基于MATLAB的非线性曲线拟合

合集下载

matlab各类拟合曲线代码

matlab各类拟合曲线代码

标题:探索MATLAB中各类拟合曲线的代码应用在MATLAB中,拟合曲线是数据分析和模型建立中常用的技术之一。

通过拟合曲线,我们可以了解数据之间的关联性并建立预测模型,为进一步分析和应用数据奠定基础。

本文将深入探讨MATLAB中各类拟合曲线的代码应用,帮助读者更深入地理解该主题。

一、线性拟合曲线1. 使用MATLAB进行线性拟合曲线的代码示例在MATLAB中,使用polyfit函数可以进行线性拟合。

对一组数据点(x, y)进行线性拟合,代码如下:```matlabx = [1, 2, 3, 4, 5];y = [2, 3.5, 5, 7, 8.5];p = polyfit(x, y, 1);```其中,x为自变量,y为因变量,1表示进行一次线性拟合。

通过polyfit函数,可以得到线性拟合的系数p。

2. 线性拟合曲线的应用和特点线性拟合曲线适用于线性关系较为明显的数据,例如物理实验数据中的直线关系。

通过线性拟合,可以获得各项系数,对数据进行预测和建模。

二、多项式拟合曲线1. 使用MATLAB进行多项式拟合曲线的代码示例在MATLAB中,使用polyfit函数同样可以进行多项式拟合。

对一组数据点(x, y)进行二次多项式拟合,代码如下:```matlabx = [1, 2, 3, 4, 5];y = [1, 4, 9, 16, 25];p = polyfit(x, y, 2);```其中,x为自变量,y为因变量,2表示进行二次多项式拟合。

通过polyfit函数,同样可以得到多项式拟合的系数p。

2. 多项式拟合曲线的应用和特点多项式拟合曲线适用于数据中存在曲线关系的情况,通过选择合适的最高次数,可以灵活地拟合各种曲线形状。

三、非线性拟合曲线1. 使用MATLAB进行非线性拟合曲线的代码示例在MATLAB中,使用fit函数可以进行非线性拟合。

对一组数据点(x, y)进行指数函数拟合,代码如下:```matlabx = [1, 2, 3, 4, 5];y = [2.1, 7.4, 16.1, 29.3, 48.2];f = fit(x', y', 'exp1');```其中,x为自变量,y为因变量,'exp1'表示进行指数函数拟合。

Matlab中的曲线拟合方法

Matlab中的曲线拟合方法

Matlab中的曲线拟合方法引言在科学与工程领域,数据拟合是一个重要的技术,可用于分析实验数据、预测未知的对应关系,并量化观察到的现象。

其中,曲线拟合是一种常见的数据拟合方法,而Matlab作为一种功能强大的科学计算软件,提供了多种曲线拟合工具和函数,方便用户进行数据分析和模型建立。

本文将对Matlab中的曲线拟合方法进行详细介绍和讨论。

一、线性拟合线性拟合是最简单且常见的曲线拟合方法,其基本思想是通过一条直线拟合数据点,找到最佳拟合直线的参数。

在Matlab中,可以使用polyfit函数实现线性拟合。

该函数接受两个输入参数,第一个参数为数据点的x坐标,第二个参数为数据点的y坐标。

返回结果为一个一次多项式拟合模型的参数。

例如,我们有一组实验测量数据如下:x = [1, 2, 3, 4, 5];y = [3, 5, 7, 9, 11];通过polyfit函数进行线性拟合:coeff = polyfit(x, y, 1);其中,1表示要拟合的多项式的次数,这里我们选择了一次多项式(直线)。

coeff即为拟合得到的直线的参数,可以通过polyval函数将参数代入直线方程,得到对应x的y值。

y_fit = polyval(coeff, x);接下来,我们可以使用plot函数将原始数据点和拟合曲线都绘制在同一张图上:figure;plot(x, y, 'o', 'MarkerSize', 10); % 绘制原始数据点hold on;plot(x, y_fit); % 绘制拟合曲线xlabel('x');ylabel('y');legend('原始数据点', '拟合曲线');通过观察图像,我们可以初步判断拟合的效果如何。

如果数据点较为分散,直线拟合效果可能较差。

在此情况下,可以考虑使用更高次的多项式进行拟合。

二、多项式拟合多项式拟合是一种常见的曲线拟合方法,其基本思想是通过一个一定次数的多项式函数来拟合数据点。

基于MATLAB的非线性曲线拟合

基于MATLAB的非线性曲线拟合

基于MATLAB的非线性曲线拟合一、本文概述随着科技的不断进步,数据分析和处理在各个领域中都发挥着越来越重要的作用。

非线性曲线拟合作为一种重要的数据处理方法,被广泛应用于科学研究、工程实践以及日常生活等多个领域。

MATLAB作为一款强大的数学计算和数据分析软件,为非线性曲线拟合提供了便捷的工具和丰富的函数库。

本文旨在介绍基于MATLAB的非线性曲线拟合方法,包括非线性模型的建立、参数估计、模型验证等步骤,并通过具体实例展示MATLAB在非线性曲线拟合中的应用。

本文首先简要介绍了非线性曲线拟合的基本概念和研究背景,阐述了非线性曲线拟合在实际应用中的重要性。

接着,详细介绍了MATLAB 中非线性曲线拟合的实现过程,包括非线性模型的构建、数据预处理、参数估计方法的选择、模型拟合和评估等方面。

在此基础上,通过实例分析,展示了MATLAB在非线性曲线拟合中的实际应用,并对拟合结果进行了分析和讨论。

对全文进行了总结,指出了非线性曲线拟合在实际应用中的潜在价值和未来研究方向。

通过本文的学习,读者可以了解非线性曲线拟合的基本原理和方法,掌握MATLAB在非线性曲线拟合中的应用技巧,提高数据处理和分析能力,为相关领域的研究和实践提供有力支持。

