自动变速器的液力变矩器的作用及工作原理

合集下载

自动变速器任务一液力变矩器的结构与原理课堂PPT

自动变速器任务一液力变矩器的结构与原理课堂PPT
Байду номын сангаас10
液力变矩器的工作原理就像两个风扇相对,一个 风扇工作,然后将另一个不工作的风扇吹动。这 个比喻可以很形象的解释液力变矩器中泵轮和涡 轮之间的工作关系。不过详细解释其工作原理,
则有些复杂。
11
12
动力输出之后,带动与变矩器壳体相连的泵轮,泵轮 搅动变矩器中的自动变速箱油(以下简称ATF),带 动涡轮转动,ATF在壳体中是一个循环的动作,由于泵 轮旋转时的离心力,ATF会在泵轮的作用下,甩向外侧, 冲向前方的涡轮,再流向轴心位置,回到泵轮一侧, 如此周而复始的循环,将动力传向与齿轮箱连接的涡 轮。
13
E:\2013年课件\液力变矩器(流畅) _320x240_2.00M_h.264.flv
14
8
9
曾有一种说法,AT上的液 力变矩器相当于MT上的 离合器,起到动力的连接 和中断的作用。其实这种 说法是错误的。AT与发动 机曲轴是直接连接的,不 像MT有一个动力的开关: 离合器。所以从点火的瞬 间开始,液力变矩器便开 始转动了,对于动力的连 接和中断,仍由齿轮箱内 部的离合器来完成,液力 变矩器唯一与MT离合器 相似的地方,也就是液力 变矩器“软连接”的特性, 与MT离合器的“半联动” 工况相近。
不过只有该零部件和传动方式,只能称为液力耦合器, 若想成为液力变矩器,必然要改变涡轮叶片的形状, 这样一来,ATF在经过涡轮再循环回泵轮时,会与泵轮 旋转方向相反,因而造成冲击,所以为了成为液力变 矩器还需另一个部件:导轮。导轮是存在于泵轮和涡 轮之间的一个部件,用于调节壳体中ATF液流方向,通 过单向离合器与箱体固定。
6
1、液力变矩器的结构 泵轮 :动力输入 导轮:增加扭矩 涡轮:动力输出
7

自动变速器的结构和工作原理

自动变速器的结构和工作原理

自动变速器的结构和工作原理一、结构自动变速器是一种用于汽车的传动装置,主要作用是根据车辆的速度和负载条件,自动调整发动机输出的扭矩和转速,以提供最佳的动力传递和燃油经济性。

它由多个部件组成,包括液力变矩器、行星齿轮组、离合器、制动器、齿轮轴和控制单元等。

1. 液力变矩器:液力变矩器是自动变速器的核心部件之一,它通过液体的动力传递来实现发动机与变速器之间的连接。

液力变矩器由泵轮、涡轮和导向叶片组成,当发动机转速增加时,泵轮产生液压力,驱动涡轮转动,从而传递动力。

2. 行星齿轮组:行星齿轮组是自动变速器的主要传动装置,由太阳轮、行星轮和环形轮组成。

通过不同组合的行星轮与太阳轮、环形轮的连接,可以实现不同的传动比,从而实现不同的挡位。

3. 离合器:离合器用于连接或断开发动机与变速器之间的动力传递。

自动变速器通常配备多个离合器,通过控制离合器的开合状态,可以实现不同挡位的切换。

4. 制动器:制动器用于停止或限制齿轮轴的旋转,从而实现换挡过程中的顺畅切换。

制动器通常由摩擦片和压力装置组成,通过控制制动器的压力来实现制动效果。

5. 齿轮轴:齿轮轴是连接各个齿轮的轴,它们通过齿轮的啮合来实现动力传递。

6. 控制单元:控制单元是自动变速器的大脑,它通过传感器监测车辆的速度、负载和驾驶者的需求,然后根据预设的程序来控制变速器的工作状态,实现自动换挡。

二、工作原理自动变速器的工作原理可以简单概括为以下几个步骤:1. 液力传递:当发动机启动后,液力变矩器开始工作,通过液体的动力传递将发动机的转动力传递给变速器,实现动力输出。

2. 换挡控制:控制单元通过传感器监测车辆的速度和负载情况,根据预设的程序来判断何时需要进行换挡操作。

当需要换挡时,控制单元会发送信号给相应的离合器和制动器,实现齿轮的切换。

3. 离合器操作:当换挡信号发出后,控制单元会控制相应的离合器断开或连接,断开离合器时,发动机的动力不再传递给变速器,连接离合器时,发动机的动力重新传递给变速器。

