数学二次函数的图象和性质磨课计划

合集下载

二次函数图像和性质教学设计【优秀3篇】

二次函数图像和性质教学设计【优秀3篇】

二次函数图像和性质教学设计【优秀3篇】(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如总结报告、合同协议、规章制度、条据文书、策划方案、心得体会、演讲致辞、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as summary reports, contract agreements, rules and regulations, doctrinal documents, planning plans, insights, speeches, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please pay attention!二次函数图像和性质教学设计【优秀3篇】二次函数的基本表示形式为y=aX²+bX+c(a≠0)。

二次函数的图像与性质(教案)

二次函数的图像与性质(教案)

二次函数的图像与性质(教案)教学目标:一. 知识与技能:1. 通过对二次函数性质习题的讲评,使学生熟练掌握二次函数的图像与性质2. 懂得从图像中获取有关的性质信息。

3. 使学生会通过图像求二次函数的解析式。

二. 过程与方法:通过数形结合理解二次函数的性质。

三. 情感态度与价值观:培养数形结合思想,体验函数具体解决现实问题的功能。

教学重点:如何在图像中获取有用的信息。

教学难点:性质的综合应用 教学过程:一. 引入:华罗庚说过:“数缺形时少直观,形少数时难入微”要真正的研究数学就应该数形结合,研究函数就是用数形结合的思想二次函数是函数问题中的主要内容,中考试题中年年考查,可以出简单题、中档题甚至于综合性难题,但实际上有相当一部分的题型都跟二次函数的图像与性质有关,本节课通过对我们做过的习题进行讲评,使同学们熟练掌握二次函数的图像与性质二.讲评: 一. 抛物线y=ax²+bx+c(a≠0)的性质: 1.图像位置一题.5. 在同一坐标系中,函数y=-x-1和y=x²+2x+1 的图像可能是( )总结抛物线()20y ax bx c a =++≠的性质:A.最小值。

0时,顶点纵坐标最大值。

当0y =时,即轴的【练习】 已知反比例函数xy =的图像如下右图所示,则二次函数222k x kx y +-=的图像大致为( )【总结】灵活运用二次函数中24a b c b ac -、、、的性质在图像中解题,也就是根据抛物线确定二次函数解析式中字母系数的取值范围,很好地体现了数形结合的数学思想,这就需要大家对于二次函数的性质与图像要比较熟悉,并能在图像中从这些性质来思考解决问题的思路。

2.图像对称性二题4. 二次函数y=ax 2+bx +c 的图象与x 轴相交于(-1, 0)和(5, 0)两点, 则该抛物线的对称轴是【总结】二次函数的对称性:二次函数的图像是一个关于对称轴2bx a=-对称的轴对称图形,当抛物线上两点的纵坐标相同,即()()12,,,x y x y 时,1222x x b a+=-。

《二次函数的图像和性质》教学设计

《二次函数的图像和性质》教学设计
当抛物线开口向下时,在对称轴左侧,函数值随$x$的增 大而增大;在对称轴右侧,函数值随$x$的增大而减小。
05
二次函数的应用举例
最值问题
引入最值概念
通过实际问题的例子,如最大利 润、最小成本等,引入最值的概 念,并说明最值与二次函数的关
系。
求解最值
通过配方或公式法将二次函数化为 顶点式,从而找到函数的最大值或 最小值。同时,也可以通过观察函 数的图像来确定最值。
顶点
抛物线的顶点位于对称轴上,对于一般形式的二次函数,顶点坐标可以通过公式 $(-frac{b}{2a},c-frac{b^2}{4a})$求得。对于顶点式的二次函数,顶点坐标直接 为$(h,k)$。
抛物线与坐标轴的交点
与$x$轴的交点
令$y=0$,解一元二次方程$ax^2+bx+c=0$,得到抛物线与$x$轴的交点横坐标。若方程有两个实数根,则抛 物线与$x$轴有两个交点;若方程有一个重根,则抛物线与$x$轴有一个交点;若方程无实数根,则抛物线与$x$ 轴无交点。
宽度
由二次项系数的绝对值 $|a|$决定,$|a|$越大,抛 物线越窄;$|a|$越小,抛 物线越宽。
顶点位置
由顶点式$y=a(xh)^2+k$中的$h$和$k$决 定,顶点坐标为$(h,k)$。
抛物线的对称轴和顶点
对称轴
对于一般形式的二次函数$y=ax^2+bx+c$,其对称轴为直线$x=-frac{b}{2a}$ 。对于顶点式的二次函数$y=a(x-h)^2+k$,其对称轴为直线$x=h$。
02
二次函数是一种非线性函数,其 图像是一个抛物线。
二次函数的一般形式
二次函数的一般形式为 $f(x) = ax^2 + bx + c$,其中 $a, b, c$ 是 常数,且 $a neq 0$。

