材料物理性能复习题
材料物理性能考试复习资料
1. 影响弹性模量的因素包括:原子结构、温度、相变。
2. 随有温度升高弹性模量不一定会下降。
如低碳钢温度一直升到铁素体转变为奥氏体相变点,弹性模量单调下降,但超过相变点,弹性校模量会突然上升,然后又呈单调下降趋势。
这是在由于在相变点因为相变的发生,膨胀系数急剧减小,使得弹性模量突然降低所致。
3. 不同材料的弹性模量差别很大,主要是因为材料具有不同的结合键和键能。
4. 弹性系数Ks 的大小实质上代表了对原子间弹性位移的抵抗力,即原子结合力。
对于一定的材料它是个常数。
弹性系数Ks 和弹性模量E 之间的关系:它们都代表原子之间的结合力。
因为建立的模型不同,没有定量关系。
(☆)5. 材料的断裂强度:a E th /γσ=材料断裂强度的粗略估计:10/E th =σ6. 杜隆-珀替定律局限性:不能说明低温下,热容随温度的降低而减小,在接近绝对零度时,热容按T 的三次方趋近与零的试验结果。
7. 德拜温度意义:① 原子热振动的特征在两个温度区域存在着本质差别,就是由德拜温度θD 来划分这两个温度区域:在低θD 的温度区间,电阻率与温度的5次方成正比。
在高于θD 的温度区间,电阻率与温度成正比。
② 德拜温度------晶体具有的固定特征值。
③ 德拜理论表明:当把热容视为(T/θD )的两数时,对所有的物质都具有相同的关系曲线。
德拜温度表征了热容对温度的依赖性。
本质上,徳拜温度反应物质内部原子间结合力的物理量。
8. 固体材料热膨胀机理:(1) 固体材料的热膨胀本质,归结为点阵结构中质点间平均距离随温度升高而增大。
(2) 晶体中各种热缺陷的形成造成局部点阵的畸变和膨胀。
随着温度升高,热缺陷浓度呈指数增加,这方面影响较重要。
9. 导热系数与导温系数的含义:材料最终稳定的温度梯度分布取决于热导率,热导率越高,温度梯度越小;而趋向于稳定的速度,则取决于热扩散率,热扩散率越高,趋向于稳定的速度越快。
即:热导率大,稳定后的温度梯度小,热扩散率大,更快的达到“稳定后的温度梯度”(☆)10. 热稳定性是指材料承受温度的急剧变化而不致破坏的能力,故又称为抗热震性。
材料物理性能期末复习题
期末复习题一、填空(20)1.一长30cm的圆杆,直径4mm,承受5000N的轴向拉力。
如直径拉成3.8 mm,且体积保持不变,在此拉力下名义应力值为,名义应变值为。
2.克劳修斯—莫索蒂方程建立了宏观量介电常数与微观量极化率之间的关系。
3.固体材料的热膨胀本质是点阵结构中质点间平均距离随温度升高而增大。
4.格波间相互作用力愈强,也就是声子间碰撞几率愈大,相应的平均自由程愈小,热导率也就愈介电常数一致,虚部表示了电介质中能量损耗的大小。
.当磁化强度M为负值时,固体表现为抗磁性。
8.电子磁矩由电子的轨道磁矩和自旋磁矩组成。
9.无机非金属材料中的载流子主要是电子和离子。
10.广义虎克定律适用于各向异性的非均匀材料。
•(1-m)2x。
11.设某一玻璃的光反射损失为m,如果连续透过x块平板玻璃,则透过部分应为 I12.对于中心穿透裂纹的大而薄的板,其几何形状因子。
13.设电介质中带电质点的电荷量q,在电场作用下极化后,正电荷与负电荷的位移矢量为l,则此偶极矩为 ql 。
14.裂纹扩展的动力是物体内储存的弹性应变能的降低大于等于由于开裂形成两个新表面所需的表面能。
15.Griffith微裂纹理论认为,断裂并不是两部分晶体同时沿整个界面拉断,而是裂纹扩展的结果。
16.考虑散热的影响,材料允许承受的最大温度差可用第二热应力因子表示。
17.当温度不太高时,固体材料中的热导形式主要是声子热导。
18.在应力分量的表示方法中,应力分量σ,τ的下标第一个字母表示方向,第二个字母表示应力作用的方向。
19.电滞回线的存在是判定晶体为铁电体的重要根据。
20.原子磁矩的来源是电子的轨道磁矩、自旋磁矩和原子核的磁矩。
而物质的磁性主要由电子的自旋磁矩引起。
21. 按照格里菲斯微裂纹理论,材料的断裂强度不是取决于裂纹的数量,而是决定于裂纹的大小,即是由最危险的裂纹尺寸或临界裂纹尺寸决定材料的断裂强度。
22.复合体中热膨胀滞后现象产生的原因是由于不同相间或晶粒的不同方向上膨胀系数差别很大,产生很大的内应力,使坯体产生微裂纹。
材料物理性能总复习
奈曼-柯普定律
化合物分子热容等于构成此化合物各元素原子热容之和。
杜隆珀替定律
恒压下元素的原子热容等于25J/(K.mol)。
经典热容理论:模型过于简单,不能解释低温下热容减小的现象
1
2
3
4
5
6
2、经典热容理论
• 爱因斯坦热容理论假设:每个原子皆为一个独立的振子,原子之间彼此无关。
高温部分符合较好,但低温部分的理论值比实验值下降得过快。
磁性是一切物质的基本属性,从微观粒子到宏观物体以至于宇宙间的天体都存在着磁的现象。 磁性是磁性材料的一种使用性能,磁性材料具有能量转换、存储或改变能量状态的功能。
材料的磁学性能
01
02
1、基本磁参量的概念与定义以及影响因素
磁矩
磁化强度
磁导率
方向与环形电流法线的方向一致,其大小为电流与封闭环形面积的乘积IΔS,与电流I和封闭环形面积ΔS成正比