zf8at变速箱工作原理

zf8at变速箱工作原理

ZF 8AT是一种8速自动变速箱,由德国ZF公司开发和生产。

它采用了先进的液力变矩器和齿轮传动技术,以实现高效、平顺的换挡和驾驶体验。

ZF 8AT的工作原理如下:
1. 液力变矩器:液力变矩器是自动变速箱的核心部件之一。

它由泵轮、涡轮和导向叶片组成。

发动机的动力通过泵轮传递给涡轮,涡轮再将动力传递给齿轮传动系统。

液力变矩器可以通过液体的流动来实现动力的传递和变速。

2. 齿轮传动系统:ZF 8AT采用了多个齿轮组合来实现8个前进挡位和一个倒挡。

齿轮传动系统由多个齿轮和离合器组成。

当需要换挡时,电控单元会根据车速、油门位置和驾驶模式等参数来控制离合器的操作,实现平稳的换挡。

3. 控制单元:ZF 8AT的工作由电控单元来控制。

电控单元通过传感器获取车辆的各种参数,如车速、油门位置、发动机转速等,并根据这些参数来判断何时进行换挡。

电控单元还可以根据驾驶模式和驾驶者的需求来调整换挡的方式和时机,以提供最佳的驾驶体验。

总的来说,ZF 8AT通过液力变矩器和齿轮传动系统的配合,实现了高效、平顺的换挡和驾驶体验。

它的工作原理基于先进的电控技术,能够根据车辆和驾驶者的需求来智能地控制换挡操作。

自动变速器的原理

自动变速器的原理

自动变速器的原理引言自动变速器是汽车传动系统中的重要组成部分,它能够根据车辆的行驶状态和驾驶人的需求,自动选择合适的挡位,以实现车辆动力的高效传递和驾驶的舒适性。

本文将从原理的角度,详细介绍自动变速器的工作原理。

一、液力变矩器自动变速器的核心部件是液力变矩器,它由泵轮、涡轮和导叶轮组成。

当发动机工作时,泵轮会将液体推向涡轮,涡轮的转动会带动传动轴,实现动力传递。

涡轮转动的快慢取决于涡轮和泵轮之间的液体流动速度。

而导叶轮的作用是调节液体流动的方向和速度,以控制涡轮的转速。

二、齿轮传动系统自动变速器中的齿轮传动系统由多个齿轮组成,每个齿轮都代表着一个挡位。

通过齿轮的组合和配对,可以实现不同挡位的切换。

当液力变矩器传递的动力到达齿轮传动系统时,齿轮会根据当前挡位的需要,将动力传递给车辆的驱动轮。

三、离合器和制动器为了实现挡位的切换,自动变速器中还配备了离合器和制动器。

离合器可以将发动机的动力与液力变矩器分离,以实现挡位的切换。

制动器则用于锁定或释放特定的齿轮,以实现挡位的固定和切换。

四、控制系统自动变速器的工作还离不开一个精确的控制系统。

控制系统通过感应车辆的行驶状态和驾驶人的操作,来决定当前需要的挡位,并通过电磁阀等装置来控制离合器和制动器的动作。

控制系统还可以根据车辆的行驶情况,自动调整挡位的切换时机和速度,以提供最佳的驾驶体验。

五、工作原理当驾驶人将挡位选择杆置于“D”挡位时,控制系统会根据车速、转速等参数,自动选择合适的挡位。

液力变矩器将发动机的动力传递给齿轮传动系统,齿轮会根据当前挡位的需要,将动力传递给驱动轮。

同时,控制系统还会根据行驶状态的变化,自动调整挡位的切换时机和速度,以保证驾驶的平稳和燃油的高效利用。

六、优点和局限性自动变速器相比于手动变速器,具有以下优点:1. 驾驶舒适性好:自动变速器的挡位切换由控制系统自动完成,驾驶人无需踩离合器和操作挡位选择杆,大大减轻了驾驶的负担。

