北师大版高二数学必修五第一章测试试题及答案
北师大版高中数学必修五第一章《数列》测试题(答案解析)
一、选择题1.“杨辉三角”是中国古代重要的数学成就,它比西方的“帕斯卡三角形”早了300多年.如图是由“杨辉三角”拓展而成的三角形数阵,记n a 为图中虚线上的数1,3,6,10,构成的数列{}n a 的第n 项,则100a 的值为( )A .5049B .5050C .5051D .51012.记n S 为等比数列{}n a 的前n 项和.若2342S S S =+,12a =,则2a =( ) A .2B .-4C .2或-4D .43.某食品加工厂2019年获利20万元,经调整食品结构,开发新产品.计划从2020年开始每年比上一年获利增加20%,则从( )年开始这家加工厂年获利超过60万元.(已知lg 20.3010=,lg30.4771=) A .2024年B .2025年C .2026年D .2027年4.在ABC ∆中,内角,,A B C 所对的边分别为,,a b c ,已知222,,a b c 成等差数列,则cos B 的最小值为( )A .12B .22C .34D .325.《张丘建算经》是我国北魏时期大数学家丘建所著,约成书于公元466485~年间,其记臷着这么一道题:某女子善于织布,一天比一天织得快,而且每天增加的数量相同. 已知第一天织布5尺,30天其织布390尺,则该女子织布每天增加的尺数(不作近似计算)为( ) A .1629B .1627C .1113D .13296.已知等差数列{}n a 的首项为1a ,公差为d ,其前n 项和为n S ,若直线112y a x m =+与圆()2221x y -+=的两个交点关于直线0x y d +-=对称,则数列1n S ⎧⎫⎨⎬⎩⎭的前10项和为( ) A .1011B .910C .89D .27.数列{}n a 的通项公式是*1()(1)n a n n n =∈+N ,若前n 项的和为1011,则项数为( ).A .12B .11C .10D .98.已知函数()()f x x R ∈满足()()42f x f x -++=,若函数2xy x =-与()y f x =图象的交点为()()()1122,,,,,,n n x y x y x y ⋯,则()1niii x y =+=∑( )A .0B .nC .2nD .3n9.已知椭圆2222x y a b +=1(a>b>0)与双曲线2222x y m n-=1(m>0,n>0)有相同的焦点(-c ,0)和(c ,0),若c 是a ,m 的等比中项,n 2是2m 2与c 2的等差中项,则椭圆的离心率是 ( ) ABC .14D .1210.已知n S 是等差数列{}n a 的前n 项和,且675S S S >>,下列说法错误的是( ) A .0d <B .110S >C .120S <D .67a a >11.若{}n a 是等比数列,其公比是q ,且546,,a a a -成等差数列,则q 等于( ) A .-1或2B .1或-2C .1或2D .-1或-212.设{}n a 为等比数列,给出四个数列:①{}2n a ,②{}2n a ,③{}2na ,④{}2log ||n a .其中一定为等比数列的是( ) A .①③B .②④C .②③D .①②二、填空题13.已知数列{}n a 的前n 项和为n S ,若11a =,22a =,0n a ≠,()111122n n n n n a n S a S nS +++--=-,其中2n ≥,且*n ∈N .设21n n b a -=,数列{}n b 的前n 项和为n T ,则100T =______.14.设数列{}n a 中12a =,若等比数列{}n b 满足1n n n a a b +=,且10101b =,则2020a =__. 15.已知等差数列{}n a 的首项是19-,公差是2,则数列{}n a 的前n 项和n S 的最小值是_______.16.设n S 是数列{}n a 的前n 项和,且112a =,110n n n a S S +++=,则2020S =______. 17.在数列{}n a 中,11a =()*1n =∈N;等比数列{}nb 的前n 项和为2n n S m =-.当n *∈N 时,使得n n b a λ≥恒成立的实数λ的最小值是_________.18.若数列}{n a2*3()n n n N =+∈,则n a =_______.19.已知下列结论:①若数列{}n a 的前n 项和21n S n =+,则数列{}n a 一定为等差数列.②若数列{}n a 的前n 项和21nn S =-,则数列{}n a 一定为等比数列.③非零实数,,a b c 不全相等,若,,a b c 成等差数列,则111,,a b c可能构成等差数列. ④非零实数,,a b c 不全相等,若,,a b c 成等比数列,则111,,a b c一定构成等比数列. 则其中正确的结论是_______.20.我们知道,斐波那契数列是数学史上一个著名数列,在斐波那契数列{}n a 中,()*12211,1,n n n a a a a a n ++===+∈N .用n S 表示它的前n 项和,若已知2020S m =,那么2022a =_______.三、解答题21.已知各项为正数的等比数列{}n a ,前n 项和为n S ,若2125,2,log a log a 成等差数列,37S =,数列{}n b 满足,11b =,数列11n n n b b a ++⎧⎫-⎨⎬⎩⎭的前n 项和为232n n+ (1)求{}n a 的公比q 的值;(2)求{}n b 的通项公式.22.已知{}n a 是公差不为0的等差数列,若1313,,a a a 是等比数列{}n b 的连续三项. (1)求数列{}n b 的公比; (2)若11a =,数列11n n a a +⎧⎫⎨⎬⎩⎭的前n 和为n S 且99200nS >,求n 的最小值. 23.在公差为d 的等差数列{}n a 中,已知110a =,且1a ,222a +,35a 成等比数列. (1)求数列{}n a 的通项公式; (2)若0d <,93n n na b -=,求数列{}n b 的前n 项和n S . 24.已知数列n A :1a ,2a ,…,()2n a n ≥满足:①11a =;②()121,2,,1k ka k n a +==-.记()12n n S A a a a =+++.(1)直接写出()3S A 的所有可能值; (2)证明:()0n S A >的充要条件是0n a >; (3)若()0n S A >,求()n S A 的所有可能值的和.25.已知{}n a 是由正整数组成的无穷数列,该数列前n 项的最大值记为n A ,最小值记为n B ,令nn nA bB =. (1)若2(1,2,3,)n a n n ==,写出1b ,2b ,3b 的值.(2)证明:1(1,2,3,)n n b b n +≥=.(3)若{}n b 是等比数列,证明:存在正整数0n ,当0n n 时,n a ,1n a +,2n a +是等比数列.26.已知n S 为等差数列{}n a 的前n 项和,59a =,13169S =. (1)求数列{}n a 的通项公式; (2)设3nn na b =,求数列{}n b 的前n 项和n T .【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】观察数列的前4项,可得(1)2n n n a +=,将100n =代入即可得解. 【详解】由题意得11a =,2312a ==+,36123a ==++,4101234a ==+++⋅⋅⋅ 观察规律可得(1)1232n n n a n +=+++⋅⋅⋅+=, 所以10010010150502a ⨯==. 故选:B. 【点睛】关键点点睛:本题考查了观察法求数列的通项公式,关键是将各项拆成正整数的和的形式发现规律.2.B解析:B 【分析】利用等比数列的前n 项和公式求出公比,由此能求出结果. 【详解】∵n S 为等比数列{}n a 的前n 项和,2342S S S =+,12a =,∴()()()34212122211q q q qq--+=+--,解得2q =-,∴214a a q ==-,故选B . 【点睛】本题主要考查等比数列的性质以及其的前n 项和等基础知识,考查运算求解能力,是基础题.3.C解析:C 【分析】本题根据题意各年获利构成一个等比数列,然后得到通项公式,根据题意可得出关于n 的不等式,解出n 的值,注意其中对数式的计算. 【详解】由题意,设从2019年开始,第n 年的获利为()n a n *∈N 万元,则数列{}n a 为等比数列,其中2019年的获利为首项,即120a =.2020年的获利为()2620120%205a =⋅+=⋅万元,2021年的获利为()223620120%205a ⎛⎫=⋅+=⋅ ⎪⎝⎭万元,∴数列{}n a 的通项公式为()16205n n n N a *-⎛⎫⋅⎪⎝⎭∈= ,由题意可得1620605n n a -⎛⎫=⋅> ⎪⎝⎭,即1635n -⎛⎫> ⎪⎝⎭,()65lg3lg3lg3lg30.47711log 3610lg6lg52lg 2lg3120.30100.47711lg lg 23lg 52n ∴->=====-+-⨯+-⨯-6.03166=>,8n ∴≥,∴从2026年开始这家加工厂年获利超过60万元.故选:C . 【点评】本题主要考查等比数列在实际生活中的应用,考查了等比数列的通项公式,不等式的计算,对数运算.属于中档题.4.A解析:A 【解析】分析:用余弦定理推论得222cos 2a c b B ac +-=.由222,,a b c 成等差数列,可得2222a c b += ,所以22222cos 24a c b a c B ac ac+-+==,利用重要不等式可得2221cos 442a c ac B ac ac +=≥=.详解:因为222,,a b c 成等差数列,所以2222a cb += . 由余弦定理推论得2222221cos 2442a cb ac ac B ac ac ac +-+==≥=当且仅当a c =时,上式取等号. 故选A .点睛:本题考查等差中项、余弦定理的推论、重要不等式等知识,考查学生的运算能力及转化能力.利用重要不等式、基本不等式求最值时,一定要判断能否取相等,不能相等时,应转化为函数求最值.5.A解析:A 【解析】由题设可知这是一个等差数列问题,且已知13030,390a S ==,求公差d .由等差数列的知识可得30293053902d ⨯⨯+=,解之得1629d =,应选答案A . 6.A解析:A 【分析】由题意可知,直线112y a x m =+与直线0x y d +-=垂直,且直线0x y d +-=过圆心,可求得1a 和d 的值,然后利用等差数列的求和公式求得n S ,利用裂项法可求得数列1n S ⎧⎫⎨⎬⎩⎭的前10项和. 【详解】 由于直线112y a x m =+与圆()2221x y -+=的两个交点关于直线0x y d +-=对称, 则直线112y a x m =+与直线0x y d +-=垂直,直线0x y d +-=的斜率为1-,则1112a =,可得12a =,且直线0x y d +-=过圆()2221x y -+=的圆心()2,0,则20d -=,可得2d =,()()112212n a a n d n n ∴=+-=+-=,则()()()122122n n n a a n n S n n ++===+,()111111n S n n n n ∴==-++, 因此,数列1n S ⎧⎫⎨⎬⎩⎭的前10项和为1111111110112233410111111⎛⎫⎛⎫⎛⎫⎛⎫-+-+-++-=-= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭.故选:A. 【点睛】本题考查裂项求和,同时也考查了直线与圆的综合问题,以及等差数列求和公式的应用,考查计算能力,属于中等题.7.C解析:C 【解析】分析:由已知,111(1)1n a n n n n ==-++,利用裂项相消法求和后,令其等于1011,得到n 所满足的等量关系式,求得结果.详解:111(1)1n a n n n n ==-++ ()n *∈N ,数列{}n a 的前n 项和11111(1)()()2231n S n n =-+-+⋯+-+ 1111n n n =-=++,当1011n S =时,解得10n =,故选C. 点睛:该题考查的是有关数列的问题,在解题的过程中,需要对数列的通项公式进行分析,选择相应的求和方法--------错位相减法,之后根据题的条件,建立关于n 的等量关系式,从而求得结果.8.D解析:D 【分析】由题意可得()()f x x R ∈的图像关于点()2,1对称,函数2xy x =-的图像也关于()2,1对称,然后利用对称性以及倒序相加法即可得出答案. 【详解】函数()()f x x R ∈满足()()42f x f x -++=,∴()f x 的图像关于点()2,1对称,而函数2xy x =-的图像也关于()2,1对称, 设123n x x x x >>>>121224n n x x x x -∴+=+==⨯= 121212n n y y y y -+=+==⨯=令121nin i xx x x ==++∑,则111ni n n i x x x x -==++∑,()()()1211124n i n n n i x x x x x x x n -==++++∴+=∑,12ni i x n =∴=∑令121nin i y y yy ==++∑,则111ni n n i y y y y -==++∑,()()()1211122n i n n n i y y y n y y y y -=∴=+++++=∑,1ni i n y =∴=∑()13ni i i x y n =+=∴∑,故选:D 【点睛】本题考查了函数的对称性应用,考查了倒序相加法求和,解题的关键是找出中心对称点,属于中档题.9.D解析:D 【解析】由题意可知2n 2=2m 2+c 2. 又m 2+n 2=c 2, ∴m=2c . ∵c 是a ,m 的等比中项, ∴2c am =,∴22ac c =, ∴12c e a ==.选D . 10.C解析:C 【分析】根据{}n a 是等差数列,且675S S S >>,变形为7666555567,,a a S S S S S a S a ++>++>>判断即可.【详解】数列{}n a 是等差数列675S S S >>,7666555567,,a a S S S S S a S a ++>++>>, 76670,0,0a a a a <>+>,所以0d <,()111116111102a a S a +==>, ()()11267121212022a S a a a ++==>,67a a >,故选:C 【点睛】本题主要考查等差数列的通项与前n 项和的关系及应用,还考查了转化求解问题的能力,属于中档题.11.A解析:A 【解析】分析:由546,,a a a -成等差数列可得5642a a a -+=,化简可得()()120q q +-=,解方程求得q 的值. 详解:546,,a a a -成等差数列,所以5642a a a -+=,24442a q a q a ∴-+=,220q q ∴--=,()()120q q ∴+-=,1q ∴=-或2,故选A.点睛:本题考查等差数列的性质,等比数列的通项公式基本量运算,属于简单题. 等比数列基本量的运算是等比数列的一类基本题型,数列中的五个基本量1,,,,,n n a q n a S ,一般可以“知二求三”,通过列方程组所求问题可以迎刃而解,解决此类问题的关键是熟练掌握等比数列的有关性质和公式,并灵活应用.12.D解析:D 【分析】 设11n n a a q -=,再利用等比数列的定义和性质逐一分析判断每一个选项得解.【详解】 设11n n a a q-=,①,112=2n n a a q-,所以数列{}2n a 是等比数列;②,222222111=()n n n a a qa q --=,所以数列{}2n a 是等比数列;③,11112111211222=2,222n nn n n n n n a a q a a q a q a q a a q-------==不是一个常数,所以数列{}2n a 不是等比数列; ④,122122121log ||log |q |log ||log |q |n n n n a a a a ---=不是一个常数,所以数列{}2log ||n a 不是等比数列.故选D 【点睛】本题主要考查等比数列的判定,意在考查学生对该知识的理解掌握水平和分析推理能力.二、填空题13.【分析】根据已知条件推导出数列从第三项开始奇数项成等差数列且公差为然后利用等差数列的求和公式可求得的值【详解】当且时由可得即可得①所以②②①得所以则则所以数列从第三项开始奇数项成等差数列且公差为故答 解析:9901【分析】根据已知条件推导出数列{}n a 从第三项开始,奇数项成等差数列,且公差为2,然后利用等差数列的求和公式可求得100T 的值. 【详解】当2n ≥且*n ∈N 时,0n a ≠, 由()111122n n n n n a n S a S nS +++--=-,可得()()11112n n n n n a S S n S S ++-+-=-,即()1112n n n n a a a na ++++=, 可得12n n a a n ++=,①,所以,()2121n n a a n +++=+,②, ②-①得22n n a a +-=,所以,32224a a +=⨯=,则32a =,则3112a a -=≠, 所以,数列{}n a 从第三项开始,奇数项成等差数列,且公差为2,21n n b a -=,10099982199299012T ⨯⨯=+⨯+=. 故答案为:9901. 【点睛】方法点睛:数列求和的常用方法:(1)对于等差等比数列,利用公式法直接求和;(2)对于{}n n a b 型数列,其中{}n a 是等差数列,{}n b 是等比数列,利用错位相减法求和;(3)对于{}n n a b +型数列,利用分组求和法;(4)对于11n n a a +⎧⎫⎨⎬⎩⎭型数列,其中{}n a 是公差为()0d d ≠的等差数列,利用裂项相消法求和.14.【分析】由变形可得进而由累乘法可得结合等比数列的性质即可得解【详解】根据题意数列满足即则有而数列为等比数列则则又由则故答案为:2【点睛】本题考查了等比数列的性质以及应用考查了累乘法求数列通项的应用及解析:【分析】 由1n n n a a b +=变形可得1n n n a b a +=,进而由累乘法可得202020192018201711ab b b b a =⋅⋅⋅⋅⋅,结合等比数列的性质即可得解. 【详解】根据题意,数列{}n b 满足1n n n a a b +=,即1n n na b a +=, 则有20202020201920182201920182017112019201820171a a a a ab b b b a a a a a ⎛⎫⎛⎫⎛⎫=⋅⋅⋅⋅⋅=⋅⋅⋅⋅⋅ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 而数列{}n b 为等比数列,则()2019201920182017110101b b b b b ⋅⋅⋅⋅⋅==,则202011a a =, 又由12a =,则20202a =. 故答案为:2. 【点睛】本题考查了等比数列的性质以及应用,考查了累乘法求数列通项的应用及运算求解能力,属于中档题.15.【分析】本题先求等差数列前n 项和再由此求出数列的前n 项和的最小值【详解】解:∵等差数列的首项是公差是2∴∴时数列的前n 项和的最小值是故答案为:【点睛】本题考查等差数列前n 项和的最小值的求法考查等差数解析:100-. 【分析】本题先求等差数列前n 项和()()22119220101002n n n S n n n n -=-+⨯=-=--,再由此求出数列{}n a 的前n 项和n S 的最小值. 【详解】解:∵等差数列{}n a 的首项是19-,公差是2, ∴()()22119220101002n n n S n n n n -=-+⨯=-=--,∴10n =时,数列{}n a 的前n 项和n S 的最小值是100-. 故答案为:100-. 【点睛】本题考查等差数列前n 项和的最小值的求法,考查等差数列的性质等基础知识,考查运算求解能力,是基础题.16.【分析】代入再证明为等差数列继而求得的通项公式再计算即可【详解】因为所以两边同除以得:所以数列是以为首项1为公差的等差数列所以所以所以故答案为:【点睛】本题主要考查了根据递推公式证明等差数列的方法属 解析:12021【分析】代入11n n n a S S ++=-,再证明1n S ⎧⎫⎨⎬⎩⎭为等差数列,继而求得1n S ⎧⎫⎨⎬⎩⎭的通项公式再计算2020S 即可.【详解】因为110n n n a S S +++=,所以,11n n n n S S S S ++-=-, 两边同除以1n n S S +-得:1111n nS S +-=, 所以数列1n S ⎧⎫⎨⎬⎩⎭是以2为首项,1为公差的等差数列, 所以()1211n n n S =+-=+,所以11n S n =+, 所以202012021S = 故答案为:12021【点睛】本题主要考查了根据递推公式证明等差数列的方法,属于中档题.17.【分析】分别求出的通项再构建新数列求出最大项后可得实数的最小值【详解】因为故是以1为首项以1为公差的等差数列所以当时是等比数列也适合故即又恒成立等价于恒成立令则当时当时故【点睛】方法点睛:含参数的数解析:94【分析】分别求出{}n a 、{}n b 的通项,再构建新数列212n n n c -=,求出{}n c 最大项后可得实数λ的最小值. 【详解】()*1n=∈N,故是以1为首项,以1为公差的等差数列,()11n n=-⨯=,2*()na n n N∴=∈.当2n≥时,111(2)(2)2n n nn n nb S S m m---=-=---=,{}nb是等比数列,112b S m∴==-也适合12nnb-=,故21m-=即1m=,1*2()nnb n N-∴=∈.又n nb aλ≥恒成立等价于212nnλ-≥恒成立,2max max1()()2nnna nbλ-∴≥=,令212n nnc-=,则()2221121142222n n n n nnn n nc c--------=-=,当23n≤≤时,1-->n nc c,当4n≥时,1n nc c--<,故max39()4nc c==,94λ∴≥.【点睛】方法点睛:含参数的数列不等式的恒成立,可利用参变分离将参数的取值范围问题转化新数列的最值问题,后者可利用数列的单调性来处理.18.【分析】有已知条件可得出时与题中的递推关系式相减即可得出且当时也成立【详解】数列是正项数列且所以即时两式相减得所以()当时适合上式所以【点睛】本题考差有递推关系式求数列的通项公式属于一般题解析:()241n+【分析】有已知条件可得出116a=,2n≥时()()2*131()n n n N⋅⋅⋅=-+-∈,与题中的递推关系式相减即可得出()241na n=+,且当1n=时也成立.【详解】数列}{na2*3()n n n N=+∈4=,即116a=2n≥()()2*131()n n n N⋅⋅⋅+=-+-∈22n=+,所以()241na n=+(2n≥)当1n=时,116a=适合上式,所以()241na n=+【点睛】本题考差有递推关系式求数列的通项公式,属于一般题.19.②④【分析】①先求出再当时求出判断当时有判断①错误;②先求出再当时求出判断数列是以1为首项以2为公比的等比数列判断②正确;③先建立方程组再整理得与非零实数不全相等矛盾判断③错误;④先得方程整理得判断解析:②④ 【分析】①先求出12a =,再当2n ≥时求出21n a n =-,判断当1n =时有11n a a =≠,判断①错误;②先求出11a =,再当2n ≥时求出12n na ,判断数列{}n a 是以1为首项以2为公比的等比数列,判断②正确;③先建立方程组2112a c b a c ac a c b +⎧=+=⎪⎨⎪+=⎩,再整理得a b c ==与非零实数,,a b c 不全相等矛盾,判断③错误;④先得方程2b ac =,整理得2111()b a c=⨯,判断④正确. 【详解】①:数列{}n a 的前n 项和21n S n =+,当1n =时,211112a S ==+=,当2n ≥时,221(1)(1)121n n n a S S n n n -⎡⎤=-=+--+=-⎣⎦,当1n =时,11n a a =≠, 故①错误;②:数列{}n a 的前n 项和21n n S =-,当1n =时,111211a S ==-=, 当2n ≥时,111(21)(21)2nn n n n n a S S ---=-=---=,当1n =时,11n a a ==,且12nn a a -= 所以数列{}n a 是以1为首项,以2为公比的等比数列, 故②正确;③:若111,,a b c是等差数列,则211a c b a c ac+=+=, 因为,,a b c 成等差数列,则2a c b +=,则2112a cb ac ac a c b +⎧=+=⎪⎨⎪+=⎩,整理得a b c ==,与非零实数,,a b c 不全相等矛盾, 故③错误;④:因为非零实数,,a b c 不全相等,且,,a b c 成等比数列,所以2b ac =,则21111b ac a c==⨯, 则111,,a b c一定构成等比数列. 故④正确. 故答案为:②④. 【点睛】本题考查等差数列和等比数列的判断,是基础题.20.【分析】由已知利用累加法即可得到答案【详解】由已知各式相加得即又所以故答案为:【点睛】本题考查了累加求和方法斐波那契数列的性质考查了推理能力与计算能力属于中档题 解析:1m +【分析】由已知,123a a a +=,234,a a a +=202020212022a a a +=,利用累加法即可得到答案. 【详解】由已知,123a a a +=,234,a a a +=202020212022a a a +=,各式相加得1234202020222a a a a a a +++++=,即220202022a S a +=,又21a =,2020S m =,所以20221a m =+. 故答案为:1m + 【点睛】本题考查了“累加求和”方法、“斐波那契数列”的性质,考查了推理能力与计算能力,属于中档题.三、解答题21.(1)2q ;(2)()121n n b n =-⋅+.【分析】(1)对正项的等比数列{}n a ,利用基本量代换,列方程组,解出公比q ; (2)设11n nn n b b d a ++-=,由题意分析、计算得 1n d n =+,从而得到()112n n n b b n +-=+⋅,用累加法和错位相减法求出 n b .【详解】(1)∵2125log ,2,log a a 成等差数列,∴ ()225215log log log 4a a a a +==,即132516a a a ==,又0,n a >34a ∴=,又37,S =21211147a q a a q a q ⎧=∴⎨++=⎩ 解得2q 或23q =-(舍).()2记11n n n n b b d a ++-=,当2n ≥时,()()221313122n n n n n d n -+-+=-=+又12d =也符合上式,1n d n ∴=+.而31322n n n a a --=⋅=,()112n n n b b n +∴-=+⋅,()()()21121321122322,)2(n n n n b b b b b b b b n n --∴=+-+-+⋯+-=+⋅+⋅+⋯+⋅≥, ()231222232122n n n b n n -∴=+⋅+⋅+⋅⋅⋅+-⋅+⋅两式相减得()2112222121n n n n b n n --=+++⋯+-⋅=-⋅-,()2)2(11,n n b n n ∴=-⋅+≥.而11b =也符合上式, 故()121nn b n =-⋅+.【点睛】(1) 等差(比)数列问题解决的基本方法:基本量代换; (2)数列求和常用方法:①公式法;②倒序相加法;③裂项相消法;④错位相减法. 22.(1)5;(2)50. 【分析】(1)利用基本量代换,求出12d a =,直接求出公比; (2)裂项相消法求出n S ,解不等式即可. 【详解】(1)设等差数列{}n a 的公差为d ,由1313,,a a a 是等比数列{}n b 的连续三项,得23113a a a =⋅,即()()2111212a d a a d +=⋅+,化简得2148d a d =.10,2d d a ≠∴=.设数列{}n b 的公比的公比为q ,则3111111245a a d a a q a a a ++====. (2)若11a =,则1111112,21,(21)(21)22121n n n d a n a a n n n n +⎛⎫==-==- ⎪-+-+⎝⎭,111112133557(21)(21)n S n n ⎫⎛=++++⎪ ⨯⨯⨯-⨯+⎝⎭111111111111233557212122121nn n n n ⎛⎫⎛⎫=-+-+-++-=-= ⎪ ⎪-+++⎝⎭⎝⎭. 由99200n S >,得9999,212002n n n >∴>+,故n 的最小值为50.【点睛】(1)等差(比)数列问题解决的基本方法:基本量代换;(2)数列求和的方法:公式法、裂项相消法、错位相减法、倒序相加法.23.(1) 11n a n =-+或46,n a n n N *=+∈;(2)51112423n n n S ⎛⎫=+-⨯ ⎪⎝⎭,n *∈N . 【分析】(1)由123,22,5a a a +成等比数列求得公差后可得通项公式n a ; (2)对23n b b b +++用错位相减法求和.【详解】解:(1)∵123,22,5a a a +成等比数列,∴()2231225a a a +=⋅,整理得2340d d --=,解得1d =-或4d =,当1d =-时,10(1)11n a n n =--=-+; 当4d =时,104(1)46n a n n =+-=+.所以11n a n =-+或46,n a n n N *=+∈.(2)设数列{}n a 前n 项和为n S , ∵0d <,∴1d =-,11n a n =-+23n nnb -=当1n =时,13n S =, 当2n ≥时,2341012233333n n n S -=++++⋅⋅⋅+ 令34122333n n T -=+++,则45111223333n n T +-=+++ 两式相减可得32345111112111122331333333313n n n n n n T -++⎛⎫- ⎪--⎝⎭=+++⋯+-=--整理可得11112423nn T ⎛⎫=+-⨯ ⎪⎝⎭, 则511,212423n n n S n ⎛⎫=+-⨯≥ ⎪⎝⎭ 且113S =满足上式, 综上所述:51112423n n n S ⎛⎫=+-⨯ ⎪⎝⎭,n *∈N . 【点睛】本题考查求等差数列的通项公式,分组(并项)求和法,错位相减法.数列求和的常用方法:(1)公式法;(2)错位相减法;(3)裂项相消法;(4)分组(并项)求和法;(5)倒序相加法.24.(1)所有可能值是7-,5-,3-,1-,1,3,5,7;(2)证明见解析;(3)222n -.【分析】(1)根据递推关系式以及求和式子即可得出结果.(2)充分性:求出数列的通项公式,再利用等比数列的前n 和公式可证;必要性:利用反证法即可证明.(3)列出n A 中的项,得出数列的规律:每一个数列前1n -项与之对应项是相反数的数列,即可求解. 【详解】解:(1)()3S A 的所有可能值是7-,5-,3-,1-,1,3,5,7. (2)充分性:若0n a >,即12n n a .所以满足12n na ,且前n 项和最小的数列是1-,2-,4-,…,22n --,12n -.所以()211212422n n n a a a --++⋅⋅⋅+≥-+++⋅⋅⋅++211222112n n ---⋅=-+=-.所以()0n S A >.必要性:若()0n S A >,即120n a a a ++⋅⋅⋅+>.假设0n a <,即12n n a -=-.所以()()21121242210n n n n S A a a a --=++⋅⋅⋅+≤+++⋅⋅⋅+-=-<, 与已知()0n S A >矛盾. 所以()0n S A >.综上所述,()0n S A >的充要条件是0n a >.(3)由(2)知,()0n S A >可得0n a >.所以12n na .因为数列n A :1a ,2a ,…,()2n a n ≥中1a 有1-,1两种,2a 有2-,2两种,3a 有4-,4两种,…,1n a -有22n --,22n -两种,n a 有12n -一种,所以数列n A :1a ,2a ,…,()2n a n ≥有12n -个,且在这12n -个数列中,每一个数列都可以找到前1n -项与之对应项是相反数的数列. 所以这样的两数列的前n 项和是122n -⨯. 所以这12n -个数列的前n 项和是1122122222n n n ---⨯⨯⨯=. 所以()n S A 的所有可能值的和是222n -. 【点睛】关键点点睛:本题考查了等比数列的通项公式、求和公式,解题的关键是根据递推关系式得出数列n A 的通项公式,注意讨论,此题也考查了数列不等式、反证法在数列中的应用. 25.(1)11b =,22b =,33b =;(2)证明见解析;(3)证明见解析 【分析】(1)由{}n a 是单调递增数列可得1nn a b a =即可求出; (2)设1n a k +=,讨论n k B ≤,n n B k A <<和n k A ≥可证明;(3)设{}n b 的公比为q ,且1q ≥,显然1q =时满足;1q >时,由{}n A 是递增数列,{}n B 是递减数列,且{}n B 不能无限减少可得.【详解】 (1)2n a n =,可得{}n a 是单调递增数列,1,n n n a B A a ∴==,1111a b a ∴==,2212ab a ==,3313a b a ==, (2)设1n a k +=,nn nA bB =, 若n k B ≤,则+1nn n n nk A A b b B =≥=, 若n n B k A <<,则+1nn nn A b b B ==, 若n k A ≥,则+1n n n nn A kb b B B =≥=, 综上,1(1,2,3,)n n b b n +≥=;(3)设等比数列{}n b 的公比为q ,1111a b a ==,则1n n nn A b q B -==, 由(2)可得1n n b b +≥,则1q ≥, 当1q =时,1nnA B =,即n n A B =,此时{}n a 为常数列,则存在01n =,当0n n ≥时,n a ,1n a +,2n a +是等比数列;当1q >时,{}n A 是递增数列,{}n B 是递减数列,{}n a 是由正整数组成的无穷数列,则数列{}n a 必存在最小值,即存在正整数0n ,0n a 是数列{}n a 的最小值,则当0n n ≥时,0n n B a =,此时01n n nn n n A a b q B a -===,即01n n n a a q -=,故当0n n ≥时,n a ,1n a +,2n a +是等比数列;综上,存在正整数0n ,当0n n ≥时,n a ,1n a +,2n a +是等比数列.【点睛】本题考查数列单调性的有关判断,解题的关键是正确理解数列的变化情况,清楚{}n b 的变化特点.26.(1)21n a n =-;(2)113n nn T +=-. 【分析】(1)根据59a =,13169S =,利用等差数列的通项公式以及前n 项和公式求解. (2)由(1)得到2133n n n n a n b -==,利用数列求和的错位相减法求解. 【详解】 (1)因为()11313713131692a a S a +===,所以77513,24a d a a ==-=, 解得2d =,所以9(5)221n a n n =+-⋅=-. (2)由(1)得213n nn b -=, 则()231111135213333n nT n =⋅+⋅+⋅++-⋅, ()()23411111111352321333333n n n T n n +=⋅+⋅+⋅++-⋅+-, 两式相减得:()231211111221333333n nn T n +⎛⎫=++++-- ⎪⎝⎭,1111112193213313n n n -+⎛⎫- ⎪-⎝⎭=+--, 122233n n ++=-, 所以113n n n T +=-. 【点睛】方法点睛:求数列的前n 项和的方法(1)公式法:①等差数列的前n 项和公式,()()11122n n n a a n n S na d +-==+②等比数列的前n 项和公式()11,11,11n n na q S a q q q =⎧⎪=-⎨≠⎪-⎩; (2)分组转化法:把数列的每一项分成两项或几项,使其转化为几个等差、等比数列,再求解.(3)裂项相消法:把数列的通项拆成两项之差求和,正负相消剩下首尾若干项.(4)倒序相加法:把数列分别正着写和倒着写再相加,即等差数列求和公式的推导过程的推广.(5)错位相减法:如果一个数列的各项是由一个等差数列和一个等比数列对应项之积构成的,则这个数列的前n 项和用错位相减法求解.(6)并项求和法:一个数列的前n 项和中,可两两结合求解,则称之为并项求和.形如a n =(-1)n f (n )类型,可采用两项合并求解.。
2021-2022高二数学北师大版必修5单元测试:第一章 数列 测评B Word版含解析