6、半导体的载流子浓度、迁移率及其电阻率 本征半导体 本征载流子浓度与温度T和禁带宽度Eg 有关: 随温度增加,载流子浓度增加; 禁带宽度大时,载流子浓度小; μn 和μp 分别表示在单位场强下自由电子和空穴的平均漂移速度(cm/s),称为迁移率。 杂质半导体 多子导电
温 度 升 高
半导体载流子浓度、迁移率及其电阻率与温度的关系
n -- 单位体积内载流子数目 q -- 为每一载流子携带的电荷量
E -- 为外电场电场强度
μ为载流子的迁移率,其含义为单位电场下载流子的平均漂移速度。
J -- 为电流密度
2、导电性本质因素
决定材料导电性好坏的本质因素有两个:
载流子浓度
载流子迁移率
温度、压力等外界条件,以及键合、成分等材料因素都对载流子数目和载流子迁移率有影响。任何提高载流子浓度或载流子迁移率的因素,都能提高电导率,降低电阻率。
材料物理性能期末复习题
材料物理性能期末复习题材料物理性能马基申定则及表达式?固溶体电阻率看成由金属基本电阻率ρ(T)和残余电阻率ρ残组成。
不同散射机制对电阻率的贡献可以加法求和。
这一导电规律称为马基申定律,固溶体的电阻与组元的关系在形成固溶体时,与纯组元相比,合金的导电性能降低了原因:纯组元间原子半径差所引起的晶体点阵畸变,增加了电子的散射,且原子半径差越大,固溶体的电阻也越大。
这种合金化对电阻的影响还有如下几方面:一是杂质对理想晶体的局部破坏;二是合金化对能带结构起了作用,移动费米面并改变了电子能态的密度和有效导电电子数;三是合金化也影响弹性常数,因此点阵振动的声子谱要改变。
半导体测量的四探针法测量原理,设有一均匀的半导体试样,其尺寸与探针间距相比可视为无限大,探针引入点电流源的电流强度为I。
因均匀导体内恒定电场的等位面为球面,故在半径为r处等位面的面积为2πr2,则电流密度为j=I/2πr2。
电场强度E=j/σ=jρ=Iρ/2πr2,因此,距点电荷r处的电位为V=Iρ/2πr。
电阻分析的作用:电阻分析法来研究材料的成分、结构和组织变化的灵敏度很高,它能极敏感地反映出材料内部的微弱变化。
半导体特点:电阻率(ρ在10-3~109Ωm) 禁带宽度E g在0.2~3.5eV,其电学性能总是介于金属导体(ρ<10-5Ωm, E g=0)与绝缘体(ρ>109Ωm, E g>3.5eV)间。
半导体的分类?分为晶体半导体、非晶半导体及有机半导体。
晶体半导体:又分为元素(单质)半导体、化合物半导体、固溶体半导体;价电子共有化运动:在半导体晶体中,由于原子之间的距离很小,使得每一个原子中的价电子除受本身原子核及内层电子的作用外,还受到其他原子的作用。
在本身原子和相邻原子的共同作用下,价电子不再是属于各个原子,而成为晶体中原子所共有半导体中电子的能量状态-能带:在半导体晶体中,由于原子之间的距离很小,使得每一个原子中的价电子除受本身原子核及内层电子的作用外,还受到其他原子的作用。
大学《材料物理性能》复习核心知识点、习题库及期末考试试题答案解析
大学《材料物理性能》复习核心知识点、习题库及期末考试试题答案解析目录《材料物理性能》习题库(填空、判断、选择、简答计算题) (1)《材料物理性能》复习核心知识点 (15)清华大学《材料物理性能》期末考试试题及答案解析 (25)上海交通大学《材料物理性能》期末考试试题 (31)《材料物理性能》习题库(填空、判断、选择、简答计算题)一、填空1.相对无序的固溶体合金,有序化后,固溶体合金的电阻率将。
2.马基申定则指出,金属材料的电阻来源于两个部分,其中一个部分对应于声子散射与电子散射,此部分是与温度的金属基本电阻,另一部分来源于与化学缺陷和物理缺陷而与温度的残余电阻。
3.某材料的能带结构是允带内的能级未被填满,则该材料属于。
4.离子晶体的导电性主要是离子电导,离子电导可分为两大类,其中第一类源于离子点阵中基本离子的运动,称为或,第二类是结合力比较弱的离子运动造成的,这些离子主要是,因而称为。
在低温下,离子晶体的电导主要由决定。
5.绝缘体又叫电介质,按其内部正负电荷的分布状况又可分为,,与。
6.半导体的导电性随温度变化的规律与金属,。
在讨论时要考虑两种散射机制,即与。
7.超导体的三个基本特性包括、与。
金属的电阻8.在弹性范围内,单向拉应力会使金属的电阻率;单向压应力会使率。
9.某合金是等轴晶粒组成的两相机械混合物,并且两相的电导率相近。
其中一相电导率为σ1,所占体积分数为φ,另一相电导率为σ2,则该合金的电导率σ = 。
10.用双臂电桥法测定金属电阻率时,测量精度不仅与电阻的测量有关,还与试样的的测量精度有关,因而必须考虑的影响所造成的误差。
11.适合测量绝缘体电阻的方法是。
12.适合测量半导体电阻的方法是。
13.原子磁矩包括、与三个部分。
14.材料的顺磁性来源于。
15.抗磁体和顺磁体都属于弱磁体,可以使用测量磁化率。
16.随着温度的增加,铁磁体的饱和磁化强度。
17.弹性的铁磁性反常是由于铁磁体中的存在引起所造成的。
材料物理性能考试重点、复习题