二、非线性曲线拟合基础在数据分析和科学研究中,我们经常遇到需要通过一组离散的数据点来寻找其潜在的非线性关系。

非线性曲线拟合就是这样一个过程,它旨在找到最能描述数据点之间关系的非线性函数。

与线性拟合不同,非线性拟合的模型函数通常包含非线性参数,这些参数需要通过一定的优化算法来求解。

MATLAB作为一款强大的数学软件,提供了多种非线性曲线拟合的工具和函数。

在MATLAB中,非线性曲线拟合通常通过lsqcurvefit、lsqnonlin或fit等函数实现。

这些函数允许用户定义自己的非线性模型函数,并通过迭代优化算法来寻找最佳拟合参数。

在进行非线性曲线拟合时,选择合适的模型函数至关重要。

matlab最小二乘法的非线性参数拟合

matlab最小二乘法的非线性参数拟合

matlab最小二乘法的非线性参数拟合首先说一下匿名函数:在创建匿名函数时,Matlab记录了关于函数的信息,当使用句柄调用该函数的时候,Matlab不再进行搜索,而是立即执行该函数,极大提高了效率。

所以首选匿名函数。

具体拟合时可以使用的方法如下:1 曲线拟合工具箱提供了很多拟合函数,使用简单非线性拟合nlinfit函数clear all;x1=[0.4292 0.4269 0.381 0.4015 0.4117 0.3017]';x2=[0.00014 0.00059 0.0126 0.0061 0.00425 0.0443]';x=[x1 x2];y=[0.517 0.509 0.44 0.466 0.479 0.309]';f=@(p,x)2.350176*p(1)*(1-1/p(2))*(1-(1-x(:,1).^(1/p(2))).^p(2)).^2.*(x(:,1).^(-1/p(2))-1).^(-p(2)).*x(:,1).^(-1/p(2)-0.5).*x(:,2);p0=[8 0.5]';opt=optimset('TolFun',1e-3,'TolX',1e-3);%[p R]=nlinfit(x,y,f,p0,opt)2 最小二乘法在曲线拟合中比较普遍。

拟合的模型主要有1.直线型2.多项式型3.分数函数型4.指数函数型5.对数线性型6.高斯函数型一般对于LS问题,通常利用反斜杠运算“\”、fminsearch或优化工具箱提供的极小化函数求解。

在Matlab中,曲线拟合工具箱也提供了曲线拟合的图形界面操作。

在命令提示符后键入:cftool,即可根据数据,选择适当的拟合模型。

“\”命令1.假设要拟合的多项式是:y=a+b*x+c*x^2.首先建立设计矩阵X:X=[ones(size(x)) x x^2];执行:para=X\ypara中包含了三个参数:para(1)=a;para(2)=b;para(3)=c;这种方法对于系数是线性的模型也适应。

使用Matlab进行数据拟合的方法

使用Matlab进行数据拟合的方法

使用Matlab进行数据拟合的方法概述:数据拟合是数据分析中常用的一种技术,它通过找到适合特定数据集的数学模型,在给定数据范围内预测未知变量的值。

在科学研究、工程分析和金融建模等领域,数据拟合起到了至关重要的作用。

而Matlab作为一种强大的数值计算工具,提供了丰富的函数和工具箱来实现各种数据拟合方法。

本文将介绍几种常见的使用Matlab进行数据拟合的方法。

一、线性回归线性回归是一种基本的数据拟合方法,它用于建立自变量和因变量之间的线性关系。

Matlab中可以使用`polyfit`函数来实现线性拟合。

具体步骤如下:1. 导入数据集。

首先需要将数据集导入到Matlab中,可以使用`importdata`函数读取数据文件。

2. 根据自变量和因变量拟合一条直线。

使用`polyfit`函数来进行线性拟合,返回的参数可以用于曲线预测。

3. 绘制拟合曲线。

使用`plot`函数绘制原始数据点和拟合曲线,比较其拟合效果。

二、多项式拟合多项式拟合是一种常见的非线性拟合方法,它通过拟合多项式函数来逼近原始数据集。

Matlab中使用`polyfit`函数同样可以实现多项式拟合。

具体步骤如下:1. 导入数据集。

同线性回归一样,首先需要将数据集导入到Matlab中。

2. 选择多项式次数。

根据数据集的特点和实际需求,选择适当的多项式次数。

3. 进行多项式拟合。

使用`polyfit`函数,并指定多项式次数,得到拟合参数。

4. 绘制拟合曲线。

使用`plot`函数绘制原始数据点和拟合曲线。

三、非线性拟合有时候,数据集并不能通过线性或多项式函数来准确拟合。

这时,需要使用非线性拟合方法,通过拟合非线性方程来逼近原始数据。

Matlab中提供了`lsqcurvefit`函数来实现非线性拟合。

具体步骤如下:1. 导入数据集。

同样,首先需要将数据集导入到Matlab中。

2. 定义非线性方程。

根据数据集的特点和实际需求,定义适当的非线性方程。

matlab-非线性拟合函数lsqcurvefit的使用和初值选取

matlab-非线性拟合函数lsqcurvefit的使用和初值选取

matlab-⾮线性拟合函数lsqcurvefit的使⽤和初值选取所解决问题:我们知道我们的表达式是y=A+B*exp(-x.^2)-C./log(x), ⽽且现在我们⼿⾥⾯有x与y对应的⼀⼤把数据。

我们需要根据x, y的值找出最佳的A、B、C值。

则我们现在借助Matlab的函数lsqcurvefit,当然你也可以使⽤nlinfit、lsqnonlin甚⾄cftool拟合⼯具箱.其具体⽤法请⾃⼰⽤Matlab的帮助命令进⾏查看。