二次函数的图像教案

二次函数的图像教案

二次函数的图像教案教案标题:二次函数的图像教案教案目标:1. 了解二次函数的基本概念和性质。

2. 掌握二次函数的图像特征和变化规律。

3. 能够绘制和分析二次函数的图像。

4. 运用二次函数的图像解决实际问题。

教案步骤:引入(5分钟):1. 引导学生回顾一次函数的图像特征和变化规律。

2. 提问学生是否了解二次函数,以及二次函数与一次函数的区别。

概念讲解(15分钟):1. 解释二次函数的定义:f(x) = ax^2 + bx + c,其中a、b、c为常数,且a ≠ 0。

2. 介绍二次函数的顶点、对称轴和开口方向的概念。

3. 讲解二次函数的图像特征:顶点坐标、对称轴方程、开口方向等。

图像绘制(20分钟):1. 指导学生通过变化a、b、c的值,绘制不同二次函数的图像。

2. 强调学生观察图像的变化规律,如a的正负值对开口方向的影响,a的绝对值对图像的瘦胖程度的影响等。

图像分析(15分钟):1. 引导学生分析二次函数图像的对称性,即对称轴和顶点的关系。

2. 指导学生根据图像特征,判断二次函数的各项系数的正负情况。

实际问题应用(20分钟):1. 提供一些实际问题,如抛物线运动、最值问题等,要求学生运用二次函数的图像解决问题。

2. 引导学生将问题转化为二次函数的形式,并绘制相应的图像进行分析。

总结与拓展(10分钟):1. 总结二次函数的图像特征和变化规律。

2. 提出一些拓展问题,如图像的平移、伸缩等,鼓励学生进一步探究。

教案评估:1. 课堂练习:要求学生绘制指定二次函数的图像,并分析其特征。

2. 解决实际问题:要求学生运用二次函数的图像解决给定的实际问题。

教案延伸:1. 引导学生研究二次函数的标准形式和顶点形式,并比较它们在图像绘制和分析中的优劣。

2. 引导学生探究二次函数与其他函数的关系,如线性函数、指数函数等。

教案资源:1. 教材或教辅资料中有关二次函数图像的知识点和例题。

2. 计算器或电脑绘图软件,用于绘制二次函数的图像。

二次函数的性质与图像教案

二次函数的性质与图像教案

二次函数的性质与图像教案一、教学目标1. 让学生了解二次函数的定义和标准形式;2. 理解二次函数的性质,包括顶点、开口、对称轴等;3. 掌握二次函数图像的特点,如开口方向、顶点位置等;4. 能够运用二次函数的性质和图像解决实际问题。

二、教学内容1. 二次函数的定义和标准形式;2. 二次函数的性质:顶点、开口、对称轴;3. 二次函数图像的特点:开口方向、顶点位置等;4. 实际问题举例。

三、教学重点与难点1. 重点:二次函数的性质和图像的特点;2. 难点:运用二次函数的性质和图像解决实际问题。

四、教学方法1. 采用讲解、演示、练习、讨论等教学方法;2. 使用多媒体课件辅助教学,直观展示二次函数的图像;3. 引导学生通过实际问题,探究二次函数的性质和图像特点。

五、教学过程1. 引入:通过生活中的实例,引导学生思考二次函数的存在;2. 讲解:讲解二次函数的定义和标准形式,阐述二次函数的性质,如顶点、开口、对称轴等;3. 演示:使用多媒体课件,展示二次函数的图像,让学生直观理解二次函数的性质和图像特点;4. 练习:布置练习题,让学生巩固二次函数的性质和图像知识;5. 讨论:组织学生分组讨论,分享解题心得和实际问题解决方法;6. 总结:总结二次函数的性质和图像特点,强调运用二次函数解决实际问题的重要性。

六、教学评估1. 课堂练习:设计一份包含不同难度的练习题,以评估学生对二次函数性质与图像的理解程度。

2. 小组讨论:观察学生在小组讨论中的参与情况和合作能力,评估他们对知识点的掌握和运用能力。

3. 课后作业:布置一道综合性的课后作业,要求学生应用二次函数的性质与图像解决实际问题,以评估他们的应用能力。

七、教学资源1. 多媒体课件:制作详细的课件,包括二次函数的图像、性质解释和实际问题示例。

2. 练习题库:准备一份涵盖各种类型题目的题库,用于课堂练习和课后作业。

3. 实际问题案例:收集一些与二次函数相关的实际问题案例,用于教学中的实例分析。

二次函数图像和性质教学设计(3篇)

二次函数图像和性质教学设计(3篇)

二次函数图像和性质教学设计(3篇)二次函数的图像和性质3教学设计篇一22.1.3二次函数y=a(x-h)2+k的图象和性质教学设计知识与技能:会用描点法画出二次函数y=a(x-h)2+k的图象;过程与方法:结合图象确定抛物线y=a(x-h)2+k的开口方向、对称轴与顶点坐标及性质;情感态度与价值观:通过比较抛物线y=a(x-h)2+k与y=ax2的关系,培养学生的观察、分析、总结的能力。

学情分析学生在学习了前两课时的基础上,对于顶点式已经有了一定的认识,可以根据类比思想比较容易得出完整顶点式的图象性质,所以这一部分主要是学生独立探究,个别指导,然后归纳总结。

之后把侧重点放在对实际问题的探究上,重点研究实际问题的建模过程,鼓励一题多解,拓展学生思维。

重点难点教学重点:画出形如y=a(x-h)2+k的二次函数的图象,能指出开口方向,对称轴,顶点。

教学难点:理解函数y=a(x-h)2+k与y=ax2及其图象的相互关系。

4教学过程一、复习导入新课师:同学们,在学习新课之前,我们先来做这样一道题。

观察y=-x2、y=-x2-1、y=-(x+1)2这三条抛物线中,第一条抛物线可以经过怎样的平移得到第二条和第三条抛物线。

(指名学生回答)。

师:同学们可不可以在这个知识点的基础上进一步猜想一下第一条抛物线能否经过怎样的平移得到抛物线y=-(x+1)2-1 生:向左平移一个单位,再向下平移一个单位。

师:这个猜想是否正确呢?这节课我们一起来验证一下。

(板书课题)二、探究探究一(大屏幕出示)(自探问题部分)1.画出函数y=-(x+1)2-1的图象,指出它的开口方向、对称轴及顶点、最值、增减性.x y=-(x+1)2-1 函数… …-4-3-2-10 1 2 ……开口方向顶点对称轴最值增减性y=-(x+1)2-1(学生口头展示以上问题)2.师:(结合课件)把抛物线y=-x2向_______平移______个单位,再向_______平移_______个单位,就得到抛物线y=-(x+1)2-1.所以抛物线y=-x2 与抛物线y=-(x+1)2-1 形状___________,位置________________.通过刚才的演示,可以证明我们前面的猜想是正确的。

