第二章非惯性系中的质点动力学
合集下载
大学物理课件第二章质点动力学
N sin m(a 'cos a) N cos mg m(a 'sin )
m0g N
N
a’ B mg
联立解得
(m m0 )sin m cos sin a g, a ' g 2 2 m0 m sin m0 m sin
例题2 质量为m的快艇以速率v0行驶,关闭发动 机后,受到的摩擦阻力的大小与速度的大小成 正比,比例系数为k,求关闭发动机后 (1)快艇速率随时间的变化规律; (2)快艇位置随时间的变化规律
B
A
F
B
m0g
A
解:隔离两物体,分别受力分析, aA-地对楔块A N sin m0a
N
F ( N cos m0 g ) 0
N
对物体B(aB地 aB A aA地 )
B
a
B-A
a
N sin m(aB A cos a)
A-地
mg
N cos mg m(aB A sin 0)
m0 m sin
(m m0 )sin 联立解得 a m cos sin g , aB A g 2 2 m0 m sin
B
A
F A a
解:隔离两物体,分别受力分析, 对楔块A N sin m0a N cos m0 g F 物体B相对楔块A以a’加速下滑
二、牛顿第二定律 1.动量: p mv
2.力的定义: dp d (mv ) F dt dt --牛顿第二定律(质点运动微分方程)
v c 物体质量为常量时:
dv F m ma dt
惯性演示实验
当锤子敲击在一大铁块上时,铁块下的手 不会感到有强烈的冲击;而当用一块木头取代 铁块时,木块下的手会感到明显的撞击。
m0g N
N
a’ B mg
联立解得
(m m0 )sin m cos sin a g, a ' g 2 2 m0 m sin m0 m sin
例题2 质量为m的快艇以速率v0行驶,关闭发动 机后,受到的摩擦阻力的大小与速度的大小成 正比,比例系数为k,求关闭发动机后 (1)快艇速率随时间的变化规律; (2)快艇位置随时间的变化规律
B
A
F
B
m0g
A
解:隔离两物体,分别受力分析, aA-地对楔块A N sin m0a
N
F ( N cos m0 g ) 0
N
对物体B(aB地 aB A aA地 )
B
a
B-A
a
N sin m(aB A cos a)
A-地
mg
N cos mg m(aB A sin 0)
m0 m sin
(m m0 )sin 联立解得 a m cos sin g , aB A g 2 2 m0 m sin
B
A
F A a
解:隔离两物体,分别受力分析, 对楔块A N sin m0a N cos m0 g F 物体B相对楔块A以a’加速下滑
二、牛顿第二定律 1.动量: p mv
2.力的定义: dp d (mv ) F dt dt --牛顿第二定律(质点运动微分方程)
v c 物体质量为常量时:
dv F m ma dt
惯性演示实验
当锤子敲击在一大铁块上时,铁块下的手 不会感到有强烈的冲击;而当用一块木头取代 铁块时,木块下的手会感到明显的撞击。
大学物理第二章质点动力学PPT课件
•若物体与流体的相对速度接近空气中的声速时,阻 力将按 f v3 迅速增大。
•常见的正压力、支持力、拉力、张力、弹簧的恢复 力、摩擦力、流体阻力等,从最基本的层次来看, 都属于电磁相互作用。
2021
12
五、牛顿定律的应用
•应用牛顿运动定律解题时,通常要用分量式:
如在直角坐标系中:
在自然坐标系中:
Fn
man
mv2
2021
6
三、牛顿第三定律
物体间的作用是相互的。两个物体之间的作用
力和反作用力,沿同一直线,大小相等,方向相反,
分别作用在两个物体上。
F21F12
第三定律主要表明以下几点:
(1)物体间的作用力具有相互作用的本质:即力总 是成对出现,作用力和反作用力同时存在,同时消 失,在同一条直线上,大小相等而方向相反。
(4)由于力、加速度都是矢量,第二定律的表示式 是矢量式。在解题时常常用其分量式,如在平面直 角坐标系X、Y轴上的分量式为 :
2021
5
Fx mxamddxvtmdd22xt Fy myamddyvtmd d22yt
在处理曲线运动问题时,还常用到沿切线方向 和法线方向上的分量式,即:
Ft
mat
mdv dt
2021
27
1983年第17届国际计量大会定义长度单位用真空中 的光速规定:
c = 299792458 m/s
因而米是光在真空中1299,792,458秒的时间间 隔内所经路程的长度。
❖其它所有物理量均为导出量,其单位为导出单位
如:速度 V=S/ t, 单位:米/秒(m/s)
加速度a=△V/t,单位:米/秒2(m/s2)
•摩擦力:两个相互接触的物体在 沿接触面相对运动时,或者有相对 运动趋势时,在接触面之间产生的
《理论力学 动力学》 第五讲 非惯性系中质点的动能定理
4、非惯性系中质点的动能定理惯性参考系中的动能定理只适用于惯性系。
在非惯性参考系中,由于质点的运动微分方程中含有惯性力,因此需要重新推导动能定理。
质点的相对运动动力学基本方程为r d d m t=++Ie IC v F F F 式中e C r2m m m =-=-=-´Ie IC F a F a ωv ,r d d tv 是对时间t 的相对导数r v 上式两端点乘相对位移d ¢r r d d d d d d m t¢¢¢¢×=×+×+×Ie IC v r F r F r F r 注意到,并且科氏惯性力垂直于相对速度,所以IC F r v d 0¢×=IC F r d d r t¢=r v 上式变为:r r d d d m ¢¢×=×+×Ie v v F r F r δW ¢Ie—表示牵连惯性力F Ie 在质点的相对位移上的元功。
δF W ¢—表示力F 在质点的相对位移上的元功。
则有:2r 1d()δδ2F mv W W ¢¢=+Ie 质点在非惯性系中相对动能的增量等于作用于质点上的力与牵连惯性力在相对运动中所作的元功之和。
——质点相对运动动能定理(微分形式)4、非惯性系中质点的动能定理积分上式得22r r01122F mv mv W W ¢¢-=+Ie ——质点相对运动动能定理(积分形式)质点在非惯性系中相对动能的变化等于作用于质点上的力与牵连惯性力在相对路程上所作功的和。
注意:因为在非惯性系中科式惯性力始终垂直于相对速度,因此在相对运动中科式惯性力始终不做功。
例4 已知:一平板与水平面成θ角,板上有一质量为m 的小球,如图所示,若不计摩擦等阻力。
求: (1)平板以多大加速度向右平移时,小球能保持相对静止?(2)若平板又以这个加速度的两倍向右平移时,小球应沿板向上运动。
第二章质点动力学
第二章 教学基本要求
一 万有引力
第二章 牛顿定律 引力常量
11 2 2
G = 6.67 ×10 N m kg GmE g = 2 ≈ 9.80 m s - 2 重力 P = mg , R
二 弹性力 (压力,张力,弹簧弹性力等) 压力,张力,弹簧弹性力等) 弹簧弹性力 f = kx
m1m2 F =G 2 r
v 0 FT
a2
v y F T
a1
a2 = ar + a
v Py 1
v P0 2
2 – 5
牛顿定律的应用举例
第二章 牛顿定律
的轻绳, 的小球, 例2 如图长为 l 的轻绳,一端系质量为 m 的小球, 时小球位于最低位置, 另一端系于定点 o , t = 0 时小球位于最低位置,并具 v 求小球在任意位置的速率及绳的张力. 有水平速度 v0 ,求小球在任意位置的速率及绳的张力. 解
第二章 教学基本要求
第二章 牛顿定律
第二章 教学基本要求
第二章 牛顿定律
教学基本要求
掌握牛顿定律的基本内容及其适用条件 一 掌握牛顿定律的基本内容及其适用条件 . 熟练掌握用隔离体法分析物体的受力情 二 熟练掌握用隔离体法分析物体的受力情 况, 能用微积分方法求解变力作用下的简单质点 动力学问题 .