材料物理性能考试重点、复习题1.格波:在晶格中存在着角频率为ω的平面波,是晶格中的所有原子以相同频率振动而形成的波,或某一个原子在平衡附近的振动以波的形式在晶体中传播形成的波2.色散关系:频率和波矢的关系3.声子:晶格振动中的独立简谐振子的能量量子4.热容:是分子或原子热运动的能量随温度而变化的物理量,其定义是物体温度升高1K所需要增加的能量。
5.两个关于晶体热容的经验定律:一是元素的热容定律----杜隆-珀替定律:恒压下元素的原子热容为25J/(K*mol);另一个是化合物的热容定律-----奈曼-柯普定律:化合物分子热容等于构成此化合物各元素原子热容之和。
6.热膨胀:物体的体积或长度随温度的升高而增大的现象称为热膨胀7.固体材料热膨胀机理:材料的热膨胀是由于原子间距增大的结果,而原子间距是指晶格结点上原子振动的平衡位置间的距离。
材料温度一定时,原子虽然振动,但它平衡位置保持不变,材料就不会因温度升高而发生膨胀;而温度升高时,会导致原子间距增大。
8.温度对热导率的影响:在温度不太高时,材料中主要以声子热导为主,决定热导率的因素有材料的热容C、声子的平均速度V和声子的平均自由程L,其中v 通常可以看作常数,只有在温度较高时,介质的弹性模量下降导致V减小。
材料声子热容C在低温下与温度T3成正比。
声子平均自由程V随温度的变化类似于气体分子运动中的情况,随温度升高而降低。
实验表明在低温下L值的变化不大,其上限为晶粒的线度,下限为晶格间距。
在极低温度时,声子平均自由程接近或达到其上限值—晶粒的直径;声子的热容C则与T3成正比;在此范围内光子热导可以忽略不计,因此晶体的热导率与温度的三次方成正比例关系。
在较低温度时,声子的平均自由程L随温度升高而减小,声子的热容C 仍与T3成正比,光子热导仍然极小,可以忽略不计,此时与L相比C对声子热导率的影响更大,因此在此范围内热导率仍然随温度升高而增大,但变化率减小。
材料物理性能复习
无机材料物理性能复习考试题(含答案)一、名词解释(选做5个,每个5分,共15分)1. KIC:平面应变断裂韧度,表示材料在平面应变条件下抵抗裂纹失稳扩展的能力。
2.偶极子(电偶极子):正负电荷的平均中心不相重合的带电系统。
3.电偶极矩:偶极子的电荷量与位移矢量的乘积,。
(P288)4.格波:原子热振动的一种描述。
从整体上看,处于格点上的原子的热振动可描述成类似于机械波传播的结果,这种波称为格波。
格波的一个特点是,其传播介质并非连续介质,而是由原子、离子等形成的晶格,即晶格的振动模。
晶格具有周期性,因而,晶格的振动模具有波的形式。
格波和一般连续介质波有共同的波的特性,但也有它不同的特点。
5.光频支:格波中频率很高的振动波,质点间的相位差很大,邻近的质点运动几乎相反时,频率往往在红外光区,称为“光频支振动”。
(P109)6.声频支:如果振动着的质点中包含频率很低的格波,质点之间的相位差不大,则格波类似于弹性体中的应变波,称为“.声频支振动”。
(P109)7.色散:材料的折射率随入射光频率的减小(或波长的增加)而减小的性质,称为折射率的色散。
8.光的散射:物质中存在的不均匀团块使进入物质的光偏离入射方向而向四面八方散开,这种现象称为光的散射,向四面八方散开的光,就是散射光。
与光的吸收一样,光的散射也会使通过物质的光的强度减弱。
9.双折射:光进入非均匀介质时,一般要分为振动方向相互垂直、传播速度不等的两个波,它们分别构成两条折射光线,这个现象就称为双折射。
(P172)10.本征半导体(intrinsic semiconductor):完全不含杂质且无晶格缺陷的、导电能力主要由材料的本征激发决定的纯净半导体称为本征半导体。
11.P/N型半导体:在半导体中掺入施主杂质,就得到N型半导体;在半导体中掺入受主杂质,就得到P型半导体。
12.超导体:超导材料(superconductor),又称为超导体,指可以在特定温度以下,呈现电阻为零的导体。
材料物理性能 考试题.doc
材料物理性能试题2014.5.一、阐述下列概念(每题6分,共30分)(1)电介质的极化在外电场作用下,电介质的表面上出现束缚电荷的现象叫做电介质极化。
(2)声子声子就是''晶格振动的简正模能量量子。
"英文是phonon(3)软磁材料和硬磁材料硬磁材料是指磁化后不易退磁而能长期保留磁性的一种铁氧体材料,也称为永磁材料或恒磁材料。
软磁材料是具有低矫顽力和高磁导率的磁性材料。
(4)晶体的特征(1)晶体拥有整齐规则的几何外形,即晶体的自范性。
(2)晶体拥有固定的熔点,在熔化过程中,温度始终保持不变。
(3)晶体有各向异性的特点。
(4)晶体可以使X光发生有规律的衍射。
宏观上能否产生X光衍射现象,是实验上判定某物质是不是晶体的主要方法。
[1](5)晶体相对应的晶面角相等,称为晶面角守恒。
[2](5)画出体心立方晶体结构,原胞,并写出基矢体心立方结构(右)M W ■其体积为;配位原胞(右)晶胞基矢a \ R I并且&£■』;芭■我,其惯用原胞基矢由从一顶点指向另外三个体心点的矢量构成,二、解答题(共70分)1.影响无机非金属材料(晶体)导热率的因素有哪些?(10分)%1晶体中热量传递速度很迟缓,因为晶格热振动并非线性的,格波间有着一定的耦合作用,?^子间会产生碰撞,使声子的平均自由程减小。
格波间相互作用愈强,也即声子间碰撞几率愈大,相应的平均自由程愈小,热导率也就愈低。