二次函数的性质与图像教案

二次函数的性质与图像教案

二次函数的性质与图像教案一、教学目标:1. 理解二次函数的定义和标准形式;2. 掌握二次函数的性质,包括对称轴、顶点、开口方向等;3. 能够绘制和分析二次函数的图像;4. 能够应用二次函数解决实际问题。

二、教学内容:1. 二次函数的定义和标准形式;2. 二次函数的性质:对称轴、顶点、开口方向;3. 二次函数的图像:抛物线的基本形状;4. 实际问题中的应用。

三、教学方法:1. 讲授法:讲解二次函数的定义、性质和图像;2. 案例分析法:分析实际问题中的二次函数;3. 互动讨论法:引导学生参与课堂讨论,巩固知识点;4. 实践操作法:让学生动手绘制二次函数的图像,加深理解。

四、教学准备:1. 教学PPT:包含二次函数的定义、性质、图像及实际问题;2. 练习题:用于巩固所学知识;3. 绘图工具:如直尺、圆规等,用于绘制二次函数的图像。

五、教学过程:1. 导入:通过一个实际问题引入二次函数的概念;2. 讲解:讲解二次函数的定义、性质和图像,引导学生理解;3. 案例分析:分析实际问题中的二次函数,让学生学会应用;4. 互动讨论:引导学生参与课堂讨论,巩固知识点;5. 实践操作:让学生动手绘制二次函数的图像,加深理解;6. 总结:对本节课的内容进行总结,强调重点知识点;7. 布置作业:让学生通过练习题巩固所学知识。

六、教学评估:1. 课堂问答:通过提问方式检查学生对二次函数定义和性质的理解;2. 练习题:布置针对性的练习题,评估学生对二次函数图像分析的能力;3. 小组讨论:评估学生在团队合作中解决问题的能力;4. 作业反馈:收集学生作业,评估其对课堂所学知识的掌握程度。

七、教学拓展:1. 探讨二次函数在实际生活中的应用,如抛物线镜面、物理运动等;2. 介绍二次函数相关的数学历史故事,激发学生兴趣;3. 引导学生探究二次函数的其它性质,如最大值、最小值等;4. 组织数学竞赛,提高学生的学习积极性。

八、教学反思:1. 反思教学方法:根据学生反馈,调整教学方法,提高教学效果;2. 反思教学内容:确保教学内容符合学生认知水平,适当调整难度;3. 反思教学过程:关注学生在课堂上的参与度,优化教学过程;4. 及时与学生沟通:了解学生的学习需求,调整教学策略。

九年级数学下册《二次函数的图像与性质》教学教案(通用3篇)

九年级数学下册《二次函数的图像与性质》教学教案(通用3篇)

九年级数学下册《二次函数的图像与性质》教学教案(通用3篇)九年级数学下册《二次函数的图像与性质》教学篇1【知识与技能】1.会用描点法画函数y=ax2(a>0)的图象,并根据图象认识、理解和掌握其性质.2.体会数形结合的转化,能用y=ax2(a>0)的图象和性质解决简单的实际问题.【过程与方法】经历探索二次函数y=ax2(a>0)图象的作法和性质的过程,获得利用图象研究函数的经验,培养观察、思考、归纳的良好思维习惯.【情感态度】通过动手画图,同学之间交流讨论,达到对二次函数y=ax2(a>0)图象和性质的真正理解,从而产生对数学的兴趣,调动学生的积极性.【教学重点】1.会画y=ax2(a>0)的图象.2.理解,掌握图象的性质.【教学难点】二次函数图象及性质探究过程和方法的体会教学过程.一、情境导入,初步认识问题1 请同学们回忆一下一次函数的图象、反比例函数的图象的特征是什么?二次函数图象是什么形状呢?问题2 如何用描点法画一个函数图象呢?【教学说明】①略;②列表、描点、连线.二、思考探究,获取新知探究1 画二次函数y=ax2(a>0)的图象.画二次函数y=ax2的图象.【教学说明】①要求同学们人人动手,按“列表、描点、连线”的步骤画图y=x2的图象,同学们画好后相互交流、展示,表扬画得比较规范的同学.②从列表和描点中,体会图象关于y轴对称的特征.③强调画抛物线的三个误区.误区一:用直线连结,而非光滑的曲线连结,不符合函数的变化规律和发展趋势.如图(1)就是y=x2的图象的错误画法.误区二:并非对称点,存在漏点现象,导致抛物线变形.如图(2)就是漏掉点(0,0)的y=x2的图象的错误画法.误区三:忽视自变量的取值范围,抛物线要求用平滑曲线连点的同时,还需要向两旁无限延伸,而并非到某些点停止.九年级数学下册《二次函数的图像与性质》教学教案篇2 【知识与技能】1.会用描点法画二次函数y=ax2+bx+c的图象.2.会用配方法求抛物线y=ax2+bx+c的顶点坐标、开口方向、对称轴、y随x的增减性.3.能通过配方求出二次函数y=ax2+bx+c(a≠0)的最大或最小值;能利用二次函数的性质求实际问题中的最大值或最小值.【过程与方法】1.经历探索二次函数y=ax2+bx+c(a≠0)的图象的作法和性质的过程,体会建立二次函数y=ax2+bx+c(a≠0)对称轴和顶点坐标公式的必要性.2.在学习y=ax2+bx+c(a≠0)的性质的过程中,渗透转化(化归)的思想.【情感态度】进一步体会由特殊到一般的化归思想,形成积极参与数学活动的意识.【教学重点】①用配方法求y=ax2+bx+c的顶点坐标;②会用描点法画y=ax2+bx+c的图象并能说出图象的性质.【教学难点】能利用二次函数y=ax2+bx+c(a≠0)的对称轴和顶点坐标公式,解决一些问题,能通过对称性画出二次函数y=ax2+bx+c(a≠0)的图象.一、情境导入,初步认识请同学们完成下列问题.1.把二次函数y=-2x2+6x-1化成y=a(x-h)2+k的形式.2.写出二次函数y=-2x2+6x-1的开口方向,对称轴及顶点坐标.3.画y=-2x2+6x-1的图象.4.抛物线y=-2x2如何平移得到y=-2x2+6x-1的图象.5.二次函数y=-2x2+6x-1的y随x的增减性如何?【教学说明】上述问题教师应放手引导学生逐一完成,从而领会y=ax2+bx+c与y=a(x-h)2+k的转化过程.二、思考探究,获取新知探究1 如何画y=ax2+bx+c图象,你可以归纳为哪几步?学生回答、教师点评:一般分为三步:1.先用配方法求出y=ax2+bx+c的对称轴和顶点坐标.2.列表,描点,连线画出对称轴右边的部分图象.3.利用对称点,画出对称轴左边的部分图象.探究2 二次函数y=ax2+bx+c图象的性质有哪些?你能试着归纳吗?九年级数学下册《二次函数的图像与性质》教学教案篇3 【知识与技能】1.会用描点法画函数y=ax2(a<0)的图象,并根据图象认识、理解和掌握其性质.2.体会数形结合的转化,能用y=ax2(a<0)的图象与性质解决简单的实际问题.【过程与方法】经历探索二次函数y=ax2(a<0)图象的作法和性质的过程,获得利用图象研究函数的经验,培养观察、思考、归纳的良好思维习惯.【情感态度】通过动手画图,同学之间交流讨论,达到对二次函数y=ax2(a≠0)图【教学重点】①会画y=ax2(a<0)的图象;②理解、掌握图象的性质.【教学难点】二次函数图象的性质及其探究过程和方法的体会.【知识与技能】1.会用描点法画函数y=ax2(a<0)的图象,并根据图象认识、理解和掌握其性质.2.体会数形结合的转化,能用y=ax2(a<0)的图象与性质解决简单的实际问题.【过程与方法】经历探索二次函数y=ax2(a<0)图象的作法和性质的过程,获得利用图象研究函数的经验,培养观察、思考、归纳的良好思维习惯.【情感态度】通过动手画图,同学之间交流讨论,达到对二次函数y=ax2(a≠0)图象和性质的真正理解,从而产生对数学的兴趣,调动学习的积极性.【教学重点】①会画y=ax2(a<0)的图象;②理解、掌握图象的性质.【教学难点】二次函数图象的性质及其探究过程和方法的体会.【知识与技能】1.会用描点法画函数y=ax2(a<0)的图象,并根据图象认识、理解和掌握其性质.2.体会数形结合的转化,能用y=ax2(a<0)的图象与性质解决简单的实际问题.【过程与方法】经历探索二次函数y=ax2(a<0)图象的作法和性质的过程,获得利用图象研究函数的经验,培养观察、思考、归纳的良好思维习惯.【情感态度】通过动手画图,同学之间交流讨论,达到对二次函数y=ax2(a≠0)图【教学重点】①会画y=ax2(a<0)的图象;②理解、掌握图象的性质. 【教学难点】二次函数图象的性质及其探究过程和方法的体会.。