3.2 ×10 s
7
约
0.9s 25 10 s
第二章 教学基本要求
实际长度 可观察宇宙半径 地球半径 说话声波波长 可见光波波长 原子半径 质子半径 夸克半径
第二章 牛顿定律 实际质量
10 m
6.4 ×10 m
6
26
宇宙 太阳 地球 宇宙飞船 最小病毒 电子
10 kg
大学物理——第2章-质点和质点系动力学
2 2 2 α + a1 cos2 α
a1 = cot α 方 向: tanθ = ax g
由式④得:
ay
θ 为 a 与 x 正向夹角
FN = m(g + a1) cosα
10
例2-2 阿特伍德机 (1)如图所示滑轮和绳子的质量均不计,滑 轮与绳间的摩擦力以及滑轮与轴间的摩擦力 均不计.且 m > m2 . 求重物释放后,物体 1 的加速度和绳的张力. 解: 以地面为参考系 画受力图,选取坐标如图
ar
ar
m1 m2
a
m g FT = m a1 1 1 m2g + FT = m2a2
a1 = ar a
FT 0
a2 = ar + a
m1 m2 ar = m + m (g + a) 1 2 a1 FT = 2m1m2 (g + a) P 1 m1 + m2
a2
y FT
y
P0 2
12
8
桥梁是加速度 a
例2-1 升降机以加速度a1上升,其中光滑斜面上有一物体m沿 斜面下滑. 求:物体对地的加速度 a ? y 斜面所受正压力的大小? 解: 由于升降机对地有加速度,为一非惯性 系,故选地面为参考系,设坐标如图.
FN
a1
a2
a = a2 + a1
在 x , y 方向上有:
G
α
x
ax = a2 a1 sin α a = a cosα 1 y
m1 m2
FT 0
m g FT = m a 1 1 m2 g + FT = m2a
m1 m2 a= g m1 + m2
2m m2 1 FT = g m + m2 1
a1 = cot α 方 向: tanθ = ax g
由式④得:
ay
θ 为 a 与 x 正向夹角
FN = m(g + a1) cosα
10
例2-2 阿特伍德机 (1)如图所示滑轮和绳子的质量均不计,滑 轮与绳间的摩擦力以及滑轮与轴间的摩擦力 均不计.且 m > m2 . 求重物释放后,物体 1 的加速度和绳的张力. 解: 以地面为参考系 画受力图,选取坐标如图
ar
ar
m1 m2
a
m g FT = m a1 1 1 m2g + FT = m2a2
a1 = ar a
FT 0
a2 = ar + a
m1 m2 ar = m + m (g + a) 1 2 a1 FT = 2m1m2 (g + a) P 1 m1 + m2
a2
y FT
y
P0 2
12
8
桥梁是加速度 a
例2-1 升降机以加速度a1上升,其中光滑斜面上有一物体m沿 斜面下滑. 求:物体对地的加速度 a ? y 斜面所受正压力的大小? 解: 由于升降机对地有加速度,为一非惯性 系,故选地面为参考系,设坐标如图.
FN
a1
a2
a = a2 + a1
在 x , y 方向上有:
G
α
x
ax = a2 a1 sin α a = a cosα 1 y
m1 m2
FT 0
m g FT = m a 1 1 m2 g + FT = m2a
m1 m2 a= g m1 + m2
2m m2 1 FT = g m + m2 1
非惯性系内质点的动力学方程
y Ae t Be t
t0 时 y a, y 0
y a et et ach t 2
A B a/2
0 FRx 2my
FRx 2my 2m 2ash t
0 FRz mg
FRz mg
§5-2 非惯性系内质点的动力学方程
FR 2m 2ash ti mgk
例题4 解法一
§5-2 非惯性系内质点的动力学方程
ma F
ma ma mat mac F
F
m
m a F mat mac
d2R dt 2
m
r
m
r
2m
v
牵连惯性力 Ft mat
科里奥利惯性力 Fc mac
惯性力合力 FI Ft Fc
ma F FI
§5-2 非惯性系内质点的动力学方程
FN FNnen
受惯性力
md2R / dt 2 0(R 0)
m r 0( 0)
m
r
2ma
2
2m
v
2ma
en
coFsc2(veraFtet
)
§5-2 非惯性系内质点的动力学方程
沿圆圈切向的运动微分方程为
mat
ma
2ma
2
cos
2
sin
2
2 sin 0
可见,与大幅角单摆运动的微分方程完全相同.
§5-2 非惯性系内质点的动力学方程
例题3
m
受惯性力
r m 2
yj
m
d2R dt 2
0
2m
v
2my
i
m r 0
mx 0 FRx 2my my m 2 y
mz 0 FRz mg
§5-2 非惯性系内质点的动力学方程
t0 时 y a, y 0
y a et et ach t 2
A B a/2
0 FRx 2my
FRx 2my 2m 2ash t
0 FRz mg
FRz mg
§5-2 非惯性系内质点的动力学方程
FR 2m 2ash ti mgk
例题4 解法一
§5-2 非惯性系内质点的动力学方程
ma F
ma ma mat mac F
F
m
m a F mat mac
d2R dt 2
m
r
m
r
2m
v
牵连惯性力 Ft mat
科里奥利惯性力 Fc mac
惯性力合力 FI Ft Fc
ma F FI
§5-2 非惯性系内质点的动力学方程
FN FNnen
受惯性力
md2R / dt 2 0(R 0)
m r 0( 0)
m
r
2ma
2
2m
v
2ma
en
coFsc2(veraFtet
)
§5-2 非惯性系内质点的动力学方程
沿圆圈切向的运动微分方程为
mat
ma
2ma
2
cos
2
sin
2
2 sin 0
可见,与大幅角单摆运动的微分方程完全相同.
§5-2 非惯性系内质点的动力学方程
例题3
m
受惯性力
r m 2
yj
m
d2R dt 2
0
2m
v
2my
i
m r 0
mx 0 FRx 2my my m 2 y
mz 0 FRz mg
§5-2 非惯性系内质点的动力学方程
《大学物理》第2章 质点动力学
TM
Tm
2Mm M m
g
a
ar
M M
m m
g
a
FM
TM
ar
F m
Tm m
a
M PM
ar
Pm
注:牛顿第二 定律中的加速 度是相对于惯 性系而言的 。
例2 在倾角 θ 30 的固定光滑斜面上放一质量为
M的楔形滑块,其上表面与水平面平行,在其上 放一质量为m的小球, M 和m间无摩擦,
且 M 2m 。
解:以弹簧原长处为坐标原点 。
Fx kx
F Bm A
元功:
O xB x
xA x
dW Fx dx kxdx
dx
弹力做功:W
xB xA
kxdx
1 2
kxA2
1 2
kxB2
2.3.4 势能 Ep
W保 Ep Ep0 Ep
Ep重 mgh
牛顿 Issac Newton(1643-1727) 杰出的英国物理学家,经 典物理学的奠基人.他的 不朽巨著《自然哲学的数 学原理》总结了前人和自 己关于力学以及微积分学 方面的研究成果. 他在光 学、热学和天文学等学科 都有重大发现.