2. 燃油经济性高:自动变速器可以根据车辆的行驶状态和驾驶人的需求,自动选择合适的挡位,以提供最佳的动力输出,从而降低燃油消耗。

《汽车传动系统维修》任务二 液力变矩器

《汽车传动系统维修》任务二  液力变矩器
4.驱动离泵
ATF在工作的时候需要油泵提供一定的压力,而油泵一般是由液力变矩器壳体驱动的。同时由于
模块四 自动变速的构造与检修 任务二 液力变矩器
液变矩器的功用和组成
液力变矩器的工作原理
采用ATF传递动力,液力变矩器的动力传递柔和,且能防止传动系统过载。
二、液力变矩器的组成
如图4-11所示,液力变矩器通常由泵轮、涡轮和导轮三个元件组成,称为三元件液力变矩器。也 有的采用两个导轮,则称为四元件液力变矩器。
液力变矩器总成封在一个钢制壳体 (变矩器壳体)中,各工作轮用铝合金精 密铸造,或用钢板冲压焊接而成,内部充 满ATF。液力变矩器壳体通过螺栓与发动 机曲轴后端的飞轮连接,与发动机曲轴一 起旋转。泵轮位于液力变矩器的后部,与 变矩器壳体连在一起。涡轮位于泵轮前, 通过带花键的从动轴向后面的机械变速器 输出动力。导轮位于泵轮与涡轮之间,通 过单向离合器支承在固定套管上,使得导 轮只能单向旋转(顺时针旋转)。泵轮、 涡轮和导轮上都带有叶片,液力变矩器装 配好后形成环形内腔,其间充满ATF。
图4-14 油液在液力变矩器中的流向(导轮转动)
模块四 自动变速的构造与检修 任务二 液力变矩器
液力变矩器的功用和组成
液力变矩器的工作原理
综上所述可知: (1)液力变矩器导轮是变矩关键元件。 (2)与液力耦合器一样,液力变矩器中油液工作时同时存在绕工作轮轴线作旋转运动和沿循环圆 的轴面循环旋转运动。油液循环的流向为先经泵轮,再经涡轮和导轮,最后又回到泵轮的顺序,如此 反复循环。 (3)液力变矩器变矩效率随涡轮转速变化而变化。 ①当涡轮转速为零时,增矩值最大。涡轮输出转矩等于泵轮输入转矩与导轮反作用转矩之和。 ②随着涡轮转速由零逐渐增大,增矩值随之逐渐减小。 ③当涡轮转速达到某一值时,液力变矩器转化为液力耦合器,涡轮输出力矩等于泵轮输入力矩。 ④当涡轮转速进一步增大时,涡轮出口处液流冲击导轮叶片背面,此时液力变矩器涡轮输出力矩 小于泵轮输入力矩,其值等于泵轮输入力矩与导轮力矩之差。 ⑤当涡轮转速与泵轮转速同步,液力变矩器失去传递动力的功能。