第一章测评B(高考体验卷)(时间:90分钟满分:100分)一、选择题(本大题共10小题,每小题5分,共50分)1.(2021重庆高考)在等差数列{a n}中,若a2=4,a4=2,则a6=()A.-1B.0C.1D.6解析:由于{a n}是等差数列,所以2a4=a2+a6,于是a6=2a4-a2=2×2-4=0.答案:B2.(2021课标全国Ⅱ高考)设S n是等差数列{a n}的前n项和,若a1+a3+a5=3,则S5=()A.5B.7C.9D.11解析:由a1+a3+a5=3,得3a3=3,解得a3=1.故S5=5(a1+a5)2=5a3=5.答案:A3.(2022课标全国Ⅱ高考)等差数列{a n}的公差为2,若a2,a4,a8成等比数列,则{a n}的前n项和S n=()A.n(n+1)B.n(n-1)C.n(n+1)2D.n(n-1)2解析:∵a2,a4,a8成等比数列,∴a42=a2·a8,即(a1+6)2=(a1+2)(a1+14),解得a1=2.∴S n=na1+n(n-1)2d=2n+n2-n=n2+n=n(n+1).故选A.答案:A4.(2022大纲全国高考)设等比数列{a n}的前n项和为S n.若S2=3,S4=15,则S6=()A.31B.32C.63D.64解析:∵S2=3,S4=15,∴由等比数列前n项和的性质,得S2,S4-S2,S6-S4成等比数列,∴(S4-S2)2=S2(S6-S4),即(15-3)2=3(S6-15),解得S6=63,故选C.答案:C5.(2021课标全国Ⅰ高考)已知{a n}是公差为1的等差数列,S n为{a n}的前n项和.若S8=4S4,则a10=()A.172B.192C.10D.12解析:∵公差d=1,S8=4S4,∴8(a1+a8)2=4×4(a1+a4)2,即2a1+7d=4a1+6d,解得a1=12.∴a10=a1+9d=12+9=192.答案:B6.(2021北京高考)设{a n}是等差数列.下列结论中正确的是()A.若a1+a2>0,则a2+a3>0B.若a1+a3<0,则a1+a2<0C.若0<a1<a2,则a2>√a1a3D.若a1<0,则(a2-a1)(a2-a3)>0解析:设等差数列公差为d.对于A选项,a1+a2=2a1+d>0,而a2+a3=2a1+3d不肯定大于0;对于B选项,a1+a3=2a1+2d<0,a1+a2=2a1+d不肯定小于0;对于C选项,0<a1<a2,则公差d>0.所以a2=a1+a32>√a1a3;对于D选项,(a2-a1)(a2-a3)=-d2≤0.故只有C正确.答案:C7.(2021河南开封冲刺卷)已知{a n}为正项等比数列,S n是它的前n项和.若a1=16,且a4与a7的等差中项为98,则S5的值为()A.29B.31C.33D.35解析:由题意,得2×98=a1q3+a1q6=16(q3+q6),解得q=12或-√932.由于数列中各项为正,所以q=12.所以S5=a1(1-q5)1-q=16[1-(12)5]1-12=31,故选B.答案:B8.(2021云南一模)已知数列{a n }满足a 1=1,a n >0,a n+12−a n 2=1(n ∈N +),那么使a n <5成立的n 的最大值为( )A.4B.5C.24D.25解析:由题意a n+12−a n 2=1知,a n 2为首项为1,公差为1的等差数列,∴a n 2=1+(n-1)×1=n.又a n >0,则a n =√n ,由a n <5得√n <5,∴n<25. 那么使a n <5成立的n 的最大值为24.故选C . 答案:C9.(2021泸州模拟)学校餐厅每天供应500名同学用餐,每星期一有A,B 两种菜可供选择.调查表明,凡是在这星期一选A 菜的,下星期一会有15改选B 菜;而选B 菜的,下星期一会有310改选A 菜.用a n 表示第n 个星期一选A 的人数,假如a 1=428,则a 4的值为( ) A.324 B.316 C.304D.302解析:由题意可设{a n }为第n 个星期一选A 的人数,{b n }为第n 个星期一选B 的人数,依据这星期一选B 菜的,下星期一会有310改选A 菜,a n+1=a n ×45+(500-a n )×310,∴a n+1=12a n +150.∵a 1=428,∴a 2=364,a 3=332,a 4=316,故选B .答案:B10.(2021湖北模拟)已知函数f (x )是定义在R 上的奇函数,当x ≤0时,f (x )=x (1-x ).若数列{a n }满足a 1=12,且a n+1=11-a n,则f (a 2 015)=( ) A.-6B.-2C.2D.6解析:设x>0,则-x<0,∵f (x )是定义在R 上的奇函数, ∴f (x )=-f (-x )=-[-x (1+x )]=x (1+x ).由a 1=12,且a n+1=11-a n, ∴a 2=11-a 1=2,a 3=11-a 2=11-2=-1,a 4=11-a 3=11-(-1)=12,…,∴数列{a n }是以3为周期的周期数列, ∴a 2021=a 3×671+2=a 2=2.∴f (a 2021)=f (2)=2×(2+1)=6,故选D .答案:D二、填空题(本大题共5小题,每小题4分,共20分)11.(2021安徽高考)已知数列{a n }中,a 1=1,a n =a n-1+12(n ≥2),则数列{a n }的前9项和等于 .解析:由已知条件得a n -a n-1=12(n ≥2),所以数列{a n }是以1为首项,12为公差的等差数列,由等差数列前n 项和公式得S 9=9×1+9×82×12=27. 答案:2712.(2021广东高考)在等差数列{a n }中,若a 3+a 4+a 5+a 6+a 7=25,则a 2+a 8= . 解析:依据等差数列的性质,得a 3+a 4+a 5+a 6+a 7=5a 5=25,解得a 5=5.又a 2+a 8=2a 5,所以a 2+a 8=10. 答案:1013.(2021湖南高考)设S n 为等比数列{a n }的前n 项和,若a 1=1,且3S 1,2S 2,S 3成等差数列,则a n = . 解析:设等比数列{a n }的公比为q ,则a n =a 1q n-1=q n-1.由于3S 1,2S 2,S 3成等差数列, 所以2×(2S 2)=3S 1+S 3,即4S 2=3+S 3, 即4(a 1+a 2)=3+(a 1+a 2+a 3), 也就是4(1+q )=3+(1+q+q 2),整理得q 2-3q=0,解得q=3或q=0(舍去).所以等比数列{a n }的首项为a 1=1,公比为q=3, 故a n =3n-1. 答案:3n-114.(2021吉林三模)设{a n }是公比不为1的等比数列,其前n 项和为S n ,若a 4,a 3,a 5成等差数列,则S4S 2= .解析:设数列的公比为q (q ≠1).由a 4,a 3,a 5成等差数列,得2a 3=a 4+a 5, 即2a 1q 2=a 1q 3+a 1q 4,化简得q 2+q-2=(q+2)(q-1)=0(q ≠1), 解得q=-2.S 4S 2=a 1(1-q 4)1-q a 1(1-q 2)1-q=1-q 41-q2=1+q 2=5. 答案:515.(2021江苏高考)设数列{a n }满足a 1=1,且a n+1-a n =n+1(n ∈N *).则数列{1a n}前10项的和为 . 解析:a 2-a 1=2,a 3-a 2=3,a 4-a 3=4,…,a n -a n-1=n ,以上n-1个式子相加,得a n -a 1=2+3+4+…+n.∵a 1=1,∴a n =1+2+3+…+n=n (n+1)2, ∴1an=2n (n+1)=2(1n -1n+1). ∴S 10=2[(1-12)+(12-13)+(13-14)+…+(19-110)+(110-111)]=2(1-111)=2021.答案:2021三、解答题(本大题共4小题,共30分)16.(本小题满分7分)(2021福建高考)等差数列{a n }中,a 2=4,a 4+a 7=15. (1)求数列{a n }的通项公式; (2)设b n =2a n -2+n ,求b 1+b 2+b 3+…+b 10的值.解:(1)设等差数列{a n }的公差为d.由已知得{a 1+d =4,(a 1+3d )+(a 1+6d )=15,解得{a 1=3,d =1.所以a n =a 1+(n-1)d=n+2. (2)由(1)可得b n =2n+n. 所以b 1+b 2+b 3+…+b 10=(2+1)+(22+2)+(23+3)+…+(210+10)=(2+22+23+...+210)+(1+2+3+ (10)=2(1-210)1-2+(1+10)×102=(211-2)+55 =211+53=2101.17.(本小题满分7分)(2022课标全国Ⅱ高考)已知数列{a n }满足a 1=1,a n+1=3a n +1. (1)证明{a n +12}是等比数列,并求{a n }的通项公式; (2)证明1a 1+1a 2+…+1a n <32.解:(1)由a n+1=3a n +1得a n+1+12=3(a n +12).又a 1+12=32,所以{a n +12}是首项为32,公比为3的等比数列.a n +12=3n 2,因此{a n }的通项公式为a n =3n -12. (2)由(1)知1a n=23n-1. 由于当n ≥1时,3n -1≥2×3n-1, 所以13n-1≤12×3n -1.于是1a 1+1a 2+…+1a n ≤1+13+…+13n -1 =32(1-13n )<32.所以1a 1+1a 2+…+1a n <32.18.(本小题满分8分)(2021广东高考)设数列{a n }的前n 项和为S n ,n ∈N *.已知a 1=1,a 2=32,a 3=54,且当n ≥2时,4S n+2+5S n =8S n+1+S n-1. (1)求a 4的值;(2)证明:{a n+1-12a n }为等比数列; (3)求数列{a n }的通项公式. (1)解:当n=2时,4S 4+5S 2=8S 3+S 1,即4(1+32+54+a 4)+5(1+32) =8(1+32+54)+1, 解得a 4=78.(2)证明:由于4S n+2+5S n =8S n+1+S n-1(n ≥2),所以4S n+2-4S n+1+S n -S n-1=4S n+1-4S n (n ≥2), 即4a n+2+a n =4a n+1(n ≥2). 由于4a 3+a 1=4×54+1=6=4a 2, 所以4a n+2+a n =4a n+1(n ∈N *).由于a n+2-12a n+1a n+1-12a n=4a n+2-2a n+14a n+1-2a n =4a n+1-a n -2a n+14a n+1-2a n=2a n+1-a n2(2a n+1-a n )=12, 所以数列{a n+1-12a n }是以a 2-12a 1=1为首项,公比为12的等比数列. (3)解:由(2)知数列{a n+1-12a n }是以a 2-12a 1=1为首项,公比为12的等比数列,所以a n+1-12a n =(12)n -1,即a n+1(12)n+1−a n(12)n =4, 所以数列{a n(12)n }是以a 112=2为首项,公差为4的等差数列,所以a n(12)n =2+(n-1)×4=4n-2,即a n =(4n-2)×(12)n=(2n-1)×(12)n -1.所以数列{a n }的通项公式是a n =(2n-1)×(12)n -1.19.(本小题满分8分)(2021山东高考)已知数列{a n }是首项为正数的等差数列,数列{1a n ·a n+1}的前n 项和为n2n+1. (1)求数列{a n }的通项公式;(2)设b n =(a n +1)·2a n ,求数列{b n }的前n 项和T n . 解:(1)设数列{a n }的公差为d.令n=1,得1a 1a 2=13,所以a 1a 2=3.令n=2,得1a 1a 2+1a 2a 3=25,所以a 2a 3=15.解得a 1=1,d=2,所以a n =2n-1.(2)由(1)知b n =(a n +1)·2a n =2n ·22n-1=n ·4n , 所以T n =1·41+2·42+…+n ·4n , 所以4T n =1·42+2·43+…+n ·4n+1, 两式相减,得-3T n =41+42+…+4n -n ·4n+1=4(1-4n )1-4-n ·4n+1=1-3n 3×4n+1-43.所以T n =3n -19×4n+1+49=4+(3n -1)4n+19.。
(常考题)北师大版高中数学必修五第一章《数列》检测题(答案解析)
一、选择题1.在等比数列{}n a 中,有31598a a a =,数列{}n b 是等差数列,且99b a =,则711b b +等于( ) A .4B .8C .16D .242.已知数列{}n a 的通项公式350n a n =-,则前n 项和n S 的最小值为( ) A .-784B .-368C .-389D .-3923.记n S 为等比数列{}n a 的前n 项和.若2342S S S =+,12a =,则2a =( ) A .2B .-4C .2或-4D .44.某食品加工厂2019年获利20万元,经调整食品结构,开发新产品.计划从2020年开始每年比上一年获利增加20%,则从( )年开始这家加工厂年获利超过60万元.(已知lg 20.3010=,lg30.4771=) A .2024年B .2025年C .2026年D .2027年5.数列{}n a 的前n 项和为()21n S n n =-(*n ∈N ),若173a a ka +=,则实数k 等于( ) A .2B .3C .269D .2596.数列{}n a 满足122,1a a ==,并且()111212n n n n a a a -+=-≥,则1011a a +=( ) A .192B .212 C .2155D .23667.已知n S 是等差数列{}n a 的前n 项和,且675S S S >>,下列说法错误的是( ) A .0d <B .110S >C .120S <D .67a a >8.已知数列{}n a的通项公式为)*n a n N =∈,其前n 项和为n S ,则在数列1S ,2S …,2019S 中,有理数项的项数为( ) A .42B .43C .44D .459.已知数列{}n a 满足12a =,*11()12n na n N a +=-+∈,则2020a =( ) A .2B .13C .12-D .3-10.已知函数()()31f x x x =-+,数列{}n a 中各项互不相等,记()()()12n n S f a f a f a =+++,给出两个命题:①若等差数列{}n a 满足55S =,则33a =;②若正项等比数列{}n a 满足33S =,则21a <;其中( )A .①是假命题,②是真命题B .①是真命题,②是假命题C .①②都是假命题D .①②都是真命题11.已知等比数列{}n a 中,若1324,,2a a a 成等差数列,则公比q =( ) A .1B .1-或2C .3D .1-12.记等差数列{}n a 的前n 项和为n S .若64a =,19114S =,则15S =( ) A .45B .75C .90D .95二、填空题13.已知等差数列{}n a 的首项是19-,公差是2,则数列{}n a 的前n 项和n S 的最小值是_______.14.已知正项数列{}n a 的前n 项和为n S ,且满足112n n n S a a ⎛⎫=+ ⎪⎝⎭,则10S =______.15.已知递增等比数列{}n a 的前n 项和为n S ,22a =,37S =,数列(){}2log 1+n S 的前n 项和为n T ,则122020111T T T +++=________.16.已知等差数列{}n a 的前n 项和为n S ,若12020OB a OA a OC =+(向量OA 、OC 不平行),A 、C 、B 共线,则2020S =_________. 17.已知正项等比数列{}n a ,12q =,若存在两项ma 、n a 12a =,则9m n-的最小值为___________. 18.已知数列{}n a 的首项12a =,且满足132n n a a +=+(*N n ∈),则{}n a 的前n 项和n S =___________.19.已知数列{}n a 的通项公式为3217n n a n -=-,前n 项和为n S ,则n S 取得最小值时n 的值为_________.20.已知函数()331xx f x =+,()x R ∈,正项等比数列{}n a 满足501a =,则()()()1299f lna f lna f lna ++⋯+等于______. 三、解答题21.已知数列{}n a 满足:*111,21,n n a a a n n N +=-=-∈(1)证明{}n a n +是等比数列,并求出数列{}n a 的通项公式; (2)设21,n n n n b S a n+=+为数列{}n b 的前n 项和,求n S 22.若数列{}n a 的前n 项和()2*n S nn N =∈.(1)求{}n a 的通项公式; (2)若数列{}n b 满足3nn n a b =,求数列{}n b 的前n 项和n S . 23.已知{}n a 是等差数列,{}n b 是各项都为正数的等比数列,121a b ==,再从①2410a a +=;②244b b =;③45b a =这三个条件中选择___________,___________两个作为已知.(1)求数列{}n a 的通项公式; (2)求数列{}n b 的前n 项和.24.设数列{}n a 的前n 项和为n S ,______.从①数列{}n a 是公比为2的等比数列,2a ,3a ,44a -成等差数列;②22n n S a =-;③122n n S +=-.这三个条件中任选一个,补充在下面问题中,并作答.(1)求数列{}n a 的通项公式; (2)若21log nn na b a +=,求数列{}n b 的前n 项和n T . 25.设等差数列{}n a 的首项1a 为()0a a >,其前n 项和为n S . (Ⅰ)若1S ,2S ,4S 成等比数列,求数列{}n a 的通项公式;(Ⅱ)若对任意的*n ∈N ,恒有0n S >,问是否存在()*2,k k k ≥∈N ,使得ln k S 、1ln k S +、2ln k S +成等比数列?若存在,求出所有符合条件的k 值;若不存在,请说明理由.26.已知{}n a 是由正整数组成的无穷数列,该数列前n 项的最大值记为n A ,最小值记为n B ,令nn nA bB =. (1)若2(1,2,3,)n a n n ==,写出1b ,2b ,3b 的值.(2)证明:1(1,2,3,)n n b b n +≥=.(3)若{}n b 是等比数列,证明:存在正整数0n ,当0n n 时,n a ,1n a +,2n a +是等比数列.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C根据等比数列性质求得9a ,再由等差数列性质求解. 【详解】∵{}n a 是等比数列,∴2931598a a a a ==,90a ≠,所以98a =,即998b a ==,∵{}n b 是等差数列,所以7119216b b b +==. 故选:C . 【点睛】关键点点睛:本题考查等差数列和等比数列的性质,掌握等差数列和等比数列的性质是解题关键,设,,,m n p l 是正整数,m n p l +=+,若{}n a 是等差数列,则m n p l a a a a +=+,若{}n a 是等比数列,则m n p l a a a a =.p l =时,上述结论也成立.2.D解析:D 【解析】令3500n -≥,求得16n >,即数列从第17项开始为正数,前16项为负数,故数列的前16项的和最小,1612,47a a =-=-,()16472163922S --⨯∴==-,故选D.【方法点睛】求等差数列前n 项和的最大值的方法通常有两种:①将前n 项和表示成关于n 的二次函数,n S 2An Bn =+,当2B n A =-时有最大值(若2B n A=-不是整数,n 等于离它较近的一个或两个整数时n S 最大);②可根据0n a ≥且10n a +≤确定n S 最大时的n 值.3.B解析:B 【分析】利用等比数列的前n 项和公式求出公比,由此能求出结果. 【详解】∵n S 为等比数列{}n a 的前n 项和,2342S S S =+,12a =,∴()()()34212122211q q q qq--+=+--,解得2q =-,∴214a a q ==-,故选B . 【点睛】本题主要考查等比数列的性质以及其的前n 项和等基础知识,考查运算求解能力,是基础题.4.C解析:C本题根据题意各年获利构成一个等比数列,然后得到通项公式,根据题意可得出关于n 的不等式,解出n 的值,注意其中对数式的计算. 【详解】由题意,设从2019年开始,第n 年的获利为()n a n *∈N万元,则数列{}n a 为等比数列,其中2019年的获利为首项,即120a =.2020年的获利为()2620120%205a =⋅+=⋅万元,2021年的获利为()223620120%205a ⎛⎫=⋅+=⋅ ⎪⎝⎭万元,∴数列{}n a 的通项公式为()16205n n n N a *-⎛⎫⋅⎪⎝⎭∈= ,由题意可得1620605n n a -⎛⎫=⋅> ⎪⎝⎭,即1635n -⎛⎫> ⎪⎝⎭,()65lg3lg3lg3lg30.47711log 3610lg 6lg52lg 2lg3120.30100.47711lg lg 23lg 52n ∴->=====-+-⨯+-⨯-6.03166=>,8n ∴≥,∴从2026年开始这家加工厂年获利超过60万元. 故选:C . 【点评】本题主要考查等比数列在实际生活中的应用,考查了等比数列的通项公式,不等式的计算,对数运算.属于中档题.5.C解析:C 【分析】由已知结合递推公式可求n a ,然后结合等差数列的通项公式即可求解. 【详解】因为()21n S n n =-, 所以111a S ==,当2n ≥时,()()()12112343n n n a S S n n n n n -=-=----=-,111a S ==适合上式,故43n a n =-,因为173a a ka +=, ∴1259k +=,解可得269k = 故选:C. 【点睛】本题主要考查了由数列前n 项和求数列的通项公式,考查来了运算能力,属于中档题.6.C解析:C 【解析】 依题意有11111121,2n n n n n n n n a a a a a a a a -++--=-=-,由此计算得323a =,424a =,……101110112221,,101155a a a a ==+=. 7.C解析:C 【分析】根据{}n a 是等差数列,且675S S S >>,变形为7666555567,,a a S S S S S a S a ++>++>>判断即可.【详解】数列{}n a 是等差数列675S S S >>,7666555567,,a a S S S S S a S a ++>++>>, 76670,0,0a a a a <>+>,所以0d <,()111116111102a a S a +==>, ()()11267121212022a S a a a ++==>,67a a >,故选:C 【点睛】本题主要考查等差数列的通项与前n 项和的关系及应用,还考查了转化求解问题的能力,属于中档题.8.B解析:B 【分析】本题先要对数列{}n a 的通项公式n a 运用分母有理化进行化简,然后求出前n 项和为n S 的表达式,再根据n S 的表达式的特点判断出那些项是有理数项,找出有理数项的下标的规律,再求出2019内属于有理数项的个数. 【详解】解:由题意,可知:n a ====. 12n n S a a a ∴=++⋯+1=11n =-+. 3S ∴,8S ,15S ⋯为有理项,又下标3,8,15,⋯的通项公式为21(2)n b n n =-,212019n ∴-,且2n ,解得:244n ,∴有理项的项数为44143-=.故选:B . 【点睛】本题主要考查分母有理化的运用,根据算式判断有理数项及其下标的规律,属于中档题.9.D解析:D 【分析】先利用题中所给的首项,以及递推公式,将首项代入,从而判断出数列{}n a 是周期数列,进而求得结果. 【详解】由已知得12a =,2211123a =-=+,32111213a =-=-+, 4213112a =-=--,521213a =-=-, 可以判断出数列{}n a 是以4为周期的数列,故2020505443a a a ⨯===-, 故选:D. 【点睛】该题考查的是有关数列的问题,涉及到的知识点利用递推公式判断数列的周期性,从而求解数列的某项,属于中档题.10.A解析:A 【分析】先确定函数()f x 对称性与单调性,再结合等差数列的等距性确定3a ;结合基本不等式将等比数列性质转化到等差数列性质上,解不等式即得结果. 【详解】因为()()()3311(1)1f x x x x x =-+=-+-+,而3y x x =+关于原点对称且在R 上单调递增,所以()f x 关于(1,1)对称且在R 上单调递增, 先证明下面结论:若()g x 为奇函数且在R 上单调递增,{}n a 为等差数列,123g()()()()0n a g a g a g a ++++=,则1230n a a a a ++++=.证明:若1230n a a a a ++++>,则当n 为偶数时,1211220n n n n a a a a a a -++=+==+>111()()()()+()0n n n n a a g a g a g a g a g a >-∴>-=-∴>同理21+122()()0,,()+()0n n n g a g a g a g a -+>>,即123g()()()()0n a g a g a g a ++++>与题意矛盾,当n 为奇数时,1211220n n n a a a a a -++=+==>类似可得12112()()0,()(),,()0n n n g a g a g a g a g a -++>+>,即123g()()()()0n a g a g a g a ++++>,与题意矛盾同理可证1230n a a a a ++++<也不成立,因此1230n a a a a ++++=再引申结论:若()f x 为关于(,)a b 函数且在R 上单调递增,{}n a 为等差数列,123()()()()n f a f a f a f a nb ++++=,则123n a a a a na ++++=证明过程只需令()()g x f x a b =+-,再利用上面结论即得.①若等差数列{}n a 满足55S =,即 12345()()()()()5f a f a f a f a f a ++++=,则123453555a a a a a a ++++=∴=, 31a ∴=,故①是假命题,②若正项等比数列{}n a 满足33S =, 即123()()()3f a f a f a ++= 因为数列{}n a 中各项互不相等,所以公比不为1,不妨设公比大于1,即123123()()()a a a f a f a f a <<∴<<,因为1322a a a +>=∴2()1f a <,()3222111a a a -+<∴<故②是真命题 故选:A 【点睛】本题考查函数()f x 对称性与单调性、等差数列性质、基本不等式应用,考查综合分析判断能力,属中档题.11.B解析:B 【分析】用等比数列的通项公式和等差中项公式求解. 【详解】因为1324,,2a a a 成等差数列,所以312242a a a =+,即2111242a q a a q =+,化简得220q q --=,解得1q =-或2q .故选B. 【点睛】本题考查等比数列与等差数列的综合运用.12.B解析:B 【分析】结合题意根据等差数列的通项公式和前n 项和公式列方程115419199114a d a d +=⎧⎨+⨯=⎩,解得11232d a ⎧=⎪⎪⎨⎪=⎪⎩,再利用前n 项和公式即可求得答案. 【详解】解:根据题意64a =,19114S =,结合等差数列的通项公式和前n 项和公式得:115419199114a d a d +=⎧⎨+⨯=⎩,即:115496a d a d +=⎧⎨+=⎩,解得11232d a ⎧=⎪⎪⎨⎪=⎪⎩, 所以()1511515131451051515157752222S a d -+=+=⨯+⨯⨯==. 故选:B. 【点睛】本题考查利用等差数列的通项公式和前n 项和公式求等差数列的基本量,考查数学运算能力,是基础题.二、填空题13.【分析】本题先求等差数列前n 项和再由此求出数列的前n 项和的最小值【详解】解:∵等差数列的首项是公差是2∴∴时数列的前n 项和的最小值是故答案为:【点睛】本题考查等差数列前n 项和的最小值的求法考查等差数解析:100-. 【分析】本题先求等差数列前n 项和()()22119220101002n n n S n n n n -=-+⨯=-=--,再由此求出数列{}n a 的前n 项和n S 的最小值. 【详解】解:∵等差数列{}n a 的首项是19-,公差是2, ∴()()22119220101002n n n S n n n n -=-+⨯=-=--, ∴10n =时,数列{}n a 的前n 项和n S 的最小值是100-. 故答案为:100-. 【点睛】本题考查等差数列前n 项和的最小值的求法,考查等差数列的性质等基础知识,考查运算求解能力,是基础题.14.【分析】先利用求出再利用时可知是首项为1公差为1的等差数列即可求出【详解】当时解得当时整理可得是首项为1公差为1的等差数列是正项数列故答案为:【点睛】本题考查等差数列的判断考查和的关系属于中档题【分析】先利用11a S =求出1S ,再利用2n ≥时1n n n a S S -=-可知{}2n S 是首项为1,公差为1的等差数列,即可求出10S . 【详解】 当1n =时,1111112S a a a ,解得11a =,11S = 当2n ≥时,11112nn n n nS S S S S ,整理可得2211n n S S --=,2n S 是首项为1,公差为1的等差数列, 2111n S n n ,{}n a是正项数列,n S ∴=1010S .【点睛】本题考查等差数列的判断,考查n a 和n S 的关系,属于中档题.15.【分析】首先根据等比数列的性质得到从而得到利用等差数列的求和公式得到再利用裂项法求的值即可【详解】因为所以即解得或又因为数列为递增数列所以所以因为所以故故答案为:【点睛】本题主要考查等差等比数列的求 解析:40402021【分析】首先根据等比数列的性质得到21nn S =-,从而得到()2log 1+=n S n ,利用等差数列的求和公式得到()12n n n T +=,再利用裂项法求122020111+++T T T 的值即可.【详解】因为22a =,37S =, 所以31232227S a a a q q=++=++=,即22520q q -+=, 解得12q =-或2q .又因为数列{}n a 为递增数列,所以2q.所以11a =,122112nn n S -==--.因为()22log 1log 2+==nn S n ,()1122…+=+++=n n n T n ,所以()1211211⎛⎫==- ⎪++⎝⎭n T n n n n . 故122020111111112122320202021⎡⎤⎛⎫⎛⎫⎛⎫+++=-+-++- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦T T T 140402*********⎛⎫=-=⎪⎝⎭故答案为:40402021【点睛】本题主要考查等差、等比数列的求和公式,同时考查裂项法求和,属于中档题.16.【分析】先证明当共线且则根据题意可求得的值然后利用等差数列求和公式可求得的值【详解】当共线时则共线可设所以又则由于(向量不平行)共线则由等差数列的求和公式可得故答案为:【点睛】本题考查等差数列求和同 解析:1010【分析】先证明当A 、C 、B 共线且OB mOA nOC =+,则1m n +=,根据题意可求得12020a a +的值,然后利用等差数列求和公式可求得2020S 的值. 【详解】当A 、C 、B 共线时,则AB 、AC 共线,可设AB AC λ=, 所以,()OB OA OC OA λ-=-,()1OB OA OC λλ∴=-+, 又OB mOA nOC =+,则()11m n λλ+=-+=,由于12020OB a OA a OC =+(向量OA 、OC 不平行),A 、C 、B 共线,则120201a a +=,由等差数列的求和公式可得()120202020202020201101022a a S +⨯===.故答案为:1010. 【点睛】本题考查等差数列求和,同时也考查了三点共线结论的应用,考查计算能力,属于中等题.17.【分析】由等比数列的通项公式结合可得出利用基本不等式可求得的最小值【详解】由于则即则由已知可得因此当且仅当时等号成立所以的最小值为故答案为:【点睛】易错点睛:利用基本不等式求最值时要注意其必须满足的 解析:2【分析】12a =可得出4m n =-,利用基本不等式可求得9m n-的最小值. 【详解】12a =,则214m n a a a =,即221121111124m n m n a a q a q a +---⎛⎫⋅=⋅= ⎪⎝⎭,则22m n +-=, 4m n ∴=-,由已知可得m 、n *∈N ,因此,()9994442m n n n n n -=--=+-≥=, 当且仅当3n =时,等号成立, 所以,9m n-的最小值为2.故答案为:2. 【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件: (1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.18.【分析】根据递推公式构造等比数列求出再分组根据等比数列求和公式可得结果【详解】由得因为所以是首项为公比为的等比数列所以所以所以故答案为:【点睛】关键点点睛:构造等比数列求解是解题关键解析:()11332n n +-- 【分析】 根据递推公式构造等比数列{1}n a +,求出n a ,再分组根据等比数列求和公式可得结果. 【详解】由132n n a a +=+得113(1)n n a a ++=+,因为1130a +=≠,所以{1}n a +是首项为3,公比为3的等比数列,所以11333n nn a -+=⨯=,所以31n n a =-,所以1233333n n S n =++++-3(13)13n n -=--()11332n n +=--. 故答案为:()11332n n +-- 【点睛】关键点点睛:构造等比数列{1}n a +求解是解题关键.19.8【分析】求出数列在n 的不同取值范围的正负判断出的单调性可求出【详解】令解得或当时单调递增当时单调递减当时单调递增所以取得最小值时的值为8故答案为:8【点睛】本题考查数列前n 项和的最值的求法解题的关解析:8 【分析】求出数列在n 的不同取值范围的正负判断出n S 的单调性可求出. 【详解】令30217n n a n -=≥-,解得3n ≤或172n ≥,∴当3n ≤时,0n a ≥,n S 单调递增,当47n ≤≤时,0n a <,n S 单调递减, 当8n ≥时,0n a >,n S 单调递增, 所以n S 取得最小值时n 的值为8. 故答案为:8. 【点睛】本题考查数列前n 项和的最值的求法,解题的关键是根据数列的正负判断n S 的单调性.20.【解析】试题分析:因为所以因为数列是等比数列所以即设①又+…+②①+②得所以考点:1等比数列的性质;2对数的运算;3数列求和【知识点睛】如果一个数列与首末两项等距离的两项之和等于首末两项之和(都相等 解析:992【解析】试题分析:因为3()31x x f x =+,所以33()()13131x xx x f x f x --+-=+=++.因为数列{}n a 是等比数列,所以21992984951501a a a a a a a =====,即1992984951ln ln ln ln ln ln 0a a a a a a +=+==+=.设9912399(ln )(ln )(ln )(ln )S f a f a f a f a =++++ ①,又99999897(ln )(ln )(ln )=++S f a f a f a +…+1(ln )f a ②,①+②,得99299=S ,所以99992=S . 考点:1、等比数列的性质;2、对数的运算;3、数列求和.【知识点睛】如果一个数列{}n a ,与首末两项等距离的两项之和等于首末两项之和(都相等,为定值),可采用把正着写和与倒着写和的两个和式相加,就得到一个常数列的和,这一求和方法称为倒序相加法.如等差数列的前n 项和公式即是用此法推导的.三、解答题21.(1)证明见解析,2nn a n =-;(2)()12552n S n ⎛⎫=-+⋅+⎪⎝⎭. 【分析】 (1)根据条件可得112112n n n n a n a n n a n a n++++-++==++,从而可证,所以数列{}n a n +是首项为2,公比为2的等比数列,得出答案.(2)由题意可得21212n n n n n b a n ++==+,由错位相减法可得答案. 【详解】(1)数列{}n a 满足111,21n n a a a n +==+-112112n n n n a n a n n a n a n++++-++∴==++即公比12,12q a =+=∴数列{}n a n +是首项为2,公比为2的等比数列;2n n a n ∴+=(2)由题意,21212n n n n n b a n ++==+ 所以123123357212222n n nn S b b b b +=+++⋅⋅⋅+=+++⋅⋅⋅+.........① 234113572121 (222222)n n n n n S +--=+++++………② 由①-②,得123234113572135721212222222222n n n n n n n S ++-+⎡⎤⎡⎤=+++⋅⋅⋅+-+++⋅⋅⋅++⎢⎥⎢⎥⎣⎦⎣⎦234131111212?··222222n n n ++⎛⎫=+++++- ⎪⎝⎭ ()1111122121512251222212nn n n n ++⎡⎤⎛⎫-⎢⎥ ⎪⎝⎭+⎢⎥⎛⎫⎣⎦=+⨯-=-+⋅ ⎪⎝⎭- 从而()12552n S n ⎛⎫=-+⋅+ ⎪⎝⎭【点睛】关键点睛:本题考查由递推公式求数列的通项公式和利用错位相减法求和,解答本题的关键是根据21212n n n n n b a n ++==+得出求和的方法,利用错位相减法求和时计算要仔细,考查运算能力,属于中档题.22.(1)21n a n =-;(2)113n n n S +=-. 【分析】(1)利用公式11,1,2n nn S n a S S n -=⎧=⎨-≥⎩,求通项公式;(2)由(1)知利用错位相减法求和.【详解】解:(1)当1n =时,111a S ==,当2n ≥时,()221121n n n a S S n n n -=-=--=-,当1n =时,也符合上式,所以对任意正整数n ,21n a n =-. (2)由(1)得213n nn b -=, 所以1312135232133333n n n n n S ---=+++++…,① 234111352321333333…n n n n n S +--=+++++,② -①②,得32121111212333333n n n n S +-⎛⎫=++++- ⎪⎝⎭…, 21113311132[1()]12122231333n n n n n -++⨯--+=+-=--, 所以113n nn S +=-. 【点睛】方法点睛:本题考查已知数列n S 与n a 的关系式,求通项公式,和错位相减法求和,一般数列求和包含1.公式法,利用等差和等比数列的前n 项和公式求解;2.错位相减法求和,适用于等差数列乘以等比数列的数列求和;3.裂项相消法求和,适用于能变形为()()1n a f n f n =+-, 4.分组转化法求和,适用于n n n c a b =+;5.倒序相加法求和.23.答案见解析 【分析】(1)根据题设条件可得关于基本量的方程组,求解后可得{}n a 的通项公式. (2)利用公式法可求数列{}n b 的前n 项和. 【详解】解:选择条件①和条件②(1)设等差数列{}n a 的公差为d ,∴12411,2410.a a a a d =⎧⎨+=+=⎩解得:11a =,2d =.∴()11221n a n n =+-⨯=-,*N n ∈. (2)设等比数列{}n b 的公比为q ,0q >,∴21242411, 4.b b q b b b q ==⎧⎨==⎩解得112b =,2q .设数列{}n b 的前n 项和为n S ,∴()1112122122nn n S --==--. 选择条件①和条件③:(1)设等差数列{}n a 的公差为d ,∴12411,2410.a a a a d =⎧⎨+=+=⎩解得:11a =,2d =.∴()11221n a n n =+-⨯=-. (2)459b a ==,设等比数列{}n b 的公比为q ,0q >. ∴213411,9.b b q b b q ==⎧⎨==⎩,解得113b =,3q =. 设数列{}n b 的前n 项和为n S ,∴()1113313136nn n S ---==-. 选择条件②和条件③:(1)设等比数列{}n b 的公比为q ,0q >, ∴21242411, 4.b b q b b b q ==⎧⎨==⎩,解得112b =,2q ,5431242a b =⨯==. 设等差数列{}n a 的公差为d ,∴5144a a d =+=,又11a =,故34d =. ∴()33111444n a n n =+-⨯=+. (2)设数列{}n b 的前n 项和为n S ,由(1)可知()1112122122n n n S --==--. 【点睛】方法点睛:等差数列或等比数列的处理有两类基本方法:(1)利用基本量即把数学问题转化为关于基本量的方程或方程组,再运用基本量解决与数列相关的问题;(2)利用数列的性质求解即通过观察下标的特征和数列和式的特征选择合适的数列性质处理数学问题.24.(1)条件性选择见解析,2nn a =;(2)332n nn T +=-. 【分析】(1)选①:由题意可得32442a a a =+-,再利用等比数列的公比为2可求1a ,进而可求数列{}n a 的通项公式;选②:22n n S a =-,令1n =可求1a ,当2n ≥时,可得1122n n S a --=-,与已知条件两式相减可求得()122n n a a n -=≥,进而可求数列{}n a 的通项公式;选③:122n n S +=-,当1n =时,112S a ==,当2n ≥时,122nn S -=-,与已知条件两式相减可求得2nn a =,检验12a =也满足,进而可求数列{}n a 的通项公式;(2)由(1)知2nn a =,则221log 1log 2122n n n n n n a n b a +++===,利用乘公比错位相减即可求和. 【详解】(1)选①:因为2a ,3a ,44a -成等差数列, 所以32442a a a =+-,又因为数列{}n a 的公比为2,所以2311122242a a a ⨯=+⨯-,即1118284a a a =+-,解得12a =,所以1222n nn a -=⨯=.选②:因为22n n S a =-,当1n =时,1122S a =-,解得12a =. 当2n ≥时,1122n n S a --=-,所以()()111222222n n n n n n n a S S a a a a ---=-=---=-. 即()122n n a a n -=≥.所以数列{}n a 是首项为2,公比为2的等比数列.故1222n nn a -=⨯=.选③:因为122n n S +=-,所以当1n =时,112S a ==,当2n ≥时,122nn S -=-,所以()()1122222n n n n n n a S S +-=-=---=,当1n =时,1122a ==依然成立.所以2nn a =.(2)由(1)知2nn a =,则221log 1log 2122n n n n n n a n b a +++===, 所以2323412222n nn T +=++++, ① 231123122222n n n n n T ++=++++, ② ①-②得23111111122222n nn n T ++⎛⎫=++++-⎪⎝⎭212111111111111121222211111222221122n n n n n n n n n -+++++⎛⎫-- ⎪+++⎝⎭=+-=+-=+----13322n n ++=-. 所以332n nn T +=-. 所以数列{}n b 的前n 项和332n n n T +=-. 【点睛】方法点睛:数列求和的方法(1)倒序相加法:如果一个数列{}n a 的前n 项中首末两端等距离的两项的和相等或等于同一个常数,那么求这个数列的前n 项和即可以用倒序相加法(2)错位相减法:如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,那么这个数列的前n 项和即可以用错位相减法来求;(3)裂项相消法:把数列的通项拆成两项之差,在求和时,中间的一些项可相互抵消,从而求得其和;(4)分组转化法:一个数列的通项公式是由若干个等差数列或等比数列或可求和的数列组成,则求和时可用分组转换法分别求和再相加减;(5)并项求和法:一个数列的前n 项和可以两两结合求解,则称之为并项求和,形如()()1nn a f n =-类型,可采用两项合并求解.25.(Ⅰ)0d =时,n a a =;2d a =时,2n a an a =-;(Ⅱ)不存在,理由见解析. 【分析】(Ⅰ)根据等差数列写出(1)2n n n dS na -=+,利用等比中项性质列式代入求解;(2)设存在()*2,k k k ≥∈N ,根据等比中项列式,整理化简之后分类讨论0d =与0d >是否成立. 【详解】(Ⅰ)因为1S ,2S ,4S 成等比数列,所以2214S S S ,又因为数列{}n a 是等差数列,首项1a 为()0a a >,所以(1)2n n n d S na -=+,则()()2246a d a a d +=+,可得0d =或2d a =,当0d =时,n a a =;当2d a =时,2(1)2n a a n a an a =+-=-.(Ⅱ)设存在()*2,k k k ≥∈N,使ln kS、1ln k S +、2ln k S +成等比数列,则122ln l ln n k k k S S S ++=⋅,对任意的*n ∈N ,恒有0n S >,首项0a >,所以0d ≥因为()22222ln ln ln ln ln 22k k k k k k S S S S S S +++⋅⎡⎤+⎡⎤⋅<=⎢⎥⎢⎥⎣⎦⎣⎦()()()22211121112ln ln 22k k k k k k k k S dS a a S a S a ++++++++⎡⎤+--+⎡⎤⎢⎥==⎢⎥⎢⎥⎣⎦⎣⎦, 当0d =时,()()()2222222111211+121ln ln ln ln 222k k k k k k k k SdS a a SaS S +++++++⎡⎤⎡⎤⎡⎤+--⎢⎥⎢⎥⎢⎥=<=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦即122ln l ln n k k k S S S ++>⋅,不成立;当0d >时,()()()2222222111211+121ln ln ln ln 222k k k k k k k k k S dS a a S dS a S S +++++++⎡⎤⎡⎤⎡⎤+-+-⎢⎥⎢⎥⎢⎥=<=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦,即122ln l ln n k k k S S S ++>⋅,不成立;综上,不存在()*2,k k k ≥∈N ,使得ln kS、1ln k S +、2ln k S +成等比数列.【点睛】关于等比中项性质的运用,需要注意,,a b c 三个数成等比数列,列式得2b ac =,然后再根据数列是等差还是等比数列化为基本量1,a d 或1,a q 计算.26.(1)11b =,22b =,33b =;(2)证明见解析;(3)证明见解析 【分析】(1)由{}n a 是单调递增数列可得1nn a b a =即可求出; (2)设1n a k +=,讨论n k B ≤,n n B k A <<和n k A ≥可证明;(3)设{}n b 的公比为q ,且1q ≥,显然1q =时满足;1q >时,由{}n A 是递增数列,{}n B 是递减数列,且{}n B 不能无限减少可得.【详解】 (1)2n a n =,可得{}n a 是单调递增数列,1,n n n a B A a ∴==,1111a b a ∴==,2212ab a ==,3313a b a ==, (2)设1n a k +=,nn nA bB =, 若n k B ≤,则+1nn n n nk A A b b B =≥=,若n n B k A <<,则+1n n n n A b b B ==, 若n k A ≥,则+1n n n nn A k b b B B =≥=, 综上,1(1,2,3,)n n b b n +≥=; (3)设等比数列{}n b 的公比为q ,1111a b a ==,则1n n nn A b q B -==, 由(2)可得1n n b b +≥,则1q ≥, 当1q =时,1n nA B =,即n n A B =,此时{}n a 为常数列,则存在01n =,当0n n ≥时,n a ,1n a +,2n a +是等比数列;当1q >时,{}n A 是递增数列,{}n B 是递减数列,{}n a 是由正整数组成的无穷数列,则数列{}n a 必存在最小值,即存在正整数0n ,0n a 是数列{}n a 的最小值,则当0n n ≥时,0n n B a =, 此时01n n n n n n A a b q B a -===,即01n n n a a q -=, 故当0n n ≥时,n a ,1n a +,2n a +是等比数列;综上,存在正整数0n ,当0n n ≥时,n a ,1n a +,2n a +是等比数列. 【点睛】本题考查数列单调性的有关判断,解题的关键是正确理解数列的变化情况,清楚{}n b 的变化特点.。