第2章 质点动力学
2.1 牛顿运动定律 2.1.1 牛顿运动定律
1 牛顿第一定律(惯性定律) • 内容:一切物体总保持静止状态或匀速直线运动 状态,直到有外力迫使它改变这种状态为止。 • 内涵: 任何物体都有保持静止或匀速直线运动状态的趋势。 给出了力的定义 。 定义了一种参照系------惯性参照系。
非惯性参照系:相对于已知的惯性系作变速运动 的参照系。
惯性定律在非惯性系 中不成立。
2.2 动量定理 动量守恒定律
大学物理第2章-质点动力学基本定律
②保守力作功。
势能的绝对值没有意义,只关心势能的相对值。 势能是属于具有保守力相互作用的系统 计算势能时必须规定零势能参考点。但是势能差是一定的,与零点的选择无关。 如果把石头放在楼顶,并摇摇欲坠,你就不会不关心它。 一块石头放在地面你对它并不关心。
重力势能:以地面为势能零点
01
万有引力势能:以无限远处为势能零点
m
o
θ
设:t 时刻质点的位矢
质点的动量
运动质点相对于参考原点O的角动量定义为:
大小:
方向:右手螺旋定则判定
若质点作圆周运动,则对圆心的角动量:
质点对轴的角动量:
质点系的角动量:
设各质点对O点的位矢分别为
动量分别为
二.角动量定理
对质点:
---外力对参考点O 的力矩
力矩的大小:
力矩的方向:由右手螺旋关系确定
为质点系的动能,
令
---质点系的动能定理
讨论
内力和为零,内力功的和是否为零?
不一定为零
A
B
A
B
S
L
例:炸弹爆炸,过程内力和为零,但内力所做的功转化为弹片的动能。
内力做功可以改变系统的总动能
例 用铁锤将一只铁钉击入木板内,设木板对铁钉的阻力与铁钉进入木板之深度成正比,如果在击第一次时,能将钉击入木板内 1 cm, 再击第二次时(锤仍以第一次同样的速度击钉),能击入多深? 第一次的功 第二次的功 解:
(1)重力的功
重力做功仅取决于质点的始、末位置za和zb,与质点经过的具体路径无关。
(2) 万有引力的功
*
设质量M的质点固定,另一质量m的质点在M 的引力场中从a运动到b。
M
a
b
势能的绝对值没有意义,只关心势能的相对值。 势能是属于具有保守力相互作用的系统 计算势能时必须规定零势能参考点。但是势能差是一定的,与零点的选择无关。 如果把石头放在楼顶,并摇摇欲坠,你就不会不关心它。 一块石头放在地面你对它并不关心。
重力势能:以地面为势能零点
01
万有引力势能:以无限远处为势能零点
m
o
θ
设:t 时刻质点的位矢
质点的动量
运动质点相对于参考原点O的角动量定义为:
大小:
方向:右手螺旋定则判定
若质点作圆周运动,则对圆心的角动量:
质点对轴的角动量:
质点系的角动量:
设各质点对O点的位矢分别为
动量分别为
二.角动量定理
对质点:
---外力对参考点O 的力矩
力矩的大小:
力矩的方向:由右手螺旋关系确定
为质点系的动能,
令
---质点系的动能定理
讨论
内力和为零,内力功的和是否为零?
不一定为零
A
B
A
B
S
L
例:炸弹爆炸,过程内力和为零,但内力所做的功转化为弹片的动能。
内力做功可以改变系统的总动能
例 用铁锤将一只铁钉击入木板内,设木板对铁钉的阻力与铁钉进入木板之深度成正比,如果在击第一次时,能将钉击入木板内 1 cm, 再击第二次时(锤仍以第一次同样的速度击钉),能击入多深? 第一次的功 第二次的功 解:
(1)重力的功
重力做功仅取决于质点的始、末位置za和zb,与质点经过的具体路径无关。
(2) 万有引力的功
*
设质量M的质点固定,另一质量m的质点在M 的引力场中从a运动到b。
M
a
b
高一物理章节内容课件 第二章质点动力学
地面的加速度是多少?(以竖直向上为
正)
解:以绳为参照系,设绳对地 的加速度为 a绳对地
T '
T a绳对地
人 T mg (ma绳对地) ma0 物 Mg T (Ma绳对地) M 0
Mg ♕ mg
▲ 注意:ห้องสมุดไป่ตู้于滑轮这种左右两边的情形, 左右两边的正方向应相反
3 a绳对地 g a0 方向:右向上,左向下
★ 作用于桌面的压力
N1 N m已落下部分g , 3gm已落下的部分
4. 质点系的动量定理 任意一段时间间隔内质点系所受合外力 的冲量等于在同一时间间隔内质点系内 所有质点的动量矢量和的增量。
5.动量守恒定律(Law of Conservation of Momentum) (1)※
度,是Vx
N mg CyVx2
N
CxVx2
m
dVx dt
(mg CyVx2 ) CxVx2
m dVx dx
dx dt
dx dt
(mg CyVx ) CxVx m
2
2 dVx dx
条件:Vx V0 90km/ h时,
Vx
N
0
mg
C yV02
解:★ 注意 摩此擦M力分r布F在整个圆盘上,因
第一步:在距轴为 r 处取质量元 dm ,它受到
的摩擦力为 df
df kdm g
方向:
df
r
第二步:求 df 产生的摩擦力矩 dM 大小、方向
dM rdf sin rkdm g 方向:沿轴
dm
m
R2
§2.1.4 非惯性系中的动力学
i
i
a 是非惯性系相对惯性系的加速度 是物体相对于非惯性系的加速度 a
例1:如图,升降机内有一倾角为的光滑斜面。当升降机以匀 加速度a1相对地面上升时,一木块m正沿斜面下滑。 求:木块m相对于升降机与地面的加速度。 解:已知升降机相对于地面的加速度为a1,木块相对于升降机 的加速度为a2,对物体受力分析,然后给升降机中木块加上惯 性力,选择升降机为参考系并建立图示坐标系。 y轴:
2
a x a2 a1 sin=g sin
a y a1 cos
y a1 a
a g 2 sin 2 a1 cos 2
a y a1 tan cot ax g
(是a与斜面的夹角)
a2 x
例2 平移惯性力在地球上的效应 实际上地球是一个非惯性系, 惯性力必然有实际的效应。 太阳引力失重和潮汐现象都是平移惯性力在非惯性系中 的实际效应。
W FG Fg
其中
Mm FG G 2 R
Fg mR cos
2
Mm FG G 2 R
Fg mR cos
2
Fg FG
由于W与FG的夹角很小(约10-3rad), 取近似
W FG Fg cos
Fgcos
W
M W m G 2 R 2 cos 2 mg 0 mR 2 cos 2 R
Fg man n mr 2 n
惯性离心力 :由于转动参考系的加速度效应而产生的一个假想力
(2) 转动系下的牛顿第二定律
在转动系中,牛顿第二定律写为
FG Fg W
F F
i i
g
ma
i
a 是非惯性系相对惯性系的加速度 是物体相对于非惯性系的加速度 a
例1:如图,升降机内有一倾角为的光滑斜面。当升降机以匀 加速度a1相对地面上升时,一木块m正沿斜面下滑。 求:木块m相对于升降机与地面的加速度。 解:已知升降机相对于地面的加速度为a1,木块相对于升降机 的加速度为a2,对物体受力分析,然后给升降机中木块加上惯 性力,选择升降机为参考系并建立图示坐标系。 y轴:
2
a x a2 a1 sin=g sin
a y a1 cos
y a1 a
a g 2 sin 2 a1 cos 2
a y a1 tan cot ax g
(是a与斜面的夹角)
a2 x
例2 平移惯性力在地球上的效应 实际上地球是一个非惯性系, 惯性力必然有实际的效应。 太阳引力失重和潮汐现象都是平移惯性力在非惯性系中 的实际效应。
W FG Fg
其中
Mm FG G 2 R
Fg mR cos
2
Mm FG G 2 R
Fg mR cos
2
Fg FG
由于W与FG的夹角很小(约10-3rad), 取近似
W FG Fg cos
Fgcos
W
M W m G 2 R 2 cos 2 mg 0 mR 2 cos 2 R
Fg man n mr 2 n
惯性离心力 :由于转动参考系的加速度效应而产生的一个假想力
(2) 转动系下的牛顿第二定律
在转动系中,牛顿第二定律写为
FG Fg W
F F
i i
g
ma
大学物理-质点动力学学(2024版)
在同一直线上。
(2) 分别作用于两个物体上,不能抵消。
F F
(3) 属于同一种性质的力。 (4) 物体静止或运动均适用。
四、牛顿定律的应用 例2-1. 质量为m的物体被竖直上抛,初
解题步骤: (1) 确定研究对象。隔离
速度为v0,物体受到的空气阻力数值与 其速率成正比,即f = kv,k为常数,求
曲线下面的面积表示。
F
A F dx
O xa
xb x
力 位移曲线下的面积表示力F 所作的功的大小。
一、功
元功
dA F dr
dA F dr
Fxdx Fydy Fzdz
例2-1、一质点做圆周运动 ,有一力 F F0 xi yj
作用于质点,在 质点由原点至P(0, 2R)点过程中,F 力做的功为多少?