这⾥仅简单介绍⼀下常⽤的函数lsqcurvefit。

正⽂:格式:lsqcurvefit(f,a,x,y)f: 符号函数句柄,如果是以m⽂件的形式调⽤的时候,别忘记加@.这⾥需要注意,f函数的返回值是和y匹对的,即拟合参数的标准是(f-y)^2取最⼩值,具体看下⾯的例⼦a:最开始预估的值(预拟合的未知参数的估计值)。

如上⾯的问题如果我们预估A为1,B为2,C为3,则a=[1 2 3]x:我们已经获知的x的值y:我们已经获知的x对应的y的值例:问题:对于函数y=a*sin(x)*exp(x)-b/log(x)我们现在已经有多组(x,y)的数据,我们要求最佳的a,b值%针对上⾯的问题,我们可以来演⽰下如何使⽤这个函数以及看下其效果x=2:10;y=8*sin(x).*exp(x)-12./log(x);%上⾯假如是我们事先获得的值a=[1 2];f=@(a,x)a(1)*sin(x).*exp(x)-a(2)./log(x);%使⽤lsqcurvefit[A,resnorm]=lsqcurvefit(f,a,x,y) %resnorm残差平⽅和 A是参数答案是 A = 8.0000 12.0000 resnorm =7.7179e-20问题:我们知道函数是 y=A+B*exp(-(x/C).^2), 以及x y的数据xdata=[950;1150;1350];ydata=[200;100;50];fun1 = @(x,xdata)x(1)+x(2)*exp(-(xdata./x(3)).^2); %⾃定义函数类型X0=[0,1120,740]; %初始参数[X,resnorm]=lsqcurvefit(fun1,X0,xdata,ydata); %resnorm残差平⽅和 X是参数disp(X) %得到所求参数%画图xi=800:1500;yi=fun1(X,xi); %调⽤函数句柄plot(xi,yi)hold onplot(xdata,ydata,'or')关于这个问题,我们发现它的初值设置的⾮常巧妙,对于初值的选取,我在⼤佬的⼀篇⽂章()阅读到:拟合初值的选取问题因为初值对拟合速度甚⾄结果有⼀定影响,因此这⾥就简单说⼀下确定数学模型后,拟合⾮线性问题时,初值的选取的问题。

MATLAB实例:多元函数拟合(线性与非线性)

MATLAB实例:多元函数拟合(线性与非线性)

MATLAB实例:多元函数拟合(线性与⾮线性)MATLAB实例:多元函数拟合(线性与⾮线性)作者:凯鲁嘎吉 - 博客园更多请看:之前写过⼀篇博⽂,是。

现在⽤拟合多元函数,实现线性拟合与⾮线性拟合,其中⾮线性拟合要求⾃定义拟合函数。

下⾯给出三种拟合⽅式,第⼀种是多元线性拟合(回归),第⼆三种是多元⾮线性拟合,实际中第⼆三种⽅法是⼀个意思,任选⼀种即可,推荐第⼆种拟合⽅法。

1. MATLAB程序fit_nonlinear_data.mfunction [beta, r]=fit_nonlinear_data(X, Y, choose)% Input: X ⾃变量数据(N, D), Y 因变量(N, 1),choose 1-regress, 2-nlinfit 3-lsqcurvefitif choose==1X1=[ones(length(X(:, 1)), 1), X];[beta, bint, r, rint, states]=regress(Y, X1)% 多元线性回归% y=beta(1)+beta(2)*x1+beta(3)*x2+beta(4)*x3+...% beta—系数估计% bint—系数估计的上下置信界% r—残差% rint—诊断异常值的区间% states—模型统计信息rcoplot(r, rint)saveas(gcf,sprintf('线性曲线拟合_残差图.jpg'),'bmp');elseif choose==2beta0=ones(7, 1);% 初始值的选取可能会导致结果具有较⼤的误差。

[beta, r, J]=nlinfit(X, Y, @myfun, beta0)% ⾮线性回归% beta—系数估计% r—残差% J—雅可⽐矩阵[Ypred,delta]=nlpredci(@myfun, X, beta, r, 'Jacobian', J)% ⾮线性回归预测置信区间% Ypred—预测响应% delta—置信区间半⾓plot(X(:, 1), Y, 'k.', X(:, 1), Ypred, 'r');saveas(gcf,sprintf('⾮线性曲线拟合_1.jpg'),'bmp');elseif choose==3beta0=ones(7, 1);% 初始值的选取可能会导致结果具有较⼤的误差。

MATLAB软件基本的曲线拟合函数命令

MATLAB软件基本的曲线拟合函数命令

MATLAB软件基本的曲线拟合函数命令MATLAB是一款广泛应用于科研、工程和教学中的数学软件,其中最重要的用途之一就是曲线拟合。

曲线拟合依靠一些函数命令完成。

这些函数命令能够自动找到数据集中的模式,然后基于这些模式,计算出一条与数据集最拟合的曲线。

在MATLAB中,基本的曲线拟合函数命令有三种:1. polyfit(多项式拟合函数)polyfit函数用于对数据集进行多项式拟合。

此函数语法为:p = polyfit(x,y,n)其中x和y分别是数据集的两个向量,n是要拟合的多项式的次数。

函数返回一个n+1个元素的向量p,p中的元素按照多项式次数从高到低排列,如下所示:p = [an,an-1,…,a0]这条多项式可以通过MATLAB中的polyval函数进行计算得到,如下所示:fit函数是MATLAB中最通用的拟合函数之一,它可以适用于各种类型的拟合,包括多项式、指数、高斯和周期函数等。

此函数语法为:其中x和y分别是数据集的两个向量,expr是要拟合的函数表达式。

函数返回一个拟合模型对象f,该对象能够对任意输入值进行计算。

例如,可以使用fit函数拟合一个二次函数,表达式为y=a*x^2+b*x+c,如下所示:3. lsqcurvefit(非线性曲线拟合函数)lsqcurvefit函数用于对非线性方程进行拟合。