北师大版必修5高二数学第一单元试卷及答案
高二年级数学学科第一单元质量检测试题参赛试卷学校:石油中学 命题人:胡伟红一、 选择题(60分)1.等差数列前10项和为100,前100项和为10。
则前110项的和为A .-90B .90C .-110D .10 2.两个等差数列,它们的前n 项和之比为1235-+n n ,则这两个数列的第9项之比是A .35 B .58 C .38 D .473.若数列{}n a 中,n a =43-3n ,则n S 最大值n =A .13B .14C .15D .14或15 4.一个项数为偶数的等差数列,奇数项的和与偶数项的和分别为24和30。
若最后一项超过第一项10.5,则该数列的项数为 A .18 B .12 C .10 D .8 5.等差数列{}n a 的前m 项的和是30,前2m 项的和是100,则它的前3m 项的和是A .130B .170C .210D .260 6.等差数列{}n a 中,01≠a ,10S =45S ,若有k a =91a ,则k = A .2 B .3 C .4 D .5 7.等比数列{}n a 中,已知3231891===q a a n ,,,则n 为A .3B .4C .5D .6 8.等比数列{}n a 中,9696==a a ,,则3a 等于A .3B .23 C .916 D .49.等差数列{}n a 的首项11=a ,公差0≠d ,如果521a a a 、、成等比数列,那么等于A .3B .2C .-2D .2±10.设由正数组成的等比数列,公比q =2,且3030212=a a a ……·,则30963a a a a ……··等于A .102B .202C .162D .152 11、已知数列}{n a 满足)(133,0*11N n a a a a n n n ∈+-==+,则20a =( )A .0B .3-C .3D .2312、在单位正方体ABCD-A 1B 1C 1D 1中,黑、白两只蚂蚁均从点A 出发,沿棱向前爬行,每爬完一条棱称为“爬完一段”,白蚂蚁的爬行路线是AA 1⇒A 1D 1⇒D 1C 1⇒…;黑蚂蚁的爬行路线是AB ⇒BB 1⇒B 1C 1⇒…,它们都遵循以下的爬行规则:所爬行的第i+2段与第i 段所在的直线必为异面直线(其中i 为自然数),设黑、白蚂蚁都爬完2008段后各自停止在正方体的某个顶点处,则此时两者的距离为 ( ) A 1 B 2 C 3 D 0 二、 填空题(20分)1.等差数列{}n a 中5S =25,45S =405。
(常考题)北师大版高中数学必修五第一章《数列》测试题(有答案解析)(1)
一、选择题1.设首项为1的数列{}n a 的前n 项和为n S ,且113,2,23,21,n n n a n k k N a a n k k N *-*-⎧+=∈=⎨+=+∈⎩,若4042m S >,则正整数m 的最小值为( )A .14B .15C .16D .172.数列{}n a 中,11a =,113,3,3n n n n a N a n a N *+*-⎧+∉⎪⎪=⎨⎪∈⎪⎩,使2021n a <对任意的()n k k *≤∈N 恒成立的最大k 值为( ) A .1008B .2016C .2018D .20203.2020年12月17日凌晨1时59分,嫦娥五号返回器携带月球样品成功着陆,这是我国首次实现了地外天体采样返回,标志着中国航天向前又迈出了一大步.月球距离地球约38万千米,有人说:在理想状态下,若将一张厚度约为0.1毫米的纸对折n 次其厚度就可以超过到达月球的距离,那么至少对折的次数n 是( )(lg 20.3≈,lg3.80.6≈) A .40B .41C .42D .434.已知数列{}n a 中,12a =,()*,N n m n m a a a n m +=⋅∈,若1234480k k k k a a a a +++++++=,则k =( )A .3B .4C .5D .65.在正项等比数列{}n a 中,若3788a a a =,2105a a +=,则公比q =( ) A .122B .122或1212⎛⎫ ⎪⎝⎭C .142D .142或1412⎛⎫ ⎪⎝⎭6.已知数列{}n a 中,其前n 项和为n S ,且满足2n n S a =-,数列{}2n a 的前n 项和为n T ,若20n n S T λ+>对*n N ∈恒成立,则实数λ的取值范围是( )A .(3,)+∞B .(1,3)-C .93,5⎛⎫⎪⎝⎭D .(1,)-+∞7.已知等差数列{}n a 的公差为2,前n 项和为n S ,且1S ,2S ,4S 成等比数列.令21n n n b a a +=,数列{}n b 的前n 项和为n T ,若对于*n N ∀∈,不等式n T λ<恒成立,则实数λ的取值范围是( ) A .13λ≥B .15λ>C .15λ≥D .0λ>8.已知椭圆2222x y a b +=1(a>b>0)与双曲线2222x y m n-=1(m>0,n>0)有相同的焦点(-c ,0)和(c ,0),若c 是a ,m 的等比中项,n 2是2m 2与c 2的等差中项,则椭圆的离心率是 ( )A B C .14 D .129.公元1202年意大利数学家列昂纳多·斐波那契以兔子繁殖为例,引入“兔子数列”:1,1,2,3,5,8,13,21,34,55,…,即121a a ==,12n n n a a a --=+(*3,n n ≥∈N ).此数列在现代物理、准晶体结构、化学等领域都有着广泛的应用.若记212n n n n b a a a ++=-(*n ∈N ),数列{}n b 的前n 项和为n S ,则2020S =( ) A .0B .1C .2019D .202010.若a ,b 是函数()()20,0f x x px q p q =-+>>的两个不同的零点,a ,b ,2-这三个数适当排序后可成等比数列,点(),2a b 在直线2100x y +-=上,则p q +的值等于( ) A .6B .7C .8D .911.已知等差数列{}n a 的前n 项和为n S ,满足28a =-,390n S -=,228n S =,则n =( ) A .10B .11C .12D .1312.已知数列{}n a 满足12a =,*11()12n na n N a +=-+∈,则2020a =( ) A .2B .13C .12-D .3-二、填空题13.给定*1log (2)()n n a n n N +=+∈,则使乘积12k a a a 为整数的()*k k ∈N 称为“和谐数”,则在区间内[1,2020]的所有“和谐数”的和为_______. 14.已知111,2n n a a a +==,若(1)n n n b a n =+-⋅,则数列{}n b 的前10项的和10S =______.15.已知等差数列{}n a 的前n 项和为n S ,若12020OB a OA a OC =+(向量OA 、OC 不平行),A 、C 、B 共线,则2020S =_________. 16.等比数列{}n a 的各项均为正数,且2414a a =,则2122232425log log log log log a a a a a ++++=___________.17.已知公差不为0的等差数列的首项12a =,前n 项和为n S ,且________(①1a ,2a ,4a 成等比数列;②(3)2n n n S +=;③926a =任选一个条件填入上空).设3n n a b =,n n n a c b =,数列{}n c 的前n 项和为n T ,试判断n T 与13的大小. 18.在数列{}n a 中, 11a =,212(2)n n n a a n ---=≥,则n a =_____.19.数列{}n a 满足:112a =,212n n a a a n a ++⋯+=⋅,则数列{}n a 的通项公式n a =___________.20.已知数列{}n a 的首项12a =,且满足132n n a a +=+(*N n ∈),则{}n a 的前n 项和n S =___________.三、解答题21.已知{}n a 是公差不为0的等差数列,若1313,,a a a 是等比数列{}n b 的连续三项. (1)求数列{}n b 的公比;(2)若11a =,数列11n n a a +⎧⎫⎨⎬⎩⎭的前n 和为n S 且99200n S >,求n 的最小值. 22.已知数列{}n a 的前n 项和为n S ,首项11a =,121n n S S +=+. (1)求数列{}n a 的通项公式;(2)设n n b na =,记数列{}n b 的前n 项和为n T ,是否存在正整数n ,使得2021n T =?若存在,求出n 的值;若不存在,说明理由.23.在①2n an n b a =⋅,②10n n b a =-,③21n n n b a a +=这三个条件中任选一个,补充在下面问题中,并完成问题的解答.问题:已知数列{}n a 是各项均为正数的等差数列,22a =,且11a +、4a 、8a 成等比数列. (1)求数列{}n a 的通项公式;(2)记_____________,求数列{}n b 的前n 项和n S . 24.已知数列{}n a 的前n 项和为n S .()*22n n S a n N =-∈.(1)求数列{}n a 的通项公式;(2)从下面两个条件中选择一个填在横线上,并完成下面的问题.①24b =,48b =;②2b 是1b 和4b 的等比中项,872T =.若公差不为0的等差数列{}n b 的前n 项和为n T ,且______,求数列n n T na ⎧⎫⎨⎬⎩⎭的前n 项和n A .25.设等差数列{}n a 的首项1a 为()0a a >,其前n 项和为n S . (Ⅰ)若1S ,2S ,4S 成等比数列,求数列{}n a 的通项公式;(Ⅱ)若对任意的*n ∈N ,恒有0n S >,问是否存在()*2,k k k ≥∈N ,使得ln k S 、1ln k S +、2ln k S +成等比数列?若存在,求出所有符合条件的k 值;若不存在,请说明理由.26.在①121n n S S +=+,②214a =,③112n n S a +=-这三个条件中选择两个,补充在下面问题中,给出解答.已知数列{}n a 的前n 项和为n S ,满足____,____;又知正项等差数列{}n b 满足13b =,且1b ,32b -,7b 成等比数列.(1)求{}n a 和{}n b 的通项公式; (2)设nn nb c a =,求数列{}n c 的前项和n T .【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】根据已知递推关系求出数列{}n a 的奇数项加9成等比数列,偶数项加6成等比数列,然后求出2n S 后,检验141615,,S S S 可得. 【详解】当n 为奇数时,122232(3)329n n n n a a a a ---=+=++=+,所以292(9)n n a a -+=+,又1910a +=,所以1359,9,9,a a a +++成等比数列,公比为2,1219102n n a --+=⨯,即1211029n n a --=⨯-,当n 为偶数时,122323326n n n n a a a a ---=+=++=+,所以262(6)n n a a -+=+,又2134a a =+=,所以2469,9,9,a a a +++成等比数列,公比为2,126102n n a -+=⨯,即121026n n a -=⨯-,所以210(12)10(12)9620220151212n n n n S n n n --=-+-=⨯----,714202201572435S =⨯--⨯=,816202201584980S =⨯--⨯=, 7151415243510293706S S a =+=+⨯-=,所以满足4042m S >的正整数m 的最小值为16. 故选:C .【点睛】关键点点睛:本题考查由数列的递推关系求数列的和.解题关键是分类讨论,确定数列的奇数项与偶数项分别满足的性质,然后结合起来求得数列的偶数项的和2n S ,再检验n 取具体数值的结论.2.C解析:C 【分析】根据数列的通项公式,列出各项,找数列的规律,判断到哪一项是大于2021,即可得答案. 【详解】由已知可得,数列{}n a :1,4,7,4,7,10,7,10,13,,可得规律为1,4,7,4,7,10,7,10,13……此时将原数列分为三个等差数列:1,4,7,n a n =,{}31,n n n m m N ∈=+∈;4,7,10,2n a n =+,{}32,n n n m m N ∈=+∈;7,10,13,4n a n =+,{}33,n n n m m N ∈=+∈,当673m =时,312020n m =+=,即2020202120222020,2023,2026a a a ===. 而672m =时,312017n m =+=,即2017201820192017,2020,2023a a a ===, 所以满足2021n a <对任意的()n k k *≤∈N 恒成立的最大k 值为2018.故选:C. 【点睛】关于数列的项的判断,一般有两种题目类型,一种是具有周期的数列,可以通过列出前几项找出数列的周期,利用周期判断;另一种是数列的项与项之间存在规律,需要通过推理判断项与项之间的规律从而得数列的通项.3.C解析:C 【分析】设对折n 次时,纸的厚度为n a ,则{}n a 是以10.12a =⨯为首项,公比为2的等比数列,求出{}n a 的通项,解不等式460.12381010n n a =⨯≥⨯⨯即可求解【详解】设对折n 次时,纸的厚度为n a ,每次对折厚度变为原来的2倍, 由题意知{}n a 是以10.12a =⨯为首项,公比为2的等比数列,所以10.1220.12n nn a -=⨯⨯=⨯,令460.12381010n n a =⨯≥⨯⨯,即122 3.810n ≥⨯,所以lg 2lg 3.812n≥+,即lg 20.612n ≥+,解得:12.6420.3n ≥=, 所以至少对折的次数n 是42,故选:C 【点睛】关键点点睛:本题解题的关键是根据题意抽象出等比数列的模型,求出数列的通项,转化为解不等式即可.4.B解析:B 【分析】由已知,取1m =,则112n n n a a a a +=⋅=,得出数列{}n a 是以2为首项,2为公差的等比数列,根据等比数列的通项公式建立方程得可求得解. 【详解】因为数列{}n a 中,12a =,()*,N n m n m a a a n m +=⋅∈,所以取1m =,则112n n n a a a a +=⋅=,所以数列{}n a 是以2为首项,2为公差的等比数列,所以2nn a =,又1234480k k k k a a a a +++++++=,即12344220282k k k k +++++++=,即040238k ⨯=,解得4k =, 故选:B . 【点睛】关键点点睛:解决本题的问题的关键在于令1m =,得出数列{}n a 是以2为首项,2为公差的等比数列,利用等比数列的通项公式建立方程得解.5.D解析:D 【分析】由等比数列的性质可得出关于2a 、10a 的方程组,进而可求得等比数列{}n a 的公比. 【详解】由3788a a a =得()326753111168a q a q a q a q a ⋅⋅===,即62a =.22106()4a a a ∴==,又2105a a +=,解得21014a a =⎧⎨=⎩或21041a a =⎧⎨=⎩,0q >,11181084242a q a ⎛⎫∴=== ⎪⎝⎭或1111884104211242a q a -⎛⎫⎛⎫⎛⎫==== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.故选:D. 【点睛】关键点点睛:本题的解题关键就是利用等比数列下标和的性质建立有关2a 、10a 的方程组,通过求出2a 、10a 的值,结合等比数列的基本量来进行求解.6.D解析:D 【分析】由2n n S a =-利用1112nn n S n a S S n -=⎧=⎨-≥⎩ ,得到数列{}n a 是以1为首项,12为公比的等比数列,进而得到{}2n a 是以1为首项,14为公比的等比数列,利用等比数列前n 项和公式得到n S ,n T ,将20n n S T λ+>恒成立,转化为6321nλ-<-+,从而得出答案. 【详解】当1n =时,112S a =-,得 11a =;当2n ≥时,由2n n S a =-,得112n n S a --=-,两式相减得112n n a a -=, 所以数列{}n a 是以1为首项,12为公比的等比数列. 因为112n n a a -=,所以22114n n a a -=.又211a =,所以{}2n a 是以1为首项,14为公比的等比数列,所以1112211212n n n S ⎛⎫- ⎪⎡⎤⎛⎫⎝⎭==-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦-,11414113414nn n T ⎛⎫- ⎪⎡⎤⎛⎫⎝⎭==-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦-, 由20n n S T λ+>,得()()321210nnλ-++>,所以()()321321663212121n nn n n λ-+--<==-+++, 所以6332121λ-<-=-=+, 所以1λ>-.综上,实数λ的取值范围是(1,)-+∞. 故选: D 【点睛】方法点睛:数列与不等式知识相结合的考查方式主要有三种: 一是判断数列问题中的一些不等关系; 二是以数列为载体,考查不等式的恒成立问题;三是考查与数列问题有关的不等式的证明.在解决这些问题时,往往转化为函数的最值问题.7.A解析:A 【分析】根据1S ,2S ,4S 成等比数列,所以2214S S S =⋅,根据d =2,即可求得1a 的值,即可求得n a ,进而可得211111()(21)(23)42123n n n b a a n n n n +===--+-+,利用裂项相消法即可求得n T 的表达式,分析即可得答案. 【详解】因为1S ,2S ,4S 成等比数列,所以2214S S S =⋅ 所以2141214()()[]2a a a a a ++=⋅,整理可得2111(22)2(26)a a a +=⋅+ 解得11a =,所以*12(1)21,n a n n n N =+-=-∈,所以211111()(21)(23)42123n n n b a a n n n n +===--+-+, 所以1111111111(1+++)45375923212123n T n n n n =-+-+-⋅⋅⋅---+-+=11111111(1)()432123342123n n n n +--=-+++++, 因为对于*n N ∀∈,不等式n T λ<恒成立, 所以111()042123n n +>++,即13n T <, 所以13λ≥. 故选:A【点睛】解题的关键是熟练掌握等差数列、等比数列的性质,并灵活应用,易错点为:在利用裂项相消法求和时,需注意是相邻项相消还是间隔项相消,考查分析理解,计算化简的能力,属中档题.8.D解析:D 【解析】由题意可知2n 2=2m 2+c 2. 又m 2+n 2=c 2, ∴m=2c . ∵c 是a ,m 的等比中项,∴2c am =, ∴22ac c =, ∴12c e a ==.选D . 9.A解析:A 【分析】由1n nb b +用递推式可得到值为-1,{}n b 是等比数列,再求前2020项和. 【详解】 由题意可知()2221121213221212n n n n n n n n n n n n n n n a a a a b a a a b a a a a a a ++++++++++++-+-===--()222211212212121n n n n n n n n n n n n n a a a a a a a a a a a a a ++++++++++---==---, 又212131b a a a =-=-,因此()1nn b =-,故()()()20201111110S =-++-+++-+=,故选:A. 【点睛】本题考查了通过递推数列揭示数列存在的规律即等比数列,还考查了数列求和,属于中档题.10.D解析:D 【分析】由零点定义得,a b p ab q +==得0,0a b >>,因此2-只能是等比数列的中间项,从而得4ab =,由点(),2a b 在直线2100x y +-=上,得5a b +=,这样可得,p q 值.从而得出结论. 【详解】∵a ,b 是函数()()20,0f x x px q p q =-+>>的两个不同的零点,∴,a b p ab q +==,∴0,0a b >>,而a ,b ,2-这三个数适当排序后可成等比数列,只能是2-是,a b 的等比中项,即4ab =,点(),2a b 在直线2100x y +-=上,则22100a b +-=,得5a b +=, 由45ab a b =⎧⎨+=⎩,∴5,4p q ==,9p q +=.故选:D . 【点睛】本题考查函数零点的概念,考查等比数列的定义,考查韦达定理,关键是由题意分析出0,0a b >>.11.C解析:C 【分析】根据数列是等差数列,结合等差数列的性质得313n n n S S a ---=,从而求得146n a -=,然后由121()()22n n n n a a n a a S -++==求解. 【详解】由题意得322890138n n S S --=-=, 所以13138n a -=. 所以146n a -=. 所以121()()1922822n n n n a a n a a S n -++====, 解得12n =. 故选:C 【点睛】本题主要考查等差数列的前n 项和公式和等差数列的性质的应用,属于中档题.12.D解析:D 【分析】先利用题中所给的首项,以及递推公式,将首项代入,从而判断出数列{}n a 是周期数列,进而求得结果. 【详解】由已知得12a =,2211123a =-=+,32111213a =-=-+, 4213112a =-=--,521213a =-=-, 可以判断出数列{}n a 是以4为周期的数列,故2020505443a a a ⨯===-, 故选:D. 【点睛】该题考查的是有关数列的问题,涉及到的知识点利用递推公式判断数列的周期性,从而求解数列的某项,属于中档题.二、填空题13.2026【分析】根据换底公式把代入并且化简转化为为整数即可求得区间内的所有和谐数的和【详解】由换底公式:得为整数∴分别可取最大值则最大可取10故所有和谐数的和为故答案为:2026【点睛】考查数列的综解析:2026 【分析】根据换底公式把1log (2)n n a n +=+代入12k a a a ⋯并且化简,转化为lg(2)lg 2k +为整数,即22n k +=,n *∈N ,可求得区间[1,2020]内的所有“和谐数”的和.【详解】由换底公式:log log log b a b NN a=, 得()231241log 3log 4log 5log 2k k a a a k +=⋯+122lg3lg 4lg5lg(2)lg(2)log (2)lg 2lg3lg 4lg(1)lg 2==++⋯⋅⋅⋅⋅=++k k k a a a k k 为整数,∴22n k +=,n *∈N ,k 分别可取23422,22,22---,最大值222020n -≤,则n 最大可取10, 故所有“和谐数”的和为()923104122221818202612-++⋅⋅⋅+-=-=-.故答案为:2026. 【点睛】考查数列的综合应用及对数的换底公式,把12k a a a ⋯化简并且转化为对数的运算,体现了转化的思想,属中档题.14.1028【分析】由题可知为等比数列求出的通项公式即可写出的通项公式利用分组求和法即可求出前10项和【详解】是首项为1公比为2的等比数列则故答案为:1028【点睛】本题考查等比数列的判断以及通项公式的解析:1028 【分析】由题可知{}n a 为等比数列,求出{}n a 的通项公式,即可写出{}n b 的通项公式,利用分组求和法即可求出前10项和. 【详解】111,2n n a a a +==,{}n a ∴是首项为1,公比为2的等比数列,11122n n n a --∴=⨯=,121nn nb n , 则910124212310S1011251102812.故答案为:1028.【点睛】本题考查等比数列的判断以及通项公式的求法,考查分组求和法求数列的前n 项和,属于基础题.15.【分析】先证明当共线且则根据题意可求得的值然后利用等差数列求和公式可求得的值【详解】当共线时则共线可设所以又则由于(向量不平行)共线则由等差数列的求和公式可得故答案为:【点睛】本题考查等差数列求和同 解析:1010【分析】先证明当A 、C 、B 共线且OB mOA nOC =+,则1m n +=,根据题意可求得12020a a +的值,然后利用等差数列求和公式可求得2020S 的值. 【详解】当A 、C 、B 共线时,则AB 、AC 共线,可设AB AC λ=, 所以,()OB OA OC OA λ-=-,()1OB OA OC λλ∴=-+, 又OB mOA nOC =+,则()11m n λλ+=-+=,由于12020OB a OA a OC =+(向量OA 、OC 不平行),A 、C 、B 共线,则120201a a +=,由等差数列的求和公式可得()120202020202020201101022a a S +⨯===.故答案为:1010. 【点睛】本题考查等差数列求和,同时也考查了三点共线结论的应用,考查计算能力,属于中等题.16.【分析】由题意利用等比数列的性质求得的值再利用对数的运算性质求得结果【详解】解:等比数列{an}的各项均为正数且∴则故答案为:【点睛】本题考查等比中项的性质考查运算求解能力求解时注意对数运算法则的运用 解析:5-【分析】由题意利用等比数列的性质求得3a 的值,再利用对数的运算性质,求得结果. 【详解】解:等比数列{a n }的各项均为正数, 且224314a a a ==,∴312a =, 则2122232425log log log log log a a a a a ++++523231og 5log 5(1)5a a ===⋅-=-,故答案为:5-. 【点睛】本题考查等比中项的性质,考查运算求解能力,求解时注意对数运算法则的运用.17.选①:;选②:当时;当时;当时;选③:【分析】任选一个条件求出数列公差及通项利用错位相减法求和再比较大小可得解【详解】若选①设公差为因为成等比数列所以解得或0(不合舍去)所以所以利用错位相减可得;若解析:选①:13n T <;选②:当1n =时,12193T =<;当2n =时,21133T ==;当3n ≥时,3311813n T T ≥=>;选③:13n T <.【分析】任选一个条件,求出数列{}n a 公差及n b ,n c 通项,利用错位相减法求和,再比较大小可得解. 【详解】若选①,设公差为d ,因为1a ,2a ,4a 成等比数列,所以2(2)2(23)d d +=+,解得2d =或0(不合,舍去),所以2n a n =,9n n b =所以29n n nc =,利用错位相减可得1991213232993n n n n T +=-⨯-<; 若选②,因为(3)2n n n S +=,所以公差1d =,所以1n a n =+,13n n b +=所以113n n n c ++=,利用错位相减可得11515()()24312n n T n +=--⨯+当1n =时,12193T =<; 当2n =时,21133T ==;当3n ≥时,3311813n T T ≥=>; 若选③,因为926a =,所以公差3d =,所以31n a n =-,所以31313n n n c --=, 利用错位相减可得1652346911676676273n n n T -=-⨯<. 【定睛】本题考查等差数列通项及错位相减法求和,属于基础题.18.【分析】利用累加法可求得数列的通项公式【详解】当时符合上式则故答案为:【点睛】本题考查由累加法求数列的通项公式属于基础题 解析:12n -【分析】利用累加法可求得数列的通项公式. 【详解】11a =,212(2)n n n a a n ---=≥∴()()()121321=+n n n a a a a a a a a --+-+⋅⋅⋅+-0121+2+2++2n -=⋅⋅⋅()()2212122+2221212n n n ----==+-=-∴12nna ()2,*n n N ≥∈当=1n 时,11a =符合上式,则12n n a .故答案为:12n - 【点睛】本题考查由累加法求数列的通项公式,属于基础题.19.【分析】当时作差即可得到再利用累乘法求出数列的通项公式即可;【详解】解:因为①;当时②;①减②得即所以所以所以所以……所以所以又所以当时也成立所以故答案为:【点睛】对于递推公式为一般利用累乘法求出数 解析:21n n+ 【分析】当2n ≥时,()212111n n a a a n a --++⋯+=-⋅,作差即可得到111n n a n a n --=+,再利用累乘法求出数列的通项公式即可; 【详解】解:因为212n n a a a n a ++⋯+=⋅①;当2n ≥时,()212111n n a a a n a --++⋯+=-⋅②;①减②得()2211n n n a n a n a -=⋅-⋅-,即()()22111n n n a n a -⋅-⋅-=,所以()()()21111n n n n a n a --+=⋅-⋅,所以()()111n n n a n a -⋅-⋅+=,所以111n n a n an --=+ 所以2113a a =,3224a a =,4335a a =,……,111n n a n a n --=+,所以324211312313451n n a a a a n a a a a n --⋅⋅⋅⨯⨯⨯=⨯+,所以()121n a a n n =+,又112a =,所以()11n a n n =+,当1n =时()11n a n n =+也成立,所以()11n a n n =+故答案为:()11n n +【点睛】对于递推公式为()1nn a f n a -=,一般利用累乘法求出数列的通项公式,对于递推公式为()1n n a a f n --=,一般利用累加法求出数列的通项公式;20.【分析】根据递推公式构造等比数列求出再分组根据等比数列求和公式可得结果【详解】由得因为所以是首项为公比为的等比数列所以所以所以故答案为:【点睛】关键点点睛:构造等比数列求解是解题关键解析:()11332n n +-- 【分析】 根据递推公式构造等比数列{1}n a +,求出n a ,再分组根据等比数列求和公式可得结果. 【详解】由132n n a a +=+得113(1)n n a a ++=+,因为1130a +=≠,所以{1}n a +是首项为3,公比为3的等比数列,所以11333n nn a -+=⨯=,所以31n n a =-,所以1233333n n S n =++++-3(13)13n n -=--()11332n n +=--. 故答案为:()11332n n +-- 【点睛】关键点点睛:构造等比数列{1}n a +求解是解题关键.三、解答题21.(1)5;(2)50. 【分析】(1)利用基本量代换,求出12d a =,直接求出公比; (2)裂项相消法求出n S ,解不等式即可. 【详解】(1)设等差数列{}n a 的公差为d ,由1313,,a a a 是等比数列{}n b 的连续三项,得23113a a a =⋅,即()()2111212a d a a d +=⋅+,化简得2148d a d =.10,2d d a ≠∴=.设数列{}n b 的公比的公比为q ,则3111111245a a d a a q a a a ++====. (2)若11a =,则1111112,21,(21)(21)22121n n n d a n a a n n n n +⎛⎫==-==- ⎪-+-+⎝⎭, 111112133557(21)(21)n S n n ⎫⎛=++++⎪ ⨯⨯⨯-⨯+⎝⎭111111111111233557212122121nn n n n ⎛⎫⎛⎫=-+-+-++-=-= ⎪ ⎪-+++⎝⎭⎝⎭. 由99200n S >,得9999,212002n n n >∴>+,故n 的最小值为50.【点睛】(1)等差(比)数列问题解决的基本方法:基本量代换;(2)数列求和的方法:公式法、裂项相消法、错位相减法、倒序相加法. 22.(1)12n n a ;(2)不存在,理由见解析.【分析】(1)根据11n n n a S S ++=-以及等比数列的通项公式可求得结果;(2)利用错位相减法求出n T ,分别对1,2n n ==和3n ≥讨论等式是否成立可得答案. 【详解】(1)由121n n S S +=+①,知2n ≥时,121n n S S -=+②, ①-②得()122n n a a n +=≥,在①式中令12121212n a a a a =⇒+=+⇒=,212a a =, ∴对任意*n ∈N ,均有12n na a +=,∴{}n a 为等比数列,11122n n n a --=⨯=, (2)由(1)得12n n b n -=⋅,所以()01221122232122n n n T n n --=⋅+⋅+⋅++-⋅+⋅,所以()()12212122222122n n n n T n n n --=⋅+⋅++-⋅+-⋅+⋅,所以()12111212222221212nn nnn n nT n n n -⋅--=++++-⋅=-⋅=--⋅-,所以(1)21nn T n =-⋅+,令()()1212021122020nnn n -⋅+=⇒-⋅=,当1n =和2n =时,等式显然不成立;当3n ≥时,方程化为()212505n n --⋅=,左边为偶数,右边等于505为奇数,等式也不成立,故不存在正整数n ,使得2021n T =成立. 【点睛】关键点点睛:利用11n n n a S S ++=-求出通项公式,根据错位相减法求出n T 是解题关键. 23.(1)n a n =;(2)答案见解析. 【分析】(1)设等差数列{}n a 的公差为d ,根据已知条件可得出关于1a 、d 的方程组,解出这两个量的值,利用等差数列的通项公式可求得{}n a 的通项公式;(2)选①,求得2nn b n =⋅,利用错位相减法可求得n S ;选②,求得10,101010,10n n n b n n n -≤⎧=-=⎨->⎩,分10n ≤和10n >两种情况讨论,结合等差数列的求和公式可求得n S ; 选③,可得11122n b n n ⎛⎫- ⎪+⎝⎭=,利用裂项相消法可求得n S . 【详解】(1)因为11a +、4a 、8a 成等比数列,所以()24181a a a =+, 设等差数列{}n a 的公差为d ,则0d ≥, 则有()()()2111317a d a a d +=++,① 又22a =,所以12a d +=,② 联立①②解得111a d =⎧⎨=⎩,所以()11n a a n d n =+-=; (2)选①,则2nn b n =⋅,231222322n n S n =⨯+⨯+⨯++⨯()23121222122n n n S n n +=⨯+⨯++-⨯+⨯,上式-下式得()()2311121222222212212n n n n n n S n n n +++--=++++-⨯=-⨯=-⋅--,化简得()1122n n S n +=-⋅+;选②,则10,101010,10n n n b n n n -≤⎧=-=⎨->⎩,当10n ≤时,10n b n =-,()()9101922n n n n n S +--==; 当10n >时,()()()()2101109101918098101210+222n n n n n S n -+-⨯-+⎡⎤=++++++++-==⎣⎦.综上()219,10219180,102n n n n S n n n ⎧-≤⎪⎪=⎨-+⎪>⎪⎩;选③,则()1111222n b n n n n ⎛⎫==- ⎪++⎝⎭1111111111111213243546112n S n n n n ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-+-++-+- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎢⎥-++⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦()()2111113521212412n n n S n n n n +⎛⎫∴=+--=⎪++++⎝⎭. 【点睛】方法点睛:数列求和的常用方法:(1)对于等差等比数列,利用公式法直接求和;(2)对于{}n n a b 型数列,其中{}n a 是等差数列,{}n b 是等比数列,利用错位相减法求和;(3)对于{}n n a b +型数列,利用分组求和法; (4)对于11n n a a +⎧⎫⎨⎬⎩⎭型数列,其中{}n a 是公差为()0d d ≠的等差数列,利用裂项相消法求和.24.(1)2nn a =;(2)选择①:332n n +-;选择②:332nn +-. 【分析】(1)由数列n a 与n S 的关系转化条件为()122n n a a n -=≥,结合等比数列的性质即可得解;(2)设数列{}n b 的公差为d ,若选择①,由等差数列的通项公式列方程可得12b d ==,进而可得2n T n n =+,再结合错位相减法即可得解;若选择②,由等比中项的性质结合等差数列的通项公式、前n 项和公式可得12b d ==,再结合错位相减法即可得解. 【详解】(1)当1n =时,11122a S a ==-,可得12a =;当2n ≥时,1122n n S a --=-,所以1122n n n n n a S S a a --=-=-,即()122n n a a n -=≥,因为120a =≠,所以数列{}n a 是以2为首项,2为公比的等比数列,所以1222n nn a -=⋅=;(2)设数列{}n b 的公差为d ,若选择①,由题意11438b d b d +=⎧⎨+=⎩,解得12b d ==;所以()21222n n n T n n n -=⨯+⨯=+, 由(1)得,2nn a =,所以()2111222n n n n n T n n n n na n ++===+⨯⋅, 所以()12111112312222n n n A n n -=⨯+⨯+⋅⋅⋅+⨯++⨯, ()231111123122222n n n A n n +=⨯+⨯+⋅⋅⋅+⨯++⨯, 两式相减得()23411111111222222n n n A n +⎛⎫=++++⋅⋅⋅+-+⨯ ⎪⎝⎭()1111114213311122212n n n n n -++⎡⎤⎛⎫-⎢⎥ ⎪⎝⎭+⎢⎥⎣⎦=+-+⨯=--, 所以332n nn A +=-; 若选择②,有2214b b b =⋅,即()()21113b d b b d +=⋅+,即21b d d =,因为0d ≠,所以1b d =, 所以8187728362T b d d ⨯==+=,解得12b d ==, 所以()21222n n n T n n n -=⨯+⨯=+, 由(1)得,2nn a =,所以()2111222n n n n n T n n n n na n ++===+⨯⋅, 所以()12111112312222n n n A n n -=⨯+⨯+⋅⋅⋅+⨯++⨯, ()231111123122222n n n A n n +=⨯+⨯+⋅⋅⋅+⨯++⨯. 