惯性质量:物体惯性大小的量度。 引力质量: 物体间相互作用的“能 力”大小的量度。 思考:什么情况下惯性质量与引 力质量相等?
2. 牛顿第一定律(惯性定律)
任何物体都保持静止
或匀速直线运动态,直至
其它物体所作用的力迫使
它改变这种状态为止。
3. 力的数学描述: 大小、方向、作用
点—矢量
二、牛顿第二定律
L2
路 径 绕 行 一 周 , 这 些
力所做的功恒为零,
a 若 A
F dr 0,
具有这种特性的力统
L
称为保守力。
若
A
F dr 0,
没有这种特性的力,
L
F 为保守力。 F 为非保守力。
统称为非保守力 或耗
保守力:重力、弹性力、万有引力、
散力。
静电力。
非保守力:摩擦力、爆炸力
五、势能
第2章 质点动力学1
在非惯性系中, 、 两物体做为一整体沿 、 两物体运动方向的运动方程为
考虑到 , 代入上式可得
单独对 物体,在此非惯性系中,水平方向的运动学方程为
将 , 代入上式可得
说明这是一个运用牛顿定律求解的力学题目,正确分析受力是应用牛顿定律的前提。牛顿定律成立的参考系是惯性系,而在非惯性系中应用牛顿定律要引入惯性力,解法一在惯性系中求解,由物体在非惯性系中的相对加速度 ( 、 物体一致),运用速度变换给出惯性系中物体的加速度是解法一的关键。解法二中引入惯性力是关键。惯性力等于物体的质量乘以非惯性系加速度的负量。
第二定律:物体运动状态的变化与物体所受的合力成正比。
当 为常量时,
第三定律:当物体 以力 作用于 物体时,物体 也同时以力 作用于物体 上,力 和 总是大小相等,方向相反,且作用在同一直线上,其关系式为
力满足叠加原理:
几种常见的力
万有引力:
重力:
弹簧弹性力:
静摩擦力: 最大静摩擦力
滑动摩擦力:
(2)运动学解题基本思路:① 选择研究对象;② 分析受力情况(画出受力图);③ 选择适当坐标系,列方程求解;④ 进行必要的讨论。
时, 积分上式
得链条下落端点的运动学方程为
说明这是一个变质量问题,在此类问题中牛顿定律要采用 形式而非 形式,另外需注意的是链条在下落过程中,机械能不守恒。
2-3如图(a)将一质量为 的小环套在一绕竖直轴以每秒 转的恒定转动杆上。杆与水平面成 角。设小环与杆之间的最大静摩擦系数为 ,小环与转轴的距离为 。问小环与杆保持相对静止时, 应该在什么范围内。
(1)
(2)
因 有
将上式代入(1)、(2)式忽略二阶小量可得 两端张力差为
将上式积分
即得ห้องสมุดไป่ตู้于柱面的绳子 两端的拉力之比为
考虑到 , 代入上式可得
单独对 物体,在此非惯性系中,水平方向的运动学方程为
将 , 代入上式可得
说明这是一个运用牛顿定律求解的力学题目,正确分析受力是应用牛顿定律的前提。牛顿定律成立的参考系是惯性系,而在非惯性系中应用牛顿定律要引入惯性力,解法一在惯性系中求解,由物体在非惯性系中的相对加速度 ( 、 物体一致),运用速度变换给出惯性系中物体的加速度是解法一的关键。解法二中引入惯性力是关键。惯性力等于物体的质量乘以非惯性系加速度的负量。
第二定律:物体运动状态的变化与物体所受的合力成正比。
当 为常量时,
第三定律:当物体 以力 作用于 物体时,物体 也同时以力 作用于物体 上,力 和 总是大小相等,方向相反,且作用在同一直线上,其关系式为
力满足叠加原理:
几种常见的力
万有引力:
重力:
弹簧弹性力:
静摩擦力: 最大静摩擦力
滑动摩擦力:
(2)运动学解题基本思路:① 选择研究对象;② 分析受力情况(画出受力图);③ 选择适当坐标系,列方程求解;④ 进行必要的讨论。
时, 积分上式
得链条下落端点的运动学方程为
说明这是一个变质量问题,在此类问题中牛顿定律要采用 形式而非 形式,另外需注意的是链条在下落过程中,机械能不守恒。
2-3如图(a)将一质量为 的小环套在一绕竖直轴以每秒 转的恒定转动杆上。杆与水平面成 角。设小环与杆之间的最大静摩擦系数为 ,小环与转轴的距离为 。问小环与杆保持相对静止时, 应该在什么范围内。
(1)
(2)
因 有
将上式代入(1)、(2)式忽略二阶小量可得 两端张力差为
将上式积分
即得ห้องสมุดไป่ตู้于柱面的绳子 两端的拉力之比为
大学物理B层次--第二章 质点动力学
24
例题2-8 质量为m的质点,经时间t、以不变的速 率越过一水平光滑轨道60º 的弯角,求轨道作用于质 点的平均冲力的大小。 解 平均冲力可视为恒力,由动量定理有 m: I=F.t=m2-m 1
m
m 平均冲力 F= (2- 1 ) t (1) 这里|1 | = |2 | =。
求解(2- 1 )的方法有两个:
m
a
N
m
a
ma mg
22
§2-3 质点动量定理
1.冲量 冲量 I
t2
t1
Fdt , 对恒力F, I F (t2 t1 )
牛顿表述的第二定律是:F dp d (m )
2.质点动量定理
dt
dt
两边同乘dt, 再对上式积分,则可得到
I F dt p2 p1
m1
m2
m1g
m2g
(m1 m2 ) g m2 a0 a1 , m1 m2 (m1 m2 ) g m1a0 a2 m1 m2 (2 g a0 )m1m2 T m1 m2
12
例题2-3 一人在平地上拉一个质量为m的木箱匀速 地前进,木箱与地面的摩擦系数µ =0.6,肩上绳的支持点 距地面高度h=1.5m,问绳长L为多长时最省力? 解 先找出力与某个变量()的关系,再求极值。 水平方向:Fcos-fs=ma=0 (匀速) 竖直方向:Fsin+N-mg=0 , fs= µ N 解得: mg F cos sin L F有极小值的充要条件是: h N
19
2.加速平动参考系中的惯性力 在实际问题中常常需要在非惯性系中观察和分析 物体的运动。然而在非惯性系中牛顿定律是不成立。