此函数可以将一个自定义的函数作为输入,并根据输入的函数和数据集,找到与数据集最拟合的曲线。

此函数语法为:x = lsqcurvefit(fun,x0,xdata,ydata)其中fun是拟合函数的句柄,x0是拟合参数的初始值,xdata和ydata是数据集。

函数返回拟合参数x,这些参数能够使拟合函数最适合数据集。

例如,可以使用lsqcurvefit 函数拟合一个非线性方程,例如:fun = @(x,xdata)x(1)*exp(-x(2)*xdata);x0 = [1,1];x = lsqcurvefit(fun,x0,xdata,ydata)这些基本的曲线拟合函数命令可以用来处理各种类型的数据集。

实验五 用Matlab数据拟合

实验五 用Matlab数据拟合

2. 已知观测数据点如表所示 x 1.6 2.7 1.3 4.1 3.6 2.3 y 17.7 49 13.1 189.4 110.8 34.5
0.6
4
4.9
409.1
3
65
2.4
36.9
求a, b, c的值, 使得曲线 f(x)=aex+bsin x+c lnx 与已知数据 点在最小二乘意义上充分接近.
例4 已知观测数据点如表所示
x 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 y 3.1 3.27 3.81 4.5 5.18 6 7.05 8.56 9.69 11.25 13.17 求三个参数 a, b, c的值, 使得曲线 f(x)=aex+bx2+cx3 与 已知数据点在最小二乘意义上充分接近.
1.55
500 106
2.47
2. 93
3. 03
2.89

1000 106 1500 106 2000 106 2375 106
3 1.953 103 1.517 103 1.219 10
/ / N / m 2 3.103 103 2.465 103
解: 描出散点图, 在命令窗口输入: t=[0:1:16] y=[30.0 29.1 28.4 28.1 28.0 27.7 27.5 27.2 27.0 26.8 26.5 26.3 26.1 25.7 25.3 24.8 24.0] plot(t,y,'*')
a=polyfit(t,y,1) a= -0.3012 29.3804 hold on
beta
= 3.0022 4.0304 0.9404

matlab最小二乘法的非线性参数拟合(精荐)

matlab最小二乘法的非线性参数拟合(精荐)

---------------------------------------------------------------最新资料推荐------------------------------------------------------ matlab最小二乘法的非线性参数拟合(精荐)matlab 最小二乘法的非线性参数拟合 matlab 最小二乘法的非线性参数拟合首先说一下匿名函数:在创建匿名函数时,Matlab 记录了关于函数的信息,当使用句柄调用该函数的时候,Matlab 不再进行搜索,而是立即执行该函数,极大提高了效率。

所以首选匿名函数。

具体拟合时可以使用的方法如下:1 曲线拟合工具箱1 曲线拟合工具箱提供了很多拟合函数,使用简单非线性拟合 nlinfit 函数 clear all; x1=[0.4search 或优化工具箱提供的极小化函数求解。

在 Matlab 中,曲线拟合工具箱也提供了曲线拟合的图形界面操作。

在命令提示符后键入:cftool,即可根据数据,选择适当的拟合模型。

\命令\命令 1.假设要拟合的多项式是:y=a+b*x+c*x.首先建立设计矩阵 X:X=[ones(size(x)) x x]; 执行:para=X\y para 中包含了三个参数:para(1)=a;para(2)=b;para(3)=c; 这种方法对于系数是线性的模型也适应。

1 / 102.假设要拟合:y=a+b*exp(x)+cx*exp(x) 设计矩阵 X 为 X=[ones(size(x)) exp(x) x.*exp(x.)]; para=X\y 3.多重回归(乘积回归) 设要拟合: y=a+b*x+c*t,其中 x 和 t 是预测变量,y 是响应变量。

设计矩阵为 X=[ones(size(x)) x t] %注意 x,t 大小相等!para=X\y polyfit 函数polyfit 函数 polyfit 函数不需要输入设计矩阵,在参数估计中,polyfit 会根据输入的数据生成设计矩阵。

matlab中拟合曲线的算法

matlab中拟合曲线的算法

一、引言在科学和工程领域中,拟合曲线是一种重要的数学工具,它用于寻找一条曲线,使得该曲线最好地描述已知的数据点或者模拟实验结果。

MATLAB作为一种强大的数学计算软件,拥有丰富的拟合曲线的算法和工具。

本文将介绍MATLAB中拟合曲线的算法,包括常见的线性拟合、多项式拟合、非线性拟合等。

二、线性拟合1. 线性拟合是指采用线性方程来拟合已知数据点的方法。

在MATLAB 中,可以使用polyfit函数来实现线性拟合。

该函数的基本语法如下: p = polyfit(x, y, n),其中x和y分别代表已知数据点的横坐标和纵坐标,n代表拟合多项式的阶数。

函数返回一个长度为n+1的向量p,其中p(1)、p(2)分别代表拟合多项式的系数。

2. 通过polyfit函数可以实现对数据点的线性拟合,得到拟合曲线的系数,并且可以使用polyval函数来计算拟合曲线在指定点的取值。

该函数的基本语法如下:yfit = polyval(p, x),其中p代表拟合曲线的系数向量,x代表待求取值的点,yfit代表拟合曲线在该点的取值。

三、多项式拟合1. 多项式拟合是指采用多项式方程来拟合已知数据点的方法。

在MATLAB中,可以使用polyfit函数来实现多项式拟合,和线性拟合类似。

不同之处在于,可以通过调整多项式的阶数来适应不同的数据特性。

2. 除了使用polyfit函数进行多项式拟合外,MATLAB还提供了Polytool工具箱,它是一个方便的图形用户界面,可以用于拟合已知数据点并可视化拟合曲线。