两式相减,得()23411111111222222n n n A n +⎛⎫=++++⋅⋅⋅+-+⨯ ⎪⎝⎭()1111114213311122212n n n n n -++⎡⎤⎛⎫-⎢⎥ ⎪⎝⎭+⎢⎥⎣⎦=+-+⨯=--, 所以332n n n A +=-. 【点睛】 关键点点睛:(1)当条件中同时出现n a 与n S ,要注意n a 与n S 关系的应用; (2)要明确错位相减法的适用条件和使用方法,细心运算.25.(Ⅰ)0d =时,n a a =;2d a =时,2n a an a =-;(Ⅱ)不存在,理由见解析. 【分析】(Ⅰ)根据等差数列写出(1)2n n n dS na -=+,利用等比中项性质列式代入求解;(2)设存在()*2,k k k ≥∈N ,根据等比中项列式,整理化简之后分类讨论0d =与0d >是否成立. 【详解】(Ⅰ)因为1S ,2S ,4S 成等比数列,所以2214S S S ,又因为数列{}n a 是等差数列,首项1a 为()0a a >,所以(1)2n n n d S na -=+,则()()2246a d a a d +=+,可得0d =或2d a =,当0d =时,n a a =;当2d a =时,2(1)2n a a n a an a =+-=-.(Ⅱ)设存在()*2,k k k ≥∈N,使ln kS、1ln k S +、2ln k S +成等比数列,则122ln l ln n k k k S S S ++=⋅,对任意的*n ∈N ,恒有0n S >,首项0a >,所以0d ≥因为()22222ln ln ln ln ln 22k k k k k k S S S S S S +++⋅⎡⎤+⎡⎤⋅<=⎢⎥⎢⎥⎣⎦⎣⎦()()()22211121112ln ln 22k k k k k k k k S dS a a S a S a ++++++++⎡⎤+--+⎡⎤⎢⎥==⎢⎥⎢⎥⎣⎦⎣⎦, 当0d =时,()()()2222222111211+121ln ln ln ln 222k k k k k k k k S dS a a S a S S +++++++⎡⎤⎡⎤⎡⎤+--⎢⎥⎢⎥⎢⎥=<=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦即122ln l ln n k k k S S S ++>⋅,不成立;当0d >时,()()()2222222111211+121ln ln ln ln 222k k k k k k k k k S dS a a S dS a S S +++++++⎡⎤⎡⎤⎡⎤+-+-⎢⎥⎢⎥⎢⎥=<=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦,即122ln l ln n k k k S S S ++>⋅,不成立;综上,不存在()*2,k k k ≥∈N ,使得ln kS、1ln k S +、2ln k S +成等比数列.【点睛】关于等比中项性质的运用,需要注意,,a b c 三个数成等比数列,列式得2b ac =,然后再根据数列是等差还是等比数列化为基本量1,a d 或1,a q 计算.26.条件性选择见解析,(1)12nn a ⎛⎫= ⎪⎝⎭,41n b n =-;(2)()110245n n T n +=+-【分析】(1)选择①②,可以判断{}n a 为112a =,公比为12的等比数列,即可求出通项公式;选择②③,由112n n S a +=-可判断{}n a 为112a =,公比为12的等比数列,即可求出通项公式;选择①③根据条件可得()11n n S a n ->=,根据条件不能求出1a 的值,故不能选①③;根据{}n b 的条件建立关系即可求出公差,得出通项公式; (2)利用错位相减法可求解. 【详解】 (1)选择①②:由121n n S S +=+⇒当2n ≥时,有121n n S S -=+,两式相减得:12n n a a +=,即112n n a a +=,2n ≥. 又当1n =时,有()2112212S S a a =+=+,又∵214a =,∴112a =,2112a a =也适合,所以数列{}n a 是首项、公比均为12的等比数列,所以12nn a ⎛⎫= ⎪⎝⎭;选择:②③:由112n n S a +=-⇒当2n ≥时,112n n S a -=-, 两式相减得:122n n n a a a +=-+,即112n n a a +=,2n ≥. 又当1n =时,有12112S a a =-=,又∵214a =,∴112a =,2112a a =也适合,所以数列{}n a 是首项、公比均为12的等比数列,所以12nn a ⎛⎫= ⎪⎝⎭; 选择①③:由121n n S S +=+,112n n S a +=-,则112122n n n S S a ++=+=- 即111n n S a ++=-,所以()11n n S a n =->,, 两式相减可得:()1121n n a a n +>=, 当1n =时,由121n n S S +=+,得2121S S =+,即()121221a a S a +=+,即1221a a += 由112n n S a +=-,得1212S a =-,即1212a a =-,与上式相同,不能求出1a 的值. 故不能选择①③所以数列{}n a 是首项、公比均为12的等比数列,所以12nn a ⎛⎫= ⎪⎝⎭; 设正项等差数列{}n b 的公差为d ,∵13b =,且1b ,32b -,7b 成等比数列, ∴()23172b b b -=,即()()2322336d d +-=+,解得:4d =或12d =-(舍), ∴()34141n b n n =+-=-,故12nn a ⎛⎫= ⎪⎝⎭,41n b n =-. (2)()412nn c n -⨯=所以()1233272112412nn T n =⨯+⨯+⨯+⋅⋅⋅+-⨯,则()()23123272452412nn n T n n +=⨯+⨯+⋅⋅⋅+-⨯+-⨯,两式相减得()()22164222412nn n T n +-=+++⋅⋅⋅+--⨯()()114126441212n n n -+-=+⨯--⨯-()110254n n +=-+-.∴()110245n n T n +=+-【点睛】关键点睛:本题考查利用{}n a 与n S 的关系证明等比数列,等差数列基本量的计算,等比数列前n 项和问题,解答本题的关键是错位相减法求和中的计算,即由()1233272112412n n T n =⨯+⨯+⨯+⋅⋅⋅+-⨯,和()()23123272452412n n n T n n +=⨯+⨯+⋅⋅⋅+-⨯+-⨯相减得到()()22164222412n n n T n +-=+++⋅⋅⋅+--⨯,属于中档题.。
(常考题)北师大版高中数学必修五第一章《数列》检测题(有答案解析)
一、选择题1.若等差数列{}n a 的前n 项和为n S ,首项10a >,202020210a a +>,202020210a a ⋅<,则满足0n S >成立的最大正整数n 是( ) A .4039B .4040C .4041D .40422.在数列{}n a 中,11a =-,33a =,212n n n a a a ++=-(*n N ∈),则10a =( ) A .10B .17C .21D .353.已知数列{}n a 是等比数列,满足51184a a a =,数列{}n b 是等差数列,且88b a =,则79b b +等于( )A .24B .16C .8D .44.已知数列{}n a 的前n 项和是n S ,且21n n S a =-,若()0,2021n a ∈,则称项n a 为“和谐项”,则数列{}n a 的所有“和谐项”的和为( ) A .1022B .1023C .2046D .20475.设等比数列{}n a 的前n 项和为n S ,且4331S S S =-,若11a >,则( ) A .13a a <,24a a < B .13a a >,24a a < C .13a a <,24a a >D .13a a >,24a a >6.“杨辉三角”是中国古代重要的数学成就,它比西方的“帕斯卡三角形”早了300多年.如图是由“杨辉三角”拓展而成的三角形数阵,记n a 为图中虚线上的数1,3,6,10,构成的数列{}n a 的第n 项,则100a 的值为( )A .5049B .5050C .5051D .51017.两个公比均不为1的等比数列{}{},n n a b ,其前.n 项的乘积....分别为,n n A B ,若552a b =,则99A B =( ) A .512B .32C .8D .28.已知1,1x ,2x ,7成等差数列,1,1y ,2y ,8成等比数列,点()11,M x y ,()22,N x y ,则直线MN 的方程是( )A .10x y -+=B .10x y --=C .70x y --=D .70x y +-=9.已知等差数列{}n a 的前n 项和为n S ,满足28a =-,390n S -=,228n S =,则n =( ) A .10B .11C .12D .1310.已知数列{}n a 满足12a =,*11()12n na n N a +=-+∈,则2020a =( ) A .2B .13 C .12-D .3-11.根据下面一组等式:11s =, 2235s =+=,345615s =++=, 47891034s =+++=, 5111213141565s =++++=, 6161718192021111s =+++++=,……可得21n S -=( )A .324641n n n -+-B .1413n -C .2184023n n -+D .(1)12n n -+12.公元前四世纪,毕达哥拉斯学派对数和形的关系进行了研究.他们借助几何图形(或格点)来表示数,称为形数.形数是联系算术和几何的纽带.如图所示,数列1,6,15,28,45,…,从第二项起每一项都可以用六边形表示出来,故称它们为六边形数,那么该数列的第11项对应的六边形数为( )A .153B .190C .231D .276二、填空题13.已知等差数列{}n a 中,268,0a a ==,等比数列{}n b 中, 122123,b a b a a a ==++,那么数列{}n b 的前4项和4S =________14.在平面直角坐标系xOy 中,直线l 经过坐标原点,()3,1n =是l 的一个法向量.已知数列{}n a 满足:对任意的正整数n ,点()n 1n a ,a +均在l 上,若2a 6=,则3a 的值为______.15.在数列{a n }中,已知a 1=1,1(1)sin 2n n n a a π++-=,记S n 为数列{a n }的前n 项和,则S 2019=______16.已知n S 为数列{}n a 的前n 项和,若112a =,且122n n a a +=-,则100S =________. 17.在数列{}n a 中,121a a ==,32a =,且数列1n n a a +⎧⎫⎨⎬⎩⎭为等比数列,则n a =__________.18.已知正项等比数列{}n a ,12q =,若存在两项m a 、n a12a =,则9m n-的最小值为___________. 19.在数列{}n a 中,11a =()*1n =∈N ;等比数列{}n b 的前n 项和为2n n S m =-.当n *∈N 时,使得n n b a λ≥恒成立的实数λ的最小值是_________.20.设n S 是等比数列{}n a 的前n 项和,422n n n S S S +++=(*n ∈N ),且12S =,则20202021a a +=______.三、解答题21.设数列{}n a ,{}n b 是公比不相等的两个等比数列,数列{}n c 满足*,n n n c a b n =+∈N .(1)若2,3nnn n a b ==,是否存在常数k ,使得数列{}1n n c kc +-为等比数列?若存在,求k 的值;若不存在,说明理由;(2)证明:{}n c 不是等比数列.22.已知公差不为零的等差数列{}n a 的前n 项和为n S ,525S =,1a ,2a ,5a 成等比数列.(1)求数列{}n a 的通项公式;(2)若等差数列{}2log n b 的首项为1,公差为1,求数列{}n n a b 的前n 项和n T .23.已知各项均为正数的数列{}n a 的前n 项和为n S ,且满足222n n n S a a =+-.(1)求数列{}n a 的通项公式; (2)若232n nn a a b --=,求数列{}n b 的前n 项和n T . 24.已知等差数列{}n a 的公差为()0d d ≠,前n 项和为n S ,且满足___________(从①()101051S a =+﹔②1a ,2a ,6a 成等比数列;③535S =,这三个条件中任选两个补充到题干中的横线位置,并根据你的选择解决问题).(1)求n a ﹔ (2)设11n n n b a a +=,数列{}n b 的前n 项和为n T ,求证:13n T <. 25.从①1a 、2a 、5a 成等比数列,②525S =,③222n nS S n n+-=+,这三个条件中任选一个,补充在下面问题中并作答.已知等差数列{}n a 的前n 项和为n S ,47a =, ,122n a n nb a +=+,求数列{}n b 的前n 项和为n T .26.已知n S 为等差数列{}n a 的前n 项和,59a =,13169S =. (1)求数列{}n a 的通项公式; (2)设3nn n a b =,求数列{}n b 的前n 项和n T .【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】由等差数列的10a >,及202020210a a ⋅<得数列是递减的数列,因此可确定202020210,0a a ><,然后利用等差数列的性质求前n 项和,确定和n S 的正负.【详解】∵202020210a a ⋅<,∴2020a 和2021a 异号,又数列{}n a 是等差数列,首项10a >,∴{}n a 是递减的数列,202020210,0a a ><, 由202020210a a +>,所以140404040202020214040()2020()02a a S a a +==+>,14041404120214041()404102a a S a +==<,∴满足0n S >的最大自然数n 为4040. 故选:B . 【点睛】关键点睛:本题求满足0n S >的最大正整数n 的值,关键就是求出100n n S S +><,,时成立的n 的值,解题时应充分利用等差数列下标和的性质求解,属于中档题.2.B解析:B 【分析】根据等式关系得到数列{}n a 为等差数列,求出公差得到其通项公式,最后代值求解即可. 【详解】212n n n a a a ++=-(*n N ∈),212n n n a a a ++∴+=,即数列{}n a 是等差数列, 11a =-,33a =,312a a d ∴=+即312d =-+,则公差2d =,则()11223n a n n =-+-⨯=-(*n N ∈), 所以10210317a =⨯-=. 故选:B . 【点睛】关键点点睛:本题的解题关键是由题中所给关系得出其为等差数列,进而求出通项公式进行计算.3.C解析:C 【分析】利用等比数列和等差数列的性质计算. 【详解】∵数列{}n a 是等比数列,∴2511884a a a a ==,又80a ,∴84a =,又{}n b 是等差数列,∴7988228b b b a +===. 故选:C . 【点睛】关键点点睛:本题考查等差数列与等比数列的性质,掌握等差数列与等比数列的性质是解题关键.对正整数,,,m n p l ,若m n p l +=+,{}n a 是等差数列,则m n p l a a a a +=+,若{}n a 是等比数列,则m n p l a a a a =,特别地若2m n p +=,{}n a 是等差数列,则2m n p a a a +=,若{}n a 是等比数列,则2m n p a a a =.4.D解析:D 【分析】由1(2)n n n a S S n -=-≥求出{}n a 的递推关系,再求出1a 后确定数列是等比数列,求出通项公式,根据新定义确定“和谐项”的项数及项,然后由等比数列前n 项和公式求解. 【详解】当2n ≥时,11121(221)2n n n n n n n a S S a a a a ---=--==---,∴12n n a a -=, 又11121a S a ==-,11a =,∴{}n a 是等比数列,公比为2,首项为1, 所以12n na ,由122021n n a -=<得110n -≤,即11n ≤,∴所求和为1112204712S -==-.故选:D . 【点睛】关键点点睛:本题考查数列新定义,考查等比数列的通项公式与前n 项和公式,解题思路是由1(2)n n n a S S n -=-≥得出递推关系后确定数列是等比数列,从而求得通项公式.解题关键是利用新定义确定数列中“和谐项”的项数及项.5.B解析:B 【分析】首先根据题中所给的条件4331S S S =-,11a >利用等比数列求和公式求出0q <,分情况讨论求得10q -<<,从而可以得到项之间的大小关系. 【详解】设等比数列{}n a 的公比为q , 由4331S S S =-可得431a S =-, 若1q =,则1113a a =-显然不成立,所以1q ≠, 所以()312111q a a q q -++=,即()232111q q a q +=-+, 因为22131024q q q ⎛⎫++=++> ⎪⎝⎭,210a >,所以30q <,所以0q <,当1q ≤-时,31q ≤-,211q q ++≥,因为11a >,则()232111q q a q +=-+不可能成立,所以10q -<<,()213110a a a q -=->,()224110a a a q q -=-<,所以13a a >,24a a <, 故选:B. 【点睛】关键点点睛:本题解题的关键是利用等比数列求和公式将已知条件化简得到()232111q q a q +=-+,结合11a >求出q 的范围.6.B解析:B 【分析】观察数列的前4项,可得(1)2n n n a +=,将100n =代入即可得解. 【详解】由题意得11a =,2312a ==+,36123a ==++,4101234a ==+++⋅⋅⋅ 观察规律可得(1)1232n n n a n +=+++⋅⋅⋅+=, 所以10010010150502a ⨯==. 故选:B. 【点睛】关键点点睛:本题考查了观察法求数列的通项公式,关键是将各项拆成正整数的和的形式发现规律.7.A解析:A 【分析】直接利用等比数列的性质化简99A B ,再代入552a b =即得解. 【详解】由题得99912919285599129192855()()()2512()()()A a a a a a a a a aB b b b b b b b b b ⋅⋅⋅=====⋅⋅⋅. 故答案为A. 【点睛】(1)本题主要考查等比数列的性质,意在考查学生对该知识的掌握水平和分析推理能力.(2) 等比数列{}n a 中,如果m n p q +=+,则m n p q a a a a =,特殊地,2m p q =+时,则2·m p q a a a =,m a 是p q a a 、的等比中项. 8.B解析:B 【分析】本题先根据题意求出1x 、2x 、1y 、2y ,再写出点M 、N 的坐标并求MN k ,最后求直线MN 的方程即可.【详解】解:∵1,1x ,2x ,7成等差数列,∴12121721x x x x +=+⎧⎨=+⎩,解得1235x x =⎧⎨=⎩,∵1,1y ,2y ,8成等比数列,∴12212181y y y y ⋅=⨯⎧⎨=⨯⎩,解得1224y y =⎧⎨=⎩∴点()3,2M ,()5,4N ,42153MN k -==- ∴直线MN 的方程:41(5)y x -=⨯-,即10x y --=.故选:B. 【点睛】本题考查等差中项,等比中项,根据两点求直线的一般式方程,是基础题.9.C解析:C 【分析】根据数列是等差数列,结合等差数列的性质得313n n n S S a ---=,从而求得146n a -=,然后由121()()22n n n n a a n a a S -++==求解. 【详解】由题意得322890138n n S S --=-=, 所以13138n a -=. 所以146n a -=.所以121()()1922822n n n n a a n a a S n -++====, 解得12n =.故选:C 【点睛】本题主要考查等差数列的前n 项和公式和等差数列的性质的应用,属于中档题.10.D解析:D 【分析】先利用题中所给的首项,以及递推公式,将首项代入,从而判断出数列{}n a 是周期数列,进而求得结果. 【详解】由已知得12a =,2211123a =-=+,32111213a =-=-+, 4213112a =-=--,521213a =-=-, 可以判断出数列{}n a 是以4为周期的数列,故2020505443a a a ⨯===-,故选:D. 【点睛】该题考查的是有关数列的问题,涉及到的知识点利用递推公式判断数列的周期性,从而求解数列的某项,属于中档题.11.A解析:A 【分析】求出第()1n -行最后一项,可得第n 行为第一项,求出第n 行最后一项,根据第n 是等差数列求出n S ,即可求出21n S -. 【详解】易得第()1n -行最后一项为[]21(1)(1)22n n n n +---=,则第n 行第一项为212n n-+,第n 行最后一项为2(1)22n n n n++=, 故第n 行为第一项212n n -+,最后一项为22n n+,项数为n 的等差数列, 故22312222n n n n n n n n S ⎛⎫-+++ ⎪+⎝⎭==, 所以32214641n S n n n -=-+-.故选:A. 【点睛】本题考查对数列的理解,以及等差数列的前n 项和的求法,属于中档题.12.C解析:C 【分析】根据题中所给图与对应的六边形数,记第n 个六边形数为n a ,找出规律,相邻两项差构成等差数列,累加求得22n a n n =-,将11n =代入求得结果.【详解】记第n 个六边形数为n a ,由题意知:11a =,215141a a -==+⨯,32142a a -=+⨯,43143a a -=+⨯,,114(1)n n a a n --=+-,累加得21(1)[543]59[14(1)]212n n n a a n n n -+--=++++-==--,即22n a n n =-,所以21121111231a =⨯-=,故选:C. 【点睛】该题考查的是有关数列的问题,涉及到的知识点有利用累加法求数列的通项公式,属于中档题目.二、填空题13.320【分析】先求出等差数列的通项公式即可求出即可得通项再利用等比数列前项和公式求【详解】设等差数列的公差为则解得所以所以数列的公比为所以故答案为:320【点睛】本题主要考查了等比数列求和涉及等差数解析:320 【分析】先求出等差数列{}n a 的通项公式,即可求出1b ,2b ,即可得{}n b 通项,再利用等比数列前n 项和公式求4S【详解】设等差数列{}n a 的公差为d ,则2161850a a d a a d =+=⎧⎨=+=⎩,解得1102a d =⎧⎨=-⎩ , 1(1)10(1)(2)212n a a n d n n =+-=+-⨯-=-+ ,所以128b a ==,2123108624b a a a =+=++=+, 所以数列{}n b 的公比q 为213b b = , 所以448(13)32013S ⨯-==-.故答案为:320 【点睛】本题主要考查了等比数列求和,涉及等差数列通项公式,等比数列通项公式,属于基础题.14.-2【分析】由直线的法向量可得直线的斜率和直线方程求得则数列为公比q 为的等比数列运用等比数列的通项公式可得所求值【详解】直线经过坐标原点是的一个法向量可得直线的斜率为即有直线的方程为点均在上可得即有解析:-2 【分析】由直线的法向量可得直线的斜率和直线方程,求得n 1n 1a a 3+=-,则数列{}n a 为公比q 为13-的等比数列,运用等比数列的通项公式可得所求值. 【详解】直线经过坐标原点,()n 3,1=是l 的一个法向量, 可得直线l 的斜率为3-, 即有直线l 的方程为y 3x =-,点()n 1n a ,a +均在l 上,可得n n 1a 3a +=-, 即有n 1n 1a a 3+=-,则数列{}n a 为公比q 为13-的等比数列, 可得321a a q 623⎛⎫==⨯-=- ⎪⎝⎭. 故答案为2-. 【点睛】本题主要考查等比数列的定义和通项公式的运用,考查直线方程的求法,考查运算能力,属于基础题.15.1010【分析】推导出从而得到数列是一个以4为周期的数列由此能求出的值【详解】数列中;可以判断所以数列是一个以4为周期的数列故答案为:1010【点睛】本题考查数列的求和考查数列的周期性三角函数性质等解析:1010 【分析】 推导出1(1)sin2n n n a a π++=+,从而得到4n n a a +=,数列{}n a 是一个以4为周期的数列,由此能求出2019S 的值. 【详解】数列{}n a 中,11a =,1(1)sin2n n n a a π++-=, 1(1)sin2n n n a a π++∴=+, 21sin 1a a π∴=+=,323sin1102a a π=+=-=, 43sin 20a a π=+=,545sin0112a a π=+=+=, 511a a ∴==;可以判断4n n a a +=,所以数列{}n a 是一个以4为周期的数列.201945043=⨯+,20191234122504()504(1100)1101010S a a a a a a a ∴=⨯++++++=⨯++++++=,故答案为:1010.【点睛】本题考查数列的求和,考查数列的周期性、三角函数性质等基础知识,意在考查学生对这些知识的理解掌握水平.16.【分析】由递推公式依次计算出数列的前几项得出数列是周期数列从而可求和【详解】由题意∴数列是周期数列且周期为4故答案为:【点睛】本题考查数列的周期性考查求周期数列的和解题时可根据递推公式依次计算数列的 解析:4256【分析】由递推公式依次计算出数列的前几项,得出数列是周期数列,从而可求和. 【详解】 由题意2241322a ==-,33a =,42a =-,512a =,∴数列{}n a 是周期数列,且周期为4.10012341442525()2532236S a a a a ⎛⎫=+++=⨯++-= ⎪⎝⎭.故答案为:4256. 【点睛】本题考查数列的周期性,考查求周期数列的和,解题时可根据递推公式依次计算数列的项,然后归纳出周期性.17.【分析】由等比数列通项公式求出然后由累乘法求得【详解】∵为等比数列由已知∴∴时也适合此式∴故答案为:【点睛】本题考查等比数列的通项公式考查累乘法求数列通项公式如果已知则用累加法求通项公式如果已知则用 解析:()()2122n n --【分析】由等比数列通项公式求出1n na a +,然后由累乘法求得n a .【详解】∵1n n a a +⎧⎫⎨⎬⎩⎭为等比数列,由已知211a a =,322a a =,32212a a q a a ==, ∴112n n na a -+=,∴2n ≥时,(2)(1)2212(2)3242112311122222n n n n n n n a aa aa a a a a a ---+++--=⨯⨯⨯⨯⨯=⨯⨯⨯⨯==,1n =也适合此式, ∴(2)(1)22n n na --=.故答案为:(2)(1)22n n --.【点睛】本题考查等比数列的通项公式,考查累乘法求数列通项公式.如果已知1()n n a a fn --=,则用累加法求通项公式,如果已知1()nn a f n a -=,则用连乘法求通项公式. 18.【分析】由等比数列的通项公式结合可得出利用基本不等式可求得的最小值【详解】由于则即则由已知可得因此当且仅当时等号成立所以的最小值为故答案为:【点睛】易错点睛:利用基本不等式求最值时要注意其必须满足的 解析:2【分析】12a =可得出4m n =-,利用基本不等式可求得9m n-的最小值. 【详解】12a =,则214m n a a a =,即221121111124m n m n a a q a q a +---⎛⎫⋅=⋅= ⎪⎝⎭,则22m n +-=, 4m n ∴=-,由已知可得m 、n *∈N ,因此,()9994442m n n n n n -=--=+-≥=, 当且仅当3n =时,等号成立,所以,9m n-的最小值为2. 故答案为:2. 【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件: (1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.19.【分析】分别求出的通项再构建新数列求出最大项后可得实数的最小值【详解】因为故是以1为首项以1为公差的等差数列所以当时是等比数列也适合故即又恒成立等价于恒成立令则当时当时故【点睛】方法点睛:含参数的数解析:9 4【分析】分别求出{}n a、{}n b的通项,再构建新数列212n nnc-=,求出{}n c最大项后可得实数λ的最小值.【详解】()*1n=∈N,故是以1为首项,以1为公差的等差数列,()11n n=+-⨯=,2*()na n n N∴=∈.当2n≥时,111(2)(2)2n n nn n nb S S m m---=-=---=,{}nb是等比数列,112b S m∴==-也适合12nnb-=,故21m-=即1m=,1*2()nnb n N-∴=∈.又n nb aλ≥恒成立等价于212nnλ-≥恒成立,2max max1()()2nnna nbλ-∴≥=,令212n nnc-=,则()2221121142222n n n n nnn n nc c--------=-=,当23n≤≤时,1-->n nc c,当4n≥时,10n nc c--<,故max39()4nc c==,94λ∴≥.【点睛】方法点睛:含参数的数列不等式的恒成立,可利用参变分离将参数的取值范围问题转化新数列的最值问题,后者可利用数列的单调性来处理.20.4或0【分析】设等比数列的公比为q化简已知得再分类讨论即得解【详解】由已知结合等比数列的性质及通项公式即可直接求解由可得即∴若则此时若则此时故或故答案为:4或0【点睛】本题主要考查等比数列的通项的求解析:4或0【分析】设等比数列{}n a的公比为q,化简已知得()22121n n n nq a a a a+++++=+,再分类讨论即得解.【详解】由已知结合等比数列的性质及通项公式即可直接求解.由422n n nS S S+++=可得422n n n nS S S S+++-=-,即4312n n n na a a a+++++=+,∴()22121n n n n qa a a a +++++=+,若210n n a a +++=则1q =-,此时()121n n a -=⋅-,若210n n a a +++≠,则1q =,此时2n a =, 故202020210a a +=或202020214a a +=. 故答案为:4或0 【点睛】本题主要考查等比数列的通项的求法,意在考查学生对这些知识的理解掌握水平.三、解答题21.(1)存在,2k =或3k =;(2)证明见解析. 【分析】(1)若数列{}1n n c kc +-为等比数列,则有()()()21211n n n n n n c kc c kc c kc +++--=-⋅-,其中2n ≥且*n ∈N ,将23n n n c =+代入上式,整理得1(2)(3)2306n nk k --⋅⋅=化简即可得出答案;(2)证{}n c 不是等比数列只需证2213c c c ≠⋅,验证其不成立即可.【详解】解:(1)由题意知,若数列{}1n n c kc +-为等比数列,则有()()()21211n n n n n n c kc c kc c kc +++--=-⋅-,其中2n ≥且*n ∈N ,将23n nn c =+代入上式,得()()()211221111232323232323n n n n n n n n n n n n k k k ++++++--⎡⎤⎡⎤⎡⎤+-+=+-+⋅+-+⎣⎦⎣⎦⎣⎦, 即21111(2)2(3)3(2)2(3)3(2)2(3)3n n n n n n k k k k k k ++--⎡⎤⎡⎤⎡⎤-+-=-+-⋅-+-⎣⎦⎣⎦⎣⎦,整理得1(2)(3)2306n nk k --⋅⋅=,解得2k =或3k =.(2)设数列{}n a ,{}n b 的公比分别为,,p q p q ≠且,0p q ≠,11,0a b ≠, 则1111n n n c a pb q --=+,为证{}n c 不是等比数列,只需证2213c c c ≠⋅,事实上()22222221111112c a p b q a p a b pq b q =+=++,()()()222222221311111111c c a b a p b q a p a b p q b q ⋅=+⋅+=+++,由于p q ≠,故222p q pq +>,又11,0a b ≠,从而2213c c c ≠⋅,所以{}n c 不是等比数列. 【点睛】方法点睛:等差、等比数列的证明经常利用定义法和等比中项法,通项公式法和前n 项和公式法经常在选择题、填空题中用来判断数列是否为等差、等比数列不能用来证明.22.(1)21n a n =-;(2)()12326n n T n +=-⨯+.【分析】(1)由等差数列的前n 项和公式,等比数列的性质列出关于1a 和d 的方程组,解方程组后可得通项公式n a ;(2)由等差数列通项公式求得2log n b 后得n b ,然后由错位相减法求得和n T . 【详解】(1)设{}n a 公差为d ,则()()11211154525122124n a d a a n d a d a a d ⨯⎧+==⎧⎪⇒⇒=-⎨⎨=⎩⎪+=+⎩. (2)由题意2log 11(1)n b n n =+⨯-=,2n n b ∴=()2323252212n n T n =+⨯+⨯++-⨯,(1) ()2341223252212n n T n +=+⨯+⨯++-⨯,(2)(1)-(2)得:2312222222(21)2n n n T n +-=+⨯+⨯++⨯--⨯118(12)2(21)212n n n -+-=+--⨯-,()12326n n T n +=-⨯+.【点睛】本题考查求等差数列的通项公式,错位相减法求和.数列求和的常用方法: 设数列{}n a 是等差数列,{}n b 是等比数列,(1)公式法:等差数列或等比数列的求和直接应用公式求和; (2)错位相减法:数列{}n n a b 的前n 项和应用错位相减法; (3)裂项相消法;数列1{}n n ka a +(k 为常数,0n a ≠)的前n 项和用裂项相消法; (4)分组(并项)求和法:数列{}n n pa qb +用分组求和法,如果数列中的项出现正负相间等特征时可能用并项求和法;(5)倒序相加法:满足m n m a a A -+=(A 为常数)的数列,需用倒序相加法求和. 23.(1)1n a n =+;(2)12n n n T -=. 【分析】(1)根据222n n n S a a =+-可得211122n n n S a a +++=+-,两式作差证明{}n a 为等差数列,由此求解出{}n a 的通项公式;(2)先根据232n nn a a b --=求解出{}n b 的通项公式,然后采用错位相减法进行求和,由此求解出n T . 【详解】(1)因为222n n n S a a =+-,所以211122n n n S a a +++=+-, 所以两式作差有:221112n n n n n a a a a a +++=+--,所以()()221111n n n n n n n n a a a a a a a a +++++=-=+-,且0n a >,所以10n n a a ++>,所以11n n a a +-=,所以{}n a 是公差为1的等差数列,且21111222S a a a ==+-,所以12a =或11a =-(舍),所以()2111n a n n =+⋅-=+; (2)因为232n n n a a b --=,所以122nn nb --=, 所以01211012...2222n n n T ---=++++,所以12311012 (22222)n n n T --=++++, 两式作差可得:012311111112+ (2)222222n n n n T ------=++++-, 所以11111222221212n nn n T --⎛⎫⎛⎫- ⎪ ⎪ ⎪⎝⎭-⎝⎭=---,所以11112221222n n n n n n T ---⎛⎫-⎛⎫=---= ⎪ ⎪ ⎪⎝⎭⎝⎭. 【点睛】思路点睛:满足等差乘以等比形式的数列{}n a 的前n 项和n S 的求解步骤(错位相减法):(1)先根据数列的通项公式写出数列n S 的一般形式:123...nn S a a a a =++++;(2)将(1)中的关于n S 等式的左右两边同时乘以等比数列的公比()1q ≠;(3)用(1)中等式减去(2)中等式,注意用(1)中等式的第一项减去(2)中等式的第2项,依次类推,得到结果;(4)利用等比数列的前n 项和公式以及相关计算求解出n S . 24.条件选择见解析;(1)32n a n =-;(2)证明见解析. 【分析】(1)由①可得11a =,由②可得13d a =,由③可得3127a a d =+=,选择①②、①③、②③条件组合,均得11a =,3d =,即得解析式; (2)可得11133231n b n n ⎛⎫=- ⎪-+⎝⎭,由裂项相消法求出n T 即可证明.【详解】(1)①由()101051S a =+,得()11109105912a d a d ⨯+=++,即11a =; ②由1a ,2a ,6a 成等比数列,得2216a a a =,222111125a a d d a a d ++=+,即13d a =;③由535S =,得()15355352a a a +==,即3127a a d =+=; 选择①②、①③、②③条件组合,均得11a =,3d =, 故()13132n a n n =+-=-. (2)()()111111323133231n n nb a a n n n n +⎛⎫===- ⎪-+-+⎝⎭∴123n n T b b b b =++++11111111134477103231n n ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-++- ⎪ ⎪ ⎪ ⎪⎢⎥-+⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦111331n ⎛⎫=- ⎪+⎝⎭, ∵n *∈N ,∴1031n >+,∴13n T <.【点睛】方法点睛:数列求和的常用方法:(1)对于等差等比数列,利用公式法可直接求解;(2)对于{}n n a b 结构,其中{}n a 是等差数列,{}n b 是等比数列,用错位相减法求和; (3)对于{}+n n a b 结构,利用分组求和法;(4)对于11n n a a +⎧⎫⎨⎬⎩⎭结构,其中{}n a 是等差数列,公差为d ,则111111n n n n a a d a a ++⎛⎫=- ⎪⎝⎭,利用裂项相消法求和. 25.答案见解析. 【分析】选①,设等差数列{}n a 的公差为d ,根据已知条件可得出关于1a 、d 的方程组,解出这两个量的值,可求得数列{}n a 的通项公式,可求得n b ,进而可求得n T ;选②,设等差数列{}n a 的公差为d ,根据已知条件可得出关于1a 、d 的方程组,解出这两个量的值,可求得数列{}n a 的通项公式,可求得n b ,进而利用分组求和法可求得n T ; 选③,设等差数列{}n a 的公差为d ,利用等差数列的求和公式求出d 的值,可求得1a 的值,求出数列{}n a 的通项公式,可求得n b ,进而利用分组求和法可求得n T . 【详解】解:选①,设数列{}n a 的公差为d ,则由47a =可得137a d +=,由1a 、2a 、5a 成等比数列得()()21114a a d a d +=+,可得212d a d =,所以,121372a d d a d +=⎧⎨=⎩,解得170a d =⎧⎨=⎩或112a d =⎧⎨=⎩,若17a =,0d =,则7n a =,23n b =,23n T n =;若11a =,2d =,则()1121n a a n d n =+-=-,212nn b n =-+,()()()()23123252212nn T n ⎡⎤∴=+++++++-+⎣⎦()()23135212222n n =++++-+++++⎡⎤⎣⎦()()1221212122212nn n n n +-+-=+=+--;选②,设数列{}n a 的公差为d ,则由47a =可得137a d +=, 由525S =得1545252a d ⨯+=,即125a d +=, 联立以上两式可得11a =,2d =,所以,()1121n a a n d n =+-=-,212nn b n =-+,()()()()23123252212nn T n ⎡⎤∴=+++++++-+⎣⎦()()23135212222n n =++++-+++++⎡⎤⎣⎦()()1221212122212nn n n n +-+-=+=+--;选③,设数列{}n a 的公差为d ,则由47a =可得137a d +=,()112n n n d S na -=+,()112n n d S a n -∴=+,()21122n n d S a n ++∴=++, 由222n nS S n n+-=+得2d =,则11a =, 所以,()1121n a a n d n =+-=-,212nn b n =-+,()()()()23123252212n n T n ⎡⎤∴=+++++++-+⎣⎦()()23135212222n n =++++-+++++⎡⎤⎣⎦()()1221212122212nn n n n +-+-=+=+--.【点睛】方法点睛:数列求和的常用方法:(1)对于等差等比数列,利用公式法直接求和;(2)对于{}n n a b 型数列,其中{}n a 是等差数列,{}n b 是等比数列,利用错位相减法求和;(3)对于{}n n a b +型数列,利用分组求和法; (4)对于11n n a a +⎧⎫⎨⎬⎩⎭型数列,其中{}n a 是公差为()0d d ≠的等差数列,利用裂项相消法求和.26.(1)21n a n =-;(2)113n nn T +=-. 【分析】(1)根据59a =,13169S =,利用等差数列的通项公式以及前n 项和公式求解. (2)由(1)得到2133n n n n a n b -==,利用数列求和的错位相减法求解. 【详解】 (1)因为()11313713131692a a S a +===,所以77513,24a d a a ==-=, 解得2d =,所以9(5)221n a n n =+-⋅=-. (2)由(1)得213n nn b -=, 则()231111135213333n nT n =⋅+⋅+⋅++-⋅, ()()23411111111352321333333n n n T n n +=⋅+⋅+⋅++-⋅+-, 两式相减得:()231211111221333333n n n T n +⎛⎫=++++-- ⎪⎝⎭, 1111112193213313n n n -+⎛⎫- ⎪-⎝⎭=+--,122233n n ++=-, 所以113n nn T +=-. 【点睛】方法点睛:求数列的前n 项和的方法 (1)公式法:①等差数列的前n 项和公式,()()11122n n n a a n n S na d +-==+②等比数列的前n 项和公式()11,11,11n n na q S a q q q =⎧⎪=-⎨≠⎪-⎩; (2)分组转化法:把数列的每一项分成两项或几项,使其转化为几个等差、等比数列,再求解.(3)裂项相消法:把数列的通项拆成两项之差求和,正负相消剩下首尾若干项.(4)倒序相加法:把数列分别正着写和倒着写再相加,即等差数列求和公式的推导过程的推广.(5)错位相减法:如果一个数列的各项是由一个等差数列和一个等比数列对应项之积构成的,则这个数列的前n 项和用错位相减法求解.(6)并项求和法:一个数列的前n 项和中,可两两结合求解,则称之为并项求和.形如a n =(-1)n f (n )类型,可采用两项合并求解.。