如果在相对于惯性系S以加速度a作直线运动的非 惯性系S中,假定每个质量为m的物体除了受到真实的 外力F作用外,还受到一个附加的、假想的力Fi=-ma的 作用,那么我们就可以在非惯性系中形式地利用牛顿 定律来解决力学问题了。 这一假想的力: Fi=-ma 惯性力 请注意:这里的a不是物体m的加速度,而是非惯性 系S相对于惯性系S的加速度。
例题2-8 质量为m的质点,经时间t、以不变的速 率越过一水平光滑轨道60º 的弯角,求轨道作用于质 点的平均冲力的大小。 解 平均冲力可视为恒力,由动量定理有 m: I=F.t=m2-m 1
m
m 平均冲力 F= (2- 1 ) t (1) 这里|1 | = |2 | =。
求解(2- 1 )的方法有两个:
m
a
N
m
a
ma mg
22
§2-3 质点动量定理
1.冲量 冲量 I
t2
t1
Fdt , 对恒力F, I F (t2 t1 )
牛顿表述的第二定律是:F dp d (m )
2.质点动量定理
dt
dt
两边同乘dt, 再对上式积分,则可得到
I F dt p2 p1
m1
m2
m1g
m2g
(m1 m2 ) g m2 a0 a1 , m1 m2 (m1 m2 ) g m1a0 a2 m1 m2 (2 g a0 )m1m2 T m1 m2
12
例题2-3 一人在平地上拉一个质量为m的木箱匀速 地前进,木箱与地面的摩擦系数µ =0.6,肩上绳的支持点 距地面高度h=1.5m,问绳长L为多长时最省力? 解 先找出力与某个变量()的关系,再求极值。 水平方向:Fcos-fs=ma=0 (匀速) 竖直方向:Fsin+N-mg=0 , fs= µ N 解得: mg F cos sin L F有极小值的充要条件是: h N
19
2.加速平动参考系中的惯性力 在实际问题中常常需要在非惯性系中观察和分析 物体的运动。然而在非惯性系中牛顿定律是不成立。
如果在相对于惯性系S以加速度a作直线运动的非 惯性系S中,假定每个质量为m的物体除了受到真实的 外力F作用外,还受到一个附加的、假想的力Fi=-ma的 作用,那么我们就可以在非惯性系中形式地利用牛顿 定律来解决力学问题了。 这一假想的力: Fi=-ma 惯性力 请注意:这里的a不是物体m的加速度,而是非惯性 系S相对于惯性系S的加速度。
大学物理1,第2章 质点动力学
O
x
mg
tan a1 , arctan a1
g
g
l
m
a1
(2)以小球为研究对象,当小车沿斜面作匀加速运
动时,分析受力如图,建立图示坐标系。
x方向:FT2 sin(α θ) mg sin α ma2
FT 2
y方向:FT2 cos(α θ) mg cos α 0 a2
m
FT2 m 2ga22 sin α a22 g 2
• 强力(strong interaction)
在原子核内(亚微观领域)才表现出来,存在于 核子、介子和超子之间的、把原子内的一些质子和中 子紧紧束缚在一起的一种力。
其强度是电磁力的百倍,两个相邻质子之间的强 力可达104 N 。力程:<10-15 m
• 弱力(weak interaction)
亚微观领域内的另一种短程力。导致衰变放出 电子和中微子。两个相邻质子之间的弱力只有10-2 N 左右。
重力(gravity) 重力是地球表面物体所受地球引力的一个分量。
G mg
g g0 (1 0.0035cos2 φ)
地理纬度角 g0 是地球两极处的重力加速度。
重力
引力
重力与重力加速度的方向都是竖直向下。
忽略地球自转的影响物体所受的重力就等于它所受的
万有引力:
mg
G
mEm R2
弹力(elastic force)
物体受到外力作用时,它所获得的加速度的大小与合 外力的大小成正比,与物体的质量成反比;加速度的
方向与合外力F的方向相同。 F kma
比例系数k与单位制有关,在国际单位制中k=1
瞬时性:是力F的瞬m时a 作m用d规v律 dt
F
第2章_质点动力学
重点掌握变力的问题!
11
例:一根长为L,质量为M的柔软的链条,开始时链条 静止,长为L-l 的一段放在光滑的桌面上,长为l 的一段 铅直下垂。(1)求整个链条刚离开桌面时的速度;(2)求 链条由刚开始运动到完全离开桌面所需要的时间。 M dv dv dx dv xg 解: F xg Ma , a v L dt dt dx L dx
(1) F合 ma (2) a a a0
在加速平动参照系中: F惯 ma0 此时,F F惯 ma (4)
(4)式就在形式上与牛顿第二定律保持一致。
18
在加速平动参照系中:F惯 ma0
惯性力大小: 运动质点的质量m与非惯性系加速度 a的乘积。
*2.1.4 非惯性系 惯性力 非惯性系:相对于惯性系做加速运动的参考系。
在非惯性系内牛顿定律不成立。 1.平动加速系
设有一质点质量为m,相对于某一惯性系S,根据 牛顿第二定律,有: (1) F ma
合
设有另一参照系S/,相对于惯性系S以加速度
动,在S/参照系中,质点的加速度为
由运动的相对性,有:a a a0
2
牛顿第二定律:物体受到外力作用时,它所获得的加 速度的大小与合外力的大小成正比,与物体的质量成 反比,加速度的方向与合外力的方向相同。
数学形式:F ma 或 F m dv dt
在直角坐标系Oxyz中: 在自然坐标系中 :
Fix max Fiy ma y Fiz maz
在匀角速转动参考系中应用牛顿定律, 必须设想物体又受到另外一个与拉力大小相 等但方向相反的惯性力的作用,
2 Fi mω r
大学物理 质点动力学
a物惯 a物A a A惯
解方程
3.列方程
大学 物理学
例2.1 一细绳跨过一轴承光滑的定滑轮,绳的两端分别悬 有质量为m1 和 m2的物体( m1 < m2 ),如图2.2所示.设滑轮和 绳的质量可忽略不计,绳不能伸长,试求物体的加速度以 及悬挂滑轮的绳中张力.
m2 定滑轮为研究 解 分别以 m1 , 对象,其隔离体受力如图所示.