因此,声子间碰撞引起的散射是晶体中热阻的主要来源。
%1晶体中的各种缺陷、杂质以及晶界都会引起格波的散射,等效于声子平均自由程的减小,从而降低X.O %1平均自由程还与声子的振动频率V有关。
振动V不同,波长不同。
波长长的格波易绕过缺陷,使自由程加大,散射小,因此热导率入大。
%1平均自由程1还与温度T有关。
温度升高,振动能量加大,振动频率v加快,声子间的碰撞增多,故平均自由1减小。
但其减小有一定的限度,在高温下,最小的平均自由程等于几个晶格间距;反之,在低温时,最长的平均自由程长达晶粒的尺度。
材料物理性能复习题
材料物理性能复习题1.材料科学核⼼四要素:组成、结构、⼯艺、性能⽐较导体﹑半导体﹑绝缘体的能带的特征?与其电阻率范围。
(1)⾦属导体的能带分布:⼀是价带和导带重叠,⽽⽆禁带;⼆是价带未被价电⼦填满,所以这种价带本⾝就是导带。
这两种情况下的价电⼦就是⾃由电⼦,所以⾦属导体即使在温度较低的情况下仍有⼤量的⾃由电⼦,具有很强的导电能⼒。
(2)⾮导体(包括半导体和绝缘体)在绝对零度时,其能带情况是满价带和空导带且有禁带,故基本⽆导电能⼒。
(3)半导体和绝缘体的能带图的区别仅是禁带宽度的⼤⼩。
(绝缘体:3ev~6ev, 半导体: 0.1 ev~2ev) 电阻率范围:导体:半导体:ρ值为10-3~109 绝缘体: 2.马基申定则:固溶体电阻率看成由⾦属基本电阻率ρ(T)和残余电阻率ρ残组成。
不同散射机制对电阻率的贡献可以加法求和。
这⼀导电规律称为马基申定律即: 3.材料产⽣电阻的本质:当电⼦波在绝对零度下通过⼀个理想的晶体点阵时,它将不会受到散射⽽⽆阻碍地传播,这时ρ=0,⽽σ为⽆穷⼤,即此时的材料是⼀个理想的导体。
只有在晶体点阵的完整性以及由于晶体点阵离⼦的热振动,晶体中的异类原⼦、位错和点缺陷等使晶体点阵的周期性遭到破坏的地⽅,电⼦波才会受到散射,从⽽产⽣了阻碍作⽤,降低了导电性,这就是材料产⽣电阻的本质所在。
4.化学缺陷:偶然存在的杂质原⼦及⼈⼯加⼊的合⾦元素的原⼦;物理缺陷:指空位、间隙原⼦、位错以及它们的复合体。
5.三种散射机制?声⼦散射、电⼦散射、电⼦在杂质和缺陷上的散射6.影响⾦属导电性的因素?(⼀般规律,并通过散射机制进⾏解释)温度:(1)绝对零度下,纯净⼜⽆缺陷的⾦属,其电阻率等于零。
(2)随温度的升⾼⾦属的电阻率也增加。
低温下“电⼦-电⼦”散射对电阻的贡献可能是显著的,但除低温以外⼏乎所有温度下⼤多数⾦属的电阻都取决于“电⼦-声⼦”散射。
受⼒情况:1)拉⼒的影响:在弹性范围内单向拉伸或扭转应⼒能提⾼⾦属的ρ 2)压⼒的影响:对⼤多数⾦属⽽⾔,在受压⼒情况下电阻率降低⾦属在压⼒的作⽤下,其原⼦间距缩⼩,内部缺陷的形态、电⼦结构、费⽶⾯和能带结构以及电⼦散射机制等都将发⽣变化,这必然会影响⾦属的导电性能。
无机材料物理性能期末复习题(DOC)
期末复习题参考答案一、填空1.一长30cm的圆杆,直径4mm,承受5000N的轴向拉力。
如直径拉成3.8 mm,且体积保持不变,在此拉力下名义应力值为,名义应变值为。
2.克劳修斯—莫索蒂方程建立了宏观量介电常数与微观量极化率之间的关系。
3.固体材料的热膨胀本质是点阵结构中质点间平均距离随温度升高而增大。
4.格波间相互作用力愈强,也就是声子间碰撞几率愈大,相应的平均自由程愈小,热导率也就愈低。
5.电介质材料中的压电性、铁电性与热释电性是由于相应压电体、铁电体和热释电体都是不具有对称中心的晶体。
6.复介电常数由实部和虚部这两部分组成,实部与通常应用的介电常数一致,虚部表示了电介质中能量损耗的大小。
7.无机非金属材料中的载流子主要是电子和离子。
8.广义虎克定律适用于各向异性的非均匀材料。
•(1-m)2x。
9.设某一玻璃的光反射损失为m,如果连续透过x块平板玻璃,则透过部分应为 I10.对于中心穿透裂纹的大而薄的板,其几何形状因子Y= 。
11.设电介质中带电质点的电荷量q,在电场作用下极化后,正电荷与负电荷的位移矢量为l,则此偶极矩为 ql 。
12.裂纹扩展的动力是物体内储存的弹性应变能的降低大于等于由于开裂形成两个新表面所需的表面能。
13.Griffith微裂纹理论认为,断裂并不是两部分晶体同时沿整个界面拉断,而是裂纹扩展的结果。
14.考虑散热的影响,材料允许承受的最大温度差可用第二热应力因子表示。
15.当温度不太高时,固体材料中的热导形式主要是声子热导。
16.在应力分量的表示方法中,应力分量σ,τ的下标第一个字母表示方向,第二个字母表示应力作用的方向。
17.电滞回线的存在是判定晶体为铁电体的重要根据。
18.原子磁矩的来源是电子的轨道磁矩、自旋磁矩和原子核的磁矩。
而物质的磁性主要由电子的自旋磁矩引起。
19. 按照格里菲斯微裂纹理论,材料的断裂强度不是取决于裂纹的数量,而是决定于裂纹的大小,即是由最危险的裂纹尺寸或临界裂纹尺寸决定材料的断裂强度。
材料物理性能复习题
材料物理性能复习题⼀、名词解释光⽮量:即是光波的电场强度⽮量。
双折射:当光束通过各向异性介质表⾯时,折射光会分成两束沿着不同的⽅向传播,这种由⼀束⼊射光折射后分成两束光的现象。
