有广泛的应用价值。

本文将从乳酸链球菌素序列的概念、结构、合成和应用等方面进行探讨,旨在深入了解乳酸链球菌素序列的研究进展和应用前景。

一、乳酸链球菌素序列的概念
乳酸链球菌素是一类由乳酸链球菌产生的抗菌活性多肽,其序列是由一系列氨基酸组成的。

乳酸链球菌素序列通常由20-50个氨基酸残基组成,其氨基酸序列和空间结构决定了其生物活性和稳定性。

乳酸链球菌素序列具有多种结构类型,常见的有α-螺旋、β-折叠和无规卷曲等。

这些结构类型使得乳酸链球菌素序列具有较好的稳定性和抗菌活性。

三、乳酸链球菌素序列的合成
乳酸链球菌素序列的合成方法有多种,常见的包括化学合成和生物合成两种途径。

化学合成是通过有机合成方法将氨基酸逐个连接起来,形成乳酸链球菌素序列。

生物合成则是利用乳酸链球菌等微生物通过基因工程技术合成乳酸链球菌素序列。

四、乳酸链球菌素序列的应用
乳酸链球菌素序列具有广泛的应用价值。

首先,乳酸链球菌素序列具有抗菌活性,可以用于开发新型的抗菌药物。

其次,乳酸链球菌素序列还具有抗肿瘤、抗炎和免疫调节等生物活性,可用于开发相
关的药物和治疗手段。

此外,乳酸链球菌素序列还可以作为食品防腐剂和保健品的添加剂,具有广泛的应用前景。

乳酸链球菌素序列是一种重要的生物活性多肽,具有广泛的应用价值。

通过深入了解乳酸链球菌素序列的概念、结构、合成和应用等方面的研究,可以为其进一步的开发和应用提供理论支持和技术指导。

相信在不久的将来,乳酸链球菌素序列将在医药、食品和保健品等领域发挥重要作用,为人类健康和福祉做出贡献。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

乳酸链球菌素的研究进展摘要:本文介绍了乳酸链球菌素(Nisin)的分子结构、性质、抗菌机理和生产的研究进展;综述了乳酸链球菌素在食品工业中的应用现状,并对其应用前景进行展望,以期为乳酸链球菌素的进一步研究提供参考.关键词:乳酸链球菌素,抗菌机理,食品工业,应用Abstract:Nisin is an antibacterial multipeptide produced by certain strain of Lactococcus lactis.It is a high efficiency and nopoisonous effect natural biopreservative.This paper comprehensive described research exploitation and progress about produce and applies of nisin.Key words:nisin;preservative;research and progress乳酸链球菌素(Nisin)是世界上公认安全的防腐剂,是一种由微生物代谢所产生的具有很强杀菌作用的天然代谢产物。

乳酸链球菌素本身具有许多优良性质:首先,容易被人体消化道中的一些蛋白酶和胰蛋白酶所降解,不会在体内蓄积而引起不良反应,并且对食品的色、香、味等无不良影响。

使用它还可以降低杀菌温度,减少热处理时间,因此能改进食品的营养价值、风味、结构、颜色等性状,同时还可节省能耗。

Nisin本身具有热稳定性,并耐酸、耐低温贮藏,Nisin 作为一种理想的天然防腐剂获得越来越广泛的应用1、乳酸链球菌素的研究现状1.1乳酸链球菌素的分子结构Nisin)亦称乳酸链球菌肽或音译为尼辛,是目前最常用的生物防腐剂,它是乳酸链球菌产生的一种多肽物质,由34个氨基酸残基组成。

分子式为C143H228N42037S7,分子量为3510。

Nisin分子结构中包含5种稀有氨基酸,分别为氨基丁酸 (ABA)、脱氢丙氢酸(DHA),R一甲基脱氢丙氨酸(DHB)、羊毛硫氨酸(ALA-S-ALA)和已一甲基羊毛硫氨酸(ALA-S-ABA),它们通过硫醚键形成五个内环,其活性体为二聚体或四聚体。