T1 T2 T, a1 a2 a
m2 m1 a g, m1 +m2
解①和②两式得
2m1m 2 T g. m1 +m2
由牛顿第三定律知:T1' T1 T, T2' T2 T ,又考虑到定滑轮质量不 计,所以有
容易证明
4m1m2 T 2T g m1 +m2
1 7.3 10 rad s
5
1
由于地球的自转, 地球上的物体有法向 加速度。
大学 物理学
大量的事实和实验表明:
地球不是一个严格的惯性系。
傅科摆 河岸冲刷 赤道附近的信风 强热带风暴漩涡 落体偏东
地球自转:科里奥利加速度
Rse
Rse 1.5 108 km 1Au
a自转 3 6 g , a公转 g 1000 10000
明朝1644年灭亡,康熙皇帝:1654-1722
大学 物理学
动力学:研究作用于物体上的力和
物体机械运动状态变化之间的关系。
• 本章主要内容: • §2.1 牛顿运动定律 • §2.2 动量 动量守恒定律 • §2.2 功 动能 势能 机械能守 恒定律 • §2.2 角动量 角动量守恒定律
大学 物理学
对 m1,它在绳子拉力 T1 及重力 m1 g 的作用下以加速度 a1向上运动,取 向上为正向,则有
大学物理(上)课件-第02章质点动力学3-2
(
)
50
� � � dL � 质点系角动量定理: M = ∑ ri × Fi = dt
质点系对某一参考点的角动量随时间的变化率等 于系统所受各个外力对同一参考点力矩之矢量和。 质点系角动量定理的积分式:
∫
t2
t1
� � � Mdt = L2 − L1
作用于质点系的冲量矩等于质点系在作用时 间内的角动量的增量 。
例6 宇宙飞船在宇宙尘埃中飞行,尘埃密度为ρ。如 果质量为mo的飞船以初速vo穿过尘埃,由于尘埃粘在 飞船上,致使飞船速度发生变化。求飞船的速度与其 在尘埃中飞行的时间的关系。(设飞船为横截面面积 为S的圆柱体) 解: 某时刻飞船速度: v,质量:m 动量守恒: 质量增量:
m0v0 = mv
dm = ρ Sv dt
2.质点系的动量定理:
∫
t
t0
� � � � ∑ Fi dt = p − p0 = ∆p
� � dp ∑ Fi = dt
质点系统所受合外力的冲量等于系统总动量的增量。 微分式:
注意:系统的内力不能改变整个系统的总动量。
31
设 有n个质点构成一个系统 第i个质点: 质量
� � 内力 F 外力 Fi 内i
O
y
48
3. 质点的角动量定理
� � dL MO = dt
质点对某一参考点的角动量随时间的变化率等于 质点所受的合外力对同一参考点的力矩。 角动量定理的积分式:
∫
t2
t1
� � � M O dt = L2 − L1
∫
t2
t1
� M O dt
称为“冲量矩”
49
n � n � � � 质点系的角动量: L = ∑ Li = ∑ ( ri × pi ) i =1 i =1
《理论力学 动力学》 第五讲 非惯性系中质点动力学的应用
求:套筒运动到端点A所需的时间
z'
及此时对杆的水平压力。
y'
2、非惯性系中质点动力学的应 用
解:研究套筒B相对于OA的运动.
O
选取和杆OA一起转动的坐标
系O x’y’z’为动参考系.
分析套筒受力, 其中
FIe = mw2 x¢ FIC = 2mw x&¢
套筒的相对运动动力学方程为:
m
d2r¢ dt 2
2、非惯性系中质点动力学的应 用
(1)傅科摆
在北半球,球铰链悬挂一支摆,摆锤摆动时,与 地球表面有相对速度,由于地球自转的影响,会 产生向左的科氏加速度,对应的科式惯性力向 右,因此它不会像单摆一样在一个固定平面内运 动,而会向右偏斜,轨迹如右图所示。这种现象 是傅科1851年发现的,称之为傅科摆。它证明了 地球的自转。摆绳摆动的平面在缓慢地顺时针旋 转,旋转一周的周期为:
2、非惯性系中质点动力学的应 用
例 1 如图所示单摆,摆长为l,小球质量为m。其悬挂点O以加速度a0向上运动。
求:此时单摆作微振动的周期。
a0
解:在悬挂点固结一个平移坐标系O x’y’。
O
x'
小球相对于此动参考系的运动相当于悬挂点固定的单摆振动。
分析小球受力, 其中 FIe = ma0
φ
因动参考系作平移运动,所以科氏惯性力 FIC = 0
2
3) = 0.209s
m
d2r¢ dt 2
=
ห้องสมุดไป่ตู้mg
+
F1
+
F2
+
FIe
+
FIC
将相对运动动力学方程投影到y’轴上,得: F2 = FIC = 2mw x&¢
《大学物理》第二章《质点动力学》课件
相对论中的质点动力学
相对论简介
01
相对论是由爱因斯坦提出的理论,包括特殊相对论和广义相对
论,对经典力学和电动力学进行了修正和发展。
质点动力学
02
在相对论中,质点的运动遵循质点动力学规律,需要考虑相对
论效应。
实际应用
03
相对论中的质点动力学在粒子物理、宇宙学和天文学等领域具
有重要意义,如解释宇宙射线、黑洞和宇宙膨胀等现象。
牛顿运动定律的应用
通过牛顿第二定律分析质点在各种力作用下的运动规律。
弹性碰撞和非弹性碰撞
碰撞的定义
两个物体在极短时间内相互作用的过 程。
弹性碰撞
两个物体碰撞后,动能没有损失,只 发生形状和速度方向的改变。
非弹性碰撞
两个物体碰撞后,动能有一定损失, 不仅发生形状和速度方向的改变,还 可能有物质交换。
01
运动分析
火箭发射过程中,需要分析火箭的加速 度、速度和位移等运动参数,以确定最 佳发射时间和条件。
02
03
实际应用
火箭发射的运动分析对于航天工程、 军事和商业发射等领域具有重要意义。Fra bibliotek球自转的角动量守恒
1 2
地球自转
地球绕自身轴线旋转,具有角动量。
角动量守恒
在没有外力矩作用的情况下,地球自转的角动量 保持不变。
相对论和量子力学
随着科学技术的不断发展,相对论和量子力学逐 渐兴起,对质点动力学产生了深远的影响。相对 论提出了新的时空观念和质能关系,而量子力学 则揭示了微观世界的奇特性质。
牛顿时代
牛顿在《自然哲学的数学原理》中提出了三大运 动定律和万有引力定律,奠定了经典力学的基础 。
现代
现代物理学在继承经典理论的基础上,不断探索 新的理论框架和实验手段,推动质点动力学的发 展和完善。
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
牵连惯性力 科氏惯性力
x'
y
O
x
非惯性系中的质点动力学基本方程
mar F FIe FIC 或质点相对运动动力学基本方程
在非惯性系内,上式写成微分方程形式
m
d
2
r
dt 2
F
FIe
FIC
非惯性系中的质点运动微分方程
质点相对运动微分方程
其中 r表 示质点M在非惯性系中的矢径
d 2r dt 2
解:
以上抛点为坐标原点,选取固定于地球的非惯 性参考系为 Oxyz
其中 z轴 铅直向上, 近似通过地球中心。
x轴水平向东, y轴水平向北。
表现重力
P F FIe mg
其中 F为地球引力
科氏惯性力
FIC maC 2m vr
vr xi yj zk
FIC
的矢量积可展开为
i j k
例2- 4 已知:一平板与水平面成θ角,板上有一质量为m 的小球,
如图所示,若不计摩擦等阻力。
求:平板以多大加速度向右平移时,小球能保持相对静止。 若平板又以这个加速度的两倍向右平移时,小球应沿 板向上运动。球沿板走了l 距离后,小球的相对速度是 多少?