光轴:通过改变⼊射光的⽅向,可以发现,在晶体中存在⼀些特殊的⽅向,沿着这些⽅向传播的光不会发⽣双折射,这些特殊的⽅向称为晶体的光轴。
热膨胀:物质在加热或冷却时的热胀冷缩现象称为热膨胀。
朗伯特定律:l e I I α-=0,在介质中光强随传播距离呈指数形式衰减的规律即称为朗伯特定律。
热稳定性:指材料承受⾼温的急剧变化⽽不致破坏的能⼒,也称为抗热震性。
滞弹性:指材料在交变载荷的情况下表现为应变对应⼒的滞后特性即称为滞弹性。
应⼒感⽣有序:溶解在固溶体中孤⽴的间隙原⼦,置换原⼦,在外加应⼒时,这些原⼦所处的位置的能量即出现差异,因⽽原⼦要发⽣重新分布,即产⽣有序排列,这种由于应⼒引起的原⼦偏离⽆序状态分布叫应⼒感⽣有序。
穆斯堡⽿效应:固体中的⽆反冲核共振吸收即为穆斯堡尔效应。
⾼分⼦的分⼦结构:指除具有低分⼦化合物所具有的,如同分异构、⼏何异构、旋光异构等结构特征之外,还有⾼分⼦量,通常由103~105个结构单元组成的众多结构特点。
⾼分⼦的聚集态结构:是指⼤分⼦堆砌、排列的形式和结构。
均⽅末端距:是描述⾼分⼦链的形状和⼤⼩时采⽤末端距的2次⽅的平均值,⽤r 2表⽰,称为均⽅末端距。
⼆、填空题1、下图为聚合物的蠕变和回复曲线,可见⼀个聚合物材料的总形变是三种形变之和,其中ε1为普弹形变、ε2为⾼弹形变、ε3为粘性流动。
2、从微观上分析,光⼦与固体材料相互作⽤的两种重要结果是:电⼦极化和电⼦能态转变3、在光的⾮弹性散射光谱中,出现在瑞利线低频侧的散射线统称为斯托克斯线,⽽在瑞利线⾼频侧的散射线统称为反斯托克斯线。
4、掺杂在各种基质中的三价稀⼟离⼦,它们产⽣光学跃迁的是4f 电⼦。
5、红宝⽯是历史上⾸先获得的激光材料,它的发光中⼼是C r 3+ 离⼦。
材料物理性能考试复习资料
1. 影响弹性模量的因素包括:原子结构、温度、相变。
2. 随有温度升高弹性模量不一定会下降。
如低碳钢温度一直升到铁素体转变为奥氏体相变点,弹性模量单调下降,但超过相变点,弹性校模量会突然上升,然后又呈单调下降趋势。
这是在由于在相变点因为相变的发生,膨胀系数急剧减小,使得弹性模量突然降低所致。
3. 不同材料的弹性模量差别很大,主要是因为材料具有不同的结合键和键能。
4. 弹性系数Ks 的大小实质上代表了对原子间弹性位移的抵抗力,即原子结合力。
对于一定的材料它是个常数。
弹性系数Ks 和弹性模量E 之间的关系:它们都代表原子之间的结合力。
因为建立的模型不同,没有定量关系。
(☆)5. 材料的断裂强度:a E th /γσ=材料断裂强度的粗略估计:10/E th =σ6. 杜隆-珀替定律局限性:不能说明低温下,热容随温度的降低而减小,在接近绝对零度时,热容按T 的三次方趋近与零的试验结果。
7. 德拜温度意义:① 原子热振动的特征在两个温度区域存在着本质差别,就是由德拜温度θD 来划分这两个温度区域:在低θD 的温度区间,电阻率与温度的5次方成正比。
在高于θD 的温度区间,电阻率与温度成正比。
② 德拜温度------晶体具有的固定特征值。
③ 德拜理论表明:当把热容视为(T/θD )的两数时,对所有的物质都具有相同的关系曲线。
德拜温度表征了热容对温度的依赖性。
本质上,徳拜温度反应物质内部原子间结合力的物理量。
8. 固体材料热膨胀机理:(1) 固体材料的热膨胀本质,归结为点阵结构中质点间平均距离随温度升高而增大。
(2) 晶体中各种热缺陷的形成造成局部点阵的畸变和膨胀。
随着温度升高,热缺陷浓度呈指数增加,这方面影响较重要。
9. 导热系数与导温系数的含义:材料最终稳定的温度梯度分布取决于热导率,热导率越高,温度梯度越小;而趋向于稳定的速度,则取决于热扩散率,热扩散率越高,趋向于稳定的速度越快。
即:热导率大,稳定后的温度梯度小,热扩散率大,更快的达到“稳定后的温度梯度”(☆)10. 热稳定性是指材料承受温度的急剧变化而不致破坏的能力,故又称为抗热震性。
材料物理性能习题
一、名词解释:
牛顿流体比热容粘性系数静态疲劳动态疲劳声子格波介电强度
电导率载流子迁移率色散离子电导和电子电导本征电导和杂质电导光电效应介质损耗
二、简答题(每题6分,共30分):
1、以杜隆-珀替定律为例,简要回答热容模型的推导步骤。
2、直接交换作用是如何解释自发磁化现象
3、什么是霍耳效应,简要回答其在电学性能中的应用。
4、如何理解反射系数和折射率的关系?
5、以BaTiO
晶体为例,简要说明热运动引起的自发极化。
3
6. 什么是滑移系统?举例说明
7. 影响粘度的因素有哪些?
8. 假定硬度特征和塑性及键强度有关,你预期SiC的六边形立体比立方变体硬还是软?为什么?
9. 试用弹簧加粘壶的模型解释高分子的松弛时间(画出模型图、写出表达式)
1. 简述固体材料热膨胀的物理本质
2. 简述导热系数与导温系数的物理含义
3. 试分析材料导热机理。
金属、陶瓷和透明材料的导热机制有何区别?
4. 试述频率、温度、湿度等因素对介质损耗的影响
5. 影响材料击穿强度的因素有哪些?
1.介质结构不均匀;
2.材料中有气泡;
3.材料表面状态及边缘电场;
4.固体表面击穿电压常低于没有固体介质时的空气击穿电压。
6. 为什么金属的电阻温度系数为正的?