简述液力变矩器的组成及工作原理

简述液力变矩器的组成及工作原理

简述液力变矩器的组成及工作原理液力变矩器(torque converter)是一种广泛应用于自动变速器中的液压传动装置。

它利用液体传递动力,起到变速和传递转矩的作用。

液力变矩器通过流体(通常是液压油)的流动来实现动力传递,其主要组成部分包括泵轮、涡轮和液力变矩器壳体。

液力变矩器具有结构简单、传动平稳、无级变速和自动调节功率输出等特点,因此在汽车、工程机械、船舶等领域得到广泛应用。

液力变矩器的主要组成包括泵轮、涡轮、锁止装置和液力变矩器壳体。

泵轮是液力变矩器的动力输入装置,它通常安装在发动机的曲轴上。

当发动机工作时,驱动泵轮旋转,泵轮的转动产生液体流入液力变矩器。

涡轮是液力变矩器的动力输出装置。

它紧密连接在变速器输入轴上,通过泵轮传递来的流体驱动涡轮旋转,从而实现动力输出。

液力变矩器还包括了一个液力变矩器壳体,它起到承载和固定泵轮和涡轮的作用,并且通过内部构造使液体能够流动,从而实现动力传递。

液力变矩器通常还配备了一个锁止装置,用来提高传输效率和防止内部滑动损失。

在高速行驶或特定工况下,锁止装置可以将泵轮和涡轮固定在一起,形成一个刚性连接,而不再依靠液体的流动传递动力。

液力变矩器的工作原理是基于液体的动力传递。

当发动机工作时,驱动泵轮旋转,泵轮内的液体随之旋转,并通过转动的液体来传递动力。

涡轮与泵轮相连,涡轮受到液体流动带来的动力,从而实现输出动力,驱动车辆或机械的运动。

在这个过程中,液体的流动和压力变化起到了关键作用,使得动力能够顺利地传递。

液力变矩器的工作过程可以简单描述为:发动机驱动泵轮旋转,形成液体的流动,液体的动能被传递到涡轮上,从而实现动力输出。

根据流体动力学原理,液体的流动和转动会产生动能和动量的转换,从而实现了液力变矩器的功率传递。

液力变矩器是一种利用液体传递动力的装置,通过泵轮和涡轮的结构设计和液体流动的原理,实现了对动力的变速和传递。

它的结构简单、传动平稳、无级变速和自动调节功率输出的特点,使其在汽车、工程机械、船舶等领域得到广泛应用。

自动变速器工作原理

自动变速器工作原理

自动变速器工作原理自动变速器是一种用于汽车的传动装置,它能够根据车辆的速度和负载条件自动调整传动比,以提供适当的扭矩和转速输出。

它是现代汽车中常见的传动系统之一,具有提高驾驶舒适性和燃油经济性的优势。

自动变速器的工作原理可以简单地分为以下几个步骤:1. 液力变矩器传动:当发动机启动时,液力变矩器将发动机输出的扭矩传递给变速器。

液力变矩器由泵轮、涡轮和锁止离合器组成。

泵轮由发动机驱动,涡轮连接到变速器输入轴。

液力变矩器通过液体的流动来传递扭矩,并且具有自动调整传动比的功能。

2. 齿轮传动:液力变矩器将扭矩传递给变速器后,齿轮系统开始工作。

变速器内部有多个齿轮组成的齿轮系,通过不同组合的齿轮来实现不同的传动比。

当车辆需要加速时,自动变速器会自动选择较低的传动比,以提供更多的扭矩输出。

当车辆需要高速行驶时,自动变速器会自动选择较高的传动比,以提供更高的转速输出。

3. 离合器控制:自动变速器还包括多个离合器和制动器,用于控制齿轮的换挡过程。

当需要换挡时,自动变速器会通过电子控制单元(ECU)接收来自传感器的输入信号,判断当前的车速、油门开度和负载情况,然后控制相应的离合器和制动器进行换挡操作。

这个过程是自动的,驾驶员无需手动干预。

4. 液压系统:自动变速器的液压系统是其正常工作的关键。

液压系统通过传动液体来控制离合器和制动器的操作。

液压泵负责提供液压能量,而液压控制单元则负责控制液压系统的操作。

液压系统的设计和工作状态对自动变速器的性能和可靠性具有重要影响。

总结起来,自动变速器的工作原理是通过液力变矩器传动、齿轮传动、离合器控制和液压系统的配合工作来实现传动比的自动调整。

这种传动装置能够根据车辆的需求,提供适当的扭矩和转速输出,从而提高驾驶舒适性和燃油经济性。

它是现代汽车中不可或缺的重要组成部分。

自动变速器的液力变矩器的作用及工作原理

自动变速器的液力变矩器的作用及工作原理

自动变速器的液力变矩器的作用及工作原

自动变速器是现代汽车中常见的一种变速器,它的液力变矩器是其中的重要组成部分。

液力变矩器是一种利用液体传递动力的装置,它可以将发动机的动力传递到变速器中,从而实现汽车的变速。

液力变矩器的工作原理是基于液体的流动和压力变化。

液力变矩器由三个主要部分组成:泵轮、涡轮和液力耦合器。

泵轮由发动机驱动,它会将液体推向涡轮。

涡轮与泵轮相对应,它会将液体转化为动力,从而驱动汽车的轮胎。

液力耦合器则是将泵轮和涡轮连接在一起的装置,它可以将发动机的动力传递到涡轮中。

液力变矩器的作用是将发动机的动力转化为变速器所需的动力。

当汽车启动时,发动机会产生大量的扭矩,但是轮胎需要的扭矩并不是很大。

液力变矩器可以将发动机的扭矩转化为轮胎所需的扭矩,从而使汽车可以平稳地启动。

当汽车行驶时,液力变矩器可以根据车速的变化自动调整泵轮和涡轮之间的液体流量,从而实现汽车的变速。

液力变矩器的优点是可以实现平稳的启动和变速,同时也可以减少发动机的磨损和噪音。

但是它也存在一些缺点,比如液体的摩擦会导致能量的损失,从而影响汽车的燃油经济性。

此外,液力变矩器也容易受到高温和过度磨损的影响,需要定期维护和更换。

液力变矩器是自动变速器中不可或缺的一部分,它可以实现汽车的平稳启动和变速,从而提高驾驶的舒适性和安全性。

对于汽车的维护和保养,液力变矩器也是需要重视的一部分。

液力自动变速器工作原理

液力自动变速器工作原理

液力自动变速器工作原理一、概述液力自动变速器是一种常见的汽车传动装置,它通过液力传递和自动调节传动比实现发动机和车轮之间的动力传递。

本文将详细介绍液力自动变速器的工作原理。

二、液力自动变速器的组成液力自动变速器主要由液力变矩器、行星齿轮组、离合器和液压系统等组成。