使用Polytool工具箱,用户可以直观地调整多项式的阶数和观察拟合效果,非常适合初学者和快速验证拟合效果。

四、非线性拟合1. 非线性拟合是指采用非线性方程来拟合已知数据点的方法。

MATLAB中提供了curvefitting工具箱,其中包含了众多非线性拟合的工具和算法,例如最小二乘法、最大似然法、拟合优度计算等。

通过该工具箱,用户可以方便地进行各种复杂数据的非线性拟合。

MATLAB在非线性曲线拟合中的应用研究

MATLAB在非线性曲线拟合中的应用研究

MATLAB在⾮线性曲线拟合中的应⽤研究MATLAB 在⾮线性曲线拟合中的应⽤⼩结摘要:归纳总结了⾮线性曲线拟合的⽅法、求解步骤和上机操作过程关键词:曲线拟合⾮线性MAT LAB正⽂:1.曲线拟合的基本原理已知⼀组测定的数据(例如N个点(xi,yi )去求得⾃变量x和因变量y 的⼀个近似解析表达式y=φ(x)。

若记误差δi=φ(xi )-yi ,i=1,2,…N ,则要使误差的平⽅和最⼩,即要求:∑==Ni iQ 12δ为最⼩,这就是常⽤的最⼩⼆乘法原理。

2 .MATLAB 曲线拟合的相关⽅法 2.1.函数形式:(1)多项式拟合函数po ly fit ,调⽤格式为: p =polyfit (x ,y,n )其中x ,y 为参与曲线拟合的实验数据,n为拟合多项式的次数,函数返回值为拟合多项式的系数(按降幂排列)。

n =1时,就为线性拟合。

例1:给出表1数据,试⽤最⼩⼆乘法求⼀次和⼆次拟合多项式。

表1 数据在M AT LAB 命令窗⼝中输⼊: cle ar ; cl os e; x=-1:0.25:1;y=[-0.2209,0.3295,0.8826,1.4392,2.0003,2.5645,3.1334,3.7061,4.2836] p1=p olyfit(x,y ,1) p2=po lyf it(x,y,2) y 1=polyva l(p 1,x); y 2=p oly val(p2,x);pl ot(x,y,'+',x,y1,'r:',x ,y 2,'k-.')运⾏结果:拟合多项式为:y*=2.0516+2.0131和y *=0.0313x2+2.2516x +2.20001 (2)⾮线性数据拟合函数lsq cu rvefit 调⽤格式为: c=ls qcur vefi (t 'f un',x0,xdata,yd ata )其中'fun'为拟合函数的M-函数⽂件名,x0为初始向量,x data ,ydat a为参与曲线拟合的实验数据。

matlab非线性曲线拟合

matlab非线性曲线拟合

m atlab非线性曲线拟合最近在用matlab做非线性曲线拟合,发现matlab功能确实很强大,总结其方法有如下几种:一、Matlab非线性拟合工具箱单一变量的曲线逼近Matlab有一个功能强大的曲线拟合工具箱cftool ,使用方便,能实现多种类型的线性、非线性曲线拟合。

假设我们要拟合的函数形式是y=a+(b-a)*c^2*(c^2-x^2)/((c^2-x^2)^2+(2*d*x)^2);其中a,b,c,d是待定系数。

在命令行输入数据:x=8:0.01:12.4;y=real(epsilon);2、启动曲线拟合工具箱》cftool3、进入曲线拟合工具箱界面“Curve Fitting tool”(1)点击“Data”按钮,弹出“Data”窗口;(2)利用X data和Y data的下拉菜单读入数据x,y,可修改数据集名“Data set name”,然后点击“Create data set”按钮,退出“Data”窗口,返回工具箱界面,这时会自动画出数据集的曲线图;(3)点击“Fitting”按钮,弹出“Fitting”窗口;(4)点击“New fit”按钮,可修改拟合项目名称“Fit nam e”,通过“Data set”下拉菜单选择数据集,然后通过下拉菜单“Type of fit”选择拟合曲线的类型,工具箱提供的拟合类型有:Custom Equations:用户自定义的函数类型Exponential:指数逼近,有2种类型, a*exp(b*x) 、a*exp(b*x) + c*exp(d*x)Fourier:傅立叶逼近,有7种类型,基础型是 a0 + a1*cos(x*w) + b1*sin(x*w)Gaussian:高斯逼近,有8种类型,基础型是a1*exp(-((x-b1)/c1)^2)Interpolant:插值逼近,有4种类型,linear、nearest neighbor、cubic spline、shape-preserving Polynomial:多形式逼近,有9种类型,linear ~、quadratic ~、cubic ~、4-9th degree ~ Power:幂逼近,有2种类型,a*x^b 、a*x^b + cRational:有理数逼近,分子、分母共有的类型是linear ~、quadratic ~、cubic ~、4-5th degree ~;此外,分子还包括constant型Smoothing Spline:平滑逼近Sum of Sin Functions:正弦曲线逼近,有8种类型,基础型是 a1*sin(b1*x + c1)Weibull:只有一种,a*b*x^(b-1)*exp(-a*x^b)选择好所需的拟合曲线类型及其子类型,并进行相关设置:——如果是非自定义的类型,根据实际需要点击“Fit options”按钮,设置拟合算法、修改待估计参数的上下限等参数;——如果选Custom Equations,点击“New”按钮,弹出自定义函数等式窗口,有“Linear Equations线性等式”和“General Equations构造等式”两种标签。

matlab拟合曲线代码

matlab拟合曲线代码

matlab拟合曲线代码
在 Matlab 中进行曲线拟合,一般可以使用 `polyfit` 函数进行一次和高次多项式拟合,也可以使用 `lsqcurvefit` 函数进行非线性曲线拟合。

下面是 `polyfit` 函数的例子:
假设有一组数据,分别为 x 和 y:
```
x = [1, 2, 3, 4, 5];
y = [2.1, 3.9, 6.2, 8.5, 11.1];
```
我们想要拟合这些数据的一次多项式 y = ax + b,可以使用以下代码:
```
p = polyfit(x, y, 1); % 进行一次多项式拟合
a = p(1); % 得到拟合的斜率 a
b = p(2); % 得到拟合的截距 b
```
同样,如果想要进行高次多项式拟合,只需要将 1 改为所需的次数即可。