7. 讨论动态磁化过程中,磁损耗与频率的关系。
(完整word版)材料物理性能复习题库
材料物理性能习题与解答材料的热学性能2-1 计算室温(298K )及高温(1273K)时莫来石瓷的摩尔热容值,并请和按杜龙-伯蒂规律计算的结果比较。
(1) 当T=298K ,Cp=a+bT+cT —2=87。
55+14.96*10-3*298—26.68*105/2982=87.55+4.46-30。
04=61.97 *4。
18J/mol.K(2) 当T=1273K,Cp=a+bT+cT -2=87。
55+14.96*10-3*1293—26.68*105/12732=87.55+19。
34-1。
65=105.24*4。
18J/mol 。
K=438.9 J/mol 。
K据杜隆—珀替定律:(3Al 2O 3.2SiO 4)Cp=21*24。
94=523。
74 J/mol.K2—2 康宁1723玻璃(硅酸铝玻璃)具有下列性能参数:λ=0.021J/(cm.s.℃); α=4。
6*10-6/℃;σp=7.0Kg/mm 2.E=6700Kg/mm 2,μ=0.25。
求第一及第二热冲击断裂抵抗因子。
第一冲击断裂抵抗因子:E R f αμσ)1(-= =66610*8.9*6700*10*6.475.0*10*8.9*7-=170℃ 第二冲击断裂抵抗因子:E R f αμλσ)1(-='=170*0.021=3.57 J/(cm 。
s)2-6 NaCl 和KCl 具有相同的晶体结构,它们在低温下的Debye 温度θD 分别为310K 和230K ,KCl 在5K 的定容摩尔热容为3。
8*10-2J/(K 。
mol ),试计算NaCl 在5K 和KCl 在2K 的定容摩尔热容。
2-7 证明固体材料的热膨胀系数不因为含均匀分散的气孔而改变.3 材料的光学性能3—1.一入射光以较小的入射角i 和折射角r 通过一透明明玻璃板,若玻璃对光的衰减可忽略不计,试证明明透过后的光强为(1-m)2解:ri n sin sin 21=W = W’ + W'’ m WW W W m n n W W -=-=∴=⎪⎪⎭⎫ ⎝⎛+-=1'1"11'22121其折射光又从玻璃与空气的另一界面射入空气则()21'"1"'"m W W m W W -=∴-= 3-2 光通过一块厚度为1mm 的透明Al 2O 3板后强度降低了15%,试计算其吸收和散射系数的总和。
材料物理性能复习题
名词解释:1. 应力:材料单位面积上所受的附加内力,其值等于单位面积上所受的外力。
б=F/A P62. 应变:用来表征材料受力是内部个质点之间的相对位移。
P73. 塑性形变:是指在超过材料的屈服应力作用下产生形变,外应力移去后不能恢复的形变。
P164.滞弹性:在弹性范围内,应变落后于应力的行为称为滞弹性(弹性模量依赖时间的现象。
) P225,.蠕变:是在恒定的应力σ作用下材料的应变随时间而逐渐增大的现象。
P266.热容:材料温度每升高1K时所需要的热量称为材料的热容 P647.弛豫:原子核从激发的状态回复到平衡排列状态的过程叫弛豫过程。
P258.延展性:材料经受塑性形变而不破坏的能力叫延展性 P169.双折射:当光束通过各异性介质表面时,折射光会分成两束沿着不同方向传播,这种由一束入射光折射后分成两束光的现象称为双折射。
P10710.色散:材料的折射率随入射光的波长而变化的现象称为光的色散 P10911.全反射:指光由光密介质射到光疏介质的界面时,全部被反射回原介质内的现象。
12.散射:光通过气体、液体、固体等介质时,遇到烟尘、为零或结构成分不均匀的微小区域,都有一部分能量偏离原来的传播方向而向四面八方弥散开来的现象13. 折射:光从一种透明介质射入另一种透明介质时,传播方向一般会发生变化,这种现象叫光的折射填空题:1. .固体材料热容的两个经验规律答:①杜隆—珀替定律——元素的热容定律:恒压下元素的原子热容等于25J/(K·mol)②柯普定律——化合物热容定律:化合物分子热容等于构成此化合物各元素原子热容之和。
2. 抗热震性(热稳定性)的两种类型:抗热震断裂性和抗热震损伤性3. 塑性形变的两种形式:滑移和孪晶 P174. 晶体的滑动总是发生在主要晶面和主要晶相上 P175.位错也是一种缺陷实际晶体的滑移是位错运动的结构 P196.位错在垂直滑移面上的运动称为位错的攀移运动 P287.蠕变的三种理论:位错蠕变理论、扩散蠕变理论、晶界蠕变理论 P288. 无机材料弹性模量的因素:1.原子结构的影响2温度的影响3.相变的影响。
东南大学材料物理性能复习题(带答案)
材料物理性能复习题第一章1、C v 、C p 和c 的定义Cv :加热过程中体积不变,供给热量只需满足升高1K 时物体内能增加,不必再以做功形式传输出去,这种条件下的热容为定容热容。
Cv=△U/△TCp :加热过程中压力不变,体积自由膨胀,升高1K 供给物体的热量,除了满足内能增加,还要补充对外做功的损耗,这种条件下的热容称为定压热容。
Cp=(△H/△T )p ,H=U+pVc :1kg 物质在没有相变和化学反应的条件下升高1K 所需的热量称为比热容。
C pm 和C vm 的关系,实际测量得到的是何种量?C pm =c p M ,C Vm =c V M ,C pm -C Vm = αV 2V m T K ,αV 为体膨胀系数,Vm 为摩尔体积,K 为三向静力压缩系数。
实际测量得到C pm 再算出C Vm 。
Cvm 与温度(包括ΘD )的关系高温区C Vm 变化平缓;低温区C Vm ∝T ³;接近0K 时C Vm ∝T ;0K 时C Vm =0。
德拜温度θD 越高,C Vm 越小。
T>>θD 即高温时,C Vm =3R ,R 为摩尔气体常数,R=8.315J/(mol ·K)。
T<<θD 即低温时,CVm ∝T ³。
自由电子对金属热容的贡献常温时自由电子热容微不足道。
极高温下电子像金属晶体离子那样显著参加到热运动中,因此在III 温区热容继续上升而不趋于一渐近线;极低温下,电子热容不像离子热容那样急剧减小,因而起主导作用。
合金热容的计算合金热容是每个组成元素热容与其质量分数的乘积之和,即C=∑X i C i n i=1。
2、哪些相变属于一级相变和二级相变?其热容等的变化有何特点?一级相变:相变时有相变潜热(焓)和体积突变,并使热容为无限大。