2.1 液力变矩器液力变矩器是液力自动变速器的核心部件,它由泵轮、涡轮和导向叶片组成。

液力变矩器的工作原理是利用液体的运动和压力来传递动力。

2.2 行星齿轮组行星齿轮组是液力自动变速器中用于实现不同传动比的部件。

它由太阳轮、行星轮、内齿轮和外齿轮等组成。

通过控制离合器的开合状态,可以实现不同的传动比。

2.3 离合器离合器用于连接或断开发动机和液力自动变速器之间的动力传递。

液力自动变速器中通常有多个离合器,通过控制离合器的开合状态,可以实现不同的传动比。

2.4 液压系统液压系统是液力自动变速器的控制系统,它通过液压信号控制液力变矩器、离合器和行星齿轮组的工作状态,实现变速器的换挡和传动比的调节。

三、液力自动变速器的工作原理液力自动变速器的工作原理可以分为三个阶段:液力传递阶段、换挡阶段和锁定阶段。

3.1 液力传递阶段在液力传递阶段,发动机的动力通过液力变矩器传递给涡轮,涡轮再将动力传递给行星齿轮组,最终驱动车轮。

在这个阶段,液力变矩器的泵轮和涡轮之间形成液力耦合,实现动力的传递。

3.2 换挡阶段当车辆需要换挡时,液压系统控制相应的离合器开合,改变液力传递路径,实现不同的传动比。

通过控制离合器的开合状态,可以将动力传递给不同的行星齿轮组,从而实现不同的速比。

3.3 锁定阶段在高速行驶时,液力自动变速器会进入锁定阶段。

在锁定阶段,液力变矩器的涡轮和泵轮通过液力锁定装置直接连接,消除液力传递损失,提高传动效率。

四、液力自动变速器的优缺点液力自动变速器具有以下优点: 1. 平顺的换挡感受,提高驾驶舒适性。

2. 宽广的传动比范围,适应不同驾驶条件。

液力变矩器的结构与原理

液力变矩器的结构与原理

3 定期检查油封
及时更换磨损的油封, 防止液体泄漏。
液力变矩器的发展趋势和未来展望
1 高效能
未来的液力变矩器将更加注重能量转换效率的提高,减少动力损失。
2 轻量化
技术的发展将使液力变矩器更轻巧,提升整车的燃油经济性。
3 电力化
液力变矩器与电动技术的结合,将实现更高效的动力传递和车辆控制。
3 传达动力
液力变矩器能自动适应发动机和负载的需求,确保动力传递的平稳性和效率。
液力变矩器的组成部分
泵轮
由叶片和驱动轴组成,将动力 从发动机传递给液体。
涡轮
导向叶片
由叶片和驱动轴组成,接收液 体动力并将其传递给传动系统。
用于调整液体的流动方向,增 加能量转换效率。
液力变矩器的工作原理
1
启动
当发动机启动时,泵轮开始转动,引起液体的流动。
液力变矩器在挖掘机、装载机等工程机械中应用,提供强大的牵引力和灵活的操控性。
3 发电设备
液力变矩器也被用于风力发电机组、水力发电机组等发电设备中,提高传动效率。
液力变矩器的维护与保养
1 定期更换液体
保持液力传动系统的正 常运行,延长液力变矩 器的使用寿命。
2 注意冷却系统
保持冷却系统的良好状 态,避免液力变矩器过 热。
液力变矩器的结构与原理
液力变矩器是一种智能变速装置,由泵轮、涡轮和导向叶片组成。它通过液 体的流动将动力传递给驱动轴,实现起动、换挡和减速。液力变矩器在汽车 和工程机械中广泛应用。
液力变矩器的作用
1 平滑启动
液力变矩器通过液体流动提供平缓的启动,减少对传动系统的冲击。
2 变速传输
液力变矩器能够自动调整齿轮比例,提供高扭矩和低速度的启动,同时保证高速行驶时 的经济性。

液力自动变速器(at)的工作原理

液力自动变速器(at)的工作原理

液力自动变速器(at)的工作原理下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!本店铺为大家提供各种类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you! In addition, this shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!液力自动变速器的工作原理1. 概述液力自动变速器是一种常见于汽车中的传动装置,它通过液力传递来实现不同档位之间的自动变速。

液力变矩器的结构与工作原理

液力变矩器的结构与工作原理

请各位评委老师指导ຫໍສະໝຸດ 泵轮导环 涡轮毂 叶片
发动机机械能 液体能量
2.2 涡轮
变矩器的动力输出元件,涡轮上也装有与泵轮结构一样的许 多叶片及导环。涡轮与泵轮的叶片相对安置,中间有3~ 4mm的间隙。但涡轮叶片的扭曲方向与泵轮叶片的扭曲的 方向相反。涡轮中心有花键孔与变速器输入轴花键配合。
花键
叶片
将液体能量
导环
涡轮轴上机械能
➢汽车高速运行 :
涡轮转速nw继续增大,液流冲击导轮的背面,导轮转矩方 向与泵轮转矩方向相反,即变矩器输出转矩反而比输入转矩 小。 Mw=Mb-Md
低速变矩
当发动机低速运转时,泵轮和 涡轮的转速差较大时:液流打 到导轮叶片的正面,促使导轮 反方向转动,由于单向离合器 作用,导轮被锁止,液流便按 导轮叶片的方向而改变自己的 运动方向,反射的液流,冲击 到泵轮的背面。其冲击方向与 旋转方向相同,此时从导轮反射 的扭矩与发动机输入的扭矩共 同驱动泵轮、对泵轮起到增扭 作用。呈现变矩特性。
2、液力变矩器组成
液力变矩器的组成部件:泵轮(b)、涡轮(w)、导轮(d) 、单 向离合器、锁止离合器
2.1 泵轮
变矩器的动力输入元件,与变矩器的外壳作为一个整体 固定在曲轴飞轮上、在泵轮内部沿其径向装有许多具有一 定曲率的叶片、并且在许多叶片内缘装有一个导环。导环 的作用主要是让变速器油液平滑顺畅流动。
涡轮
导轮
泵轮
导轮的作用:改变涡轮的 输出力矩。
4、液力变矩器的工作过程
涡流: 从泵轮→涡轮→导轮→泵轮的液体流动 环流: 液体绕轴线旋转的流动
涡流
变矩器的液流方向是由涡流和环流合成的
液力变矩器不仅能传递转矩,而且能在泵轮转矩不变的情 况下,随着涡轮的转速(反映着汽车行驶速度)不同而改变涡轮 输出的转矩数值。