到目前为止,已发现Nisin 分子的类型有A,B,C,D,E和Z,其中以Nisin A和Z两种类型的研究较多。

NisinA与NisinZ的差异仅在于第27位氨基酸的种类不同。

前者为组氨酸(His),后者为天冬酸胺(Asn),其抗菌特性几乎无差别。

1.2乳酸链球菌素的性质1.2.1 物理和化学性质Nisin的溶解性、稳定性都与溶液的pH值密切相关。

Nisin的溶解度随pH值的下降而提高,pH值2.5时溶解度为12%,pH值为5.0时下降至1J4%,在中性及碱性条件下几乎不溶解。

实验结果表明,Nisin在酸性条件下极为稳定,pH2.0条件下可耐受高温处理(121℃,15min),而无活力损失,而在中性或碱性条件下即发生失活。

1.2.2生物学特性当d一胰蛋白酶、胰酶制剂和枯草杆菌肽作用Nisin后,会使其失去活性,但羧肽酶A、羧肽酶E、肠肽酶、胃蛋白酶和胰蛋白酶对Nisin无作用。

Hurst报道。

Nisin对凝乳蛋白酶、胰酶消化酶、唾液酶等很敏感,但对粗制凝乳酶、脂酶、淀粉酶不敏感,在酸性条件下,100℃、10min链酶蛋白酶不敏感。

1.3乳酸链球菌素的抑菌谱Nisin抑制大部分革兰阳性菌及其芽孢的生长和繁殖.如葡萄球菌属、链球菌属以及梭状芽孢杆菌属和芽孢杆菌属的细菌,特别是对金黄色葡萄球菌、溶血链球菌、肉毒杆菌作用明显,在一定条件下,如冷冻、加热、降低pH值、EDTA 处理等,乳酸链球菌素亦可抑制一些革兰阴性菌,如沙门氏菌、大肠杆菌、假单胞菌等的生长1.4乳酸链球菌素的抑菌机理Nisin的抑菌机理是近年来的研究热点之一,并不断取得突破。

其抑菌作用主要是杀菌,而非抑菌或溶菌。

Nisin对营养细胞的作用主要是在细胞膜上,它可以抑制细菌细胞壁中肽聚糖等的生物合成,使细胞膜和磷脂化合物的合成受阻,导致细胞内物质外泄,引起细胞裂解。

1.5 Nisin合成的遗传学研究编码Nisin的遗传密码的确切位置有两种理论,一种认为它与质粒连锁,另一种则认为是在染色体上。

支持前一种观点的主要证据有:1947年,Kozak研究产Nisin菌株的突变现象时发现,若先以原黄素或溴乙啶诱变并进行高温处理,再以NTG进行诱变,未检测到回复突变株。

并据此推测Nisin基因可能位于质粒上。

进一步研究发现,Nisin的产生与一17.5MDa的质粒有关。

,1991年,Kaletta 和Entian从乳酸链球菌素6F3的质粒中成功克隆到了编码Nisin的结构基因。

但是.另外一些研究者认为Nisin基冈位于染色体上,并有实验证明一些产Nisin的菌株并不存在质粒ⅢI。

对Nisin基因定位的研究最近取得的一些突破性进展,一些研究者根据对染色体的缺失与杂交实验提出Nisin结构基凶与染色体上的一个可接合转移的转座子有关。

Horn等人则提出Nisin基因存在于70kb大小的转座子Tn5301巾,同时另一些研究者的工作也证实了这个转座子的存在,且发现Nisin基座是不稳定的。

这些发现可能提示我Nisin基因位于一个可转座于质粒和染色体上的转座子巾,在不同的菌株中.Nisin基因的位置不一定相同㈣。

1988年,Nisin基因首次被克隆出来。

不同于大部分的多肽类抗生素.Nisin 前体蛋白是由核糖体合成,经过一系列包括脱水、硫环形成等复杂的翻译后加工过程,最终形成有活性的成熟Nisin分子110I。

对Nisin遗传学研究的深入,将使我们有可能定向改变Nisin的溶解度、稳定性、抑菌范围等,对于Nisin的应用前景有着重大而深远的意义。

2 Nisin生产研究进展2.1 Nisin产生茵的筛选目前主要是利用Nisin产生菌rtInip+nisrsue+紧密连锁的原理.在添加乳链菌肽、蔗糖及溴甲酚紫的选择培养基上,从牛奶样品中定向筛选Nisin产生菌I”I。

也有通过检测在BCP—CaCO,培养基中溶钙圈大小而间接选择Nisin生产菌方法的报道。

2.2 Nisin的发酵生产在Nisin的生产中,主要是以乳链球菌和乳酸乳球菌作为生产菌,通过诱变方法获得高产菌株,并通过改变培养基配方以进一一步提高产量。

其中,对培养基配方的研究进行的较为活跃。

一方面,可以扩大Nisin应用.另一方而,对营养与产量关系的研究有助于了解Nisin生物合成的途径和调控方式2.3发酵产物的提取工艺2.3.1有机溶剂法利用正丙醇作为主要的溶剂,因此也称正丙醇法。