新北师大版高中数学必修五第一章《数列》测试卷(含答案解析)
一、选择题1.已知数列{}n a 中,其前n 项和为n S ,且满足2n n S a =-,数列{}2n a 的前n 项和为n T ,若20n n S T λ+>对*n N ∈恒成立,则实数λ的取值范围是( )A .(3,)+∞B .(1,3)-C .93,5⎛⎫⎪⎝⎭D .(1,)-+∞2.两个公比均不为1的等比数列{}{},n n a b ,其前.n 项的乘积....分别为,n n A B ,若552a b =,则99A B =( ) A .512B .32C .8D .23.已知数列{}n a 的通项公式350n a n =-,则前n 项和n S 的最小值为( ) A .-784B .-368C .-389D .-3924.已知数列{}n a 中,13n n a S +=,则下列关于{}n a 的说法正确的是( ) A .一定为等差数列 B .一定为等比数列C .可能为等差数列,但不会为等比数列D .可能为等比数列,但不会为等差数列5.已知数列{}n a 的前n 项和n S 满足21n n S a =-.若对任意正整数n 都有10n n S S λ+-<恒成立,则实数λ的取值范围为( ) A .(),1-∞B .12⎛⎫-∞ ⎪⎝⎭,C .13⎛⎫-∞ ⎪⎝⎭,D .14⎛⎫-∞ ⎪⎝⎭,6.在等差数列{}n a 中,0n a ≠,()21102n n n a a a n -+-+=≥,若2138n S -=,则n =( ).A .38B .20C .10D .97.记数列{}n a 前n 项和为n S ,若1,n a ,n S 成等差数列,且数列()()11211n n n a a a +++⎧⎫⎪⎪⎨⎬--⎪⎪⎩⎭的前n 项和n T 对任意的*n N ∈都有210n T λ-+≥恒成立,则λ的取值范围为( ) A .1,6⎛⎤-∞ ⎥⎝⎦B .1,2⎛⎤-∞ ⎥⎝⎦C .5,6D .(],1-∞8.已知等差数列{}n a 中, 23a =,59a =,则数列{}n a 的前6项之和等于( ) A .11 B .12 C .24D .369.已知{}n a 是等比数列,且2222212345123451060a a a a a a a a a a ++++=++++=,,则24a a +=( )A .2B .3C .4D .510.如果数列{}n a 的前n 项和21()n n S a n N +=-∈,则5a =( ) A .8B .16C .32D .6411.已知数列{}n a 为等差数列,10a <且1231990a a a a +++⋅⋅⋅+=,设()*12n n n n b a a a n N ++=∈,当{}n b 的前n 项和n S 最小时,n 的值有( )A .5个B .4个C .3个D .2个12.已知数列{}n a 的通项公式为211n aa n n n=-+,5a 是数列{}n a 的最小项,则实数a 的取值范围是( ) A .[40,25]--B .[40,0]-C .[25,0]-D .[25,0]-二、填空题13.数列{}n a 满足()()1232312n a a a na n n n ++++=++,则n a = __________.14.已知数列{}n a 的首项1a m =,其前n 项和为n S ,且满足2123n n S S n n ++=+,若数列{}n a 是递增数列,则实数m 的取值范围是_______.15.在各项均为正数的等比数列{}n a 中,公比()0,1q ∈,若355a a +=,264a a =,2log n n b a =,数列{}n b 的前n 项和为n S ,则数列n S n ⎧⎫⎨⎬⎩⎭的前n 项的和n T 为______.16.已知{}n a 为等差数列,其公差为2-,且7a 是3a 与9a 的等比中项,n S 为{}n a 的前n 项和,则10S 的值为__________.17.若数列{}n a 满足12a =,141n n a a +=+,则使得22020n a ≥成立的最小正整数n 的值是______.18.已知数列{}n a 与{}n b 前n 项和分别为n S ,n T ,且0n a >,22n n n S a a =+,1121(2)(2)n n n n n n b a a +++=++,对任意的*n N ∈,n k T >,恒成立,则k 的最小值是__________.19.设无穷数列{a n }的前n 项和为S n ,下列有三个条件: ①m n m n a a a +⋅=; ②S n =a n +1+1,a 1≠0; ③S n =2a n +1p(p 是与n 无关的参数). 从中选出两个条件,能使数列{a n }为唯一确定的等比数列的条件是______. 20.已知数列{}n a ,{}n b 的前n 项和分别为n S ,n T ,21nn n b a -=+,且1222n n n S T n ++=+-,则2n T =____. 三、解答题21.已知数列{}n a 满足1*111,33().n n n a a a n ++==+∈N(1)求证:数列{}3nn a 是等差数列. (2)求数列{}n a 的通项公式.(3)设数列{}n a 的前n 项和为,n S 求证:37.324n n S n >- 22.已知数列{}n a 是首项12a =,且满足()212log log 1n n a a n N *+-=∈的正项数列,设()23log 2n n b a n N *=-∈.(1)求证:数列{}n a 是等比数列; (2)求数列{}n n a b 的前n 项和n S .23.已知正项数列{}n a 的前n 项和为n S .若214,n n n a S S a +== (1)求证:数列是等差数列;(2)设n b =,求数列{}n b 的前n 项和n T . 24.已知各项均为正数的数列{}n a 的前n 项和满足1n S >,且()()*612,n n n S a a n =++∈N .(1)求{}n a 的通项公式: (2)设数列{}n b 满足,2n n na nb n ⎧=⎨⎩是奇数,是偶数,并记n T 为{}n b 的前n 项和,求2n T . 25.已知数列{}n a 的前n 项和为n S ,且233n n S a =-. (1)求数列{}n a 的通项公式; (2)设3log n n b a =,11n n n c b b +=,求数列{}n c 的前n 项和n T . 26.已知{}n a 是由正整数组成的无穷数列,该数列前n 项的最大值记为n A ,最小值记为n B ,令nn nA bB =. (1)若2(1,2,3,)n a n n ==,写出1b ,2b ,3b 的值.(2)证明:1(1,2,3,)n n b b n +≥=.(3)若{}n b 是等比数列,证明:存在正整数0n ,当0n n 时,n a ,1n a +,2n a +是等比数列.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】由2n n S a =-利用1112n n n S n a S S n -=⎧=⎨-≥⎩ ,得到数列{}n a 是以1为首项,12为公比的等比数列,进而得到{}2n a 是以1为首项,14为公比的等比数列,利用等比数列前n 项和公式得到n S ,n T ,将20n n S T λ+>恒成立,转化为6321n λ-<-+,从而得出答案. 【详解】当1n =时,112S a =-,得 11a =;当2n ≥时,由2n n S a =-,得112n n S a --=-,两式相减得112n n a a -=, 所以数列{}n a 是以1为首项,12为公比的等比数列. 因为112n n a a -=,所以22114n n a a -=.又211a =,所以{}2n a 是以1为首项,14为公比的等比数列,所以1112211212n n n S ⎛⎫- ⎪⎡⎤⎛⎫⎝⎭==-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦-,11414113414nn n T ⎛⎫- ⎪⎡⎤⎛⎫⎝⎭==-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦-,由20n n S T λ+>,得()()321210nnλ-++>,所以()()321321663212121n nn n n λ-+--<==-+++, 所以6332121λ-<-=-=+, 所以1λ>-.综上,实数λ的取值范围是(1,)-+∞. 故选: D 【点睛】方法点睛:数列与不等式知识相结合的考查方式主要有三种:一是判断数列问题中的一些不等关系; 二是以数列为载体,考查不等式的恒成立问题;三是考查与数列问题有关的不等式的证明.在解决这些问题时,往往转化为函数的最值问题.2.A解析:A 【分析】直接利用等比数列的性质化简99A B ,再代入552a b =即得解. 【详解】由题得99912919285599129192855()()()2512()()()A a a a a a a a a aB b b b b b b b b b ⋅⋅⋅=====⋅⋅⋅. 故答案为A. 【点睛】(1)本题主要考查等比数列的性质,意在考查学生对该知识的掌握水平和分析推理能力.(2) 等比数列{}n a 中,如果m n p q +=+,则m n p q a a a a =,特殊地,2m p q =+时,则2·m p q a a a =,m a 是p q a a 、的等比中项. 3.D解析:D 【解析】令3500n -≥,求得16n >,即数列从第17项开始为正数,前16项为负数,故数列的前16项的和最小,1612,47a a =-=-,()16472163922S --⨯∴==-,故选D.【方法点睛】求等差数列前n 项和的最大值的方法通常有两种:①将前n 项和表示成关于n 的二次函数,n S 2An Bn =+,当2B n A =-时有最大值(若2Bn A=-不是整数,n 等于离它较近的一个或两个整数时n S 最大);②可根据0n a ≥且10n a +≤确定n S 最大时的n 值.4.C解析:C 【分析】根据13n n a S +=得14n n S S +=,分类讨论当10S =和10S ≠两种情况分析得数列{}n a 可能为等差数列,但不会为等比数列. 【详解】解:13n n a S +=,13n n n S S S +∴=-,14n n S S +∴=,若10S =,则数列{}n a 为等差数列;若10S ≠,则数列{}n S 为首项为1S ,公比为4的等比数列,114n n S S -∴=⋅,此时21134n n n n a S S S -==-⋅﹣(2n ≥),即数列从第二项起,后面的项组成等比数列.综上,数列{}n a 可能为等差数列,但不会为等比数列. 故选:C. 【点睛】本题考查等差数列、等比数列的判断,考查学生分析解决问题的能力,正确分类讨论是关键.5.C解析:C 【分析】先利用1,1,2n nn S n a S S n =⎧=⎨-≥⎩求出数列{}n a 的通项公式,于是可求出n S ,再利用参变量分离法得到1n n S S λ+<,利用数列的单调性求出数列1n n S S +⎧⎫⎨⎬⎩⎭的最小项的值,可得出实数λ的取值范围. 【详解】当1n =时,1121S a =-,即1121a a =-,得11a =;当2n ≥时,由21n n S a =-,得1121n n S a --=-,两式相减得122n n n a a a -=-,得12n n a a -=,12nn a a -∴=,所以,数列{}n a 为等比数列,且首项为1,公比为2,11122n n n a --∴=⨯=. 12122121n n n n S a -∴=-=⨯-=-,由10n n S S λ+-<,得()()11111112121112221212221n nnn n n n S S λ+++++---<===----, 所以,数列1n n S S +⎧⎫⎨⎬⎩⎭单调递增,其最小项为122211213S S -==-,所以,13λ<, 因此,实数λ的取值范围是1,3⎛⎫-∞ ⎪⎝⎭,故选C . 【点睛】本题考查利用数列前n 项和求数列的通项,其关系式为1,1,2n nn S n a S S n =⎧=⎨-≥⎩,其次考查了数列不等式与参数的取值范围问题,一般利用参变量分离法转化为数列的最值问题来求解,考查化归与转化问题,属于中等题.6.C解析:C 【分析】由2110n n n a a a -+-+=,可得2112n n n n a a a a -++==,得到2n a =,再根据等差数列的求和公式,得到2138(21)n n n S a --==,代入即可求解,得到答案. 【详解】由题意,等差数列{}n a 中,()21102n n n a a a n -+-+=≥,可得2112n n n n a a a a -++==,又0,n a ≠解得2n a =, 又由12121(21)()(2)3812n n n n a a n a S ---+==-=,即(21)823n -⨯=,解得10n =,故选C . 【点睛】本题主要考查了等差数列的性质,以及等差数列的求和公式的应用,其中解答中熟记等差数列的性质,求得2n a =和2138(21)n n n S a --==是解答本题的关键,着重考查了推理与运算能力,属于基础题.7.C解析:C 【分析】直接利用递推关系式的应用求出数列的通项公式,进一步利用裂项相消法的应用和分离参数法及函数的恒成立问题的应用求出参数的取值范围. 【详解】数列{}n a 前n 项和为n S ,若1,n a ,n S 成等差数列, 所以21n n a S =+①, 当1n =时,11a =.当2n ≥时,1121n n a S --=+②, ①﹣②得122n n n a a a --=,整理得12nn a a -=(常数), 所以数列{}n a 是以1为首项,2为公比的等比数列. 所以12n na .所以()()()()111122111121212121n n n n n n n n a a a +++++==-------,则1111111111337212121n n n n T ++=-+-++-=----. 由于对任意的*n N ∈都有210n T λ-+≥恒成立,所以12n T λ+≥恒成立. 即()min 12n T λ+≥,当1n =时,()1min 5113n T T +=+=, 所以523λ≥,解得56λ≥, 所以5,6λ⎛⎤∈-∞ ⎥⎝⎦.故选:C 【点睛】本题主要考查了由递推关系式求数列的通项公式,考查了裂项求和以及恒成立问题,属于中档题.8.D解析:D 【分析】根据等差数列的性质得162512a a a a +=+=,再根据等差数列前n 项和公式计算即可得答案. 【详解】解:因为等差数列{}n a 中, 23a =,59a =, 所以根据等差数列的性质得162512a a a a +=+=, 所以根据等差数列前n 项和公式()12n n n a a S +=得()16666123622a a S +⨯===. 故数列{}n a 的前6项之和等于36. 故选:D. 【点睛】本题考查等差数列的性质,前n 项和公式,考查运算能力,是中档题.9.A解析:A 【分析】首先根据题意,利用等比数列求和公式,得到5112345(1)101a q a a a a a q -++++==-,222222101521234(1)601a q q a a a a a -=-++=++,两式相除得到51(1)61a q q+=+,即5112345(1)61a q a a a a a q+-+-+==+,与1234510a a a a a ++++=联立求得结果.【详解】设数列{}n a 的公比为q ,且1q ≠,则5112345(1)101a q a a a a a q -++++==-, 222222101521234(1)601a q qa a a a a -=-++=++, 两式相除得210551112(1)(1)(1)6111a q a q a q q q q--+÷==--+, 所以5112345(1)61a q a a a a a q+-+-+==+, 又123123452445)()2()104(6a a a a a a a a a a a a --+-+=+=++-+=+, 所以242a a +=, 故选:A. 【点睛】该题考查的是有关数列的问题,涉及到的知识点有等比数列的求和公式,这题思维的应用,属于中档题目.10.B解析:B 【分析】根据题意得到()21n n S a n N +=-∈,1121n n S a --=-(n 2≥),两式做差得到12n n a a -=,可得到数列的通项,进而得到结果.【详解】数列{}n a 的前n 项和()21n n S a n N +=-∈,1121n n S a --=-(n 2≥),两式做差得到12n n a a -=(n 2≥),由此可得到数列是等比数列,令n=1代入得到1121S a =-=1a ,解得1a =1,故得到数列通项为12n n a ,令n=5得到516.a =故答案为B. 【点睛】这个题目考查的是数列通项公式的求法及数列求和的常用方法;数列通项的求法中有常见的已知n S 和n a 的关系,求n a 表达式,一般是写出1n S -做差得通项,但是这种方法需要检验n=1时通项公式是否适用.11.B解析:B 【分析】根据等差数列的性质可知1000a ,从而判断数列{}n a 是单调递增数列,即可判断当{}n b 的前n 项和n S 最小时,n 可取的值. 【详解】数列{}n a 为等差数列,119921981002a a a a a ,1231990a a a a +++⋅⋅⋅+=,则1001990a ,即1000a ,10a <,可以判断数列{}n a 是单调递增数列,991010,0a a , 12n n n n b a a a ++=,12323412nn n n S a a a a a a a a a ,当{}n b 的前n 项和n S 最小时,n 可取的值为97,98,99,100共4个. 故选:B. 【点睛】本题主要考查等差数列的性质,属于中档题.12.D解析:D 【分析】由题设得到5n a a ≥恒成立,参变分离后可得实数a 的取值范围. 【详解】由题设有5n a a ≥恒成立,故21125555a an n n -+≥-+恒成立即()()()5565a n n n n---≥, 当6n ≥时,有()56a n n ≤-恒成立,故0a ≤, 当14n ≤≤时,有()56a n n ≥-恒成立,故25a ≥-, 当5n =时,a R ∈, 故250a -≤≤. 故选:D. 【点睛】本题考查数列的函数性质:最值问题,此类问题可利用函数的单调性来研究,也可以利用恒成立来研究,本题属于较难题.二、填空题13.【分析】对递推关系多递推一次再相减可得再验证是否满足;【详解】∵①时②①-②得时满足上式故答案为:【点睛】数列中碰到递推关系问题经常利用多递推一次再相减的思想方法求解 解析:31n【分析】对递推关系多递推一次,再相减,可得31n a n ,再验证1n =是否满足;【详解】 ∵()()1232312n a a a na n n n ++++=++①2n ∴≥时,()()()123123111n a a a n a n n n -++++-=-+② ①-②得31,31nnna n n a n ,1n =时,1123=6,a 满足上式,31na n .故答案为:31n . 【点睛】数列中碰到递推关系问题,经常利用多递推一次再相减的思想方法求解.14.【分析】利用退一作差法求得再求得根据列不等式解不等式求得的取值范围【详解】由可得:两式相减得:两式相减可得:数列是以为公差的等差数列数列是以为公差的等差数列将代入及可得:将代入可得要使得恒成立只需要解析:15,44⎛⎫⎪⎝⎭【分析】利用退一作差法求得114(3)n n a a n +--=≥,再求得234,,a a a ,根据1234a a a a <<<列不等式,解不等式求得m 的取值范围. 【详解】由2123n n S S n n ++=+可得:212(1)3(1)(2)n n S S n n n -+=-+-≥ 两式相减得:141(2)n n a a n n ++=+≥143(3)n n a a n n -∴+=-≥两式相减可得:114(3)n n a a n +--=≥∴数列2a ,4a ,6a ,...是以4为公差的等差数列,数列3a ,5a ,7a ,...是以4为公差的等差数列,将1n =代入2123n n S S n n ++=+及1a m =可得:252a m =-将2n =代入141(2)n n a a n n ++=+≥可得342a m =+42492a a m =+=-要使得*n N ∀∈,1n n a a +<恒成立 只需要1234a a a a <<<即可524292m m m m ∴<-<+<- 解得1544m <<则m 的取值范围是15,44⎛⎫ ⎪⎝⎭. 故答案为:15,44⎛⎫ ⎪⎝⎭【点睛】本小题主要考查已知n S 求n a ,考查数列的单调性,属于中档题.15.【分析】首先利用方程组求出数列的通项公式进一步求出数列的通项公式进一步利用分类讨论思想的应用求出数列的和【详解】解:各项均为正数的等比数列中若所以由于公比解得所以解得所以由于所以则当时当时所以故答案解析:()()2217941714494n n n n T n n n ⎧-≤⎪⎪=⎨-+⎪>⎪⎩【分析】首先利用方程组求出数列{}n a 的通项公式,进一步求出数列{}n b 的通项公式,进一步利用分类讨论思想的应用求出数列的和. 【详解】解:各项均为正数的等比数列{}n a 中,若355a a +=,264a a =,所以35352654a a a a a a +=⎧⎨==⎩,由于公比()0,1q ∈,解得3541a a =⎧⎨=⎩,所以253a a q =,解得12q =. 所以55512n n n a a q --⎛⎫=⋅= ⎪⎝⎭.由于5221log log 52n n n b a n -⎛⎫===- ⎪⎝⎭.所以()()45922n n n n n S +--==, 则()9292nn n n S n c nn--===, 当9n ≤时,()212171744n n n n n n T c c c --=+++==. 当9n >时,()()212910*********24n n n n n T c c c c c c c c c c -+=+++---=++-+++=. 所以()()2217941714494n n n n T n n n ⎧-≤⎪⎪=⎨-+⎪>⎪⎩. 故答案为:()()2217941714494n n n n T n n n ⎧-≤⎪⎪=⎨-+⎪>⎪⎩【点睛】本题考查等比数列的通项公式,等差数列的前n 项和公式,考查分类讨论思想和数学运算能力,是中档题.16.110【分析】根据题意求出首项再代入求和即可得【详解】是与的等比中项解得故答案为:110【点睛】本题主要考查等差数列等比数列的通项公式及等差数列求和是基础题解析:110 【分析】根据题意,求出首项120a =,再代入求和即可得. 【详解】31124a a d a =+=-,711612a a d a =+=-,911816a a d a =+=-,7a 是3a 与9a 的等比中项,()()2111(12)416a a a ∴-=--,解得120a =,()101102010921102S ∴=⨯+⨯⨯⨯-=.故答案为:110. 【点睛】本题主要考查等差数列、等比数列的通项公式及等差数列求和,是基础题.17.【分析】根据递推关系式可证得数列为等比数列根据等比数列通项公式求得代入不等式结合可求得结果【详解】数列是以为首项为公比的等比数列由得:即且满足题意的最小正整数故答案为:【点睛】本题考查根据数列递推关 解析:11【分析】根据递推关系式可证得数列}1,代入不等式,结合n *∈N 可求得结果. 【详解】()21411n n a a +=+=,1=,)121=,∴数列}111=为首项,2为公比的等比数列,)1112n -=⨯,)1121n -=⨯-,由22020n a ≥2020≥,即)1220211837n -≥=⨯≈,92512=,1021024=且n *∈N ,∴满足题意的最小正整数11n =.故答案为:11. 【点睛】本题考查根据数列递推关系式求解数列通项公式并解不等式的问题,关键是能够通过构造的方式,通过递推关系式得到等比数列的形式,进而利用等比数列通项公式来进行求解.18.【分析】首先利用与的关系式求数列的通项公式再利用裂项相消法求再利用的最值求的最小值【详解】当时解得或当两式相减后可得整理后得:所以数列是公差为1的等差数列即数列单调递增当时对任意的恒成立即的最小值是解析:13【分析】首先利用n S 与n a 的关系式,求数列{}n a 的通项公式,再利用裂项相消法求n T ,再利用n T 的最值求k 的最小值. 【详解】当1n =时,2111122S a a a =+=,解得10a =或11a =,0n a >,11a ∴=,当2n ≥,2211122n n nn n n S a a S a a ---⎧=+⎨=+⎩,两式相减后可得()()()221112n n n n n n S S a a a a ----=-+-,整理后得:()()1110n n n n a a a a --+--=,所以11n n a a --=,∴数列{}n a 是公差为1的等差数列,即n a n =,()()112111221221n n n n n n b n n n n +++==-++++++,2231111111...21222223221n n n T n n +⎛⎫⎛⎫⎛⎫=-+-++- ⎪ ⎪ ⎪+++++++⎝⎭⎝⎭⎝⎭ 1112121n n +=-+++ 111321n n +=-++, 数列{}n T 单调递增,当n →+∞时,13n T → 对任意的*n N ∈,n k T >,恒成立,()max n k T ∴>,即13k ≥,k 的最小值是13.故答案为:13【点睛】易错点睛:本题主要考查函数与数列的综合问题,属于难题.解决该问题应该注意的事项: (1)数列是一类特殊的函数,它的图象是一群孤立的点;(2)转化以函数为背景的条件时,应该注意题中的限制条件,如函数的定义域,这往往是很容易被忽视的问题;(3)利用函数的方法研究数列中的相关问题时,应准确构造相应的函数,注意数列中相关限制条件的转化.19.①③【分析】选①②在①中令在②中令联立方程由方程无解推出矛盾;选①③在③中由通项与前项和之间的关系求出公比在①中令在③中用表示出联立方程求出确定数列;选②③由通项与前项和之间的关系即可作出判断【详解解析:①③ 【分析】选①②,在①中令1m n ==,在②中令1n =联立方程,由方程无解推出矛盾;选①③,在③中由通项与前n 项和之间的关系求出公比,在①中令1m n ==,在③中用12,a a 表示出12,S S 联立方程,求出1,a p 确定数列{}n a ;选②③,由通项与前n 项和之间的关系即可作出判断. 【详解】在①中,令1m n ==,得221a a =;在②中,11n n S a +=+,当2n ≥时, 11n n S a -=+,两式相减,得1n n n a a a +=-,即12n n a a +=;在③中,11112,2n n n n S a S a p p++=+=+,两式相减,得 1122n n n a a a ++=-,即 12n n a a +=,若选①②,则22112,1a a a a ⎧=⎨=+⎩即 2211111,10a a a a =--+=, 2(1)41130∆=--⨯⨯=-<,方程无解,故不能选①②作为条件;若选①③,则由12n n a a +=知,数列{}n a 的公比为2,由 221111221212a a a a p a a a p ⎧⎪=⎪⎪=+⎨⎪⎪+=+⎪⎩得1212a p =⎧⎪⎨=-⎪⎩,所以数列 {}n a 是首项为2,公比为2的等比数列; 若选②③作为条件,则无法确定首项,数列{}n a 不唯一,故不能选②③作为条件. 综上所述,能使数列{}n a 为唯一确定的等比数列的条件是①③. 故答案为:①③ 【点睛】思路点睛:本题考查利用递推关系求数列中的项,涉及等比数列的判定和通项公式,遇到和与项的递推关系时,一般有两种方法:(1)消去和,得到项的递推关系;(2)消去项,得到和的递推关系.20.【解析】所以 解析:22(1)4n n n +++-【解析】1112222n n n n n T S b a b a b a n +-=-+-++-=+-所以222(1)4n n n n n n T T S S T n n +=-++=++-三、解答题21.(1)证明见解析;(2)233nn a n ⎫⎛=-⋅ ⎪⎝⎭;(3)证明见解析. 【分析】(1)利用已知条件通分计算或者直接整理,证明11133n nn n a a ++-=,即证结论; (2)利用(1)求得数列3n n a ⎧⎫⎨⎬⎩⎭的通项公式,即求得{}n a 的通项公式; (3)结合(2)的结果,利用错位相减法求得n S ,并计算整理3n n S ,根据7043n>⨯即证得结论.【详解】解:(1)解法1:由()1*133n n n a a n N ++=+∈,得111111333313333n n n n n n nn n n n a a a a a a ++++++-+--===. 又11133a =,故数列3n n a ⎧⎫⎨⎬⎩⎭是以13为首项,以1为公差的等差数列. 解法2:由()1*133n n n a a n N ++=+∈,得11133n nn n a a ++=+,即11133n n n n a a ++-=. 又11133a =,故数列3n n a ⎧⎫⎨⎬⎩⎭是以13为首项,以1为公差的等差数列. (2)由(1)得()111133n n a n =+-⨯,*N n ∈, 即233n n a n =-,故233n n a n ⎫⎛=-⋅ ⎪⎝⎭;(3)由(2)可知()121222213231333333n n n S n n -⎫⎫⎫⎛⎛⎡⎤⎛=-⨯+-⨯+⋅⋅⋅+--⨯+-⨯ ⎪ ⎪ ⎪⎢⎥⎝⎝⎣⎦⎝⎭⎭⎭①()2312222313231333333n n n S n n +⎫⎫⎫⎛⎛⎡⎤⎛=-⨯+-⨯+⋅⋅⋅+--⨯+-⨯ ⎪ ⎪ ⎪⎢⎥⎝⎝⎣⎦⎝⎭⎭⎭②由①②得1112397723133262n n n n S n n +++-⎫⎫⎛⎛=-⨯--=-⨯+ ⎪ ⎪⎝⎝⎭⎭ 故17732124n n n S +⎫⎛=-⨯+⎪⎝⎭,从而1737377372123343244324n n n n n n n S n n +⎫⎛-⨯ ⎪⎫⎛⎝⎭=+=-+>- ⎪⨯⨯⎝⎭. 【点睛】方法点睛:数列求和的常用方法:(1)公式法:利用等差数列和等比数列前n 项和公式进行计算即可;(2)倒序相加法:如果一个数列{}n a 的前n 项中首末两端等距离的两项的和相等或等于同一个常数,那么求这个数列的前n 项和即可以用倒序相加法;(3)错位相减法:如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,那么这个数列的前n 项和即可以用错位相减法来求;(4)裂项相消法:把数列的通项拆成两项之差,在求和时,中间的一些项可相互抵消,从而求得其和;(5)分组转化法:一个数列的通项公式是由若干个等差数列或等比数列或可求和的数列组成,则求和时可用分组转换法分别求和再相加减;(6)并项求和法:一个数列的前n 项和可以两两结合求解,则称之为并项求和,形如()()1nn a f n =-类型,可采用两项合并求解.22.(1)证明见解析;(2)135210n n S n .【分析】(1)利用对数的运算性质结合等比数列的定义可证得结论成立; (2)求出n n a b 的表达式,利用错位相减法可求得n S . 【详解】(1)对任意的n *∈N ,12122log log log 1n n n n a a a a ++-==,所以,12n naa +=, 所以,数列{}n a 是等比数列,且首项和公比均为2,1222n n n a -∴=⨯=;(2)23log 232n n b a n =-=-,()322n n n a b n ∴=-⋅,()123124272322n n S n ∴=⨯+⨯+⨯++-⨯,()()23121242352322n n n S n n +=⨯+⨯++-⨯+-⨯,上式-下式得()()()()212311321223222322232212n n n n n S n n -++⨯--=+⨯+++--⨯=+--⨯-()153210n n +=-⨯-,因此,135210n n S n .【点睛】方法点睛:数列求和的常用方法:(1)对于等差等比数列,利用公式法直接求和;(2)对于{}n n a b 型数列,其中{}n a 是等差数列,{}n b 是等比数列,利用错位相减法求和;(3)对于{}n n a b +型数列,利用分组求和法; (4)对于11n n a a +⎧⎫⎨⎬⎩⎭型数列,其中{}n a 是公差为()0d d ≠的等差数列,利用裂项相消法求和.23.(1)证明见解析;(2)21n nT n =+. 【分析】(1)利用+1+1n n n a S S =-,消去n S,因式分解后得到数列为等差数列,求通项公式;(2)先根据n b =求出2(1)n b n n =+,再拆项为2112()(1)1nb n n n n ==-++,然后求和. 【详解】解:(1)由题意得,1n n n S S a +-=+1n n a a +-=∴1=2=1=,∴数列是首项为1,公差为1的等差数列.(2)由(1n =,∴2n a n =,依题意,()211211n b n n n n ⎛⎫===- ⎪++⎝⎭, ∴11111212231n T n n ⎛⎫=-+-++- ⎪+⎝⎭122111n n n ⎛⎫=-=⎪++⎝⎭. 【点睛】(1)证明等差(比)数列的方法:定义法和等差(比)中项法; (2)数列求和的方法:公式法、裂项相消法、错位相减法、倒序相加法.24.(1)31n a n =-;(2)1224433n n T n n +-=+-.【分析】(1)令1n =,结合111a S =>可得12a =,由()()612n n n S a a =++,*n ∈N 可得()()111612n n n S a a +++=++,两式相减可得13n n a a +-=即可求{}n a 的通项公式; (2)24221321()(222)nn n T a a a -=++⋅⋅⋅++++⋅⋅⋅+,利用分组并项求和,以及等差和等比数列求和公式即可求解. 【详解】 (1)由()()11111126a S a a ==++,即()()11210a a --=, 因为111a S =>,所以12a =, 由()()612n n n S a a =++,*n ∈N 可得()()111612n n n S a a +++=++,两式相减可得()()()()11161212n n n n n a a a a a +++=++-++, 得()()1130n n n n a a a a +++--=, 又0n a >,得13n n a a +-=,所以{}n a 是首项为2公差为3的等差数列, 故{}n a 的通项公式为31n a n =-.(2)24221321()(222)nn n T a a a -=++⋅⋅⋅++++⋅⋅⋅+()242(28146222)4n n ++⋅⋅⋅+=++++-+12(264)4(14)4432143n n n n n n ++---=+=+--.【点睛】方法点睛:数列求和的方法(1)倒序相加法:如果一个数列{}n a 的前n 项中首末两端等距离的两项的和相等或等于同一个常数,那么求这个数列的前n 项和即可以用倒序相加法(2)错位相减法:如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,那么这个数列的前n 项和即可以用错位相减法来求;(3)裂项相消法:把数列的通项拆成两项之差,在求和时,中间的一些项可相互抵消,从而求得其和;(4)分组转化法:一个数列的通项公式是由若干个等差数列或等比数列或可求和的数列组成,则求和时可用分组转换法分别求和再相加减;(5)并项求和法:一个数列的前n 项和可以两两结合求解,则称之为并项求和,形如()()1nn a f n =-类型,可采用两项合并求解.25.(1)3nn a =;(2)1n n T n =+. 【分析】(1)令1n =计算1a ,当2n ≥时,利用1222n n n a S S -=-可得{}n a 是等比数列,即可求解;(2)由{}n a 的通项公式可得{}n b 的通项,进而可得{}n c 的通项,利用裂项求和即可求解. 【详解】(1)当1n =时,1112233a S a ==-,13a ∴= 当2n ≥时,()()112223333n n n n n a S S a a --=-=---即13nn a a -=()2n ≥, ∴数列{}n a 为以3为首项,3为公比的等比数列.1333n n n a -∴=⨯=(2).由3log n n b a =,得3log 3nn b n ==则()1111111n n n c b b n n n n +===-++,11111111223111n n T n n n n =-+-++-=-=+++. 【点睛】 方法点睛:数列求和的方法(1)倒序相加法:如果一个数列{}n a 的前n 项中首末两端等距离的两项的和相等或等于同一个常数,那么求这个数列的前n 项和即可以用倒序相加法;(2)错位相减法:如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,那么这个数列的前n 项和即可以用错位相减法来求;(3)裂项相消法:把数列的通项拆成两项之差,在求和时,中间的一些项可相互抵消,从而求得其和;(4)分组转化法:一个数列的通项公式是由若干个等差数列或等比数列或可求和的数列组成,则求和时可用分组转换法分别求和再相加减;(5)并项求和法:一个数列的前n 项和可以两两结合求解,则称之为并项求和,形如()()1n n a f n =-类型,可采用两项合并求解.26.(1)11b =,22b =,33b =;(2)证明见解析;(3)证明见解析【分析】(1)由{}n a 是单调递增数列可得1n n a b a =即可求出; (2)设1n a k +=,讨论n k B ≤,n n B k A <<和n k A ≥可证明;(3)设{}n b 的公比为q ,且1q ≥,显然1q =时满足;1q >时,由{}n A 是递增数列,{}n B 是递减数列,且{}n B 不能无限减少可得.【详解】(1)2n a n =,可得{}n a 是单调递增数列,1,n n n a B A a ∴==,1111a b a ∴==,2212a b a ==,3313a b a ==, (2)设1n a k +=,n n n A b B =, 若n k B ≤,则+1n n n n nk A A b b B =≥=, 若n n B k A <<,则+1n n n n A b b B ==, 若n k A ≥,则+1n n n nn A k b b B B =≥=, 综上,1(1,2,3,)n n b b n +≥=;(3)设等比数列{}n b 的公比为q ,1111a b a ==,则1n n n n A b q B -==, 由(2)可得1n n b b +≥,则1q ≥,当1q =时,1n nA B =,即n n A B =,此时{}n a 为常数列,则存在01n =,当0n n ≥时,n a ,1n a +,2n a +是等比数列; 当1q >时,{}n A 是递增数列,{}n B 是递减数列,{}n a 是由正整数组成的无穷数列,则数列{}n a 必存在最小值,即存在正整数0n ,0n a 是数列{}n a 的最小值,则当0n n ≥时,0n n B a =, 此时01n n n n n n A a b q B a -===,即01n n n a a q -=, 故当0n n ≥时,n a ,1n a +,2n a +是等比数列;综上,存在正整数0n ,当0n n ≥时,n a ,1n a +,2n a +是等比数列. 【点睛】本题考查数列单调性的有关判断,解题的关键是正确理解数列的变化情况,清楚{}n b 的变化特点.。
(常考题)北师大版高中数学必修五第一章《数列》检测卷(含答案解析)(1)