自动变速器液力变矩器的组成和作用

自动变速器液力变矩器的组成和作用

自动变速器液力变矩器的组成和作用
自动变速器液力变矩器是传动系统中的重要组成部分,它可以使发动机功率传递到车轮,同时还可以保证车辆在行驶过程中的平稳性和安全性,因此它的重要性不言而喻。


面我们来详细了解一下自动变速器液力变矩器的组成和作用。

1.泵壳
自动变速器液力变矩器的泵壳是由铝合金铸成的,因为铝合金具有轻量、坚固等优点。

泵壳内有各种油道,用于引导油液的流动。

2.涡轮
涡轮是自动变速器液力变矩器的重要组成部分,它由通道圆柱、涡轮叶轮和连接件组成。

涡轮叶轮是将输出液压在叶片之间形成的旋转力转化为车轮动力的关键部分。

3.液力耦合器
液力耦合器是自动变速器液力变矩器的核心组成部分,它由驱动轴壳、驱动轴、间隔环、液力耦合器端盖、液压缸、液力耦合器伺服活塞等部分组成。

4.波纹管
波纹管是由镍合金、不锈钢等材料制成的,它的作用是以柔软的方式连接三元件。

1.实现动力传递
自动变速器液力变矩器的作用是将发动机的动力传递到车轮。

当车辆行驶时,发动机
通过传动轴将动力传递到液力变矩器的泵轮,泵轮将油液压送到液力耦合器,液力耦合器
将动力传递到涡轮,从而让车轮开始运转。

2.减震作用
自动变速器液力变矩器还可以起到减震作用。

当车辆在行驶过程中遇到减速带、隔板
或者遇到不平路面,液力变矩器能够减少车轮受到的冲击力,从而保证整车行驶的平稳
性。

3.起始力矩
在起步时,车辆需要克服一定的摩擦力,这时液力变矩器能够提供必要的起始力矩。

液力变矩器的起始力矩可以让车辆更加平稳的启动,在保证整车行驶平稳的同时,也能够
保证发动机的寿命。

液力变矩器的工作原理

液力变矩器的工作原理

液力变矩器的工作原理
液力变矩器是一种利用液体流体动力学原理来传递扭矩的传动装置。

它由涡轮、泵轮和导向器组成。

液力变矩器中的液体是主要的工作介质,液体既起到了传递动力的作用,又能起到传递扭矩和变速的作用。

当发动机启动时,液体被泵轮蓄积和压入导向器,并进一步将液体流向涡轮。

涡轮和泵轮是通过液体的流动来连接的,液体经过涡轮后重新返回到泵轮,经过反复的流动循环。

当发动机的转速增加时,液体靠近涡轮叶片的压力也会增加,推动涡轮转动并传递动力。

涡轮的转动将扭矩传递到液力变矩器输出轴上,在驱动车辆或机械设备中起到传递动力的作用。

液力变矩器的一个重要特点是具有流体传动的连续性,它能够根据发动机的负载和转速的变化,自动调节液体的流动以适应不同的工况。

在低负载和低转速情况下,液体通过导向器的流动能够产生较大的扭矩;而在高负载和高转速情况下,液体的流动受到阻碍,扭矩相应减小。

液力变矩器的优点包括启动平稳、传递扭矩能力大、无级变速以及减震作用等。

然而,由于液体的切向流动和摩擦损耗等原因,液力变矩器也存在一定的能量损失。

因此,在一些高效率要求的应用中,液力变矩器常常需要与其他传动系统结合使用,如自动变速器或离合器等,以提高整体传动效率。

at自动变速工作原理

at自动变速工作原理

at自动变速工作原理自动变速器(Automatic Transmission,简称AT)是一种能够根据车速、转速和负荷条件自动选择不同档位的传动装置。

它通过变速器、液力变矩器和控制系统等组成,可以实现快速、平稳的换挡操作,提供舒适的驾驶体验。

在本文中,我们将探讨AT自动变速的工作原理。

一、液力变矩器液力变矩器是AT自动变速器的关键部件之一。

它由三个主要组成部分构成:泵轮、涡轮和液力偶合器。

1. 泵轮:泵轮连接到发动机的曲轴上,并且由于与曲轴同步旋转,因此当发动机运转时,泵轮也会旋转。

泵轮的作用是通过搅动液体来产生流动。

2. 涡轮:涡轮是连接到变速器输入轴的部件,且与泵轮构成对称的形状。

当泵轮产生的液体流经涡轮时,涡轮会被推动,并将扭矩传递到变速器。

3. 液力偶合器:液力偶合器是泵轮和涡轮之间的连接件。

它由一圈叶片构成,当液体流经偶合器时,泵轮的运动将引起涡轮的运动,从而实现扭矩传递。