二次函数的图像与性质教案

二次函数的图像与性质教案

二次函数的图像与性质教案教案标题:二次函数的图像与性质教案教案目标:1. 理解二次函数的基本概念和性质;2. 掌握二次函数图像的绘制方法;3. 能够分析二次函数的图像特征和性质。

教案步骤:步骤一:引入二次函数的概念和性质(10分钟)1. 引导学生回顾一次函数的概念和性质,然后引入二次函数的概念,解释二次函数与一次函数的区别。

2. 介绍二次函数的一般形式:f(x) = ax^2 + bx + c,并解释各项的含义。

3. 解释二次函数的性质:对称性、开口方向、顶点、轴等。

步骤二:绘制二次函数的图像(20分钟)1. 通过给定不同的a、b、c值,绘制不同形态的二次函数图像。

2. 详细解释如何确定二次函数的顶点、轴和开口方向。

3. 引导学生观察图像的变化规律,总结二次函数图像与a、b、c值的关系。

步骤三:分析二次函数的图像特征和性质(15分钟)1. 引导学生观察不同形态的二次函数图像,分析其对称性、最值、零点等特征。

2. 引导学生发现二次函数图像的对称轴与一次函数图像的x轴有何关系。

3. 引导学生讨论二次函数图像的开口方向与a值的关系,并总结规律。

步骤四:应用二次函数的图像与性质(15分钟)1. 给定实际问题,引导学生建立与之对应的二次函数模型。

2. 利用二次函数图像的性质,解决实际问题,如求最值、零点等。

3. 引导学生讨论二次函数图像在不同场景中的应用,如抛物线的运动轨迹、物体的抛射问题等。

步骤五:总结与拓展(10分钟)1. 让学生总结二次函数的图像特征和性质,包括对称性、开口方向、顶点、轴等。

2. 引导学生思考二次函数的应用领域,并拓展到其他数学知识的应用,如函数的复合、函数的逆运算等。

教学资源:1. 教材:包含二次函数相关知识的教材或教学参考书。

2. 白板、彩色笔等教学工具。

3. 实际问题的案例素材。

评估方式:1. 课堂练习:通过绘制二次函数图像、分析图像特征等练习,检查学生对二次函数的理解和应用能力。

二次函数图像与性质教案

二次函数图像与性质教案

二次函数图像与性质教案教案标题:二次函数图像与性质教案教案目标:1. 理解二次函数的定义和性质;2. 掌握二次函数图像的绘制和相关参数的解释;3. 能够分析二次函数图像的特征和变化规律;4. 运用二次函数图像和性质解决实际问题。

教案步骤:第一步:引入1. 引导学生回顾一次函数的概念和图像特征;2. 提问:你们对二次函数有什么了解?第二步:二次函数的定义和性质1. 讲解二次函数的定义:f(x) = ax^2 + bx + c;2. 解释二次函数的性质:对称性、开口方向、顶点、轴对称、零点等;3. 示例演示:通过具体的二次函数例子,解释性质的含义。