如液-固相变,同素异构转变,珠光体转变等。
二级相变:焓随温度的升高而逐渐增大,在靠近转变点时焓明显增大,使热容达到最大值。
材料物理性能复习资料
1、固体无机材料的物理性能主要包括力(可用机械性能代替)、热、光、电、磁、辐照(或写成辐射)、介电、声等方面的性能。
2、超导体的三个性能指标分别是指:临界转变温度、临界磁场强度、临界电流密度3、导热的微观机制有:电子热导和声子热导(也可写作电子导热和声子导热)4、光子通过固体会发生反射、折射、透过、吸收现象;5、原子本征磁矩包括电子的轨道磁矩和电子的自旋磁矩 ;6、顺磁性产生的基本条件:一、具有奇数个电子的原子或点陈缺陷,二、内壳层未被填满的原子或离子,这样使原子的固有磁矩不为零;7、钛酸钡(BaTiO 3)具有哪些介电性:压电性、热释电性、铁电性;8、热应力的来源:因热胀冷缩而产生的热应力、因温度梯度而产生热应力和多相复合材料因各相膨胀系数不同而产生的热应力;9、光磁记录时可以采用 居里温度 和 补偿温度 两种不同温度下的写入方式10核外电子的能量由主量子数n 、角量子数l 、磁量子数m 、自旋量子数ms 这四种量子数来确定11理想金属的电阻来源为电子散射、声子散射12电介质的主要性能指标有介电常数ε、介电损耗因子ε''、介电强度、品质因子()1tan -δ、介电电导率10、热膨胀来自于原子的非简谐振动;13、可以通过居里温度点进行磁场热处理(或“冷加工”)获得磁织构;14、电介质的击穿有电击穿、热击穿、化学击穿三种模式15、电阻产生的本质是 晶体点阵的完整性遭到破坏的地方,电子波受到散射16、压电体具有的最典型晶体结构特征是 无中心对称结构 ;17、电容器的电流由 理想电容器所造成的电流;电容器真实电介质极化建立的电流;电容器真实电介质漏电流 三部分构成 18、彩色光的三个基本参量是 亮度、 色调 、色饱和度 ;19、技术磁化可以通过磁畴的旋转和磁畴壁的迁移两种形式进行;20、减少退磁能是产生分畴的基本动力,但却增加了畴壁能;21、赛贝克效应和珀尔贴效应热电效应互为可逆热电效应;22、固体热容包括晶格热容、电子热容两部分;23、德拜温度是反映 原子间结合力 的重要物理量;24、固体中的导热主要是由晶格振动的格波(声子)和自由电子的运动来实现25、在计算半导体中的载流子数量时需要用到 费米-狄拉克 统计26、自由电子至少是二重简并态27、众所周知,纯银的导电性比纯铝好,纯铝中溶入5%的纯银后形成的合金,一般来说其导电性将 降低 ,导热性将 降低28、离子型导体在高温区导电的特征是 本征 导电,低温区是 杂质导电29、电介质极化的类型主要有: 位移极化 、空间电荷极化 、驰豫极化 、取向极化30、原子磁矩包括电子轨道磁矩、电子自旋磁矩、原子核磁矩31、磁畴的起因是 减小退磁能32、常见的三种热电效应是 赛贝克 、帕尔贴、汤姆逊33、只有在发生非弹性应变(表达出与此意思相同的亦可得分,如“应力与应变相差一个相位”,回答滞弹性或粘弹性只能算半对时才能产生内耗;34、固体对所有作用力的反应的实质来自于 原子间相互作用的势能35、固体物质中有电子、空穴、正离子、负离子四种载流子能够形成导电36、电阻产生的波长为500 nm 的单色光相当于波数为 20000 的单色光37、马氏体不锈钢 是 铁磁性材料,奥氏体不锈钢 不是 铁磁性材料;38、激光器是光波谐振器,由光波放大器(或激光工作物质)、谐振腔、 泵浦系统三部分构成,激活离子的作用是 提供亚稳态能级; 39、波长与波数的换算关系式是 n 710=λ, λ:波长(nm), n: 波数(1-cm )(需指明符号的含义);40、家用电脑光盘上的数据一般可以通过克尔 效应读出;41、固体对所有作用力的反应的实质来自于 原子间相互作用的势能42、固体电阻产生的基本机制是电子散射和声子散射。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
μυσρ22/1e n m **==材料物理性能复习题
一. 概念题
压电体:某些电介质施加机械力而引起它们内部正负电荷中心相对位移,产生极化,从而导致介质两端表面内出现符
号相反的束缚电荷。
在一定应力范围内,机械力与电荷呈线性可逆关系这类物质
导体:在外电场的作用下,大量共有化电子很易获得能量,集体定向流动形成电流的物体
半导体:能带结构的满带与空带之间也是禁带,但是禁带很窄,导电性能介于导体和半导体之间的物体 绝缘体:在外电场的作用下,共有化电子很难接受外电场的能量,难以导通电流的物体
热电效应:当材料存在电位差时会产生电流,存在温度差时会产生热流的这种现象
电光效应:铁电体的极化能随E 而改变,因而晶体的折射率也将随E 改变,这种由外电场引起晶体折射率的变化 一般吸收:在光学材料中,石英对所有可见光几乎都透明的,在紫外波段也有很好的透光性能,且吸收系数不变的这
种现象
选择吸收:
对于波长范围为3.5—5.0μm 的红外光却是不透明的,且吸收系数随波长剧烈变化的这种现象 发光效率:发光体把受激发时吸收的能量转换为光能的能力 受激辐射:当一个能量满足hv =E 2-E 1的光子趋近高能级E 2的原子时,入射的光子诱导高能级原子发射一个和自己性
质完全相同的光子的过程
二、 简答题
(1) 电介质导电的概念、详细类别、来源。
概念:并不是所有的电介质都是理想的绝缘体,在外电场作用下,介质中都会有一个很小的电流
类别:一类是源于晶体点阵中基本离子的运动,称为离子固有电导或本征电导,这种电导是热缺陷形成的,即是由离子自身随着热运动的加剧而离开晶格点阵形成。
另一类是源于结合力较弱的杂质离子的运动造成的,称为杂质电导 来源(导电方式):电子与空穴(电子电导);移动额正负离子电导(离子电导)。
对于离子电导,必须需要指出的是:在较低场强下,存在离子电导;在高场强下,呈现电子电导。
(2) 正常情况下,为什么金属的电导率随着温度的升高而降低(电阻升高)。
金属材料随温度升高,离子热振动的振幅增大,电子就愈易受到散射,可认为μ与温度成正比,则ρ也与温度成正比。
(3) 为什么金属化合物的导电性要低于单一金属,请基于电离势能方面的差异进行简要说明。
(1)晶体点阵畸变;(2)杂质对理想晶体的破坏;(3)影响了能带结构,移动费米面及电子能态密度和有效电导电子数;(4)影响了弹性常数。