液力变矩器的作用就是在发动机怠速或低速行驶时,通过液力传递动力,实现平稳起步和换挡过程。

二、齿轮箱齿轮箱是自动变速器的核心部件之一,它由一系列齿轮和离合器组成。

齿轮箱的作用是根据汽车行驶的速度和负荷情况,选择适合的齿轮比,以提供所需的动力输出。

AT自动变速器通常采用行星齿轮传动系统。

行星齿轮由太阳轮、行星轮和环形轮组成。

太阳轮连接着输入轴,行星轮则与输出轴相连,环形轮则通过离合器来控制操纵。

通过控制离合器的开合,可以实现不同齿轮之间的传动和换挡操作。

控制系统根据车速、油门开度和转速等参数来自动调整齿轮比,以提供最佳的动力输出和燃油经济性。

三、控制系统自动变速器的控制系统通过传感器和电脑来监测和控制变速器的工作状态,以实现自动换挡和平稳的驾驶。

控制系统主要包括以下几个方面的功能:油压控制、离合器控制、换挡逻辑控制和故障诊断等。

油压控制通过调节液力变矩器和离合器的工作压力,实现扭矩传递和换挡操作。

离合器控制是通过控制离合器的开合来选择不同的齿轮比。

液力变矩器的功能

液力变矩器的功能

液力变矩器(Hydraulic Torque Converter)是一种用于传递动力和变换扭矩的机械装置,广泛应用于自动变速器系统中。

液力变矩器的主要功能包括以下几个方面:
动力传递:液力变矩器可以将内燃机的动力传递给传动系统,实现车辆的运动。

当发动机运转时,液力变矩器将引擎输出的旋转动力传递给传动系统,驱动车辆前进。

扭矩变换:液力变矩器可以通过液力传动的方式实现扭矩的变换。

当车辆启动或行驶过程中需要较大的起动扭矩或爬坡扭矩时,液力变矩器可以通过液力传递,提供额外的转矩增益,以满足车辆的需求。

车速调节:液力变矩器能够通过调节内部液体的流动状态,实现车辆的速度调节和传动比的变化。

根据车辆驾驶需求和工况变化,液力变矩器可以自动调整液体的流动特性,以实现不同车速和传动比的变化。

隔离振动:液力变矩器具有一定的缓冲和隔离振动的功能。

在发动机运转时,液力变矩器可以通过液体的阻尼效应,减轻或消除发动机运转时的振动和冲击,提高车辆的平稳性和乘坐舒适性。

总之,液力变矩器作为自动变速器系统中重要的传动装置,具有动力传递、扭矩变换、车速调节和隔离振动等功能,为车辆提供了平稳的动力输出和灵活的变速控制。

液力变矩器的结构原理

液力变矩器的结构原理

叶片
液力变矩器中的叶片通过改变液 体的流动状态,来控制扭矩输出 的大小和稳定性。
刹车片式液力变矩器的结构
刹车片
刹车片式液力变矩器中的刹车片 通过摩擦来控制液体的流动,从 而实现扭矩的变换。
花键连接
花键连接使刹车片与转动部件直 接连接,以实现液体的流动控制 和扭矩传递。
卡盘离合器
卡盘离合器是刹车片式液力变矩 器的核心部件,通过控制刹车片 与转动部件的接触或分离,来实 现扭矩的传递。
随着技术的不断进步,液力变矩器将继续优化,在环保、高效、智能化等方 面取得更大的突破与发展。
液力变矩器的工作原理
1
启动
液体从泵轮流入液力变矩器,驱动涡轮开始转动。
2
扭矩变换
液体的流动通过叶片的控制,实现泵轮和涡轮之间扭矩的变换。
3
稳定输出
定子和刹车片控制液体的流动,稳定扭矩输出。
液力变矩器的优点和应用领域
平稳传动
液力变矩器能够实现驱动系统的平稳传动,减少振动和噪音。
可变传动比
通过调节液体的流量和阻力,液力变矩器可以实现可变的扭Leabharlann 输出。液力变矩器的结构原理
液力变矩器是一种用于传递动力的设备,通过液体的介质来实现扭矩的变换 和传递。
液力变矩器的概述
液力变矩器是一种常用于自动变速器中的装置,用于平滑地传递动力,降低 驱动系统的震动和噪音。
液力变矩器的主要组成部分
泵轮
作为动力输入,将能量转移到液体之中。
导流轮
通过改变废气流动的方向,控制涡轮上液体的 流量。
涡轮
接收从泵轮传递过来的能量,使液体转动。
液力耦合器
将泵轮和涡轮连接在一起,实现能量的传递。
轴流式液力变矩器的结构