第三步:二次函数图像的绘制1. 讲解如何绘制二次函数图像:确定顶点、轴对称线和开口方向;2. 指导学生绘制几个简单的二次函数图像;3. 练习:提供一些二次函数的表达式,让学生绘制对应的图像。

第四步:二次函数图像的特征和变化规律1. 分析二次函数图像的特征:顶点、开口方向、轴对称线、最值等;2. 探讨二次函数图像的变化规律:a、b、c对图像的影响;3. 练习:给出不同参数的二次函数,让学生分析图像的变化规律。

第五步:实际问题的应用1. 引导学生思考如何利用二次函数解决实际问题;2. 提供一些实际问题,让学生运用二次函数图像和性质进行求解;3. 练习:让学生自己设计一个实际问题,并用二次函数解决。

第六步:总结与拓展1. 总结二次函数图像与性质的重点内容;2. 拓展学生的思维:提问一些拓展问题,让学生思考更复杂的二次函数图像和性质。

教案评估:1. 针对性问题:提问学生关于二次函数图像和性质的问题;2. 绘图练习:要求学生根据给定的二次函数表达式绘制图像;3. 应用问题:给学生实际问题,要求他们用二次函数图像和性质解决。

教案延伸:1. 引导学生进一步探究二次函数的其他性质,如最值、零点等;2. 引导学生研究二次函数的应用领域,如物理学、经济学等;3. 提供更复杂的二次函数图像和性质的练习,挑战学生的能力。

二次函数的性质与图像教案

二次函数的性质与图像教案

二次函数的性质与图像教案一、教学目标1. 让学生理解二次函数的定义和标准形式;2. 掌握二次函数的性质,包括对称轴、顶点、开口方向等;3. 能够绘制二次函数的图像,并分析图像的性质;4. 能够运用二次函数解决实际问题。

二、教学内容1. 二次函数的定义和标准形式;2. 二次函数的性质;3. 二次函数的图像;4. 实际问题中的应用。

三、教学重点与难点1. 重点:二次函数的性质和图像;2. 难点:二次函数图像的分析与应用。

四、教学方法1. 采用问题驱动法,引导学生探究二次函数的性质;2. 利用数形结合法,让学生直观地理解二次函数的图像;3. 结合实际例子,让学生学会运用二次函数解决实际问题。

五、教学准备1. 教学课件;2. 练习题;3. 实物模型或图形软件。

教案内容请参考下述示例:一、二次函数的定义和标准形式1. 二次函数的定义:形如y=ax^2+bx+c(a≠0,a、b、c为常数)的函数称为二次函数。

2. 二次函数的标准形式:y=a(x-h)^2+k,其中(h,k)为顶点坐标。

二、二次函数的性质1. 对称轴:二次函数的对称轴为x=h。

2. 顶点:二次函数的顶点坐标为(h,k)。

3. 开口方向:当a>0时,二次函数的图像开口向上;当a<0时,二次函数的图像开口向下。

三、二次函数的图像1. 绘制二次函数的图像:通过顶点、对称轴、关键点等方法绘制。

2. 分析二次函数的图像:观察开口方向、对称轴、顶点等。

四、实际问题中的应用1. 利用二次函数解决实际问题:如抛物线与坐标轴的交点、最值问题等。

2. 结合实际例子,让学生学会运用二次函数解决实际问题。

五、课堂练习1. 练习题:巩固二次函数的性质与图像知识。

2. 实物模型或图形软件:让学生直观地感受二次函数的图像。

六、教学过程1. 导入:通过回顾一次函数和线性函数的图像,引导学生思考二次函数图像的特点。

2. 新课:介绍二次函数的定义和标准形式,解释对称轴、顶点、开口方向等概念。

二次函数图像和性质教学设计

二次函数图像和性质教学设计

二次函数图像和性质教学设计第1篇:二次函数的性质和图像教学设计二次函数的性质和图像教学设计必修1《2.2.2 二次函数的性质与图象》教学设计一、教学内容分析本节课是《一般高中课程标准实验教科书·数学(1)》(人教B版)第二章第二节第二课(2.2.2)《二次函数的性质与图象》。

关于《二次函数的性质与图象》在初中已经学习过,根据我所任教的学生的实际情况,我将《二次函数的性质与图象》设定为一节课(探究图象及其性质)。

二次函数是重要的基本初等函数之一,作为常见函数,它不仅是今后学习其他初等函数的基础,同时在生活及生产实际中有着广泛的应用,所以二次函数应重点讨论。

二、学生学习况情分析二次函数是在学生系统学习了函数概念,基本掌握了函数的性质的基础上进行讨论的,是学生对函数概念及性质的又一次应用。

基于在初中教材的学习中已经给出了二次函数的图象及性质,已经让学生掌握了二次函数的图象及一些性质,只是像单调性、对称性、零点这种性质还没有规范,课本给出的三个例题对于学生来说非常熟悉。

本节课需要仔细设计问题来激发学生学习新知的爱好和欲望。

三、设计思想1.函数及其图象在高中数学中占有很重要的位置。

如何突破这个既重要又抽象的内容,其实质就是将抽象的符号语言与直观的图象语言有机的结合起来,通过具有一定思考价值的问题,激发学生的求知欲望――持久的好奇心。

我们知道,函数的表示法有三种:列表法、图象法、解析法,以往的函数的学习大多只关注到图象的作用,这其实只是借助了图象的直观性,只是从一个角度看函数,是片面的。

本节课,力图让学生从不同的角度去讨论函数,对函数进行一个全方位的讨论,并通过对比总结得到讨论的方法,让学生去体会这种讨论方法,以便能将其迁移到其他函数的讨论中去。