一、选择题1.已知数列{}n a 的前n 项和为n S ,11a =,23a =,且()11222n n nn S S S n +-+=+≥,若()()72n n S a n λλλ-++≥-对任意*n ∈N 都成立,则实数λ的最小值为( ) A .52-B .116C .332D .12.设等比数列{}n a 的前n 项和为n S ,且4331S S S =-,若11a >,则( ) A .13a a <,24a a < B .13a a >,24a a < C .13a a <,24a a >D .13a a >,24a a >3.设等差数列{}n a 前n 项和为n S ,等差数列{}n b 前n 项和为n T ,若11n n S n T n -=+.则55a b =( ) A .23B .45C .32D .544.在正项等比数列{}n a 中,若3788a a a =,2105a a +=,则公比q =( ) A .122B .122或1212⎛⎫ ⎪⎝⎭C .142D .142或1412⎛⎫ ⎪⎝⎭5.已知数列{}n a 中,其前n 项和为n S ,且满足2n n S a =-,数列{}2n a 的前n 项和为n T ,若20n n S T λ+>对*n N ∈恒成立,则实数λ的取值范围是( )A .(3,)+∞B .(1,3)-C .93,5⎛⎫⎪⎝⎭D .(1,)-+∞6.“杨辉三角”是中国古代重要的数学成就,它比西方的“帕斯卡三角形”早了300多年.如图是由“杨辉三角”拓展而成的三角形数阵,记n a 为图中虚线上的数1,3,6,10,构成的数列{}n a 的第n 项,则100a 的值为( )A .5049B .5050C .5051D .51017.若数列{}n a 满足*111(n nd n N a a +-=∈,d 为常数),则称数列{}n a 为调和数列,已知数列21n x ⎧⎫⎨⎬⎩⎭为调和数列,且222212320184036x x x x +++⋯+=,则92010x x +的最大值为( ) AB .2C.D .48.记n S 为等比数列{}n a 的前n 项和,若数列{}12n S a -也为等比数列,则43a a =( ). A .2B .1C .32D .129.已知等差数列{}n a 中, 23a =,59a =,则数列{}n a 的前6项之和等于( ) A .11 B .12 C .24D .3610.已知等比数列{}n a 的前n 项和为n S ,若123451111110a a a a a ++++=,则31a =,5S =( )A .10B .15C .20D .2511.已知1,1x ,2x ,7成等差数列,1,1y ,2y ,8成等比数列,点()11,M x y ,()22,N x y ,则直线MN 的方程是( )A .10x y -+=B .10x y --=C .70x y --=D .70x y +-=12.记等差数列{}n a 的前n 项和为n S .若64a =,19114S =,则15S =( ) A .45B .75C .90D .95二、填空题13.数列{}n a 的前n 项和为n S ,已知2(2)n a n n =+,则4S =___________.14.在各项均为正数的等比数列{}n a 中,公比()0,1q ∈.若355a a +=,264a a =,2log n n b a =,数列{}n b 的前n 项和为n S ,则当1212nS S S n+++取最大值时n 的值为______.15.已知数列{}n a ,11a =,12n n a a n +=+,则4a =_____. 16.设,n n S T 分别是等差数列{}{},n n a b 的前n 项和,已知()*2142n n S n n N T n +=∈-,则10317a b b =+_________.17.已知数列{}n a 的前n 项和是n S ,若111,n n a a a n +=+=,则1916S S -的值为________. 18.已知等比数列{a n }的前n 项和为S n ,且133,12n n a S a λ++==,则实数λ的值为_____19.在流行病学中,基本传染数0R 是指在没有外力介入,同时所有人都没有免疫力的情况下,一个感染者平均传染的人数.0R 一般由疾病的感染周期、感染者与其他人的接触频率、每次接触过程中传染的概率决定.假设某种传染病的基本传染数03R =(注:对于01R >的传染病,要隔离感染者,以控制传染源,切断传播途径),那么由1个初始感染者经过六轮传染被感染(不含初始感染者)的总人数为______(注:初始感染者传染0R 个人为第一轮传染,这0R 个人每人再传染0R 个人为第二轮传染……)20.记n S 为等差数列{}n a 的前n 项和,若22a =-,714S =,则10a =__________.三、解答题21.已知数列{}n a 的前n 项和为n S 满足2n S n n =+,数列{}n b 是公比为正数的等比数列,满足14b =,351024b b =. (1)求数列{}n a 、{}n b 的通项公式; (2)若11n n n c a a +=,求数列{}n c 的前n 项和n T . 22.已知数列{}n a 为等差数列,23a =,前n 项和为n S ,数列{}n b 为等比数列,公比为2,且2354b S =,3216b S +=.(1)求数列{}n a 与{}n b 的通项公式;(2)设数列{}n c 满足n n n c a b =+,求数列{}n c 的前n 项和n T . 23.已知正项等比数列{}n a 的前n 项和为n S ,12a =,2232S a a =+. (1)求数列{}n a 的通项公式; (2)设21n nn b a -=,求数列{}n b 的前n 项和. 24.已知等比数列{}n a 的公比不为1,且11a =,32a 是23a 与4a 的等差中项. (Ⅰ)求{}n a 的通项公式; (Ⅱ)若数列{}n b 满足()()1211nn n n a b a a +=++,求数列{}n b 的前n 项和n T .25.已知数列{}n a 的前n 项和为n S ,且233n n S a =-. (1)求数列{}n a 的通项公式;(2)设3log n n b a =,n T 为数列{}n b 的前n 项和,求数列1n T ⎧⎫⎨⎬⎩⎭的前n 项和. 26.在①222n n S n a =+,②3516a a +=且3542S S +=,③2142n n S n S n +=+且756S =这三个条件中任选一个,补充在下面的问题中,并加以解答.问题:设数列{}n a 为等差数列,其前n 项和为n S ,_________.数列{}n b 为等比数列,11b a =,23b a =.求数列1n n b S ⎧⎫+⎨⎬⎩⎭的前n 项和n T .【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】由n S 与n a 的关系得21nn a =-,则272n maxn λ-⎛⎫≥ ⎪⎝⎭,设272n n n c -=,利用数列的单调性即可求解. 【详解】解:数列{}n a 的前n 项和为n S ,11a =,23a =,且()11222n n nn S S S n +-+=+≥, 所以112nn n n n S S S S +--=+-,故()122nn n a a n +-=≥,因为1212a a -=,所以()121nn n a a n +-=≥,所以112n n n a a ---=,2122n n n a a ----=,⋯,1212a a -=, 则1211222n n a a --=++⋯+,故11211222121n n n n a --=++⋯+==--, 所以()123122122222221n n n nS n n n +-=+++⋯+-=-=---,所以21nn n S a n -=--,因为()()72n n S a n λλλ-++≥-对任意*n N ∈都成立, 所以272nmaxn λ-⎛⎫≥ ⎪⎝⎭. 设272n n n c -=,则111252792222n n n nn n n nc c +++----=-=, 当4n ≤时,1n n c c +>,当5n ≥时,1n n c c +<, 因此1234567c c c c c c c <<⋯<><>即5332c λ≥=,故λ的最小值为332. 故选:C 【点睛】本题解答的关键利用11,1,2n n n S n a S S n -=⎧=⎨-≥⎩求出数列n a 的递推公式,再利用累加法求出na 的通项;2.B解析:B 【分析】首先根据题中所给的条件4331S S S =-,11a >利用等比数列求和公式求出0q <,分情况讨论求得10q -<<,从而可以得到项之间的大小关系. 【详解】设等比数列{}n a 的公比为q , 由4331S S S =-可得431a S =-, 若1q =,则1113a a =-显然不成立,所以1q ≠, 所以()312111q a a q q -++=,即()232111q q a q +=-+, 因为22131024q q q ⎛⎫++=++> ⎪⎝⎭,210a >,所以30q <,所以0q <,当1q ≤-时,31q ≤-,211q q ++≥,因为11a >,则()232111q q a q +=-+不可能成立,所以10q -<<,()213110a a a q -=->,()224110a a a q q -=-<,所以13a a >,24a a <, 故选:B. 【点睛】关键点点睛:本题解题的关键是利用等比数列求和公式将已知条件化简得到()232111q q a q +=-+,结合11a >求出q 的范围.3.B解析:B 【分析】本题首先可令9n =,得出9945S T =,然后通过等差数列的性质得出959S a =以及959T b =,代入9945S T =中,即可得出结果. 【详解】因为11n n S n T n -=+,所以99914915S T -==+, 因为n S 是等差数列{}n a 前n 项和,n T 是等差数列{}n b 前n 项和, 所以()1995992a a S a +==,()1995992b b T b +==, 则95959459S a T b ==,5545a b =, 故选:B. 【点睛】关键点点睛:本题考查等差数列的相关性质的应用,主要考查等差数列前n 项和公式以及等差中项的应用,若等差数列{}n a 前n 项和为n S ,则()12n n n a a S +=,当2m n k +=时,2m n k a a a +=,考查化归与转化思想,是中档题.4.D解析:D 【分析】由等比数列的性质可得出关于2a 、10a 的方程组,进而可求得等比数列{}n a 的公比. 【详解】由3788a a a =得()326753111168a q a q a q a q a ⋅⋅===,即62a =.22106()4a a a ∴==,又2105a a +=,解得21014a a =⎧⎨=⎩或21041a a =⎧⎨=⎩,0q >,11181084242a q a ⎛⎫∴=== ⎪⎝⎭或1111884104211242a q a -⎛⎫⎛⎫⎛⎫==== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.故选:D. 【点睛】关键点点睛:本题的解题关键就是利用等比数列下标和的性质建立有关2a 、10a 的方程组,通过求出2a 、10a 的值,结合等比数列的基本量来进行求解.5.D解析:D 【分析】由2n n S a =-利用1112n n n S n a S S n -=⎧=⎨-≥⎩ ,得到数列{}n a 是以1为首项,12为公比的等比数列,进而得到{}2n a 是以1为首项,14为公比的等比数列,利用等比数列前n 项和公式得到n S ,n T ,将20n n S T λ+>恒成立,转化为6321n λ-<-+,从而得出答案. 【详解】当1n =时,112S a =-,得 11a =;当2n ≥时,由2n n S a =-,得112n n S a --=-,两式相减得112n n a a -=, 所以数列{}n a 是以1为首项,12为公比的等比数列. 因为112n n a a -=,所以22114n n a a -=.又211a =,所以{}2n a 是以1为首项,14为公比的等比数列,所以1112211212n n n S ⎛⎫- ⎪⎡⎤⎛⎫⎝⎭==-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦-,11414113414nn n T ⎛⎫- ⎪⎡⎤⎛⎫⎝⎭==-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦-,由20n n S T λ+>,得()()321210nnλ-++>,所以()()321321663212121n nn n n λ-+--<==-+++, 所以6332121λ-<-=-=+, 所以1λ>-.综上,实数λ的取值范围是(1,)-+∞. 故选: D 【点睛】方法点睛:数列与不等式知识相结合的考查方式主要有三种: 一是判断数列问题中的一些不等关系; 二是以数列为载体,考查不等式的恒成立问题;三是考查与数列问题有关的不等式的证明.在解决这些问题时,往往转化为函数的最值问题.6.B解析:B 【分析】观察数列的前4项,可得(1)2n n n a +=,将100n =代入即可得解.由题意得11a =,2312a ==+,36123a ==++,4101234a ==+++⋅⋅⋅ 观察规律可得(1)1232n n n a n +=+++⋅⋅⋅+=, 所以10010010150502a ⨯==. 故选:B. 【点睛】关键点点睛:本题考查了观察法求数列的通项公式,关键是将各项拆成正整数的和的形式发现规律.7.C解析:C 【分析】先由题设21n x ⎧⎫⎨⎬⎩⎭为调和数列{}2n x ⇒是等差数列,进而利用等差数列的前n 项和公式及性质求得2292010x x +的值,再利用基本不等式求得92010x x +的最大值即可.【详解】解:由题设知:2212211111n n n n x x d x x ++-=-=*(n N ∈,d 为常数), {}2n x ∴是等差数列, 2222221201812320182018()40362x x x x x x++++⋯+==, 222212018920104x x x x ∴+==+,2292010920102x x x x +(当且仅当92010x x =时取“等号“), 2229201092010()2()8x x x x ∴++=,9201022x x ∴+(当且仅当92010x x =“等号“),92010x x∴+的最大值为故选:C. 【点睛】本题主要考查等差数列的定义、性质、前n 项和公式及基本不等式在处理最值中的应用,属于中档题.8.D解析:D 【分析】分公比是否为1进行讨论,再利用等比数列的前n 项和公式及定义求解即可.解:设等比数列{}n a 的公比为q ,当1q =时,()1111222n S a na a n a -=-=-, 则{}12n S a -不为等比数列,舍去, 当1q ≠时,()1111111222111n n n a q a aS a a q a qq q--=-=+----, 为了符合题意,需11201a a q -=-,得12q =,故4312a q a ==.故选D . 【点睛】本题考查等比数列的前n 项和公式,定义,考查逻辑推理能力以及运算求解能力,属于中档题.9.D解析:D 【分析】根据等差数列的性质得162512a a a a +=+=,再根据等差数列前n 项和公式计算即可得答案. 【详解】解:因为等差数列{}n a 中, 23a =,59a =, 所以根据等差数列的性质得162512a a a a +=+=, 所以根据等差数列前n 项和公式()12n n n a a S +=得()166********a a S +⨯===. 故数列{}n a 的前6项之和等于36. 故选:D. 【点睛】本题考查等差数列的性质,前n 项和公式,考查运算能力,是中档题.10.A解析:A 【分析】对已知等式左侧的式子一、五两项,二、四两项分别通分,结合等比数列的性质再和第三项通分化简可得521234531111110S a a a a a a ++++==,结合3a 的值进而可得结果. 【详解】15123455242212345152433311111110a a a a a a a S a a a a a a a a a a a a a a ++++++++++=++===, 则510S =, 故选:A.本题主要考查了等比数列的性质,利用性质化简是解题的关键,属于中档题.11.B解析:B 【分析】本题先根据题意求出1x 、2x 、1y 、2y ,再写出点M 、N 的坐标并求MN k ,最后求直线MN 的方程即可. 【详解】解:∵1,1x ,2x ,7成等差数列,∴12121721x x x x +=+⎧⎨=+⎩,解得1235x x =⎧⎨=⎩,∵1,1y ,2y ,8成等比数列,∴12212181y y y y ⋅=⨯⎧⎨=⨯⎩,解得1224y y =⎧⎨=⎩∴点()3,2M ,()5,4N ,42153MN k -==- ∴直线MN 的方程:41(5)y x -=⨯-,即10x y --=.故选:B. 【点睛】本题考查等差中项,等比中项,根据两点求直线的一般式方程,是基础题.12.B解析:B 【分析】结合题意根据等差数列的通项公式和前n 项和公式列方程115419199114a d a d +=⎧⎨+⨯=⎩,解得11232d a ⎧=⎪⎪⎨⎪=⎪⎩,再利用前n 项和公式即可求得答案. 【详解】解:根据题意64a =,19114S =,结合等差数列的通项公式和前n 项和公式得:115419199114a d a d +=⎧⎨+⨯=⎩,即:115496a d a d +=⎧⎨+=⎩,解得11232d a ⎧=⎪⎪⎨⎪=⎪⎩, 所以()1511515131451051515157752222S a d -+=+=⨯+⨯⨯==. 故选:B. 【点睛】本题考查利用等差数列的通项公式和前n 项和公式求等差数列的基本量,考查数学运算能力,是基础题.二、填空题13.【分析】先化简再进行相加求解即可【详解】由知故答案为:【点睛】思路点睛:当数列的通项公式中分母是乘积形式求前n 项和时可以考虑裂项相消法即将数列拆分成两项的差的形式再进行求和 解析:1715【分析】 先化简112n a n n =-+,再进行相加求解即可. 【详解】 由21(2)12n a n n n n ==-++知,41234S a a a a =+++11111111111132435462561715⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-+-=+--= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭. 故答案为:1715. 【点睛】思路点睛:当数列的通项公式中,分母是乘积形式,求前n 项和n S 时,可以考虑裂项相消法,即将数列拆分成两项的差的形式,再进行求和.14.8或9【分析】根据等差等比数列的通项公式先求出数列和的通项公式再结合等差数列的求和公式求得进而得到再结合数列取值即可求解【详解】各项均为正数的等比数列中若所以解得所以解得或因为所以所以又由所以则当时解析:8或9 【分析】根据等差、等比数列的通项公式,先求出数列{}n a 和{}n b 的通项公式,再结合等差数列的求和公式,求得()92n n n S -=,进而得到92n nc -=,再结合数列{}n c 取值,即可求解.【详解】各项均为正数的等比数列{}n a 中,若355a a +=,264a a =,所以35352656a a a a a a +=⎧⎨==⎩,解得3541a a =⎧⎨=⎩,所以253a a q =,解得12q =或12q =-,因为()0,1q ∈,所以12q =, 所以55512n n n a a q--⎛⎫=⋅= ⎪⎝⎭.又由5221log log 52n n n b a n -⎛⎫===- ⎪⎝⎭.所以()()45922n n n n n S +--==,则92n n S nc n -==, 当9,n n N +<∈时,902n nc -=>;当9n =时,0n c =;当10,n n N +>∈时,0n c <,故当8n =或9n =时,1212nS S S n+++取最大值. 故答案为:8或9. 【点睛】本题主要考查了等差、等比数列的通项公式,以及等差数列的前n 项和公式的应用,其中解答中熟记等差、等比数列的通项公式,以及等差数列的求和公式,准确计算是解答解答的关键,着重考查推理与运算能力.15.【分析】由已知递推关系式利用累加法和等差数列前项和公式可求出通项即可得【详解】故答案为:【点睛】本题主要考查了累加法以及等差数列前项和公式求通项公式求数列中的项属于中档题 解析:13【分析】由已知递推关系式12n n a a n +-=,利用累加法和等差数列前n 项和公式,可求出{}n a 通项,即可得4a . 【详解】12n n a a n +-=,∴2121a a -=⨯ ,3222a a -=⨯,4323a a -=⨯,12(1)n n a a n --=⨯-, ∴ []1(11)(1)2123(1)2(1)2n n n a a n n n +---=++++-=⨯=- ,∴ 21n a n n =-+ ,2444113a ∴=-+= ,故答案为:13 【点睛】本题主要考查了累加法以及等差数列前n 项和公式求通项公式,求数列中的项,属于中档题.16.【分析】利用等差数列的性质得到再根据求解【详解】因为所以故答案为:【点睛】本题主要考查等差数列的性质以及前n 项和公式的应用还考查了运算求解的能力属于中档题 解析:39148【分析】利用等差数列的性质得到1013171191912a a a b b b b =⨯+++191912S T =⨯,再根据2142n n S n T n +=-求解.【详解】因为()*2142n n S n n N T n +=∈-, 所以()()110113171119191991921912221a a a b b b a b b b a =⨯=⨯+++++, 191911219139224192148S T ⨯+=⨯=⨯=⨯-, 故答案为:39148【点睛】本题主要考查等差数列的性质以及前n 项和公式的应用,还考查了运算求解的能力,属于中档题.17.27【分析】由得相减后得数列的奇数项与偶数项分别成等差数列由此可得通项从而求得结论【详解】∵∴相减得又所以数列的奇数项与偶数项分别成等差数列公差为1故答案为:27【点睛】易错点睛:本题考查等差数列的解析:27 【分析】由1n n a a n ++=得121n n a a n +++=+相减后得数列的奇数项与偶数项分别成等差数列,由此可得通项,从而求得结论. 【详解】∵1n n a a n ++=,∴121n n a a n +++=+,相减得21n n a a +-=,又1121,1a a a =+=,20a =,211a a -=-,所以数列{}n a 的奇数项与偶数项分别成等差数列,公差为1,21n a n -=,21n a n =-,1916171819981027S S a a a -=++=++=.故答案为:27. 【点睛】易错点睛:本题考查等差数列的通项公式,解题时由已知等式中n 改写为1n +,两相减后得21n n a a +-=,这里再计算21a a -,如果2211()22n n a a a a +--==,则可说明{}n a 是等差数列,象本题只能说明奇数项与偶数项分别成等差数列.不能混淆,误以为{}n a 是等差数列.这是易错的地方.18.【分析】首先利用与的关系式得到求得公比首项和第二项再通过赋值求的值【详解】当时两式相减得即并且数列是等比数列所以当时解得故答案为:【点睛】关键点点睛:本题的关键是利用数列和的关系式求数列的通项解析:34-【分析】首先利用1n a +与n S 的关系式,得到14n n a a +=,求得公比,首项和第二项,再通过赋值2n =求λ的值. 【详解】当2n ≥时,1133n nnn a S a S λλ+-+=⎧⎨+=⎩,两式相减得()1133n n n n n a a S S a +--=-=,即14n n a a +=,并且数列{}n a 是等比数列, 所以4q =,312a =,2133,4a a ∴==, 当2n =时,()321233a S a a λ+==+, 解得34λ=-. 故答案为:34- 【点睛】关键点点睛:本题的关键是利用数列n a 和n S 的关系式,求数列的通项.19.1092【分析】由题意分析传染模型为一个等比数列可解【详解】由题意:所以第六轮的传染人数为所以前六轮被传染的人数为故答案为:1092【点睛】数学建模是高中数学六大核心素养之一在高中数学中应用题是常见解析:1092【分析】由题意分析,传染模型为一个101,3a q R ===等比数列,可解. 【详解】由题意:101,3a q R ===所以1113n n n a a q --==第六轮的传染人数为7a所以前六轮被传染的人数为771131109213S a --=-=-.故答案为:1092 【点睛】数学建模是高中数学六大核心素养之一,在高中数学中,应用题是常见考查形式: 求解应用性问题时,首先要弄清题意,分清条件和结论,抓住关键词和量,理顺数量关系,然后将文字语言转化成数学语言,建立相应的数学模型;20.14【分析】本题先求再求即可解题【详解】解:因为数列是等差数列所以解得所以故答案为:14【点睛】本题考查等差数列的基本量法是基础题解析:14 【分析】本题先求1a 、d ,再求10a 即可解题. 【详解】解:因为数列{}n a 是等差数列,22a =-,714S =所以217127(71)7142a a d S a d =+=-⎧⎪⎨⨯-=+=⎪⎩,解得142a d =-⎧⎨=⎩, 所以101914a a d =+= 故答案为:14 【点睛】本题考查等差数列的基本量法,是基础题.三、解答题21.(1)2n a n =,12n n b +=;(2)()41n nT n =+.【分析】(1)由11,1,2n nn S n a S S n -=⎧=⎨-≥⎩可求得数列{}n a 的通项公式,由已知条件计算出等比数列{}n b 的公比,进而可求得等比数列{}n b 的通项公式;(2)计算得出11141n c n n ⎛⎫=- ⎪+⎝⎭,利用裂项求和法可求得n T . 【详解】(1)当1n =时,112a S ==;当2n ≥时,()()()221112n n n a S S n n n n n -⎡⎤=-=+--+-=⎣⎦.12a =满足2n a n =,所以,对任意的n *∈N ,2n a n =.设等比数列{}n b 的公比为q ,则0q >,262635141024b b b q q ∴==⨯=,解得2q,1111422n n n n b b q --+∴==⨯=;(2)()()111111112214141n n n c a a n n n n n n +⎛⎫===⋅=- ⎪⨯+++⎝⎭, ()121111111111422314141n n n T c c c n n n n ⎛⎫⎛⎫∴=+++=-+-+-=-= ⎪ ⎪+++⎝⎭⎝⎭. 【点睛】方法点睛:数列求和的常用方法:(1)对于等差等比数列,利用公式法直接求和;(2)对于{}n n a b 型数列,其中{}n a 是等差数列,{}n b 是等比数列,利用错位相减法求和;(3)对于{}n n a b +型数列,利用分组求和法;(4)对于11n n a a +⎧⎫⎨⎬⎩⎭型数列,其中{}n a 是公差为()0d d ≠的等差数列,利用裂项相消法求和.22.(1)21n a n =-,132n n b -=⋅;(2)2323n n T n =⨯+-.【分析】(1)设等差数列{}n a 的公差为d ,根据已知条件求出d 、2b 的值,进而可求得数列{}n a 与{}n b 的通项公式;(2)求出数列{}n c 的通项公式,利用分组求和法可求得n T . 【详解】(1)设等差数列{}n a 的公差为d ,则()13323392a a S a +===,23546b S ∴==,则32212b b ==, 由3216b S +=可得2122264S a a a d d =+=-=-=,2d ∴=,因此,()()2232221n a a n d n n =+-=+-=-,221226232n n n n b b ---=⨯=⨯=⋅;(2)12132n n n n c a b n -=+=-+⋅,()()()()01211323325322132n n T n -⎡⎤∴=+⋅++⨯++⨯++-+⨯⎣⎦()()121135213323232n n -=++++-++⨯+⨯++⨯⎡⎤⎣⎦()()2312121323212nnn n n ⨯-+-=+=⨯+--.【点睛】方法点睛:数列求和的常用方法:(1)对于等差等比数列,利用公式法直接求和;(2)对于{}n n a b 型数列,其中{}n a 是等差数列,{}n b 是等比数列,利用错位相减法求和;(3)对于{}n n a b +型数列,利用分组求和法;(4)对于11n n a a +⎧⎫⎨⎬⎩⎭型数列,其中{}n a 是公差为()0d d ≠的等差数列,利用裂项相消法求和.23.(1)2nn a =;(2)()13232nn T n ⎛⎫=-+⨯ ⎪⎝⎭. 【分析】(1)求等比数列的通项公式用公式法,基本量代换;(2) ()121221n nn n n b a ⎛⎫=- ⎝=⎪⎭-,用错位相减法求和.【详解】解:(1)设{}n a 的公比为q ,0q >2232S a a =+∴()12122a a a q a q +=+ ∴2q∴1222n nn a -=⋅=.(2)()1212nn b n ⎛⎫=- ⎪⎝⎭设{}n b 的前n 项和为n T∴()()23111111135232122222n nn T n n -⎛⎫⎛⎫⎛⎫⎛⎫=⨯+⨯+⨯++-⨯+-⨯ ⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭①()()2311111113232122222nn n T n n +⎛⎫⎛⎫⎛⎫⎛⎫=⨯+⨯++-⨯+-⨯ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭②①-②()23111111122221222222n n n T n +⎛⎫⎛⎫⎛⎫⎛⎫=+⨯+⨯++⨯--⨯ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭()111112211121122212n n n T n -+⎡⎤⎛⎫-⎢⎥ ⎪⎝⎭⎢⎥⎛⎫⎣⎦=+--⨯ ⎪⎝⎭- ()1111112212222nn n T n +⎛⎫⎛⎫=+-⋅--⨯ ⎪ ⎪⎝⎭⎝⎭所以()11342122nnn T n ⎛⎫⎛⎫=-⋅--⨯ ⎪ ⎪⎝⎭⎝⎭所以()13232nn T n ⎛⎫=-+⨯ ⎪⎝⎭.【点睛】(1) 等差(比)数列问题解决的基本方法:基本量代换;(2)数列求和的方法:公式法、裂项相消法、错位相减法、倒序相加法. 24.(Ⅰ)13-=n n a ;(Ⅱ)11231n n T =-+. 【分析】(Ⅰ)设数列{}n a 的公比为q ,由32a 是23a 与4a 的等差中项.求出q 后可得通项公式; (Ⅱ)求出n b ,用裂项相消法求和n T . 【详解】(Ⅰ)设数列{}n a 的公比为q ,由条件知32443a a a =+,即2311143a q a q a q =+,整理可得2430q q -+=,解得3q =(1q =舍去),所以11133n n n a a --=⋅=.(Ⅱ)()()()()1111223111131313131n n nn n n n n n a b a a ---+⋅===-++++++,所以01121111111313131313131n n nT -⎫⎫⎫⎛⎛⎛=-+-+⋅⋅⋅+- ⎪ ⎪ ⎪++++++⎝⎝⎝⎭⎭⎭011113131231n n =-=-+++. 【点睛】本题考查求等差数列的通项公式,裂项相消法求和.数列求和的常用方法: 设数列{}n a 是等差数列,{}n b 是等比数列,(1)公式法:等差数列或等比数列的求和直接应用公式求和; (2)错位相减法:数列{}n n a b 的前n 项和应用错位相减法; (3)裂项相消法;数列1{}n n ka a +(k 为常数,0n a ≠)的前n 项和用裂项相消法; (4)分组(并项)求和法:数列{}n n pa qb +用分组求和法,如果数列中的项出现正负相间等特征时可能用并项求和法;(5)倒序相加法:满足m n m a a A -+=(A 为常数)的数列,需用倒序相加法求和.25.(1)3nn a =;(2)2+1nn 【分析】(1)利用1n n n a S S -=-可得{}n a 是首项为3,公比为3的等比数列,即可求出通项公式;(2)可得n b n =,则()1+2n n n T =,1112+1nT n n ⎛⎫=- ⎪⎝⎭,由裂项相消法即可求出前n 项和. 【详解】 (1)233n n S a =-,即3322n n S a =-,当1n =时,1113322S a a =-=,解得13a =, 当2n ≥时,1133332222n n n n n a a a S S --⎛⎫---== ⎝-⎪⎭, 整理得13n n a a -=,{}n a ∴是首项为3,公比为3的等比数列,1333n n n a -∴=⨯=;(2)33l 3log og nn n b a n ===,()1+2n n n T ∴=,则()12112+1+1n T n n n n ⎛⎫==- ⎪⎝⎭, 数列1n T ⎧⎫⎨⎬⎩⎭的前n 项和为11111221+++223+1+1nn n n ⎛⎫---= ⎪⎝⎭. 【点睛】方法点睛:数列求和的常用方法:(1)对于等差等比数列,利用公式法可直接求解;(2)对于{}n n a b 结构,其中{}n a 是等差数列,{}n b 是等比数列,用错位相减法求和; (3)对于{}+n n a b 结构,利用分组求和法;(4)对于11n n a a +⎧⎫⎨⎬⎩⎭结构,其中{}n a 是等差数列,公差为d ,则111111n n n n a a d a a ++⎛⎫=- ⎪⎝⎭,利用裂项相消法求和. 26.见解析 【分析】根据选择的条件求出{}n a 的通项,再利用分组求和可得n T . 【详解】若选①,由222n n S n a =+可得1122a a =+,故12a =,又22422S a ⨯=+,故()222224a a =+⨯+,故24a =, 故等差数列的公差422d =-=,故()2212n a n n =+-=, 所以()()2212n n n S n n +==+, 所以12b =,26b =,所以等比数列{}n b 的公比为3q =,故123n n b -=⨯故()111111=232311n n n n b S n n n n --++⨯=-+⨯++, 故11111111131=231223341131n n n T n n n -⎛⎫⎛⎫⎛⎫⎛⎫-+-+-++-+⨯=- ⎪ ⎪ ⎪ ⎪+-+⎝⎭⎝⎭⎝⎭⎝⎭. 若选②,由题设可得11126163351042a d a d a d +=⎧⎨+++=⎩,解得122a d =⎧⎨=⎩,同①可得131nn T n =-+. 若选③,由题设可得1213S S =即212a a =,故1d a =,故1n a na =, 而74567S a ==,故48a =,故12a =,故2n a n =, 同①可得131nn T n =-+. 【点睛】方法点睛:等差数列或等比数列的处理有两类基本方法:(1)利用基本量即把数学问题转化为关于基本量的方程或方程组,再运用基本量解决与数列相关的问题;(2)利用数列的性质求解即通过观察下标的特征和数列和式的特征选择合适的数列性质处理数学问题.另外求和注意根据通项的特征选择合适的求和方法.。
(常考题)北师大版高中数学必修五第一章《数列》检测卷(包含答案解析)(1)
一、选择题1.已知数列{}n a 满足11a =,24a =,310a =,1{}n n a a +-是等比数列,则数列{}n a 的前8项和8S =( ) A .376B .382C .749D .7662.“杨辉三角”是中国古代重要的数学成就,它比西方的“帕斯卡三角形”早了300多年.如图是由“杨辉三角”拓展而成的三角形数阵,记n a 为图中虚线上的数1,3,6,10,构成的数列{}n a 的第n 项,则100a 的值为( )A .5049B .5050C .5051D .51013.已知数列{}n a 中,13n n a S +=,则下列关于{}n a 的说法正确的是( ) A .一定为等差数列 B .一定为等比数列C .可能为等差数列,但不会为等比数列D .可能为等比数列,但不会为等差数列4.已知等差数列{}n a 的前n 项和为n S ,55a =,836S =,则数列11{}n n a a +的前n 项和为( ) A .11n + B .1n n + C .1n n- D .11n n -+ 5.记数列{}n a 前n 项和为n S ,若1,n a ,n S 成等差数列,且数列()()11211n n n a a a +++⎧⎫⎪⎪⎨⎬--⎪⎪⎩⎭的前n 项和n T 对任意的*n N ∈都有210n T λ-+≥恒成立,则λ的取值范围为( ) A .1,6⎛⎤-∞ ⎥⎝⎦B .1,2⎛⎤-∞ ⎥⎝⎦C .5,6D .(],1-∞6.已知数列{}n a 的前n 项和为n S ,且21n n S a =-,则66S a =( ) A .6332B .3116C .12364D .1271287.记n S 为等比数列{}n a 的前n 项和,若数列{}12n S a -也为等比数列,则43a a =( ).A.2B.1C .3 2D.128.对于数列{}n a,定义11233nnna a aTn-+++=为{}n a的“最优值”,现已知数列{}na的“最优值”3nnT=,记数列{}n a的前n项和为n S,则20202020S=()A.2019 B.2020 C.2021 D.20229.已知等比数列{}n a中,若1324,,2a a a成等差数列,则公比q=()A.1B.1-或2C.3 D.1-10.已知数列{}n a为等差数列,10a<且123199a a a a+++⋅⋅⋅+=,设()*12n n n nb a a a n N++=∈,当{}n b的前n项和n S最小时,n的值有()A.5个B.4个C.3个D.2个11.公元前四世纪,毕达哥拉斯学派对数和形的关系进行了研究.他们借助几何图形(或格点)来表示数,称为形数.形数是联系算术和几何的纽带.如图所示,数列1,6,15,28,45,…,从第二项起每一项都可以用六边形表示出来,故称它们为六边形数,那么该数列的第11项对应的六边形数为()A.153 B.190 C.231 D.27612.已知{}n a为等比数列,13527a a a=,246278a a a=,以nT表示{}n a的前n项积,则使得nT达到最大值的n是()A.4 B.5 C.6 D.7二、填空题13.已知数列{}n a,11a=,12n na a n+=+,则4a=_____.14.已知数列{}n a满足12a=,23a=且*21(1),nn na a n N+-=+-∈,则该数列的前9项之和为__________.15.n S为等差数列{}n a的前n项和,且11a=,621S=,记[]lgn nb a=,其中[]x表示不超过x的最大整数,如[]0.90=,[]lg991=,则数列{}n b的前100项和为________.16.已知数列{}n a的前n项和()2*32nn nS n+=∈N,则数列11n na a+⎧⎫⎨⎬⎩⎭的前10项和为______.17.已知等比数列{a n}的前n项和为S n,且133,12n na S aλ++==,则实数λ的值为_____18.若数列{}n a 满足:15n n a a n ++=,11a =,则2020a =________________.19.已知数列{}n a ,{}n b 的前n 项和分别为n S ,n T ,21nn n b a -=+,且1222n n n S T n ++=+-,则2n T =____.20.已知数列{}n a 的前n 项和为n S ,且11a =,()112n n a S n -=+≥,则4a =______.三、解答题21.已知正项数列{}n a 的前n 项和为n S ,141n n n S a a +=⋅+,11a =. (Ⅰ)求n a 和n S ;(Ⅱ)若2na nb =,数列{}n b 的前n 项和为n T .记23411223341n n n n b b b bA TT T T T T T T ++=+++⋅⋅⋅+,1231111n n B S S S S =+++⋅⋅⋅+,求证:52n n A B +<,*n ∈N . 22.已知()23f x x x =-,数列{}n a 前n 项和为n S ,且()n S f n =. (1)求数列{}n a 的通项公式n a ; (2)若数列{}n b 满足43nn na b =⨯,数列{}n b 的前n 项和为n T ,且对于任意*n ∈N ,总存在[]2,4x ∈,使得()n T mf x >成立,求实数m 的取值范围.23.已知数列{}n a 的前n 项和是2n S n =.(1)求数列{}n a 的通项公式; (2)记12n n n b a a +=,设{}n b 的前n 项和是n T ,求使得20202021n T >的最小正整数n . 24.已知数列{}n a 是首项12a =,且满足()212log log 1n n a a n N *+-=∈的正项数列,设()23log 2n n b a n N *=-∈.(1)求证:数列{}n a 是等比数列; (2)求数列{}n n a b 的前n 项和n S .25.在①420S =,②332S a =,③3423a a b -=这三个条件中任选一个,补充在下面问题中,并作答.问题:已知等差数列{}n a 的前n 项和为n S ,{}n b 是各项均为正数的等比数列,14a b =,______,2138,34b b b =-=,是否存在正整数k ,使得数列1n S ⎧⎫⎨⎬⎩⎭的前k 项和34k T >?若存在,求k 的最小值;若不存在,说明理由, 注:如果选择多个条件分别解答,按第一个解答计分. 26.已知数列{}n a 的前n 项和n S 满足()*224n n S a a n N=-∈,且1a ,2a ,31a-成等差数列.