需要注意的是,虽然使用一次和高次多项式拟合可以得到比较准确的拟合效果,但是在非线性数据拟合时,可能会得到不够准确的结果,这时候可以考虑使用 `lsqcurvefit` 函数进行非线性曲线拟合。

以上是 Matlab 中进行曲线拟合的基本方法。

matlab nlinfit 原理

matlab nlinfit 原理

matlabnlinfit原理Matlabnlinfit是一个非线性拟合函数,用于在MATLAB中进行非线性最小二乘拟合。

通过使用nlinfit,我们可以对非线性模型进行拟合,以获取最佳参数值。

在本篇文章中,我们将介绍nlinfit的原理、使用方法、参数意义以及注意事项。

一、非线性拟合简介拟合是指通过找到最佳参数值,使模型与数据之间的差异最小化。

在非线性拟合中,模型通常是非线性的,因此需要使用适合的非线性拟合函数。

nlinfit是MATLAB中提供的一种非线性拟合函数,它基于MATLAB内置的fmincon函数,适用于求解非线性最小二乘问题。

二、nlinfit函数参数nlinfit函数需要指定以下参数:*xdata:数据点x的坐标值。

*ydata:数据点y的观测值。

*f:目标函数,描述模型与数据的相互作用关系。

*xb:模型参数的初始猜测值。

*fun:目标函数的梯度函数。

*options:nlinfit函数的选项参数,用于控制拟合过程的收敛性和稳定性。

三、nlinfit原理nlinfit函数通过迭代优化算法,不断调整模型参数的值,以最小化目标函数与数据之间的差异。

在每一次迭代中,函数计算目标函数的梯度,并根据梯度信息调整参数值。

如果参数值的改变量小于某个阈值,则认为拟合过程收敛。

拟合过程中,可以通过设置选项参数来控制收敛速度和稳定性。

四、使用方法示例下面是一个简单的示例,展示如何使用nlinfit函数进行非线性拟合:```matlab%生成示例数据x=[1,2,3,4,5];y=[2.2,2.8,3.6,4.5,4.9];x_fit=linspace(x(1),x(end),100);%生成用于拟合的数据点y_fit=curvefit(f,x,y);%使用curvefit进行非线性拟合plot(x,y,'o');%绘制原始数据点holdon;plot(x_fit,y_fit);%绘制拟合曲线legend('原始数据','拟合曲线');```在上述示例中,我们使用curvefit函数进行非线性拟合,并使用nlinfit进行参数优化。

Matlab中的曲线拟合与曲线绘制技巧

Matlab中的曲线拟合与曲线绘制技巧

Matlab中的曲线拟合与曲线绘制技巧引言:Matlab是一款强大的科学计算软件,广泛应用于各个领域。

其中,曲线拟合和曲线绘制是Matlab中常用的功能之一。

本文将介绍在Matlab中进行曲线拟合的方法和技巧,并探讨曲线绘制的一些技巧,以帮助读者更好地利用Matlab进行数据分析和可视化。

一、曲线拟合的背景和意义曲线拟合是通过数学模型对给定数据进行逼近的过程。

在实际应用中,我们经常需要将实验或观测数据与理论模型相拟合,以从数据中提取有用的信息和规律。

曲线拟合在工程、物理、生物、经济等领域都有着重要的应用。

Matlab提供了丰富的工具和函数,使得曲线拟合变得更加便捷和高效。

二、常见的曲线拟合方法在Matlab中,有多种曲线拟合方法可供选择,如多项式拟合、指数拟合、幂函数拟合、对数函数拟合等。

根据不同的实际需求和数据特点,选择合适的拟合方法十分重要。

下面将介绍几种常见的曲线拟合方法。

1. 多项式拟合多项式拟合是一种广泛应用的拟合方法,其基本思想是利用多项式函数逼近原始数据。

在Matlab中,可以使用polyfit函数进行多项式拟合。

该函数使用最小二乘法进行拟合,可以灵活地选择多项式的阶数。

2. 指数拟合指数拟合适用于指数函数关系的数据拟合。

在Matlab中,可以使用fittype函数和fit函数进行指数拟合。

fittype函数用于定义指数函数模型,fit函数则用于实现拟合操作。

3. 幂函数拟合幂函数拟合适用于幂函数关系的数据拟合。

Matlab中的polyfit函数同样适用于幂函数拟合,只需要对数据进行适当的变换即可。

4. 对数函数拟合对数函数拟合适用于对数函数关系的数据拟合。

同样可以使用fittype函数和fit 函数进行对数函数拟合。

也可以使用polyfit函数对数据进行适当的转换后进行拟合。

三、曲线绘制的技巧在进行曲线拟合之后,绘制曲线可以更直观地展示拟合结果和数据分布。

Matlab提供了丰富的绘图功能,以下介绍几种常用的绘图技巧。

matlab最小二乘法的非线性参数拟合

matlab最小二乘法的非线性参数拟合

matlab最小二乘法的非线性参数拟合首先说一下匿名函数:在创建匿名函数时,Matlab记录了关于函数的信息,当使用句柄调用该函数的时候,Matlab不再进行搜索,而是立即执行该函数,极大提高了效率。