2.结合新课程实施的教学理念,在本课的教学中我努力实践以下两点:(1)在课堂活动中通过同伴合作、自主探究尝试培育学生乐观主动、勇于探索的学习方式。

(2)在教学过程中努力做到师生的互动,并且在对话之后重视体会、总结、反思,力图在培育和进展学生数学素养的同时让学生掌握一些学习、讨论数学的方法。

二次函数的图像和性质教案

二次函数的图像和性质教案

二次函数的图像和性质教案教案标题:二次函数的图像和性质教学目标:1. 理解二次函数的定义、图像和性质;2. 能够画出二次函数的图像,并根据图像分析其性质;3. 掌握二次函数的顶点、对称轴、零点以及开口方向的求解方法;4. 运用二次函数的性质解决实际问题。

教学重点:1. 二次函数的图像及其意义;2. 二次函数的性质及其应用。

教学难点:1. 二次函数性质的理解和应用;2. 实际问题转化为二次函数求解。

教学准备:1. 教师:计算机、投影仪;2. 学生:纸张、铅笔、计算器。

教学过程:一、导入(5分钟)1. 展示一个抛物线的图像,引发学生思考:这个图像与平面解析几何中的什么有关?2. 引导学生回顾解析几何中的抛物线,了解其定义和性质。

二、知识讲解(15分钟)1. 介绍二次函数的定义:二次函数是形如y = ax^2 + bx + c的函数,其中a、b、c为实数且a≠0;2. 讲解二次函数图像的基本形状和性质,包括抛物线的开口方向、顶点、对称轴等概念;3. 指导学生如何利用顶点求解二次函数的最值和对称轴的方程。

三、图像绘制(20分钟)1. 学生利用计算器或手工绘制二次函数的图像,从中观察和分析抛物线的特征;2. 小组讨论并汇报图像的性质,如开口方向、顶点坐标、对称轴等。

四、性质探究(15分钟)1. 学生根据图像和定义,推导二次函数与其各特征之间的关系;2. 学生以小组为单位,解答提出的问题,并进行讨论。

五、解题实践(20分钟)1. 提供一组具体的问题,要求学生利用所学二次函数的性质解答;2. 学生独立或合作解答问题,并与小组成员讨论思路和解题方法;3. 学生汇报解答结果,并进行讨论。

六、拓展与总结(10分钟)1. 引导学生思考:二次函数的图像和性质在哪些实际问题中能够应用?2. 总结本节课所学内容,强调二次函数图像与性质的重要性。

教学延伸:1. 进一步讲解二次函数图像的平移、伸缩等变换;2. 利用软件工具进行二次函数的探索和应用。

二次函数的性质与图像教案

二次函数的性质与图像教案

二次函数的性质与图像教案一、教学目标:1. 让学生理解二次函数的定义,掌握二次函数的一般形式;2. 引导学生探究二次函数的性质,包括对称性、单调性等;3. 让学生学会绘制二次函数的图像,并能分析图像的特点;4. 培养学生运用二次函数解决实际问题的能力。

二、教学重点与难点:重点:二次函数的定义、性质及图像特点;难点:二次函数图像的绘制及分析。

三、教学方法:1. 采用问题驱动法,引导学生探究二次函数的性质;2. 利用数形结合法,让学生直观地理解二次函数的图像特点;3. 采用实例分析法,培养学生解决实际问题的能力。

四、教学准备:1. 教师准备PPT,包括二次函数的定义、性质、图像等;2. 准备一些实际问题,用于巩固所学知识。

五、教学过程:1. 引入:通过一个实际问题,引导学生思考二次函数的应用;2. 讲解:介绍二次函数的定义、一般形式,引导学生探究二次函数的性质;3. 演示:利用PPT展示二次函数的图像,让学生直观地理解二次函数的图像特点;4. 练习:让学生绘制一些二次函数的图像,并分析其性质;5. 总结:对本节课的内容进行总结,强调二次函数的性质及图像的特点;6. 作业:布置一些练习题,巩固所学知识。

教学反思:在教学过程中,要注意引导学生主动探究二次函数的性质,培养学生的动手能力。

通过实际问题的分析,让学生感受二次函数在生活中的应用,提高学生的学习兴趣。

在讲解二次函数的图像时,要注重让学生理解顶点、对称轴等关键点的作用,以便能更好地分析二次函数的性质。

六、教学拓展:1. 引导学生探讨二次函数在实际生活中的应用,如抛物线运动、最优化问题等;2. 介绍二次函数与其他数学知识的关系,如导数、积分等;3. 引导学生思考二次函数在自然界中的体现,如物体的自由落体运动等。

七、课堂小结:1. 回顾本节课所学内容,让学生总结二次函数的性质及图像特点;2. 强调二次函数在实际问题中的应用价值;3. 提醒学生注意在学习过程中积累经验,提高解决问题的能力。

中学数学教案:《二次函数的图像与性质》教学设计

中学数学教案:《二次函数的图像与性质》教学设计

中学数学教案:《二次函数的图像与性质》教学设计一、引言二次函数是中学数学中一个重要且常见的内容,它在数学教学中具有相当高的实用性和启发性。

通过学习二次函数的图像与性质,学生可以进一步加深对函数的理解,培养思维灵活性和解决实际问题的能力。

本教学设计将结合学生的认知特点,通过引入具体案例和实际问题,帮助学生深入理解二次函数的图像与性质。

二、教学目标1. 知识与技能:a. 掌握二次函数的标准式、顶点式和描点法表达方式;b. 理解二次函数图像与二次函数的性质之间的关系,如对称性、单调性等;c. 能够准确画出二次函数的图像,并根据图像解决实际问题。

2. 过程与方法:a. 引导学生主动思考和发现数学规律;b. 培养学生观察、分析实际问题的能力;c. 激发学生的兴趣,提高学习的主动性。

3. 情感态度与价值观:培养学生的数学思维习惯和解决问题的能力,增强学生对数学的兴趣和自信心。

三、教学过程3.1 导入活动:生活中的二次函数(15分钟)通过展示一些与二次函数相关的实际问题,如摆锤在空中的运动、喷泉的水柱高度等,引起学生对二次函数的兴趣,并鼓励学生讨论这些现象背后的数学规律。