过渡金属与贵金属两组元固溶时:电阻异常高,原因它们的价电子可以转移到过渡金属的尚未被填满的d-或f-壳层中,从而使有效电导的电子数目减少。
原子键合的方式发生了变化,其中至少一部分由金属键变为共价键获离子键,使导电电子减少。
(4) 简述本证硅的导电机理。
导电机理:在热、光等外界条件的影响下,满带上的价电子获得足够的能量,跃过禁带跃迁至空带而成为自由电子,同时在满带中留下电子空穴,自由电子和电子空穴在外加电场的作用下定向移动形成电流。
(5) 简述硅中掺杂硼的导电机理(要有示意图)
在本征半导体中,掺入3价元素的杂质(硼,铝,镓,铟),就可以使晶体中空穴浓度大
大增加。
因为3价元素的原子只有3个价电子,当它顶替晶格中的一个4价元素原子,
并与周围的4个硅(或锗)原子组成4个共价键时,缺少一个价电子,形成一个空位。
因为,3价元素形成的空位能级非常靠近价带顶的能量,在价电子共有化运动中,相邻的
原子上的价电子就很容易来填补这个空位(较跃迁至禁带以上的空带容易的多),从而产
生一个空穴。
所以每一个三价杂质元素的原子都能接受一个价电子,而在价带中产生一
个空穴。
(6) 简述硅中掺杂砷的导电机理(要有示意图)
本征半导体中掺入5价元素(磷,砷,锑)就可使晶体中的自由电子的浓度极大地增
加。
因为5价元素的原子有5个价电子,当它顶替晶格中的一个4价元素的原子时,
余下了1个价电子变成多余的,此电子的能级非常靠近导带底,非常容易进入导带成
为自由电子,因而导带中的自由电子较本征半导体显著增多,导电性能大幅度提高。
(7) 简述介质损耗的几种形式及造成这几种损耗的原因。
介质损耗形式:
1)电导(或漏导)损耗实际使用的电介质都不是理想的绝缘体,都或多或少地存在一些弱联系带电离子或空穴,在E 作用下产生漏导电流,发热,产生损耗。
低场强下,存在离子电导(本征电导和杂质电导);高场强下,电子电导。
2)极化损耗一方面:极化过程中离子要在E作用下克服热运动消耗能量,引起损耗。
另一方面:松弛极化建立时间较长,极化跟不上外E的变化(特别是交流频率较高时),所造成的电矩往往滞后于E,即E达最大时,极化引起的极化电荷未达最大,当E开始减小时,极化仍继续增至最大值后才开始减小,当E为0时,极化尚未完全消除,当外E反向时,极板上遗留的部分电荷中和了电源对极板充电的部分电荷,并以热的形式散发,产生损耗。
3)电离损耗又称游离损耗,是气体引起的,含气孔的固体电介质,外E大于气体电离所需的E时,气体发生电离吸收能量,造成损耗。
(8)剩余极化的形成过程。
铁电畴在外电场作用下,总是要趋于与外电场方向一致,这称为电畴的“转向”。
实际上电畴运动是通过在外电场作用下新畴的出现、发展以及畴壁的移动来实现的,而且由于转向时引起较大内应力,所以这种转向不稳定。
当外加电场撤去后,则有小部分电畴偏离极化方向,恢复原位,而大部分电畴则停留在新转向的极化方向上,这叫剩余极化。
(9)铁电畴转向过程,包括在畴壁附近的作用过程。
在外电场的推动下,电畴会随外电场方向出现转向运动。
其运动过程分为新畴成核、发展和畴壁移动来实现。
180°畴:反向电场——(边沿,缺陷处即成核)新畴——尖劈状的新畴向前端发展(因180°畴前移速度快几个数量级),180°畴不产生应力(因自发极化反平行),一般需耗较大电场能。
90°畴:对于90°畴的“转向”虽然也产生针状电畴,但是主要是通过90°畴的侧向运动来实现。
但因晶轴的长缩方向不一致,而产生应力并引起近邻晶胞承受压力。
(10)为什么铁电单晶剩余极化值比铁电陶瓷高。
实际的铁电体中,必然同时存在90°畴和180°畴,并且相互影响,相互牵制。
尤其多晶陶瓷中杂质,缺陷,晶粒间界,空间电荷的存在将给电畴的转向带来电的或机械应力方面的影响,故铁电陶瓷在外电场作用下的定向移动率,通常比铁电单晶的定向率低的多
(11)压电体产生压电效应的机制是什么,请简要画出压电效应的机理示意图。
因为机械作用(应力与应变)引起了晶体介质的极化,从而导致介质两端表面内出现符号相反的束缚电荷。
三、综合题
PN结的发光机理是什么?
如果我们设法使一块完整的半导体一边是N型,而另一边是P型,则在接合处形成P-N结。
未加电场时,由于电子和空穴的扩散作用,在P-N 结的交界面两侧形成空间电荷区,生产自建场,其电场方向自N区指向P区。
引起漂移运动,当扩散运动和漂移运动达到热平衡时,P区和N区的费米能级必然达到同一水平。
这时,在P区和N区分别出现P型简并区和N型简并区,P区的价带顶充满了空穴,N区的导带底充满了电子。
在结区造成了能带的弯曲。
自建场的作用,形成了接触电位差V D叫做P-N 结的势垒高度。
P区所有能级上的电子都有了附加位能,它等于势垒高度V D乘以电子电荷e(V D e)
当给P-N 结加以正向电压V时,如图(5-27)所示,原来的自建场将被削弱,势垒降低,破坏了原来的平衡,引起多数载流子流入对方,使得两边的少数载流子比平衡时增加了,这些增加的少数载流子称为“非平衡载流子”。
这种现象叫做“载流子注入”。
此时结区的统一费米能级不复存在,形成结区的两个费米能级E F+和E F-,称为准费米能级。
它们分别描述空穴和电子的分布。
在结区的一个很薄的作用区,形成了双简并能带结构。
如何控制下图栅压G的极性和数值,使n沟道晶体管分别处于导通或者截止的状态,请详细说明控制的过程与原理。
在P型衬底的MOS系统中增加两个N型扩散区,分别称为源区(S表示)和漏区(D表
示)。
通过控制栅压G的极性和数值,可以使MOS晶体管分别处于导通或截止的状态:源、漏
之间的电流将受到栅压的调制,这就是MOS晶体管工作原理的基础,利用这一性质做成的MOS
集成电路是大规模集成电路中最重要的类型之一。
阐述BaTiO3单晶在外电场作用下的极化反转过程。
1)、一般在外电场作用下(人工极化),180°畴转向比较充分;同时由于“转向”时结构畸变小,内应力小,因而这种转向比较稳定。
2)、而90°畴的转向时不充分的,对BaTiO3陶瓷,90°畴只有13%;而且,由于转向时引起较大内应力,所以这种转向不稳定。
当外加电场撤去后,则有小部分90°畴电畴偏离极化方向,恢复原位。
3)、大部分(主要是180°畴)则会停留在新转向的极化方向上(剩余极化)。