液力变矩器工作原理

液力变矩器工作原理

液力变矩器工作原理液力变矩器是一种常见的动力传递装置,广泛应用于各种机械设备中。

它的工作原理是利用液体在转子和定子之间传递动能,从而实现扭矩的传递和调节。

本文将从液力变矩器的结构、工作原理和应用领域等方面进行详细介绍。

液力变矩器的结构通常由泵轮、涡轮和导向轮等组成。

泵轮和涡轮之间被填充了液体,涡轮和导向轮之间也是如此。

当泵轮转动时,液体被抛向涡轮,从而驱动涡轮转动。

涡轮转动时,液体再被抛向导向轮,从而驱动导向轮转动。

这样就实现了动力的传递。

液力变矩器的关键在于液体的传递和控制,因此液体的选择和控制系统设计至关重要。

液力变矩器的工作原理是基于液体的运动和动能传递。

当泵轮转动时,液体被抛向涡轮,涡轮受到液体的作用力而转动。

而液体的运动是由泵轮的动能转化而来的。

液体在传递过程中会产生一定的阻力,这就是液力变矩器的扭矩调节机制。

通过控制液体的流动速度和方向,可以实现扭矩的调节。

当液体的流动速度和方向发生改变时,涡轮和导向轮的受力情况也会发生变化,从而实现扭矩的调节。

液力变矩器广泛应用于各种机械设备中,如汽车、船舶、风力发电机等。

在汽车中,液力变矩器常用于自动变速器中,通过调节液体的流动来实现换挡和扭矩传递。

在船舶中,液力变矩器常用于传动系统中,通过液体的传递来实现动力的传递和调节。

在风力发电机中,液力变矩器常用于风车的传动系统中,通过液体的传递来实现风能的转化和调节。

总之,液力变矩器是一种利用液体传递动能来实现扭矩传递和调节的动力传递装置。

它的工作原理是基于液体的运动和动能传递,通过控制液体的流动来实现扭矩的调节。

液力变矩器广泛应用于各种机械设备中,如汽车、船舶、风力发电机等。

它的出现和应用大大提高了机械设备的性能和效率,对于推动工业的发展起到了重要的作用。

液力自动变速箱工作原理

液力自动变速箱工作原理

液力自动变速箱工作原理
液力自动变速箱是一种采用液力变矩器和多个液压离合器(或湿式多盘离合器)组成的变速装置,通过控制液压系统中的液压力和流量来实现换挡和变速的功能。

液力自动变速箱的工作原理如下:
1. 液力变矩器:液力变矩器是液力自动变速箱的核心部件,它由泵轮、涡轮和导向器组成。

泵轮由引擎输出轴驱动,涡轮通过传递液力驱动输送轴,实现动力输出。

液力变矩器通过液力传递和液力增盈的原理,使变速器能够在引擎转速和车轮转速之间实现合理匹配,提供平稳的启动和加速能力。

2. 液压离合器:液力自动变速箱中的液压离合器通过控制液压力来实现换挡和变速功能。

其中常见的有湿式多盘离合器和液压控制单片离合器。

液压离合器在不同的工况下选择不同的离合器组合,通过接合或分离离合器实现换挡和变速。

3. 控制系统:液力自动变速箱的控制系统通过感知车辆和发动机的工况参数,通过电磁阀控制液压力和流量,从而控制液力自动变速箱的工作模式和换挡时机。

控制系统根据车速、油门开度、转速等参数综合判断当前工况,并根据工况需求选择合适的换挡时机和换挡模式。

总体来说,液力自动变速箱通过液压系统控制液力变矩器和液压离合器的工作,实现换挡和变速的功能,提供平稳、高效的动力输出。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

自动变速器的液力变矩器的作用及工作原理液力变矩器是自动变速器的重要组成部分,它的作用是将发动机输出
的转速和转矩转化为适合车轮的运动状态,实现汽车的行驶。

液力变矩器
是一种基于液体流体的转矩变换机构,利用高速旋转的液体空气混合物来
传递发动机的动力。

液力变矩器主要由泵轮、涡轮及液力传动液体组成。

发动机的动力被
传递到泵轮上,泵轮将动力转化为流体动能,推动液体流入涡轮,涡轮受
到液体的冲击力使其旋转,并将液体的动能转化为机械能,推动车轮。


力变矩器的变矩特性可以实现汽车行驶时的启动、变速、车速调节等功能。

液力变矩器的工作原理是基于液体的运动学原理。

当液体流过两个叶
轮时,液体产生的动量和作用力使得叶轮具有旋转动量。

泵轮叶片的转动
驱动液体流经涡轮叶片的尖端,从而产生巨大的液体压力,涡轮受到液体
压力挤压变形,因而产生强烈的涡流和涡旋。

涡流作用于涡轮的叶片,使
得涡轮中的液体分别流动,产生对车轮的驱动力,实现了汽车的运动。

相关文档
最新文档