3.2 概念讲解与示例分析(30分钟)a. 引导学生回顾二次函数的定义,并介绍二次函数的标准式、顶点式和描点法表达方式;b. 通过几个典型的示例,解释二次函数图像与二次函数的性质之间的关系,如顶点、对称轴、单调性等;c. 提醒学生时刻关注实际问题背后的数学模型和变量之间的关系。

3.3 图像绘制与分析(40分钟)a. 给予学生一些简单的二次函数,要求他们根据函数表达式画出图像,并分析图像的特点;b. 引导学生思考,特别关注图像的对称性、最值点等,并进一步解释这些特点与二次函数的性质之间的联系;c. 通过类似的练习,逐渐提高学生分析和解决问题的能力。

3.4 真实问题解决(30分钟)a. 给出一个实际问题,如抛物线喷泉的喷水高度问题,要求学生根据已知条件建立二次函数模型,并解决问题;b. 引导学生思考问题的分析步骤,设置合理的变量,并通过图像或计算得到结果;c. 汇总学生的解决方法,并进行讨论和总结。

二次函数的图象与性质(第1课时) 教学设计

二次函数的图象与性质(第1课时) 教学设计

第二章 二次函数《二次函数的图象与性质(第1课时)》教学设计教学目标1.经历探索二函数2x y ±=的图象的画法和性质的过程,获得利用图象研究函数性质的经验.2.能够利用描点法画函数2x y ±=的图象,能根据图象认识和理解二次函数2x y ±=的性质.能比较2x y ±=图象和性质的异同.3.发展学生的观察、归纳、猜测、验证的能力,培养学生运用数形结合的思想解决问题能力.4.运用类比的方法学习二次函数的性质,培养学生掌握学习数学知识的通性通法,发展学生核心素养.教学重点:画出函数2x y ±=的图象,并根据图象认识和理解二次函数2x y ±=的性质.教学难点:探索二次函数2x y ±=增减性. 教学过程(一)创设问题情境,引入新课[师]我们在学习了正比例函数,一次函数与反比例函数的定义后,研究了它们各自的图象特征.知道正比例函数的图象是过原点的一条直线.一般地一次函数的图象是不过原点的一条直线,反比例函数的图象是双曲线.上节课我们学习了二次函数的一般形式为c bx ax y ++=2(其中c b a 、、均为常数且0≠a ).那么它的图象是否也为直线或双曲线呢?本节课我们将一起来研究有关问题.(二)新课讲解 1、作函数2x y =的图象[师]一次函数的图象是一条直线.二次函数的图象是什么形状呢?让我们先看最简单的二次函数2x y =.大家还记得画函数图象的一般步骤吗? [生]记得. 列表,描点,连线.[师]非常正确,下面就请同学们跟我按下面的步骤作出2x y =的图象. (1)列表:(2)在直角坐标系中描点.(3)用光滑的曲线连结各点,便得到函数图象.[师]同学们有没有什么疑惑?[生]老师,为什么要用光滑的曲线来连接各点呢?在作一次函数图象时我们都是直接用直线来连接各点的,我这里画出的是折线图,难道不对吗? [师]这个问题提得好.二次函数图象是到底用直线连接还是用光滑的曲线来连接更为合理呢?不知同学们考虑这个问题没有:列表时我们取的点都是整数点,在整数点之间还有许多小数的点并未取,如自变量1与2之间还有无数个小数,假设我们把点取得更多一些我们就能看出二次函数图象的真正面貌了.不妨取20个点试试,再取50个点试试.[生]老师,我明白了,取的点足够多时我们就能看出其本来面貌的. 2、议一议对于二次函数2x y =的图象,(1)你能描述图象的形状吗?与同伴进行交流. (2)图象与x 轴有交点吗?如果有,交点坐标是什么? (3)当0<x 时,随着值的增大,的值如何变化?当0>x 时呢? (4)当x 取什么值时,y 的值最小?最小值是什么?你是如何知道的? (5)图象是轴对称图形吗?如果是,它的对称轴是什么?请找出几对对称点,并与同伴进行交流.[生](1)图象的形状是一条曲线,就像抛出的物体所进行的路线的倒影. (2)图象与x 轴有交点,交于原点,交点坐标就是(0,0).(3)当0<x 时,图象在y 轴的左侧随着x 值的增大,y 的值逐渐减小;当0>x 时,图象在y 轴的右侧,随着x 值的增大,y 的值逐渐增大.(4)观察图象可知,当x=0时,y 的值最小,最小值为0.(5)观察图象是轴对称图形,它的对称轴是y 轴,从刚才的列表中可找到对应点(-1,1)和(1,1);(-2,4)和(2,4);(-3,9)和(3,9). [师]大家分析判断能力很棒,下面我们系统地总结一下. 3、2x y =的图象的性质[师]二次函数________2的图象是一条x y =,它的开口________,且关于______对称.对称轴与抛物线的交点是抛物线的________,它是图象的_________.同学们在补充一下:挑选一名学生在交互一体机上书写.其余学生在学案上完成下表:4、做一做PPT 显示:2x y-=二次函数图象是什么形状?先想一想,然后作出它的图象.它与二次函数2x y =的图象有什么关系?与同伴进行交流. [师]请大家按照画图的步骤作出函数2x y -=的图象.[生]2x y -=的图象如右图:形状还是抛物线,只是它的开口方向向下,它与2x y =的图象形状相同,方向相反,这两个图形可以看作是关于x [师]下面我们试着讨论2x y -=的图象的性质.挑选一名学生在交互一体机上书写.其余学生在学案上完成下表:[师]大家总结得非常棒.5、2x=图象的比较.y=函数与的2xy-我们观察函数2x=的图象,并完成下表:y=与2xy-(三)课堂小结分享一下本节课的收获. 先在小组内分享,再挑选学生利用板中板把自己的收获展示出来.(四)布置作业必做题:一、习题2.2 第1、2题.二、利用网络搜索生活中见到的抛物线图片. 拓展提升(选做):已知二次函数2xy ,若x≥m 时,y最小值为0,求实数 m 的取值范围.。