所以首选匿名函数。

具体拟合时可以使用的方法如下:1 曲线拟合工具箱提供了很多拟合函数,使用简单非线性拟合nlinfit函数clear all;x1=[0.4292 0.4269 0.381 0.4015 0.4117 0.3017]';x2=[0.00014 0.00059 0.0126 0.0061 0.00425 0.0443]';x=[x1 x2];y=[0.517 0.509 0.44 0.466 0.479 0.309]';f=@(p,x)2.350176*p(1)*(1-1/p(2))*(1-(1-x(:,1).^(1/p(2))).^p(2)).^2.*(x(:,1).^(-1/p(2))-1).^(-p(2)).*x(:,1).^(-1/p(2)-0.5).*x(:,2);p0=[8 0.5]';opt=optimset('TolFun',1e-3,'TolX',1e-3);%[p R]=nlinfit(x,y,f,p0,opt)2 最小二乘法在曲线拟合中比较普遍。

拟合的模型主要有1.直线型2.多项式型3.分数函数型4.指数函数型5.对数线性型6.高斯函数型一般对于LS问题,通常利用反斜杠运算“\”、fminsearch或优化工具箱提供的极小化函数求解。

在Matlab中,曲线拟合工具箱也提供了曲线拟合的图形界面操作。

在命令提示符后键入:cftool,即可根据数据,选择适当的拟合模型。

“\”命令1.假设要拟合的多项式是:y=a+b*x+c*x^2.首先建立设计矩阵X:X=[ones(size(x)) x x^2];执行:para=X\ypara中包含了三个参数:para(1)=a;para(2)=b;para(3)=c;这种方法对于系数是线性的模型也适应。

matlab最小二乘法的非线性参数拟合

matlab最小二乘法的非线性参数拟合

matlab最小二乘法的非线性参数拟合首先说一下匿名函数:在创建匿名函数时,Matlab记录了关于函数的信息,当使用句柄调用该函数的时候,Matlab不再进行搜索,而是立即执行该函数,极大提高了效率。

所以首选匿名函数。

具体拟合时可以使用的方法如下:1 曲线拟合工具箱提供了很多拟合函数,使用简单非线性拟合nlinfit函数clear all;x1=[0.4292 0.4269 0.381 0.4015 0.4117 0.3017]';x2=[0.00014 0.00059 0.0126 0.0061 0.00425 0.0443]';x=[x1 x2];y=[0.517 0.509 0.44 0.466 0.479 0.309]';f=@(p,x)2.350176*p(1)*(1-1/p(2))*(1-(1-x(:,1).^(1/p(2))).^p(2)).^2.*(x(:,1).^(-1/p(2))-1).^(-p(2)).*x(:,1).^(-1/p(2)-0.5).*x(:,2);p0=[8 0.5]';opt=optimset('TolFun',1e-3,'TolX',1e-3);%[p R]=nlinfit(x,y,f,p0,opt)2 最小二乘法在曲线拟合中比较普遍。

拟合的模型主要有1.直线型2.多项式型3.分数函数型4.指数函数型5.对数线性型6.高斯函数型一般对于LS问题,通常利用反斜杠运算“\”、fminsearch或优化工具箱提供的极小化函数求解。