(1)求数列{}n a 的通项公式; (2)设()()222221log log +=n n n b a a ,{}n b 的前项和为n T ,对任意*n N ∈,23n mT >恒成立,求m 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】利用累加法求出通项n a ,然后利用等比数列的求和公式和分组求和法,求解8S 即可 【详解】由已知得,213a a -=,326a a -=,而{}1n n a a +-是等比数列,故2q,∴11221()()()n n n n a a a a a a ----+-+-=23632n -+++⨯1133232312n n ---⨯==⨯--,1n a a ∴-=1323n -⨯-,化简得1322n n a -=⨯-,878128123(122)2831612S a a a -=++=⨯+++-⨯=⨯--83219749=⨯-=故选:C 【点睛】关键点睛:解题关键在于利用累加法求出通项.2.B解析:B 【分析】观察数列的前4项,可得(1)2n n n a +=,将100n =代入即可得解. 【详解】由题意得11a =,2312a ==+,36123a ==++,4101234a ==+++⋅⋅⋅ 观察规律可得(1)1232n n n a n +=+++⋅⋅⋅+=, 所以10010010150502a ⨯==.故选:B. 【点睛】关键点点睛:本题考查了观察法求数列的通项公式,关键是将各项拆成正整数的和的形式发现规律.3.C解析:C 【分析】根据13n n a S +=得14n n S S +=,分类讨论当10S =和10S ≠两种情况分析得数列{}n a 可能为等差数列,但不会为等比数列. 【详解】解:13n n a S +=,13n n n S S S +∴=-, 14n n S S +∴=,若10S =,则数列{}n a 为等差数列;若10S ≠,则数列{}n S 为首项为1S ,公比为4的等比数列,114n n S S -∴=⋅,此时21134n n n n a S S S -==-⋅﹣(2n ≥),即数列从第二项起,后面的项组成等比数列.综上,数列{}n a 可能为等差数列,但不会为等比数列. 故选:C. 【点睛】本题考查等差数列、等比数列的判断,考查学生分析解决问题的能力,正确分类讨论是关键.4.B解析:B 【解析】设等差数列{}n a 的首项为1a ,公差为d . ∵55a =,836S =∴114582836a d a d +=⎧⎨+=⎩∴111a d =⎧⎨=⎩∴n a n =,则11111(1)1+==-++n n a a n n n n ∴数列11n n a a +⎧⎫⎨⎬⎩⎭的前n 项和为1111111111122334111nn n n n -+-+-+⋅⋅⋅+-=-=+++ 故选B.点睛:裂项相消法是最难把握的求和方法之一,其原因是有时很难找到裂项的方向,突破这一难点的方法是根据式子的结构特点,常见的裂项技巧:(1)()1111n n k k n n k ⎛⎫=- ⎪++⎝⎭;(2)1k=; (3)()()1111212122121n n n n ⎛⎫=- ⎪-+-+⎝⎭;(4)()()11122n n n =++ ()()()11112n n n n ⎡⎤-⎢⎥+++⎢⎥⎣⎦;此外,需注意裂项之后相消的过程中容易出现丢项或多项的问题,导致计算结果错误.5.C解析:C 【分析】直接利用递推关系式的应用求出数列的通项公式,进一步利用裂项相消法的应用和分离参数法及函数的恒成立问题的应用求出参数的取值范围. 【详解】数列{}n a 前n 项和为n S ,若1,n a ,n S 成等差数列, 所以21n n a S =+①, 当1n =时,11a =.当2n ≥时,1121n n a S --=+②, ①﹣②得122n n n a a a --=,整理得12nn a a -=(常数), 所以数列{}n a 是以1为首项,2为公比的等比数列. 所以12n na .所以()()()()111122111121212121n n n n n n n n a a a +++++==-------,则1111111111337212121n n n n T ++=-+-++-=----. 由于对任意的*n N ∈都有210n T λ-+≥恒成立, 所以12n T λ+≥恒成立. 即()min 12n T λ+≥,当1n =时,()1min 5113n T T +=+=, 所以523λ≥,解得56λ≥,所以5,6λ⎛⎤∈-∞ ⎥⎝⎦.故选:C 【点睛】本题主要考查了由递推关系式求数列的通项公式,考查了裂项求和以及恒成立问题,属于中档题.6.A解析:A 【解析】由题意得,111121,1,n n n a a a a S S -=-==- ,则21nn S =- ,即666332S a = ,故选A. 7.D解析:D 【分析】分公比是否为1进行讨论,再利用等比数列的前n 项和公式及定义求解即可. 【详解】解:设等比数列{}n a 的公比为q ,当1q =时,()1111222n S a na a n a -=-=-, 则{}12n S a -不为等比数列,舍去, 当1q ≠时,()1111111222111n n n a q a aS a a q a qq q--=-=+----, 为了符合题意,需11201a a q -=-,得12q =,故4312a q a ==. 故选D . 【点睛】本题考查等比数列的前n 项和公式,定义,考查逻辑推理能力以及运算求解能力,属于中档题.8.D解析:D 【分析】 根据11233n nn a a a T n-+++=,且3nn T =,得到112333n n n a a a n -+++=⋅,然后利用数列通项与前n 项和的关系求得21n a n =+,再利用等差数列求和公式求解. 【详解】 ∵11233n nn a a a T n-+++=,且3nn T =,∴112333n n n a a a n -+++=⋅,当2n ≥时,有()211213313n n n a a a n ---+++⋅=-⋅,两式相减可得:()()1113313213n n n n n a n n n ---⋅=⋅--⋅=+⋅.∴21n a n =+(2n ≥). 当1n =时,13a =适合上式. ∴21n a n =+.则数列{}n a 是以3为首项,以2为公差的等差数列. ∴()202032202012020S 202220202+⨯+⨯==⨯.∴202020222020S =. 故选:D . 【点睛】本题主要考查数列通项与前n 项和的关系以及等差数列的定义和求和公式的应用,属于中档题.9.B解析:B 【分析】用等比数列的通项公式和等差中项公式求解. 【详解】因为1324,,2a a a 成等差数列,所以312242a a a =+,即2111242a q a a q =+,化简得220q q --=,解得1q =-或2q .故选B. 【点睛】本题考查等比数列与等差数列的综合运用.10.B解析:B 【分析】根据等差数列的性质可知1000a ,从而判断数列{}n a 是单调递增数列,即可判断当{}n b 的前n 项和n S 最小时,n 可取的值. 【详解】数列{}n a 为等差数列,119921981002a a a a a ,1231990a a a a +++⋅⋅⋅+=,则1001990a ,即1000a ,10a <,可以判断数列{}n a 是单调递增数列,991010,0a a , 12n n n n b a a a ++=,12323412nn n n S a a a a a a a a a ,当{}n b 的前n 项和n S 最小时,n 可取的值为97,98,99,100共4个. 故选:B. 【点睛】本题主要考查等差数列的性质,属于中档题.11.C解析:C 【分析】根据题中所给图与对应的六边形数,记第n 个六边形数为n a ,找出规律,相邻两项差构成等差数列,累加求得22n a n n =-,将11n =代入求得结果.【详解】记第n 个六边形数为n a ,由题意知:11a =,215141a a -==+⨯,32142a a -=+⨯,43143a a -=+⨯,,114(1)n n a a n --=+-,累加得21(1)[543]59[14(1)]212n n n a a n n n -+--=++++-==--,即22n a n n =-,所以21121111231a =⨯-=,故选:C. 【点睛】该题考查的是有关数列的问题,涉及到的知识点有利用累加法求数列的通项公式,属于中档题目.12.A解析:A 【分析】先求出首项和公比,得出{}n a 是一个减数列,前4项都大于1,从第五项开始小于1,从而得出结论. 【详解】{}n a 为等比数列,3135327a a a a ==,32464278a a a a ==,33a ∴=,432a =,4312a q a ∴==,112a =,543·14a a q ==<. 故{}n a 是一个减数列,前4项都大于1,从第五项开始小于1, 以n T 表示{}n a 的前n 项积,则使得n T 达到最大值的n 是4, 故选:A . 【点评】本题主要考查等比数列的性质,属于基础题.二、填空题13.【分析】由已知递推关系式利用累加法和等差数列前项和公式可求出通项即可得【详解】故答案为:【点睛】本题主要考查了累加法以及等差数列前项和公式求通项公式求数列中的项属于中档题 解析:13【分析】由已知递推关系式12n n a a n +-=,利用累加法和等差数列前n 项和公式,可求出{}n a 通项,即可得4a . 【详解】12n n a a n +-=,∴2121a a -=⨯ ,3222a a -=⨯,4323a a -=⨯,12(1)n n a a n --=⨯-, ∴ []1(11)(1)2123(1)2(1)2n n n a a n n n +---=++++-=⨯=- ,∴ 21n a n n =-+ ,2444113a ∴=-+= ,故答案为:13 【点睛】本题主要考查了累加法以及等差数列前n 项和公式求通项公式,求数列中的项,属于中档题.14.34【分析】当为奇数时可得当为偶数时利用等差数列的通项公式及前项和公式即可得出【详解】当为奇数时当为偶数时则数列是以为首项的等差数列故答案为:34【点睛】本题主要考查了等差数列的通项公式和前项和公式解析:34当n 为奇数时,20n na a +-=,可得135792a a a a a =====,当n 为偶数时,22n n a a +-=,利用等差数列的通项公式及前n 项和公式即可得出. 【详解】*21(1),n n n a a n N +-=+-∈,∴ 当n 为奇数时,20n n a a +-= ,135792a a a a a ∴=====,当n 为偶数时,22n n a a +-=,则数列{}2n a 是以23a =为首项,2的等差数列,()()12913924843253422a a a a a a a a a ⨯⎛⎫∴+++=+++++++=⨯+⨯+⨯ ⎪⎝⎭34=.故答案为: 34 【点睛】本题主要考查了等差数列的通项公式和前n 项和公式,分类讨论、分组求和的方法,考查了推理能力和计算能力,属于中档题.15.92【分析】设的公差为d 由解得则然后由分和三种情况求解【详解】设的公差为d 所以解得∴记的前n 项和为则当时当时当即时∴故答案为:92【点睛】本题主要考查等差数列的基本运算和数列求和以及取整函数的应用还解析:92 【分析】设{}n a 的公差为d ,由11a =,621S =,解得1d =,则n a n =,然后由[]lg n n b a =,分0lg 1n a ≤<, 1lg 2n a ≤<和 lg 2n a =三种情况求解.【详解】设{}n a 的公差为d ,()6166212s a a =+=, 所以167a a +=, 解得1d =, ∴n a n =,记{}n b 的前n 项和为n T ,则[][][]1001210012100lg lg lg T b b b a a a =++⋯+=++⋯+, 当0lg 1n a ≤<时,1,2,9n =⋅⋅⋅,0n b =, 当1lg 2n a ≤<时,10,11,99n =⋅⋅⋅,1n b =, 当lg 2n a =,即100n a =时,2n b = ∴10009190292T =⨯+⨯+=. 故答案为:92本题主要考查等差数列的基本运算和数列求和以及取整函数的应用,还考查了运算求解的能力,属于中档题.16.【分析】根据可求得的通项公式经检验满足上式所以可得代入所求利用裂项相消法求和即可得答案【详解】因为所以所以又满足上式所以所以所以数列的前10项和为故答案为:【点睛】解题的关键是根据求得的通项公式易错解析:532【分析】根据1(2)n n n a S S n -=-≥可求得n a 的通项公式,经检验,112a S ==满足上式,所以可得n a ,代入所求,利用裂项相消法求和,即可得答案. 【详解】因为()2*32n n n S n +=∈N ,所以2213(1)1352(2)22n n n n n S n --+--+==≥, 所以221335231,(2)22n n n n n n n a S S n n -+-+=---≥==,又1131122a S ⨯+===满足上式, 所以()*31,n a n n N =-∈,所以111111(31)(32)3313+2n n a a n n n n +⎛⎫== ⎪-+-⎝⎭-, 所以数列11n n a a +⎧⎫⎨⎬⎩⎭的前10项和为11111111115325582932323232⎛⎫⎛⎫-+-+⋅⋅⋅+-=⨯-= ⎪ ⎪⎝⎭⎝⎭, 故答案为:532【点睛】解题的关键是根据1(2)n n n a S S n -=-≥,求得n a 的通项公式,易错点为,若11a S =满足上式,则写成一个通项公式的形式,若11a S =不满足上式,则需写成分段函数形式,考查计算化简的能力,属中档题.17.【分析】首先利用与的关系式得到求得公比首项和第二项再通过赋值求的值【详解】当时两式相减得即并且数列是等比数列所以当时解得故答案为:【点睛】关键点点睛:本题的关键是利用数列和的关系式求数列的通项解析:34-首先利用1n a +与n S 的关系式,得到14n n a a +=,求得公比,首项和第二项,再通过赋值2n =求λ的值. 【详解】当2n ≥时,1133n nn n a S a S λλ+-+=⎧⎨+=⎩,两式相减得()1133n n n n n a a S S a +--=-=,即14n n a a +=,并且数列{}n a 是等比数列, 所以4q =,312a =,2133,4a a ∴==, 当2n =时,()321233a S a a λ+==+, 解得34λ=-. 故答案为:34- 【点睛】关键点点睛:本题的关键是利用数列n a 和n S 的关系式,求数列的通项.18.【分析】根据写出相减以后可得可以判断出数列是等差数列然后判断出首项和公差即可得【详解】两式相减得故是首项为公差为的等差数列的第项故故答案为:【点睛】要注意等差数列的概念中的从第项起与同一个常数的重要解析:5049. 【分析】根据15n n a a n ++=写出155n n a a n -+=-,相减以后可得115n n a a +--=,可以判断出数列{}2n a 是等差数列,然后判断出首项和公差,即可得2020a . 【详解】11555n n n n a a n a a n +-+=⇒+=-.两式相减,得115n n a a +--=.12254a a a +=⇒=.故2020a 是首项为4,公差为5的等差数列的第1010项, 故()202041010155049a =+-⨯=. 故答案为:5049. 【点睛】要注意等差数列的概念中的“从第2项起”与“同一个常数”的重要性,巧妙运用等差数列的性质,可化繁为简;如果1n n a a +-是常数,则{}n a 是等差数列,如果11n n a a +--是常数,则数列中的奇数项或者偶数项为等差数列,所以需要注意等差数列定义的推广应用.19.【解析】所以 解析:22(1)4n n n +++-【解析】1112222n n n n n T S b a b a b a n +-=-+-++-=+-所以222(1)4n n n n n n T T S S T n n +=-++=++-20.8【分析】根据可得两式相减可得利用递推关系即可求解【详解】①②②①得当时故答案为:8【点睛】本题主要考查了数列的项与前n 项和的关系考查了利用递推关系求数列的项属于中档题解析:8 【分析】根据()112n n a S n -=+≥可得11n n a S +=+,两式相减可得12n n a a +=(2)n ≥,利用递推关系即可求解. 【详解】()112n n a S n -=+≥①,11n n a S +∴=+②,②-①得,12n n a a +=(2)n ≥, 当2n =时,211112a S a =+=+=,3224a a ∴==, 4328a a ∴==,故答案为:8 【点睛】本题主要考查了数列的项n a 与前n 项和n S 的关系,考查了利用递推关系求数列的项,属于中档题.三、解答题21.(Ⅰ)21n a n =-,*n ∈Z ,2n S n =;(Ⅱ)证明见解析.【分析】 (Ⅰ)根据11,1,2n n n S n a S S n -=⎧=⎨-≥⎩,可得{}n a 的奇数项是以1为首项,4为公差的等差数列,偶数项是以3为首项,4为公差的等差数列,根据等差数列的通项公式及前n 项和公式计算可得;(Ⅱ)由(Ⅰ)可得212n n b -=,即可求出{}n b 的前n 项和为n T ,则11131124141n n n n n b T T +++⎛⎫=- ⎪--⎝⎭,再利用裂项相消法求和得出12n A <,再利用放缩法21111n n n <--得到122n B n<-<,即可得证; 【详解】解:(Ⅰ)∵141n n n S a a +=⋅+,11a =, ∴11241S a a =⋅+,∴23a =, 当2n ≥时,有1141n n n S a a --=+,∴11144n n n n n n S S a a a a ++--=-,∴()114n n n n a a a a +-=-, ∵0n a ≠,∴114n n a a +--=∴数列{}n a 的奇数项是以1为首项,4为公差的等差数列,2114(1)2(21)1n a n n -=+-=--,偶数项是以3为首项,4为公差的等差数列,234(1)221n a n n =+-=⋅-,∴21n a n =-,*n ∈Z , ∴()21212n n n S n +-==.(Ⅱ)因为2n an b =,所以212n n b -=,()1352122222413n nn T -=+++⋅⋅⋅+=-, ()()()()2111111294311222241414141414133n n n n n n n n n n n b T T ++++++⎛⎫===- ⎪----⎝⎭--,1n =时,125A =,11B =,1152A B +<. 2n ≥时,2231311311311241412414124141n n n A +-⎛⎫⎛⎫⎛⎫=-+-+⋅⋅⋅+- ⎪ ⎪ ⎪------⎝⎭⎝⎭⎝⎭113111311234122412n n ++⎛⎫=+=-⋅< ⎪--⎝⎭. 22111111111112222231n B n n n n ⎛⎫⎛⎫⎛⎫=++⋅⋅⋅+<+-+-+⋅⋅⋅+-=-< ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭. ∴52n n A B +<∴52n n A B +<,n *∈N .【点睛】数列求和的方法技巧(1)倒序相加:用于等差数列、与二项式系数、对称性相关联的数列的求和. (2)错位相减:用于等差数列与等比数列的积数列的求和.(3)分组求和:用于若干个等差或等比数列的和或差数列的求和. 22.(1)24n a n =-;(2)11,,1224⎛⎫⎛⎫+∞⋃-∞- ⎪ ⎪⎝⎭⎝⎭.【分析】(1)易知23n S n n =-,再利用通项与前n 项和关系11,1,2n nn S n a S S n -=⎧=⎨-≥⎩求解.(2)易得2424323n n nn n b --==⨯⨯,1160b =-<,20b =,3n ≥时,0n b >,则n T 的最小值为16-,再根据对于任意*n ∈N ,总存在[]2,4x ∈,使得()n T mf x >成立,由()min 16mf x ⎡⎤->⎣⎦求解. 【详解】(1)因为()23f x x x =-,()n S f n =,所以23n S n n =-,当2n ≥时,()()21131n S n n -=---,124n n n a S S n -=-=-, 当1n =时,112a S ==-,也满足24n a n =-, 故24n a n =-.(2)因为24n a n =-,43nn na b =⨯, 所以2424323n n nn n b --==⨯⨯,1160b =-<,20b =, 当3n ≥时,0n b >,故12T T =为n T 的最小值,n T 的最小值为16-, 因为对于任意*n ∈N ,总存在[]2,4x ∈,使得()n T mf x >成立, 所以()min 16mf x ⎡⎤->⎣⎦, 因为[]2,4x ∈,()2239324f x x x x ⎛⎫=-=-- ⎪⎝⎭,所以()[]2,4f x ∈-, 当0m >时,()min 16mf x ⎡⎤->⎣⎦,即126m ->-,解得112m >; 当0m <时,()min16mf x ⎡⎤->⎣⎦,即146m ->,解得124m <-,0m =时,106->,显然不成立. 故实数m 的取值范围为11,,1224⎛⎫⎛⎫+∞⋃-∞- ⎪ ⎪⎝⎭⎝⎭.【点睛】结论点睛:不等式的恒成立与有解问题,可按如下规则转化:一般地,已知函数()[],,y f x x a b =∈,()[],,y g x x c d =∈ (1)若[]1,x a b ∀∈,[]2,x c d ∀∈,总有()()12f x g x <成立,故()()2max min f x g x <; (2)若[]1,x a b ∀∈,[]2,x c d ∃∈,有()()12f x g x <成立,故()()2max max f x g x <; (3)若[]1,x a b ∃∈,[]2,x c d ∃∈,有()()12f x g x <成立,故()()2min min f x g x <; (4)若若[]1,x a b ∀∈,[]2,x c d ∃∈,有()()12f x g x =,则()f x 的值域是()g x 值域的子集 .23.(1)21n a n =-;(2)1011. 【分析】(1)利用1n n n a S S -=-可得答案; (2)求出112121n b n n =--+利用裂项相消可得答案. 【详解】 (1)111a S ==,当2n ≥时,()221121n n n a S S n n n -=-=--=-,1a 符合上式,所以21n a n =-. (2)()()21121212121n b n n n n ==--+-+, ∴11111111335212121n T n n n =-+-++-=--++, 令120201212021n ->+,解得1010n >, 所以最小正整数n 为1011. 【点睛】数列求和的方法技巧:( 1)倒序相加:用于等差数列、与二项式系数、对称性相关联的数列的求和. ( 2)错位相减:用于等差数列与等比数列的积数列的求和. ( 3)分组求和:用于若干个等差或等比数列的和或差数列的求和.( 4)裂项相消法:用于通项能变成两个式子相减,求和时能前后相消的数列求和.24.(1)证明见解析;(2)135210nn S n .【分析】(1)利用对数的运算性质结合等比数列的定义可证得结论成立; (2)求出n n a b 的表达式,利用错位相减法可求得n S . 【详解】(1)对任意的n *∈N ,12122log log log 1n n n n a a a a ++-==,所以,12n naa +=, 所以,数列{}n a 是等比数列,且首项和公比均为2,1222n n n a -∴=⨯=;(2)23log 232n n b a n =-=-,()322n n n a b n ∴=-⋅,()123124272322n n S n ∴=⨯+⨯+⨯++-⨯,()()23121242352322n n n S n n +=⨯+⨯++-⨯+-⨯,上式-下式得()()()()212311321223222322232212n nn n n S n n -++⨯--=+⨯+++--⨯=+--⨯-()153210n n +=-⨯-,因此,135210nn S n .【点睛】方法点睛:数列求和的常用方法:(1)对于等差等比数列,利用公式法直接求和;(2)对于{}n n a b 型数列,其中{}n a 是等差数列,{}n b 是等比数列,利用错位相减法求和;(3)对于{}n n a b +型数列,利用分组求和法;(4)对于11n n a a +⎧⎫⎨⎬⎩⎭型数列,其中{}n a 是公差为()0d d ≠的等差数列,利用裂项相消法求和.25.选①k 的最小值为4;选②k 的最小值为4;选③k 的最小值为3; 【分析】先由条件求出11162n n b -⎛⎫=⨯ ⎪⎝⎭,得出142a b ==,若选①可得2d =,则2n a n =,从而1111n S n n =-+,由裂项相消法求出k T ,可得答案;若选②可得12a d ==,所以2n a n =,一下同选①;若选③可得43d =,从而131142n S n n ⎛⎫=⨯- ⎪+⎝⎭,由裂项相消法求出k T ,可得答案. 【详解】设等比数列{}n b 的公比为q ,由2138,34b b b =-= 所以18b q =,则8384q q -⨯=,解得12q =或23q =-(舍) 则1816b q ==,所以11162n n b -⎛⎫=⨯ ⎪⎝⎭则142a b == 若选① 由4143486202S a d d ⨯=+=+=,则2d = 所以2n a n =, 则212nn a a S n n n +=⨯=+ 所以()111111n S n n n n ==-++ 则1211111111122311n n n T S S S n n n ⎛⎫⎛⎫⎛⎫=+++=-+-++-= ⎪ ⎪ ⎪++⎝⎭⎝⎭⎝⎭ 由314k k T k =>+,则3k >,由k 为正整数,则k 的最小值为4. 若选② 由332S a =,即()11323222a d a d ⨯+=+ ,可得12a d == 所以2n a n =,一下同选①.若选③ 由3423a a b -=,可得()()113238a d a d +-+=,即43d = 所以()()14222233n n n S n n n -=+⨯=+ ()1313112242n S n n n n ⎛⎫=⨯=⨯- ⎪++⎝⎭ 12111311111311111432424212n n T S S S n n n n ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=+++=⨯-+-++-=+-- ⎪ ⎪ ⎪ ⎪⎢⎥+++⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦所以93118412n T n n ⎛⎫=-+ ⎪++⎝⎭所以9311124438k k k T ⎛⎫-+ ⎪++⎭>⎝=,即111122k k +<++,也即240k k --> 解得12k +>,由1232+<<,又k 为正整数,则k 的最小值为3. 【点睛】关键点睛:本题考查等差、等比数列求通项公式和等差数列的前n 项和以及用裂项相消法求和,解答本题的关键是将所要求和的数列的通项公式裂成两项的差,即1111n S n n =-+,131142n S n n ⎛⎫=⨯- ⎪+⎝⎭,注意裂项和的系数和求和时相抵消的项以及最后余下的项,属于中档题. 26.(1)12n n a ;(2)233m <. 【分析】(1)根据题设中的递推关系有12n n a a -=,算出1a 后可求{}n a 的通项. (2)利用裂项相消法可求n T ,求出n T 的最小值后可得m 的取值范围. 【详解】(1)因为()*224n n S a a n N=-∈,故11224n n Sa a --=-,所以1244n n n a a a -=-即12n n a a -=,其中2n ≥,所以322a a =且212a a =, 因为1a ,2a ,31a -成等差数列,故21321a a a =+-即111441a a a =+-,故11a =且10a ≠,故0n a ≠,故12nn a a -=即{}n a 为等比数列且公比为2,故12n na .(2)()()()()2222211111log log 212122121n n n b a a n n n n +⎛⎫===- ⎪-+-+⎝⎭,所以1111111111213352121221n T n n n ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=-+-++-=- ⎪ ⎪ ⎪ ⎪⎢⎥-++⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦, 因为0n b >,故{}n T 为增数列,故()1min 13n T T ==,故1323m>即233m <. 【点睛】方法点睛:数列求和关键看通项的结构形式,如果通项是等差数列与等比数列的和,则用分组求和法;如果通项是等差数列与等比数列的乘积,则用错位相减法;如果通项可以拆成一个数列连续两项的差,那么用裂项相消法;如果通项的符号有规律的出现,则用并项求和法.。
(常考题)北师大版高中数学必修五第一章《数列》测试(包含答案解析)
一、选择题1.记无穷数列{}n a 的前n 项12,,,n a a a …的最大项为n A ,第n 项之后的各项12,n n a a ++,···的最小项为n B ,令n n n b A B =-,若数列{}n a 的通项公式为2276n a n n =-+,则数列{}n b 的前10项和为( )A .169-B .134-C .103-D .78-2.若等差数列{}n a 的前n 项和为n S ,首项10a >,202020210a a +>,202020210a a ⋅<,则满足0n S >成立的最大正整数n 是( ) A .4039B .4040C .4041D .40423.在等比数列{n a }中,13a =,424a =,则345a a a ++的值为( ) A .33B .72C .84D .1894.已知数列{}n a 中,13n n a S +=,则下列关于{}n a 的说法正确的是( ) A .一定为等差数列 B .一定为等比数列C .可能为等差数列,但不会为等比数列D .可能为等比数列,但不会为等差数列 5.已知{}n a 是公比为整数的等比数列,设212n nn na ab a -+=,n ∈+N ,且113072b =,记数列{}n b 的前n 项和为n S ,若2020n S ≥,则n 的最小值为( ) A .11B .10C .9D .86.我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的底层共有灯( ) A .64盏B .128盏C .192盏D .256盏7.在等比数列{}n a 中,48,a a 是关于x 的方程21040x x ++=的两个实根,则2610a a a =( ) A .8B .8-C .4D .88-或8.已知数列{}n a的通项公式为)*n a n N =∈,其前n 项和为n S ,则在数列1S ,2S …,2019S 中,有理数项的项数为( ) A .42B .43C .44D .459.在等比数列{}n a 中,若1234531a a a a a ++++=,2345662a a a a a ++++=,则通项n a 等于( ) A .12n -B .2nC .12n +D .22n -10.已知函数()()31f x x x =-+,数列{}n a 中各项互不相等,记()()()12n n S f a f a f a =+++,给出两个命题:①若等差数列{}n a 满足55S =,则33a =;②若正项等比数列{}n a 满足33S =,则21a <;其中( )A .①是假命题,②是真命题B .①是真命题,②是假命题C .①②都是假命题D .①②都是真命题11.已知数列{}n a 满足123n n a a +-=,11a =,3n n b a =+,则10b =( ) A .92B .103C .2048D .102412.在1和19之间插入个n 数,使这2n +个数成等差数列,若这n 个数中第一个为a ,第n 个为b ,当116a b+取最小值时,n 的值是( ) A .4B .5C .6D .7二、填空题13.给定*1log (2)()n n a n n N +=+∈,则使乘积12k a a a 为整数的()*k k ∈N 称为“和谐数”,则在区间内[1,2020]的所有“和谐数”的和为_______.14.在各项均为正数的等比数列{}n a 中,公比()0,1q ∈,若355a a +=,264a a =,2log n n b a =,数列{}n b 的前n 项和为n S ,则数列n S n ⎧⎫⎨⎬⎩⎭的前n 项的和n T 为______.15.在等比数列{}n a 中,2514,2==a a ,则公比q =__________. 16.已知公差不为0的等差数列的首项12a =,前n 项和为n S ,且________(①1a ,2a ,4a 成等比数列;②(3)2n n n S +=;③926a =任选一个条件填入上空).设3nn a b =,n n n a c b =,数列{}n c 的前n 项和为n T ,试判断n T 与13的大小. 17.已知数列{}n a 的前n 项和()2*32n n n S n +=∈N ,则数列11n n a a +⎧⎫⎨⎬⎩⎭的前10项和为______.18.已知数列{}n a 的首项12a =,且满足132n n a a +=+(*N n ∈),则{}n a 的前n 项和n S =___________.19.若数列{}n a 满足:15n n a a n ++=,11a =,则2020a =________________. 20.我们知道,斐波那契数列是数学史上一个著名数列,在斐波那契数列{}n a 中,()*12211,1,n n n a a a a a n ++===+∈N .用n S 表示它的前n 项和,若已知2020S m =,那么2022a =_______.三、解答题21.设数列{}n a 满足()121*4n n a n N a +=-∈-,其中11a =. (1)证明:112n a ⎧⎫-⎨⎬-⎩⎭是等比数列;(2)令32n n n a b a -=-,设数列(){}21-⋅n n b 的前n 项和为n S ,求使2021n S <成立的最大自然数n 的值.22.设数列{}n a ,{}n b 是公比不相等的两个等比数列,数列{}n c 满足*,n n n c a b n =+∈N .(1)若2,3nnn n a b ==,是否存在常数k ,使得数列{}1n n c kc +-为等比数列?若存在,求k 的值;若不存在,说明理由;(2)证明:{}n c 不是等比数列.23.在①242n n n S a a =+,②12a =,12n n na S +=这两个条件中任选一个,补充到下面横线处,并解答.已知正项数列{}n a 的前n 项和为n S , . (1)求数列{}n a 的通项公式; (2)若数列{}n b 满足131log 12n n b a =-,且n n n c a b =,求数列{}n c 的前n 项和n M . 注:如果选择多个条件分别进行解答,按第一个解答进行计分.24.在数列{}n a 中,11a =,()*21221,,k k k a a a k N -+∈成等比数列,公比为0k q >.(Ⅰ)若2k q =,求13521k a a a a -+++⋅⋅⋅+;(Ⅱ)若()*22122,,k k k a a a k N ++∈成等差数列,公差为k d ,设11k k b q =-. ①求证:{}n b 为等差数列;②若12d =,求数列{}k d 的前k 项和k D . 25.已知数列{}n a 的首项为4. (1)若数列{}2nn a -是等差数列,且公差为2,求{}na 的通项公式.(2)在①3248a a -=且20a >,②364a =且40a >,③20212201716a a a =这三个条件中任选一个,补充在下面的问题中并解答. 问题,若{}n a 是等比数列,__________,求数列(){}31nn a -的前n 项和nS.26.在①420S =,②332S a =,③3423a a b -=这三个条件中任选一个,补充在下面问题中,并作答.问题:已知等差数列{}n a 的前n 项和为n S ,{}n b 是各项均为正数的等比数列,14a b =,______,2138,34b b b =-=,是否存在正整数k ,使得数列1n S ⎧⎫⎨⎬⎩⎭的前k 项和34k T >?若存在,求k 的最小值;若不存在,说明理由, 注:如果选择多个条件分别解答,按第一个解答计分.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】先利用单调性依次写出前几项,再根据规律求和即可. 【详解】数列{}n a 的通项公式为2276n a n n =-+,故从2a 起单调递增,且1231,0,3a a a ===, 所以11112101b A B a a =-=-=-=,22213b A B a a =-=-,33334b A B a a =-=-,44445b A B a a =-=-,…,1010101011b A B a a =-=-,又2112117116171a =⨯-⨯+=,所以数列{}n b 的前10项和为()()()()12101334451011...1...b b b a a a a a a a a +++=+-+-+-++-111111171169a a =+-=+-=-.故选:A. 【点睛】 关键点点睛:本题的解题关键在于发现数列从2a 起单调递增,才能依次确定{}n b 的项,找到规律,突破难点.2.B解析:B 【分析】由等差数列的10a >,及202020210a a ⋅<得数列是递减的数列,因此可确定202020210,0a a ><,然后利用等差数列的性质求前n 项和,确定和n S 的正负.【详解】∵202020210a a ⋅<,∴2020a 和2021a 异号,又数列{}n a 是等差数列,首项10a >,∴{}n a 是递减的数列,202020210,0a a ><, 由202020210a a +>,所以140404040202020214040()2020()02a a S a a +==+>,14041404120214041()404102a a S a +==<,∴满足0n S >的最大自然数n 为4040. 故选:B . 【点睛】关键点睛:本题求满足0n S >的最大正整数n 的值,关键就是求出100n n S S +><,,时成立的n 的值,解题时应充分利用等差数列下标和的性质求解,属于中档题.3.C解析:C 【分析】根据341a a q =,可求出q ,再根据等比数列通项公式求出35,a a 即可.【详解】因为341a a q =,即3243q =,所以2q,所以22313212a a q ==⨯=,44513248a a q ==⨯=,所以34512244884a a a ++=++=. 故选:C 【点睛】本题主要考查等比数列的通项公式的应用,属于基础题.4.C解析:C 【分析】根据13n n a S +=得14n n S S +=,分类讨论当10S =和10S ≠两种情况分析得数列{}n a 可能为等差数列,但不会为等比数列. 【详解】解:13n n a S +=,13n n n S S S +∴=-, 14n n S S +∴=,若10S =,则数列{}n a 为等差数列;若10S ≠,则数列{}n S 为首项为1S ,公比为4的等比数列,114n n S S -∴=⋅,此时21134n n n n a S S S -==-⋅﹣(2n ≥),即数列从第二项起,后面的项组成等比数列.综上,数列{}n a 可能为等差数列,但不会为等比数列. 故选:C.本题考查等差数列、等比数列的判断,考查学生分析解决问题的能力,正确分类讨论是关键.5.B解析:B 【分析】设{}n a 是公比为q ,根据已知条件有1n n n b qq -=+求得2q,数列{}n b 的前n 项和为3(21)n n S =-即2020n S ≥可求n 的最小值【详解】令{}n a 是公比为q ,由212n nn na ab a -+=,n ∈+N ∴1n n n b qq -=+,又113072b =即10113072q q +=,又q Z ∈,知:2q∵{}n b 的前n 项和为n S ,则3(21)nn S =-∴2020n S ≥时,3(21)2020n -≥,n ∈+N 解得10n ≥ 故选:B 【点睛】本题考查了数列,由数列的递推关系及已知条件求公比,进而根据新数列的前n 项和及不等式条件求n 的最小值6.C解析:C 【分析】设塔的顶层共有1a 盏灯,第n 层的灯有n a 盏,则数列{}n a 是公比为2的等比数列,利用等比数列的前n 项和公式可求得1a 的值,进而可求得塔的底层的灯的盏数7a . 【详解】设塔的顶层共有1a 盏灯,第n 层的灯有n a 盏,则数列{}n a 是公比为2的等比数列, 由题意可知,一座7层塔所挂的灯的盏数为()71711212738112a S a -===-,解得13a =.因此,塔的底层的灯的盏数为6732192a =⨯=. 故选:C. 【点睛】本题考查等比数列及其前n 项和基本量的计算,考查推理能力与计算能力,属于中等题.7.B解析:B结合根与系数关系,根据等比中项满足的性质,计算6a ,代入,计算式子,即可. 【详解】48,a a 是关于x 的方程21040x x ++=的两实根,所以24821064a a a a a ===,由48480,100a a a a >+=-<得480,0a a <<,所以2640a a q =<,即62a =-,所以26108a a a =-.故选B【点睛】本道题考查了等比中项的性质,关键利用好该性质,计算结果,即可,难度中等.8.B解析:B 【分析】本题先要对数列{}n a 的通项公式n a 运用分母有理化进行化简,然后求出前n 项和为n S 的表达式,再根据n S 的表达式的特点判断出那些项是有理数项,找出有理数项的下标的规律,再求出2019内属于有理数项的个数. 