《二次函数的图像和性质1》教案

《二次函数的图像和性质1》教案

《二次函数的图像和性质》教案教学目标知识与技能能够利用描点法画出函数y=±x2的图像,并根据图像认识和理解二次函数;y==±x2的性质,比较两者的异同.数学思考与问题解决1.发展学生的观察、归纳、猜测、验证的能力.2.通过观察、思考、交流等过程,得出二次函数y=ax2的性质.情感与态度让学生全身心地投入到数学活动中,能够积极与同伴合作交流,并进行探索活动,发展实践能力与创新精神.重点难点重点二次函数y=x2与y=-x2的图像特点.难点二次函数y=x2的图像特点的探索过程.教学设计—、复习引入,导入新课我们在学习了正比例函数、一次函数、反比例函数的定义后,都借助图像研免了它们的性质,而上节课我们所学的二次函数的图像是什么呢?本节课我们将从最简单的二次函数y =x2入手去研究.二、自主研究,合作交流1.画二次函数y=x2的图像.回顾画函数图像的一般步骤:列表、描点、连线.(1)观察函数的表达式,选择适当的x值,并计算相应的y值,完成下表:(图像是未知的,所以应根据自变量的取值,x为任意实数,选取一些有代表性、方便计算的z值,如:几个负整数、0、几个正整数)(3)用光滑的曲线连接各点,便得到二次函数y=x2的图像.(能用直线连接吗?)2.议一议.对于二次函数的图像:(1)你能描述图像的形状吗?与同伴进行交流.(2)图像与x轴有交点吗?如果有,交点坐标是什么?(3)当x<0时,随着x值的增大,y的值如何变化?当x>0时呢?(4)当x取什么值时,y的值最小?最小值是什么?你是如何知道的?(5)图像是轴对称图形吗?如果是,它的对称轴是什么?请你找出几对对称点,并与同伴进行交流.分析并总结:二次函数:y=x2的图像是抛物线.⑴抛物线的开口向上;(2)图像有最低点,最低点的坐标是(0,0);(3)图像是轴对称图形,对称轴是y轴.在对称轴左侧,y随x的增大而减少;在对称轴右侧,y随x的增大而增大;(4)图像与x轴有交点,这个交点也是对称轴与抛物线的交点,称为抛物线的顶点,同时也是图像的最低点,坐标为(0,0);(3)因为图像有最低点,所以函数有最小值,当x=0时,:y最小=03.做一做.二次函数y=-x2的图像是什么形状?先想一想,然后画出它的图像,它与二次函数y=x2的图像有什么关系?与同伴交流.分析并总结:二次函数的图像y=-x2是抛物线.(1)抛物线的开口向下;(2)图像有最高点,最高点的坐标是(0,0);(3)图像是轴对称图形,对称轴是y 轴.在对称轴左侧,y 随x 的增大而增大,在对称轴右侧,y 随x 的增大而减小;(4)图像与x 轴有交点,这个交点也是对称轴与抛物线的交点,称为抛物线的顶点,同时也是图像的最高点,坐标为(0,0);(5)因为图像有最高点,所以函数有最大值,当x =0时,y 最大=0. 4.探究二次函数2222112222===-=-、、、y x y x y x y x 的图象特点.(1)思考以上这些函数图像有什么特点?如形状位置、方向、顶点、对称 轴等.(2)对于二次函数,开口的大小和方向是由什么决定的?不画出函数的图像,你能说出它的开口方向和大小吗?讨论并归纳:二次函数的开口方向、大小、是由它的二次项系数决定的,二次项系数的的大小决定函数图像开口的大小;二次项系数的正负决定函数图像开口的方向.我们把上面函数归纳成y =ax 2,分析其性质.二次函数y =ax 2的图像和性质:练习:(1)已知抛物线y=ax2经过点A(-2,-8).①求此抛物线的函数表达式;②判断点B(-1,-4)是否在此抛物线上;③求出此抛物线上纵坐标为-6的点的坐标.四、课堂小结本节课你有哪些收获?本节课你发现自己还存在哪些不足?五、布置作业教材第11和13页页练习.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

磨课计划讨论记录:
时间:2014年7月27日9点地点:板泉一中数学教研组参加会议:研修组全体成员
谷元华:根据暑期培训的安排,今天我们要进行修改磨课计划。

这次课例研究的内容是《二次函数和图像和性质》,请大家认真学习磨课计划后畅所欲言,充分发表自己的意见和建议,使修改后的磨课计划切实可行,保证磨课活动的顺利实施。

王言卿:1、学生个体差异明显,学优生少,学困生多;2、学习内容难度大,设计的问题应该怎样才能激发起学生的学习兴趣,从而进一步调动他们的学生主动性和积极性,这是摆在我们面前的一个实际问题,所以我觉得问题情境的设置很重要,我们要尽可能根据学生的不同水平设计不同层次的问题,让全体学生都有参与体验的机会学生思维才能积极起来,并向纵深发展。

王美容:刚才王校长的意见很切合实际,要调动全体学生的学习主动性和积极性,首先要有激发学生探究的问题情景。

如何才能设置一个容易让全体学生都能有兴趣的问题呢?这才是我们在以后教学中要重视的一个问题。

不仅要考虑到教材内容,而且还应该结合实际,充分考虑学生的差异性、层次性,尽可能根据学生的不同水平设计不同层次的问题,让全体学生都有参与体验的机会庄乾成:问题的设置要以小组合作学习的形式体现,问题要明确,选题要合适,并通过小组学习就能解决,或者在老师的引导下就能解决的问题,切不可选那些问题模糊,难度大的问题。

相关文档
最新文档