在Matlab中,曲线拟合工具箱也提供了曲线拟合的图形界面操作。

在命令提示符后键入:cftool,即可根据数据,选择适当的拟合模型。

“\”命令1.假设要拟合的多项式是:y=a+b*x+c*x^2.首先建立设计矩阵X:X=[ones(size(x)) x x^2];执行:para=X\ypara中包含了三个参数:para(1)=a;para(2)=b;para(3)=c;这种方法对于系数是线性的模型也适应。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
例 1: 给出下表数据, 试用最小 二乘法求一次和 二次拟合多项式。
x - 1. 00 - 0. 75 - 0. 50 - 0. 25 0 0. 25 0. 50 0. 75 1. 00 y - 0. 2209 0. 3295 0. 8826 1. 4392 2. 0003 2. 5645 3. 1334 3. 7061 4. 2836 clear; close;
x= - 1: 0. 25: 1; y= [ - 0. 2209, 0. 3295, 0. 8826, 1. 4392, 2. 0003, 2. 5645, 3. 1334, 3. 7061, 4. 2836] ; p1= polyf it( x, y, 1) p1 = 2. 2516 2. 0131 p2= polyf it( x, y, 2) p2 = 0. 0313 2. 2516 2. 0001 y1 = po lyval( p1, x) ; % 多项式求值函数; y2 = po lyval( p2, x) ; p lot( x, y, c+ c, x, y1, cr: c, x, y2, ck - . c)
ydata= [ 30 68 75 82 82 77 68 68 58 51 50 41 38 35 28 25
18 15 12 10 7 7 4];
f= c( 1)* ( exp( - c( 2)* tdata) - exp( - c( 3 )* tda ta) )
- ydata;
保存后, 在 M ATLA B命令窗口输入语句:
1. 函数形式。 ( 1) 多项式拟合函数 Po ly fit。 利用该函数进行 多项式曲线拟 合, 其调用 格式 为:
p= po lyfit( x, y, n)
收稿日期: 2007-05-14 作者简介: 唐家德 ( 1970- ), 男, 云南楚雄人, 楚雄师范学院数学系副教授, 硕士, 研究方向: 微分方程和数值计算。
y = [ - 0. 2209, 0. 3295, 0. 8826, 1. 4392, 2. 0003, 2. 5645,
3. 1334, 3. 7061, 4. 2836];
po ly too l( x, y)
图 3 多项式 (线性 )拟合的 图 4 多项式 (二次 )拟合的
交互式界面
交互式界面
打开多项式拟合的交互式界面, 见图 3, 由于要
17
先编写 M - 函数文件 Exam ple2_2
M - file: function f= Ex am ple2_2( c, tdata, ydata)
tda ta= [ 0. 25 0. 5 0. 75 1 1. 5 2 2. 5 3 3. 5 4 4. 5 5 6 7 8 9
10 11 12 13 14 15 16];
ta) );
以文件名 Exam ple2_1保存后, 在 M ATLA B的 命令窗口中
输入语句:
tda ta= [ 0. 25 0. 5 0. 75 1 1. 5 2 2. 5 3 3. 5 4 4. 5 5 6 7 8 9
10 11 12 13 14 15 16];
ydata= [ 30 68 75 82 82 77 68 68 58 51 50 41 38 35 28 25
16
计算机与现代化
2008年第 5期
其中 x, y为参与曲线拟合的实验数据, n为拟合 多项式的次数, 函数返回值为拟合多项式的系数 ( 按 降幂排列 )。 n= 1时, 就为线性拟合。由于高次多项 式会产生 Runge现象, 因此除非已知数据来自高次多 项式, 否则多项式拟合的次数一般不超过六次。
0引 言
在科学实验及应用领域中, 时常需要在分析一组 测试数据的基础上, 去求自变量与应变量之间近似函 数关系表达式, 以便计算机或其它设计人员利用它来 方便地进行其它设计计算。这类问题在图形上就是 由测得的点求曲线拟合的问题。
1 曲线拟合的基本原理
所谓曲线拟合是指设法找出某条光滑的曲线, 它
能最佳地拟合数据。在曲线拟合时, 并不要求拟合曲
表 1 酒精含 量与饮酒时间的实验数据
图 2 例 2非 线性曲线拟合图
时间 ( 小时 ) 0. 25 0. 5 0. 75 1 1. 5 2 2. 5 3 3. 5 4 4. 5 5
酒精含量 30 68 75 82 82 77 68 68 58 51 50 41
时间 ( 小时 ) 6 7 8 9 10 11 12 13 14 15 16
拟合的函数为线性函数, 因此在多项式拟合交互式界
面中的 Degree中输入 1, 点击导出数据 Expo r,t 出现
Ab stract: T his paper introduces the function of non linear curve fitting ofM ATLA B so ftware. By do ing experim ents w ith com puter and erro r ana lysis, it is looking for be tter nonlinerar function to fit exper im ental data, in o rder to exp lo re and get correct so lution of non linear curve fitting. K ey w ords: curve fitting; nonlinear; M ATLA B
legend( c实验数据 c, c一次拟合 c, c二次拟 合 c) ; 故一次、二次拟合多项式分别为:
y* = 2. 2516x + 2. 0131 和 y* = 0. 0313x2 + 2. 2516x+ 2. 0001, 拟合曲线图见图 1。
图 1 例 1多项式 曲线拟合图
( 2) 非线性数据拟合函数 lsqcurvefit和 lsqnon lin。 M ATLA B 提 供了 两 个求 解 最 小 二 乘 非 线 性 数 据 拟合问题的命令 lsqcurve fit和 lsqnonlin。两者都要事 先定义 M - 函数文件。 ¹ c= lsqcurvefit( cfunc, x0, xdata, ydata) 其中 - fun. 为拟合函数的 M - 函数文件名, x0为 初始向量, xdata, ydata为参与曲线拟合的实验数据。 函数返回值 c为非线性函数 - fun. 的拟合系数。 例 2: 2004年全国大学生数学建模竞赛 C 题 ( 酒 后驾车 ) 中给出某人在短时间内喝下两瓶啤酒后, 间 隔一定的时间 t测量他的血液中酒精含量 y( 毫克 /百 毫升 ), 得到数据如表 1所示。
线一定要经过每一个数据点。其思想是使它能反映
这些离散数据的变化趋势, 使数据点的误差平方和最
小。也就是已知一组测定的 数据 ( 例如 N 个点 ( xi,
yi ) )去求得自变量 x 和因变量 y的一个近似解析表
达式 y= U( x) 。若记误差 Di = U( xi ) - yi, i= 1, 2, ,,
c0= [ 1 1 1] ;
for i= 1: 50
c= lsqnonlin( cExamp le2_2c, c0); c0= c;
en d
c
c = 114. 2587 0. 1852 2. 0124 , 从而得出拟合曲线:
y = 114. 2587( e- 0. 1852t - e- 2. 0124t )
2008年第 6期 文章编号: 1006-2475( 2008) 06-0015-05
计算 机 与 现 代 化 JISUAN JI YU X IAN DA IHUA
基于 MATLAB 的非线性曲线拟合
唐家德
总第 154期
(楚雄师范学院数学系, 云南 楚雄 675000)
摘要: 介绍软件 MAT LAB 非线性曲线拟合的功能, 通过上机实验 和误差分析, 寻找较好的非线性函数来拟合实验数据 , 从
( 3)
拟合曲线图见图 2。
º c= lsqsnon lin( cfunc, c0)。
求含参量非线性函数 fun中的参量 c, 使得各数
据点函数值 fun的平方和最小。
例如用 lsqsnonlin ( cfunc, c0) 命令求解例 2 的过
程如下:
2008年第 5期
唐家德: 基于 MAT LAB 的非线性曲线拟合
18 15 12 10 7 7 4];
c0= [ 1 1 1] ;
for i= 1: 50
c= lsqcurvefit( cExam ple2_1c, c0, tda ta, yda ta);
c0= c; % 以计算出 的 c为初值进行迭代;
en d
y1= c( 1) * ( exp ( - c ( 2) * tdata) - exp( - c( 3) * tda-
酒精含量 38 35 28 25 18 15 12 10 7 7 4
题目要求结合给定数据建立饮酒后血液中酒精
浓度的数学模型。通过建立微分方程模型得到短时
间内喝酒后血液中酒精浓度与时间的关系为:
y = c1 ( e- c2 t- e- c3 t)
( 2)
现在根据实验数据, 利用非线性拟合函数 lsqcur-
( 4)
2. 图形窗口形式。
( 1) 利用多项式拟合 的交互图命令 ( GU I) po ly-
too l调用格式为:
po ly too l( x, y)
其中 x, y 分别为 实验数据 构成向量, 例如 利用
po ly too l求解例 1的 MATLAB命令如下:
x = - 1: 0. 25: 1;
vefi,t 确定模型 ( 2) 中的参数 c1, c2, c3。求解过程为:
相关文档
最新文档