a
解: (1)在平板上固结一动参考系 Oxy
md2来自rdt 2mg
F1
F2
FIe
FIC
(a)
将上式投影到 x轴 上得 mx mx 2
令 vr x
dvr dvr dx 2x
dt dx dt
z'
O
y' F1
F2
B
mg
FIC
FIeA x'
注意
dx dt
vr
上式分离变量并积分
即
vr 0
vrdvr
x 1
2
xdx
2
得
1 2
vr2
)
δWF
δWIe
质点相对运动动能定理的微分形式: 质点在非惯性系中相对动能的增量等于作用于质点
上的力与牵连惯性力在相对运动中所作的元功之和。
积分上式得
1 2
mvr2
1 2
mvr20
WF
WIe
质点相对运动动能定理的积分形式: 质点在非惯性参考系中相对动能的变化等于作用在质
点上的力与牵连惯性力在相对路程上所作的功之和。
发生在惯性参考系中的任何力学现象都无助于发 觉该参考系本身的运动情况----相对性原理
(3)a质r 点 0相,对于r 动0参考F系IC静止0 F FIe 0
质点相对静止的平衡方程
即当质点在非惯性参考系中保持相对静止时, 作用在质点上的力与质点的牵连惯性力相互平衡。
(4)质点相对于动参考系作等速直线运动
应用相对运动动能定理,有
m 2
vr2
0
(FIe
cos
)l
(mg
sin
)l
m 2
vr2
(mg
sin )l
vr 2gl sin
例2-5
已知:半径为R 的环形管,绕铅垂轴z 以匀角速度ω 转动。 如图所示,管内有一质量为m的小球,原在最低 处平衡,小球受微小扰动时可能会沿圆管上升。 忽略管壁摩擦。
求:小球能达到的最大偏角 ma。x
t 2h g
(i)
x 2h cos 2h
3
g
此时 x为 正值, 偏移向东。
这就是地球上的落体偏东现象。
§ 2-2 非惯性系中质点的动能定理
质点的相对运动动力学基本方程为
m dvr dt
F
FIe
FIC
式中 FIe mae ,FIC maC 2m vr
dvr dt
是
vr对时间t 的相对导数
FIC 2m 0 cos sin
x y' z
2m[( y
sin
z
cos
)i
x s in
j
x
cos
k ]
(a)
质点相对于地球的运动微分方程
mar F FIe FIC mg 2m vr
引用式(a) 上式沿x,y轴,的z投影式为
x 2 ysin 2 zcos
y 2 xsin
上式两端点乘相对位移dr
m
dvr dt
dr
F
dr
FIe
科氏惯性力FIC垂直于相对速度
dr
vr
FIC
有
dr
FIC
dr
0
mvr dvr F dr FIe dr
δWF -表示力 F在质点的相对位移上的元功。
δWIe -表示牵连惯性力 FI在e 质点的相对位移上的元功。
d(
1 2
mvr2
dt 2
m(g
a0 )
令
02
g
a0 l
则上式可写成自由振动微分方程的标准形式
d 2
dt 2
02
0
其解的形式为 Asin(0t ) 而振动周期为
2π 2π l
0
g a0
例2-2
已知:一直杆OA,长l=0.5m,可绕过端点O的 z轴在水 平面内作匀速转动,其转动角速度 2π rad/s
分析小球受力如图所示。
FIe ma0
因动参考系作平移,所以科氏惯性力
FIC
0y'
mar F P FIe
Ft
P FIe
将上式投影到轨迹的切向轴t上 得
d2s m
dt 2
(P
FIe ) sin
m(g
a0 ) sin
当摆作微振动时 角很小 有sin 且 s l
上式成为
ml
d 2
FIe mae
FIC 0
y'
小球相对静止,方程为
Fx 0,FN mg cos FIe sin 0 Fy 0, mg sin FIe cos 0
mg sin FIe cos mae cos
FN
FIe
mg a
ae g tan
x' O'
(2)当加速度 ae 2g 时tan
FIe 2mg tan
解: 以环形管为动参考系 FIe m2Rsin
经过微小角度d时 此惯性力作功为 δW1 FIeRd cos m2R2 sin cosd
相对运动的动能定理
0 0 mgR(1 cosmax )
max m 2 R 2 sin cosd
0
mgR(c os max
1)
1 2
m
2
R2
sin
思考:如果中心是高压,四周是 低压,是否会形成顺时针方向的 气旋?
例2-1
已知:如图所示单摆,摆长为l,小球质量为m。 其悬挂点O以加速度 a0向上运动。
求:此时单摆作微振动的周期。
a0
O
x'
y'
解: 在悬挂点O上固结一平移参考系 Oxy
a0
O
小球相对于此动参考系的运动
x'
相当于悬挂点固定的单摆振动
在杆OA上有一质量为m=0.1kg的套筒B。设开始运
动时,套筒在杆的中点处于相对静止,忽略摩擦。
求:套筒运动到端点A所需的时间及此时对杆的水平压力。
z'
y'
O
B
A x'
解: 研究套筒B相对于OA的运动 选取和杆OA一起转动的坐标系 Oxyz 为动参考系
FIe m2 x FIC 2m x
建立相对运动微分方程
2
max
0
因 sin 2 max 1 cos2 max
mgR(c os max
1)
1 2
m
2
R
2
(1
cos2
max
)
0
或 2Rcos2 max 2g cosmax 2g 2R 0
FIe mg
cos max
g ( 2 R g) 2R
其中
cos max
g ( 2 R g) 2R
是
r对 时间t
的二阶相对导数
几种特殊情况
(1)aC动参0考系FI相C 对 0于定 参考相系对作运平动移动力学基本方程为 mar F FIe
(2)动参考系相对于定参考系作匀速直线平移
aC 0
ae 0 FIe FIC 0
mar F
所有相对于惯性参考系作匀速直线平移的参考系 都是惯性参考系
ar 0
F FIe FIC 0
质点相对平衡方程
地球自转的影响
地球总是在自转,固结在地面上的参考系实质上是非惯性 系。由于地球自转角速度较小,每24小时转2π弧度,因此一 般工程上可以将其看为惯性系。但地球自转的影响是真实存 在的,在许多情况下不可忽略。在地面上物体的重量是地球 引力与离心惯性力的合力,称之为表观重力。地面上铅垂线 的方向也是表观重力的方向。自由落体甚至不沿表观重力方 向下落,这是由于有科氏惯性力的存在。在北半球,河流的 右岸受较大的冲刷,铁路的右轨易磨损也是由于科氏惯性力 的作用。
x 0,y 0,z gt v0
(e)
将上式代入式(b), 得一次近似的微分方程
x 2(gt v0 ) cos ,y 0 ,z g
在式(d)的初始条件下,上式积分一次 得一次近似的速度
x (gt2 2v0t) cos ,y 0,z gt v0
再积分一次,得一次近似的上抛质点运动方程
x 2 ysin 2 zcos
y 2 xsin
z g 2 xcos
(b)
注意此时 v0 0
其零次近似的速度式改为 x 0,y 0,z gt
以始落点为原点,一次近似的质点运动方程式为
x 1 gt3 cos ,y 0,z 1 gt 2
x'
y
O
x
非惯性系中的质点动力学基本方程
mar F FIe FIC 或质点相对运动动力学基本方程
在非惯性系内,上式写成微分方程形式
m
d
2
r
dt 2
F
FIe
FIC
非惯性系中的质点运动微分方程
质点相对运动微分方程
其中 r表 示质点M在非惯性系中的矢径
d 2r dt 2
解:
以上抛点为坐标原点,选取固定于地球的非惯 性参考系为 Oxyz
其中 z轴 铅直向上, 近似通过地球中心。
x轴水平向东, y轴水平向北。
表现重力
P F FIe mg
其中 F为地球引力
科氏惯性力
FIC maC 2m vr
vr xi yj zk
FIC
的矢量积可展开为
i j k
例2- 4 已知:一平板与水平面成θ角,板上有一质量为m 的小球,
如图所示,若不计摩擦等阻力。
求:平板以多大加速度向右平移时,小球能保持相对静止。 若平板又以这个加速度的两倍向右平移时,小球应沿 板向上运动。球沿板走了l 距离后,小球的相对速度是 多少?