它利用正丙醇、丙酮、乙酸等有机溶剂沉淀Nisin,利用Kh2P0。

等进行盐析,反复沉淀、溶解的过程.是一种经典方法,但其缺点是回收率低,回收产物活性低。

1960年Hawlev等用一种简单的方法提取Nisin。

该法是先向发酵液中加入0.1%Tween一80,然后从发酵液底部鼓气使产生大量的气泡,Nisin本身具有表面活性剂的性质,因而伴随泡沫被鼓斗收集并破碎泡沫后,用丙酮沉淀,最后将沉淀十燥测活,比活仅为1.4x1061U/g。

、与正丙醇法相比鼓气吹泡法较容易形成规模化生产,操作简单,试剂消耗量少,但产品纯度低,回收率也不理想。

2.3.2吸附法随着对乳链菌肽分子性质的研究,科研工作者发现产Nisin的乳酸菌对Nisin 具有一定的吸附作用。

1971年Bailey等利用Nisin与菌体吸附特性先收菌体,然后再获取Nisin提取液,再将其经过柱层析纯化Nisin。

1992年Yang等对菌体吸附法的吸附及解吸附条件作了进一步研究发现如果对吸附及解吸附选择合适的pH,无需破碎菌体就可大量提取回收Nisin。

其结果是最佳吸附pH为6.5,而解吸附。

最佳pH为2.5。

1 996年Jason等通过对Nisin与菌体吸附的深入研究。

大胆地提出了一种设想。

就是利用菌体对Nisin在高pH吸附、低pH解吸附的特性,构建一种固定化细胞柱,将含Nisin的粗品通过固定化细胞,Nisin就被吸附从而达到分离浓缩的目的。

另一种吸附法是应用一些吸附剂在合适条件下使其与Nisin吸附以达到提取纯化的目的。

吸附剂包括硅酸、二氧化钛硅化合物(硅酸钙、二氧化硅、硅藻土等)。

2.3.3柱层析法现在应用于分离纯化Nisin的介质较多,并且均可达到纯化的目的,但是南于所选前处理的方法不同,使得需要过柱的数目也不同,1995年我国山东大学刘稳等应用中空纤维超滤、非极性大孔网状吸附树脂xAD一2层析、CM—Sephadex C 一25层析和Sephadex C一50分子筛层析等步骤纯化Nisin.分析其纯度不低于95%,比活为2.6x107IU/g,总同收率为20.6%。

1995年Rod—riguez等采用Sepharose介质纯化Nisin,该法的预处理是用硫酸铵浓缩Nisin,然后依次通过Sp—Sepharose柱层析、Octyl—Sepharosecl一4B柱层析及PepRpc HR5/5 C2/C 1 8反向柱层析等步骤纯化NisinII,I。

1 996年陈秀珠等应用正丙醇提取法将Nisin浓缩后再用CM—Sephadex C一25层析一步纯化了Nisin,其比活为3.99x107IU/g,回收率41.7%。

1997年Suarez等又将一种传统的层析方法一免疫亲和层析应用分离纯化Nisin并且获得了成功I埽J。

该法是用ADl0杂交瘤细胞制备Nisin的单克隆抗体,并将其通过N一羟基琥珀酸亚胺葡聚糖柱,在一定条件下抗体与葡聚糖偶联,然后将Nisin发酵液除菌后进行柱层析。

最终活性回收率可达72.7%,应用ReRpcHR5/5 C2/C18反向柱层析鉴定其纯度与Nisin标准品接近。

这种利用抗体一抗原特异吸附性所设计的免疫亲和层析法纯化Nisin不仅操作过程简单,而且速度快,特异性好,重复性强。

但其缺点是Nisin的单克隆抗体较难获得。

2.4发酵产物的效价检测Nisin可以抑制G+菌的生长,可用微球菌作检测菌,测量其抑菌圈直径。

Nisin在中性溶液中的溶解度远小于其在酸性溶液巾的溶解度,这样使得它在琼脂平板中扩散受影响。

虽有一些方法,如用还原酶活性抑制剂、测定牛奶中酸产物的量、或测定OD值(比浊法)等可以作为衡量Nisin量的标准。

但扩散仍是一个十分重要的技术,特别是当琼脂中加入了1%的Tween一20后,有利于扩散,且Tween一20的效果比Tween一80好。

在0.5~10IU/mL的范围内,浓度的对数和抑菌圈直径呈直线关系。

依之可作出标准曲线,再将待测样品与之比较,即可求出效价。

相关文档
最新文档