a
解: (1)在平板上固结一动参考系 Oxy
md2来自rdt 2mg
F1
F2
FIe
FIC
(a)
将上式投影到 x轴 上得 mx mx 2
令 vr x
dvr dvr dx 2x
dt dx dt
z'
O
y' F1
F2
B
mg
FIC
FIeA x'
注意
dx dt
vr
上式分离变量并积分
即
vr 0
vrdvr
x 1
2
xdx
2
得
1 2
vr2
)
δWF
δWIe
质点相对运动动能定理的微分形式: 质点在非惯性系中相对动能的增量等于作用于质点
上的力与牵连惯性力在相对运动中所作的元功之和。
积分上式得
1 2
mvr2
1 2
mvr20
WF
WIe
质点相对运动动能定理的积分形式: 质点在非惯性参考系中相对动能的变化等于作用在质
点上的力与牵连惯性力在相对路程上所作的功之和。
发生在惯性参考系中的任何力学现象都无助于发 觉该参考系本身的运动情况----相对性原理
(3)a质r 点 0相,对于r 动0参考F系IC静止0 F FIe 0
质点相对静止的平衡方程
即当质点在非惯性参考系中保持相对静止时, 作用在质点上的力与质点的牵连惯性力相互平衡。
(4)质点相对于动参考系作等速直线运动
应用相对运动动能定理,有
m 2
vr2
0
(FIe
cos
)l
(mg
sin
)l
m 2
vr2
(mg
sin )l
vr 2gl sin
例2-5
已知:半径为R 的环形管,绕铅垂轴z 以匀角速度ω 转动。 如图所示,管内有一质量为m的小球,原在最低 处平衡,小球受微小扰动时可能会沿圆管上升。 忽略管壁摩擦。
求:小球能达到的最大偏角 ma。x
t 2h g
(i)
x 2h cos 2h
3
g
此时 x为 正值, 偏移向东。
这就是地球上的落体偏东现象。
§ 2-2 非惯性系中质点的动能定理
质点的相对运动动力学基本方程为
m dvr dt
F
FIe
FIC
式中 FIe mae ,FIC maC 2m vr
dvr dt
是
vr对时间t 的相对导数
FIC 2m 0 cos sin
x y' z
2m[( y
sin
z
cos
)i
x s in
j
x
cos
k ]
(a)
质点相对于地球的运动微分方程
mar F FIe FIC mg 2m vr
引用式(a) 上式沿x,y轴,的z投影式为
x 2 ysin 2 zcos
y 2 xsin
上式两端点乘相对位移dr
m
dvr dt
dr
F
dr
FIe
科氏惯性力FIC垂直于相对速度
dr
vr
FIC
有
dr
FIC
dr
0
mvr dvr F dr FIe dr
δWF -表示力 F在质点的相对位移上的元功。
δWIe -表示牵连惯性力 FI在e 质点的相对位移上的元功。
d(
1 2
mvr2
dt 2
m(g
a0 )
令
02
g
a0 l
则上式可写成自由振动微分方程的标准形式
d 2
dt 2
02
0
其解的形式为 Asin(0t ) 而振动周期为
2π 2π l
0
g a0
例2-2
已知:一直杆OA,长l=0.5m,可绕过端点O的 z轴在水 平面内作匀速转动,其转动角速度 2π rad/s
分析小球受力如图所示。
FIe ma0
因动参考系作平移,所以科氏惯性力
FIC
0y'
mar F P FIe
Ft
P FIe
将上式投影到轨迹的切向轴t上 得
d2s m
dt 2
(P
FIe ) sin
m(g
a0 ) sin
当摆作微振动时 角很小 有sin 且 s l
上式成为
ml
d 2
FIe mae
FIC 0
y'
小球相对静止,方程为
Fx 0,FN mg cos FIe sin 0 Fy 0, mg sin FIe cos 0
mg sin FIe cos mae cos
FN
FIe
mg a
ae g tan
x' O'
(2)当加速度 ae 2g 时tan
FIe 2mg tan
解: 以环形管为动参考系 FIe m2Rsin
经过微小角度d时 此惯性力作功为 δW1 FIeRd cos m2R2 sin cosd
相对运动的动能定理
0 0 mgR(1 cosmax )
max m 2 R 2 sin cosd
0
mgR(c os max
1)
1 2
m
2
R2
sin
思考:如果中心是高压,四周是 低压,是否会形成顺时针方向的 气旋?
例2-1
已知:如图所示单摆,摆长为l,小球质量为m。 其悬挂点O以加速度 a0向上运动。
求:此时单摆作微振动的周期。
a0
O
x'
y'
解: 在悬挂点O上固结一平移参考系 Oxy
a0
O
小球相对于此动参考系的运动
x'
相当于悬挂点固定的单摆振动
在杆OA上有一质量为m=0.1kg的套筒B。设开始运
动时,套筒在杆的中点处于相对静止,忽略摩擦。
求:套筒运动到端点A所需的时间及此时对杆的水平压力。
z'
y'
O
B
A x'
解: 研究套筒B相对于OA的运动 选取和杆OA一起转动的坐标系 Oxyz 为动参考系
FIe m2 x FIC 2m x
建立相对运动微分方程
2
max
0
因 sin 2 max 1 cos2 max
mgR(c os max
1)
1 2
m
2
R
2
(1
cos2
max
)
0
或 2Rcos2 max 2g cosmax 2g 2R 0
FIe mg
cos max
g ( 2 R g) 2R
其中
cos max
g ( 2 R g) 2R
是
r对 时间t
的二阶相对导数
几种特殊情况
(1)aC动参0考系FI相C 对 0于定 参考相系对作运平动移动力学基本方程为 mar F FIe
(2)动参考系相对于定参考系作匀速直线平移
aC 0
ae 0 FIe FIC 0
mar F
所有相对于惯性参考系作匀速直线平移的参考系 都是惯性参考系
ar 0
F FIe FIC 0
质点相对平衡方程
地球自转的影响
地球总是在自转,固结在地面上的参考系实质上是非惯性 系。由于地球自转角速度较小,每24小时转2π弧度,因此一 般工程上可以将其看为惯性系。但地球自转的影响是真实存 在的,在许多情况下不可忽略。在地面上物体的重量是地球 引力与离心惯性力的合力,称之为表观重力。地面上铅垂线 的方向也是表观重力的方向。自由落体甚至不沿表观重力方 向下落,这是由于有科氏惯性力的存在。在北半球,河流的 右岸受较大的冲刷,铁路的右轨易磨损也是由于科氏惯性力 的作用。
x 0,y 0,z gt v0
(e)
将上式代入式(b), 得一次近似的微分方程
x 2(gt v0 ) cos ,y 0 ,z g
在式(d)的初始条件下,上式积分一次 得一次近似的速度
x (gt2 2v0t) cos ,y 0,z gt v0
再积分一次,得一次近似的上抛质点运动方程
x 2 ysin 2 zcos
y 2 xsin
z g 2 xcos
(b)
注意此时 v0 0
其零次近似的速度式改为 x 0,y 0,z gt
以始落点为原点,一次近似的质点运动方程式为
x 1 gt3 cos ,y 0,z 1 gt 2