【详解】解:由题意,可知:n a ====. 12n n S a a a ∴=++⋯+1=1= 3S ∴,8S ,15S ⋯为有理项,又下标3,8,15,⋯的通项公式为21(2)n b n n =-,212019n ∴-,且2n ,解得:244n ,∴有理项的项数为44143-=.故选:B . 【点睛】本题主要考查分母有理化的运用,根据算式判断有理数项及其下标的规律,属于中档题.9.A解析:A 【详解】设等比数列{a n }的公比为q ,∵a 1+a 2+a 3+a 4+a 5=31,a 2+a 3+a 4+a 5+a 6=62, ∴q=2,∴a1(1+q+q 2+q 3+q 4)=31, 则a 1=1, 故an=2n−1. 故选A.10.A解析:A 【分析】先确定函数()f x 对称性与单调性,再结合等差数列的等距性确定3a ;结合基本不等式将等比数列性质转化到等差数列性质上,解不等式即得结果. 【详解】因为()()()3311(1)1f x x x x x =-+=-+-+,而3y x x =+关于原点对称且在R 上单调递增,所以()f x 关于(1,1)对称且在R 上单调递增, 先证明下面结论:若()g x 为奇函数且在R 上单调递增,{}n a 为等差数列,123g()()()()0n a g a g a g a ++++=,则1230n a a a a ++++=.证明:若1230n a a a a ++++>,则当n 为偶数时,1211220n n n n a a a a a a -++=+==+>111()()()()+()0n n n n a a g a g a g a g a g a >-∴>-=-∴>同理21+122()()0,,()+()0n n n g a g a g a g a -+>>,即123g()()()()0n a g a g a g a ++++>与题意矛盾,当n 为奇数时,1211220n n n a a a a a -++=+==>类似可得12112()()0,()(),,()0n n n g a g a g a g a g a -++>+>,即123g()()()()0n a g a g a g a ++++>,与题意矛盾同理可证1230n a a a a ++++<也不成立,因此1230n a a a a ++++=再引申结论:若()f x 为关于(,)a b 函数且在R 上单调递增,{}n a 为等差数列,123()()()()n f a f a f a f a nb ++++=,则123n a a a a na ++++=证明过程只需令()()g x f x a b =+-,再利用上面结论即得.①若等差数列{}n a 满足55S =,即 12345()()()()()5f a f a f a f a f a ++++=,则123453555a a a a a a ++++=∴=, 31a ∴=,故①是假命题,②若正项等比数列{}n a 满足33S =, 即123()()()3f a f a f a ++= 因为数列{}n a 中各项互不相等,所以公比不为1,不妨设公比大于1,即123123()()()a a a f a f a f a <<∴<<,因为1322a a a +>=∴2()1f a <,()3222111a a a -+<∴<故②是真命题 故选:A 【点睛】本题考查函数()f x 对称性与单调性、等差数列性质、基本不等式应用,考查综合分析判断能力,属中档题.11.C解析:C 【分析】根据题意得到12n n b b +=,计算得到答案. 【详解】123n n a a +-=,()1323n n a a +∴+=+,即12n n b b +=, 14b =,910422048b ∴=⨯=.故选:C . 【点睛】本题考查了根据数列的递推式求通项公式,确定12n n b b +=是解题的关键.12.B解析:B 【分析】设等差数列公差为d ,可得20a b +=,再利用基本不等式求最值,从而求出答案. 【详解】设等差数列公差为d ,则119a d b d =+=-,,从而20a b +=, 此时0d >,故0,0a b >>,所以11616()()1161725b a a b a b a b ++=+++≥+=,即116255204a b +=,当且仅当16b a a b =,即4b a =时取“=”, 又1,19a d b d =+=-,解得3d =,所以191(1)3n =++⨯,所以5n =, 故选:B . 【点睛】本题主要考查数列和不等式的综合运用,需要学生对所学知识融会贯通,灵活运用.二、填空题13.2026【分析】根据换底公式把代入并且化简转化为为整数即可求得区间内的所有和谐数的和【详解】由换底公式:得为整数∴分别可取最大值则最大可取10故所有和谐数的和为故答案为:2026【点睛】考查数列的综解析:2026 【分析】根据换底公式把1log (2)n n a n +=+代入12k a a a ⋯并且化简,转化为lg(2)lg 2k +为整数,即22n k +=,n *∈N ,可求得区间[1,2020]内的所有“和谐数”的和.【详解】由换底公式:log log log b a b NN a=, 得()231241log 3log 4log 5log 2k k a a a k +=⋯+122lg3lg 4lg5lg(2)lg(2)log (2)lg 2lg3lg 4lg(1)lg 2==++⋯⋅⋅⋅⋅=++k k k a a a k k 为整数,∴22n k +=,n *∈N ,k 分别可取23422,22,22---,最大值222020n -≤,则n 最大可取10, 故所有“和谐数”的和为()923104122221818202612-++⋅⋅⋅+-=-=-.故答案为:2026. 【点睛】考查数列的综合应用及对数的换底公式,把12k a a a ⋯化简并且转化为对数的运算,体现了转化的思想,属中档题.14.【分析】首先利用方程组求出数列的通项公式进一步求出数列的通项公式进一步利用分类讨论思想的应用求出数列的和【详解】解:各项均为正数的等比数列中若所以由于公比解得所以解得所以由于所以则当时当时所以故答案解析:()()2217941714494n n n n T n n n ⎧-≤⎪⎪=⎨-+⎪>⎪⎩【分析】首先利用方程组求出数列{}n a 的通项公式,进一步求出数列{}n b 的通项公式,进一步利用分类讨论思想的应用求出数列的和. 【详解】解:各项均为正数的等比数列{}n a 中,若355a a +=,264a a =, 所以35352654a a a a a a +=⎧⎨==⎩,由于公比()0,1q ∈,解得3541a a =⎧⎨=⎩,所以253a a q =,解得12q =. 所以55512n n n a a q--⎛⎫=⋅= ⎪⎝⎭.由于5221log log 52n n n b a n -⎛⎫===- ⎪⎝⎭.所以()()45922n n n n n S +--==, 则()9292n n n n S n c nn--===, 当9n ≤时,()212171744n n n n n n T c c c --=+++==. 当9n >时,()()212910*********24n n n n n T c c c c c c c c c c -+=+++---=++-+++=. 所以()()2217941714494n n n n T n n n ⎧-≤⎪⎪=⎨-+⎪>⎪⎩.故答案为:()()2217941714494n n n n T n n n ⎧-≤⎪⎪=⎨-+⎪>⎪⎩【点睛】本题考查等比数列的通项公式,等差数列的前n 项和公式,考查分类讨论思想和数学运算能力,是中档题.15.【分析】本题先用表示再建立方程组解题即可【详解】解:∵是等比数列∴∵∴解得:故答案为:【点睛】本题考查等比数列的基本量法是基础题 解析:12【分析】本题先用1a ,q 表示2a ,5a ,再建立方程组21451412a a q a a q ==⎧⎪⎨==⎪⎩解题即可. 【详解】解:∵ {}n a 是等比数列,∴ 21a a q =,451a a q∵24a =,512a =,∴ 21451412a a q a a q ==⎧⎪⎨==⎪⎩,解得:1812a q =⎧⎪⎨=⎪⎩, 故答案为:12. 【点睛】本题考查等比数列的基本量法,是基础题.16.选①:;选②:当时;当时;当时;选③:【分析】任选一个条件求出数列公差及通项利用错位相减法求和再比较大小可得解【详解】若选①设公差为因为成等比数列所以解得或0(不合舍去)所以所以利用错位相减可得;若解析:选①:13n T <;选②:当1n =时,12193T =<;当2n =时,21133T ==;当3n ≥时,3311813n T T ≥=>;选③:13n T <.【分析】任选一个条件,求出数列{}n a 公差及n b ,n c 通项,利用错位相减法求和,再比较大小可得解. 【详解】若选①,设公差为d ,因为1a ,2a ,4a 成等比数列,所以2(2)2(23)d d +=+,解得2d =或0(不合,舍去),所以2n a n =,9n n b =所以29n nnc =,利用错位相减可得1991213232993n n n n T +=-⨯-<; 若选②,因为(3)2n n n S +=,所以公差1d =,所以1n a n =+,13n n b +=所以113n n n c ++=,利用错位相减可得11515()()24312n n T n +=--⨯+当1n =时,12193T =<; 当2n =时,21133T ==;当3n ≥时,3311813n T T ≥=>; 若选③,因为926a =,所以公差3d =,所以31n a n =-,所以31313n n n c --=, 利用错位相减可得1652346911676676273n n n T -=-⨯<. 【定睛】本题考查等差数列通项及错位相减法求和,属于基础题.17.【分析】根据可求得的通项公式经检验满足上式所以可得代入所求利用裂项相消法求和即可得答案【详解】因为所以所以又满足上式所以所以所以数列的前10项和为故答案为:【点睛】解题的关键是根据求得的通项公式易错 解析:532【分析】根据1(2)n n n a S S n -=-≥可求得n a 的通项公式,经检验,112a S ==满足上式,所以可得n a ,代入所求,利用裂项相消法求和,即可得答案. 【详解】因为()2*32n n n S n +=∈N ,所以2213(1)1352(2)22n n n n n S n --+--+==≥, 所以221335231,(2)22n n n n n n n a S S n n -+-+=---≥==,又1131122a S ⨯+===满足上式, 所以()*31,n a n n N=-∈,所以111111(31)(32)3313+2n n a a n n n n +⎛⎫== ⎪-+-⎝⎭-,所以数列11n n a a +⎧⎫⎨⎬⎩⎭的前10项和为11111111115325582932323232⎛⎫⎛⎫-+-+⋅⋅⋅+-=⨯-= ⎪ ⎪⎝⎭⎝⎭, 故答案为:532【点睛】解题的关键是根据1(2)n n n a S S n -=-≥,求得n a 的通项公式,易错点为,若11a S =满足上式,则写成一个通项公式的形式,若11a S =不满足上式,则需写成分段函数形式,考查计算化简的能力,属中档题.18.【分析】根据递推公式构造等比数列求出再分组根据等比数列求和公式可得结果【详解】由得因为所以是首项为公比为的等比数列所以所以所以故答案为:【点睛】关键点点睛:构造等比数列求解是解题关键解析:()11332n n +-- 【分析】 根据递推公式构造等比数列{1}n a +,求出n a ,再分组根据等比数列求和公式可得结果. 【详解】由132n n a a +=+得113(1)n n a a ++=+,因为1130a +=≠,所以{1}n a +是首项为3,公比为3的等比数列,所以11333n nn a -+=⨯=,所以31n n a =-,所以1233333n n S n =++++-3(13)13n n -=--()11332n n +=--. 故答案为:()11332n n +-- 【点睛】关键点点睛:构造等比数列{1}n a +求解是解题关键.19.【分析】根据写出相减以后可得可以判断出数列是等差数列然后判断出首项和公差即可得【详解】两式相减得故是首项为公差为的等差数列的第项故故答案为:【点睛】要注意等差数列的概念中的从第项起与同一个常数的重要解析:5049. 【分析】根据15n n a a n ++=写出155n n a a n -+=-,相减以后可得115n n a a +--=,可以判断出数列{}2n a 是等差数列,然后判断出首项和公差,即可得2020a . 【详解】11555n n n n a a n a a n +-+=⇒+=-.两式相减,得115n n a a +--=.12254a a a +=⇒=.故2020a 是首项为4,公差为5的等差数列的第1010项, 故()202041010155049a =+-⨯=. 故答案为:5049. 【点睛】要注意等差数列的概念中的“从第2项起”与“同一个常数”的重要性,巧妙运用等差数列的性质,可化繁为简;如果1n n a a +-是常数,则{}n a 是等差数列,如果11n n a a +--是常数,则数列中的奇数项或者偶数项为等差数列,所以需要注意等差数列定义的推广应用.20.【分析】由已知利用累加法即可得到答案【详解】由已知各式相加得即又所以故答案为:【点睛】本题考查了累加求和方法斐波那契数列的性质考查了推理能力与计算能力属于中档题 解析:1m +【分析】由已知,123a a a +=,234,a a a +=202020212022a a a +=,利用累加法即可得到答案. 【详解】由已知,123a a a +=,234,a a a +=202020212022a a a +=,各式相加得1234202020222a a a a a a +++++=,即220202022a S a +=,又21a =,2020S m =,所以20221a m =+. 故答案为:1m + 【点睛】本题考查了“累加求和”方法、“斐波那契数列”的性质,考查了推理能力与计算能力,属于中档题.三、解答题21.(1)证明见解析;(2)最大自然数6n =. 【分析】(1)根据题中条件,可得1112n a +--的表达式,根据等比数列的定义,即可得证;(2)由(1)可得1122n n a -=-,则可得2n n b =,根据错位相减求和法,可求得n S 的表达式,根据n S 的单调性,代入数值,分析即可得答案. 【详解】解:(1)∵()1621*44n n n n a a n N a a +-=-=∈--, ∴()()1116323346312311122162262822224n n n n n n n n n n n n n n n n a a a a a a a a a a a a a a a a +++----⎛⎫----+--======- ⎪-----+----⎝⎭--即11122112n n a a +--=--, ∴112n a ⎧⎫-⎨⎬-⎩⎭是首项为113132212a a --==--,公比为2的等比数列. (2)由(1)知,1122n n a -=-, 即321112222n n n n n n n a a b a a a ---==-==---, ∴()()21212-⋅=-⋅nn n b n ,()123123252212n n S n =⋅+⋅+⋅++-⋅,①()23412123252212n n S n +=⋅+⋅+⋅++-⋅,②①减②得()()()112311421222222122221212n nn n n S n n +++--=⋅++++--⋅=+⋅--⋅-()13226n n +=-⋅-.∴()12326n n S n +=-⋅+.∴()()()21112122322210++++-=-⋅--⋅=+>n n n n n S S n n n ,∴n S .单调递增.∵7692611582021S =⨯+=<,87112628222021S =⨯+=>.故使2021n S <成立的最大自然数6n =. 【点睛】解题的关键是根据所给形式,进行配凑和整理,根据等比数列定义,即可得证,求和常用的方法有:①公式法,②倒序相加法,③裂项相消法,④错位相减法等,需熟练掌握. 22.(1)存在,2k =或3k =;(2)证明见解析. 【分析】(1)若数列{}1n n c kc +-为等比数列,则有()()()21211n n n n n n c kc c kc c kc +++--=-⋅-,其中2n ≥且*n ∈N ,将23n n n c =+代入上式,整理得1(2)(3)2306n nk k --⋅⋅=化简即可得出答案;(2)证{}n c 不是等比数列只需证2213c c c ≠⋅,验证其不成立即可.【详解】解:(1)由题意知,若数列{}1n n c kc +-为等比数列,则有()()()21211n n n n n n c kc c kc c kc +++--=-⋅-,其中2n ≥且*n ∈N ,将23n nn c =+代入上式,得()()()211221111232323232323n n n n n n n n n n n n k k k ++++++--⎡⎤⎡⎤⎡⎤+-+=+-+⋅+-+⎣⎦⎣⎦⎣⎦, 即21111(2)2(3)3(2)2(3)3(2)2(3)3n n n n n n k k k k k k ++--⎡⎤⎡⎤⎡⎤-+-=-+-⋅-+-⎣⎦⎣⎦⎣⎦,整理得1(2)(3)2306n nk k --⋅⋅=,解得2k =或3k =.(2)设数列{}n a ,{}n b 的公比分别为,,p q p q ≠且,0p q ≠,11,0a b ≠, 则1111n n n c a pb q --=+,为证{}n c 不是等比数列,只需证2213c c c ≠⋅,事实上()22222221111112c a p b q a p a b pq b q =+=++,()()()222222221311111111c c a b a p b q a p a b p q b q ⋅=+⋅+=+++,由于p q ≠,故222p q pq +>,又11,0a b ≠,从而2213c c c ≠⋅,所以{}n c 不是等比数列. 【点睛】方法点睛:等差、等比数列的证明经常利用定义法和等比中项法,通项公式法和前n 项和公式法经常在选择题、填空题中用来判断数列是否为等差、等比数列不能用来证明.23.(1)条件性选择见解析,2n a n =;(2)1931223n n M n -⎫⎫⎛⎛=-+⨯ ⎪ ⎪⎝⎝⎭⎭.【分析】(1)若选①,先求出12a =,由242n n n S a a =+可得111242n n n S a a +++=+,两式相减可得()()1120n n n n a a a a +++--=,从而12n n a a +-=得出答案; 若选②,由12n n na S +=可得1(1)2n n n a S --=,两式相减可得11n n a n a n++=,由累乘法可得答案. (2)由(1)可得13log 1n b n =-,则113n n b -⎛⎫= ⎪⎝⎭,于是1123n n n n c a b n -⎫⎛==⨯ ⎪⎝⎭,由错位相减法可求和得出答案. 【详解】(1)选①时,当1n =时,211142a a a =+,因为10a >,所以12a =, 由242n n n S a a =+,① 可得111242n n n S a a +++=+,②②-①得,22111422n n n n n a a a a a +++=-+-, 整理得2211220n n n n a a a a ++---=,所以()()1120n n n n a a a a +++--= 因为0n a >,所以12n n a a +-=,所以数列{}n a 是首项为2,公差为2的等差数列, 所以2n a n =; 选②时, 因为12n n na S +=①所以当2n ≥时,1(1)2n n n a S --=② ①-②得:1(1)n n na n a +=+,即11n n a n a n++= ①中,令1n =,得2124a a ==,212a a =适合上式 所以当2n ≥时,1232112321n n n n n n n a a a a a a a a a a a a -----=⋅⋅⋅⋅12322212321n n n n n n n --=⋅⋅⋅⋅⨯⨯=--- 又1n =,1221a ==⨯ 所以对任意*N n ∈,2n a n = (2)因为13log 12nn a b =-即13log 1n b n =-所以113n n b -⎛⎫= ⎪⎝⎭,于是1123n n n n c a b n -⎫⎛==⨯ ⎪⎝⎭,2111121462333n n M n -⎫⎫⎛⎛=⨯+⨯+⨯+⋯+⨯ ⎪ ⎪⎝⎝⎭⎭③2311111246233333nn M n ⎫⎫⎫⎛⎛⎛=⨯+⨯+⨯+⋯+⨯ ⎪ ⎪ ⎪⎝⎝⎝⎭⎭⎭④ ③-④得231211111222222333333n nn M n -⎫⎫⎫⎫⎛⎛⎛⎛=+⨯+⨯+⨯+⋯+⨯-⨯ ⎪ ⎪ ⎪⎪⎝⎝⎝⎝⎭⎭⎭⎭1111212333n nn -⎡⎤⎫⎫⎛⎛=⨯++⋯+-⨯⎢⎥ ⎪ ⎪⎝⎝⎭⎭⎢⎥⎣⎦1113221313nnn ⎫⎛- ⎪⎫⎛⎝⎭=⨯-⨯ ⎪⎝⎭-所以1931223n n M n -⎫⎫⎛⎛=-+⨯ ⎪ ⎪⎝⎝⎭⎭【点睛】关键点睛:本题考查求数列的通项公式和应用错位相减法求数列的前n 项和,解答本题的关键是按照步骤求解,考查计算能力,由2111121462333n n M n -⎫⎫⎛⎛=⨯+⨯+⨯+⋯+⨯ ⎪ ⎪⎝⎝⎭⎭,得出2311111246233333nn M n ⎫⎫⎫⎛⎛⎛=⨯+⨯+⨯+⋯+⨯ ⎪ ⎪ ⎪⎝⎝⎝⎭⎭⎭,两式相减再化简得出答案,属于中档题.24.(Ⅰ)413-k ;(Ⅱ)①证明见解析;②(3)2+=k k k D . 【分析】(Ⅰ)根据题中条件,得到221214k k k a q a +-==,求出21k a -的通项,利用等比数列的求和公式,即可求出结果;(Ⅱ)①先由条件,得到212222k k k a a a ++=+,推出112k kq q +=+,得出11k k b b +-=,即可证明数列是等差数列;②根据12d =,由①的结论,根据等差数列的通项公式,求出k b ,推出11k q k=+,得到221211k k a k a k +-+⎛⎫= ⎪⎝⎭,根据212k k k d a a +=-,求出{}k d 的通项,判断其是等差数列,由等差数列的求和公式,即可得出结果. 【详解】(Ⅰ)由已知,221214k k k a q a +-==,所以1214k k a --=, 又11a =,所以数列{}21k a -是以1为首项,以4为公比的等比数列,所以()132111414413k k k a a a -⨯-=-++⋅⋅⋅+=-; (Ⅱ)①对任意的*k N ∈,2k a ,21k a +,22k a +成等差数列, 所以212222k k k a a a ++=+,即22221212k k k k a a a a +++=+,即112k kq q +=+, 所以111111111k k kq q q +==+---,即11k k b b +-=,所以{}n b 成等差数列,其公差为1.②若12d =,则21a q =,231a q =,322a a -=,所以21120q q --=,又0k q >,所以12q =,从而111111k k k q q =+-=--,即11k q k=+. 所以221211k k a k a k +-+⎛⎫= ⎪⎝⎭,可得235212111323k k k a a a a a k a a a ---=⨯⨯⨯⋅⋅⋅⨯=, 则221(1)k k k a a q k k -==+,所以2212(1)(1)1k k k d a a k k k k +=-=+-+=+,即{}k d 为等差数列,所以()1(3)22k k k d d k k D ++==. 【点睛】思路点睛:求解等差数列与等比数列的综合问题时,一般需要根据等差数列与等比数列的通项公式,以及求和公式,进行求解.(有时需要根据递推公式,先证明数列是等差数列或等比数列,再进一步求解)25.(1)22nn a n =+;(2)()132483n n n S +-+=【分析】 (1)求出{}2nn a -首项,即可求出{}2n na-通项公式,得出{}n a 的通项公式;(2)设出公比,建立关系求出公比,再利用错位相减法即可求出n S . 【详解】解:(1)因为14a =,所以122a -=,因为数列{}2n n a -是等差数列,且公差为2, 所以()22212n n a n n -=+-=,则22n n a n =+. (2)选①:设公比为q ,由3248a a -=,得24448qq -=, 解得4q =或3-,因为20a >,所以4q =.故4nn a =. ()22454314n n S n =⨯+⨯++-⨯, ()23142454314n n S n +=⨯+⨯++-⨯, 两式相减得()()231383444314n n n S n +-=++++--, 即()2114438313414n n n S n ++--=+⨯+--()12348n n +=--, 故()132483n n n S +-+=. 选②:设公比为q ,由364a =,得2464q =,解得4q =±,因为20a >,所以4q =.故4nn a =. ()22454314n n S n =⨯+⨯++-⨯, ()23142454314n n S n +=⨯+⨯++-⨯, 两式相减得()()231383444314n n n S n +-=++++--, 即()2114438313414n n n S n ++--=+⨯+--()12348n n +=--, 故()132483n n n S +-+=. 选③:设公比为q ,由20212201716a a a =,得20211201820181664a a a a ==,则364q =,所以4q =.故4n n a =. ()22454314n n S n =⨯+⨯++-⨯, ()23142454314n n S n +=⨯+⨯++-⨯, 两式相减得()()231383444314n n n S n +-=++++--,即()2114438313414n n n S n ++--=+⨯+--()12348n n +=--, 故()132483n n n S +-+=. 【点睛】方法点睛:数列求和的常用方法:(1)对于等差等比数列,利用公式法可直接求解;(2)对于{}n n a b 结构,其中{}n a 是等差数列,{}n b 是等比数列,用错位相减法求和; (3)对于{}+n n a b 结构,利用分组求和法;(4)对于11n n a a +⎧⎫⎨⎬⎩⎭结构,其中{}n a 是等差数列,公差为d ,则111111n n n n a a d a a ++⎛⎫=- ⎪⎝⎭,利用裂项相消法求和. 26.选①k 的最小值为4;选②k 的最小值为4;选③k 的最小值为3;【分析】 先由条件求出11162n n b -⎛⎫=⨯ ⎪⎝⎭,得出142a b ==,若选①可得2d =,则2n a n =,从而1111n S n n =-+,由裂项相消法求出k T ,可得答案;若选②可得12a d ==,所以2n a n =,一下同选①;若选③可得43d =,从而131142n S n n ⎛⎫=⨯- ⎪+⎝⎭,由裂项相消法求出k T ,可得答案.【详解】 设等比数列{}n b 的公比为q ,由2138,34b b b =-= 所以18b q =,则8384q q -⨯=,解得12q =或23q =-(舍) 则1816b q ==,所以11162n n b -⎛⎫=⨯ ⎪⎝⎭则142a b ==若选① 由4143486202S a d d ⨯=+=+=,则2d = 所以2n a n =, 则212n n a a S n n n +=⨯=+ 所以()111111n S n n n n ==-++则1211111111122311n n n T S S S n n n ⎛⎫⎛⎫⎛⎫=+++=-+-++-= ⎪ ⎪ ⎪++⎝⎭⎝⎭⎝⎭ 由314k k T k =>+,则3k >,由k 为正整数,则k 的最小值为4. 若选② 由332S a =,即()11323222a d a d ⨯+=+ ,可得12a d == 所以2n a n =,一下同选①.若选③ 由3423a a b -=,可得()()113238a d a d +-+=,即43d =所以()()14222233n n n S n n n -=+⨯=+ ()1313112242n S n n n n ⎛⎫=⨯=⨯- ⎪++⎝⎭12111311111311111432424212n n T S S S n n n n ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=+++=⨯-+-++-=+-- ⎪ ⎪ ⎪ ⎪⎢⎥+++⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦所以93118412n T n n ⎛⎫=-+ ⎪++⎝⎭ 所以9311124438k k k T ⎛⎫-+ ⎪++⎭>⎝=,即111122k k +<++,也即240k k --> 解得12k +>,由1232+<<,又k 为正整数,则k 的最小值为3. 【点睛】关键点睛:本题考查等差、等比数列求通项公式和等差数列的前n 项和以及用裂项相消法求和,解答本题的关键是将所要求和的数列的通项公式裂成两项的差,即1111n S n n =-+,131142n S n n ⎛⎫=⨯- ⎪+⎝⎭,注意裂项和的系数和求和时相抵消的项以及最后余下的项,属于中档题.。
北师大版必修5高二数学第一章测试练习题及答案
高二数学必修五第一单元检测卷(数列)一、选择题:本大题共有12小题,每小题5分,共60分.在每小题给出的四个选项中,有且只有一项是符合题目要求的.1,的一个通项公式是A. n a =B. n aC. n a =D. n a =2.已知数列{}n a 的首项11a =,且()1212n n a a n -=+≥,则5a 为 A .7 B .15 C.30 D .31 3.下列各组数能组成等比数列的是A. 111,,369B. lg3,lg9,lg 27C. 6,8,10D.3,-4. 等差数列{}n a 的前m 项的和是30,前2m 项的和是100,则它的前3m 项的和是A .130B .170C .210D .2605.若{}n a 是等比数列,前n 项和21n n S =-,则2222123n a a a a ++++=A.2(21)n -B.21(21)3n - C.41n- D.1(41)3n-6.各项为正数的等比数列{}n a ,478a a ⋅=,则1012222log log log a a a+++=A .5B .10C .15D .207.已知等差数列{a n }的公差d ≠0,若a 5、a 9、a 15成等比数列,那么公比为 (A)(B)(C)(D)8.在等差数列{}n a 和{}n b 中,125a =,175b =,100100100a b +=,则数列{}n n a b +的前100项和为A. 0B. 100C. 1000D. 10000 9.已知等比数列{}n a 的通项公式为123n n a -=⨯,则由此数列的偶数项所组成的新数列的前n 项和n S =A.31n- B.3(31)n- C.914n - D.3(91)4n -10.等比数列{}n a 中,991a a 、为方程016102=+-x x 的两根,则805020a a a ⋅⋅ 的值为A .32B .64C .256D .±64 11.在等差数列{}n a 中,若4681012120a a a a a ++++=,则101123a a -的值为 A. 6 B. 8 C. 10 D. 1612. 设由正数组成的等比数列,公比q=2,且3030212=a a a ……·,则30963a a a a ……··等于 A .102 B .202 C .162 D .152二、填空题:共6小题,每小题5分,共30分.将答案填在题中的横线上.13.等差数列的前4项和为40,最后4项的和为80,所有各项的和为720,则这个数列一共有 项.14.若{a n }是等差数列,a 3,a 10是方程x 2-3x-5=0的两根,则a 5+a 8= .15.已知{}n a 是等比数列,n a >0,又知2a 4a +23a 5a +4a 6a =25,那么35a a +=__________. 16. 在等差数列{}n a 中,14101619100a a a a a ++++=,则161913a a a -+的值是________三、解答题:本大题共4小题,共60分.解答应写出文字说明,证明过程或演算步骤.17(10分).已知四个数,前三个数成等比数列,和为19,后三个数成等差数列,和为12,求此四个数.18(12分).已知数列{}n a 中,13a =,1021a =,通项n a 是项数n 的一次函数, ① 求{}n a 的通项公式,并求2009a ;② 若{}n b 是由2468,,,,,a a a a 组成,试归纳{}n b 的一个通项公式19(12分).已知{}n a 满足13a =,121n n a a +=+, (1)求证:{}1n a +是等比数列; (2)求这个数列的通项公式n a .20(12分)已知数列{n a }的前n 项和是n n s n 2205232+-=, (1) 求数列的通项公式n a ; (2) 求数列{|n a |}的前n 项和。
(常考题)北师大版高中数学必修五第一章《数列》测试题(含答案解析)
一、选择题1.在数列{}n a 中,11a =-,33a =,212n n n a a a ++=-(*n N ∈),则10a =( ) A .10B .17C .21D .352.设等比数列{}n a 的前n 项和为n S ,且4331S S S =-,若11a >,则( ) A .13a a <,24a a < B .13a a >,24a a < C .13a a <,24a a >D .13a a >,24a a >3.已知数列{}n a 为等比数列,若2312a a a ⋅=,且4a 与72a 的等差中项为54,则123n a a a a ⋅⋅⋅⋅⋅的最大值为( ) A .5B .512C .1024D .20484.已知数列{}n a 中,其前n 项和为n S ,且满足2n n S a =-,数列{}2n a 的前n 项和为n T ,若20n n S T λ+>对*n N ∈恒成立,则实数λ的取值范围是( )A .(3,)+∞B .(1,3)-C .93,5⎛⎫⎪⎝⎭D .(1,)-+∞5.已知数列{}n a 满足11a =,+121nn n a a a =+,则数列{}1n n a a +的前n 项和n T =( ) A .21nn - B .21nn + C .221nn + D .42nn + 6.在等差数列{}n a 中,0n a ≠,()21102n n n a a a n -+-+=≥,若2138n S -=,则n =( ).A .38B .20C .10D .97.已知等差数列{}n a 的前n 和为n S ,若1239a a a ++=,636S =,则12(a = ) A .23B .24C .25D .268.数列{}n a 满足122,1a a ==,并且()111212n n n n a a a -+=-≥,则1011a a +=( ) A .192B .212 C .2155D .23669.已知数列{}n a 的前n 项和为n S ,且21n n S a =-,则66S a =( ) A .6332B .3116C .12364 D .12712810.对于数列{}n a ,定义11233n nn a a a T n-+++=为{}n a 的“最优值”,现已知数列{}n a 的“最优值”3n n T =,记数列{}n a 的前n 项和为n S ,则20202020S=( ) A .2019 B .2020 C .2021 D .202211.已知等差数列{}n a 中, 23a =,59a =,则数列{}n a 的前6项之和等于( ) A .11 B .12 C .24D .3612.在等比数列{}n a 中,若1234531a a a a a ++++=,2345662a a a a a ++++=,则通项n a 等于( ) A .12n -B .2nC .12n +D .22n -二、填空题13.已知正项数列{}n a 的前n 项和为n S ,且满足112n n n S a a ⎛⎫=+ ⎪⎝⎭,则10S =______.14.已知等差数列{}n a 的前n 项和为n S ,若12020OB a OA a OC =+(向量OA 、OC 不平行),A 、C 、B 共线,则2020S =_________. 15.设数列{}n a 的前n 项和为n S ,若1sin 12n n a n π+⎛⎫=+⎪⎝⎭,则2018S =______. 16.定义:如果一个数列从第二项起,后一项与前一项的和相等且为同一常数,这样的数列叫“等和数列”,这个常数叫公和.给出下列命题: ①“等和数列”一定是常数数列;②如果一个数列既是等差数列又是“等和数列”,则这个数列一定是常数列; ③如果一个数列既是等比数列又是“等和数列”,则这个数列一定是常数列; ④数列{}n a 是“等和数列”且公和100h =,则其前n 项之和50n S n =; 其中,正确的命题为__________.(请填出所有正确命题的序号)17.等比数列{a n }的公比为q ,其前n 项的积为T n ,并且满足条件a 1>1,a 49a 50-1>0,(a 49-1)(a 50-1)<0.给出下列结论:①0<q<1;②a 1a 99-1<0;③T 49的值是T n 中最大的;④使T n >1成立的最大自然数n 等于98.其中所有正确结论的序号是____________.18.已知n S 为数列{}n a 的前n 项和,若112a =,且122n n a a +=-,则100S =________. 19.设无穷数列{a n }的前n 项和为S n ,下列有三个条件:①m n m n a a a +⋅=; ②S n =a n +1+1,a 1≠0;③S n =2a n +1p(p 是与n 无关的参数).从中选出两个条件,能使数列{a n }为唯一确定的等比数列的条件是______.20.已知数列{}n a ,{}n b 的前n 项和分别为n S ,n T ,21nn n b a -=+,且1222n n n S T n ++=+-,则2n T =____. 三、解答题21.在①2*31,4(n S n kn n N k =-+∈为常数),②*1(,n n a a d n N d +=+∈为常数),③*1,,(0n n a qa q n N q +=>∈为常数)这三个条件中任选一个,补充到下面问题中,若问题中的数列存在,求数列()1*1n n n a N a +⎧⎫⎨⎭∈⎬⎩的前10项和;若问题中的数列不存在,说明理由.问题:是否存在数列{}*()∈n a n N ,其前n 项和为n S ,且131,4,a a ==___________?注:如果选择多个条件分别解答,按第一个解答计分.22.已知数列{}n a 为等差数列,23a =,前n 项和为n S ,数列{}n b 为等比数列,公比为2,且2354b S =,3216b S +=.(1)求数列{}n a 与{}n b 的通项公式;(2)设数列{}n c 满足n n n c a b =+,求数列{}n c 的前n 项和n T . 23.已知公差为2的等差数列{}n a ,且1a ,7a ,5a 成等比数列. (1)求数列{}n a 的通项公式;(2)若数列{}n a 的前n 项和为n S ,求数列n S n ⎧⎫⎨⎬⎩⎭的最小项. 24.已知数列{}n a 的前n 项和为n S ,且11a =,()121n n a S n N *+=+∈,等差数列{}n b 满足39b =,15272b b +=.(1)求数列{}n a ,{}n b 的通项公式;(2)设数列{}n c 的前n 项和为n T ,且n n n c a b =⋅,求n T .25.已知数列{}n a 的各项均为正数,记数列{}n a 的前n 项和为n S ,数列{}2n a 的前n 项和为n T ,且232n n n T S S =+,*n N ∈.(1)求1a 的值及数列{}n a 的通项公式; (2)若有111n n b a +=-,求证:231321n b b b +++<26.已知正项等比数列{}n a ,首项13a =,且13213,,22a a a 成等差数列. (1)求数列{}n a 的通项公式;(2)若数列{}n b 满足3321log log n n n b a a +=⋅,求数列{}n b 的前n 项和n S .【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】根据等式关系得到数列{}n a 为等差数列,求出公差得到其通项公式,最后代值求解即可. 【详解】212n n n a a a ++=-(*n N ∈),212n n n a a a ++∴+=,即数列{}n a 是等差数列, 11a =-,33a =,312a a d ∴=+即312d =-+,则公差2d =,则()11223n a n n =-+-⨯=-(*n N ∈), 所以10210317a =⨯-=. 故选:B . 【点睛】关键点点睛:本题的解题关键是由题中所给关系得出其为等差数列,进而求出通项公式进行计算.2.B解析:B 【分析】首先根据题中所给的条件4331S S S =-,11a >利用等比数列求和公式求出0q <,分情况讨论求得10q -<<,从而可以得到项之间的大小关系. 【详解】设等比数列{}n a 的公比为q , 由4331S S S =-可得431a S =-, 若1q =,则1113a a =-显然不成立,所以1q ≠,所以()312111q a a q q -++=,即()232111q q a q +=-+, 因为22131024q q q ⎛⎫++=++> ⎪⎝⎭,210a >,所以30q <,所以0q <,当1q ≤-时,31q ≤-,211q q ++≥,因为11a >,则()232111q q a q +=-+不可能成立,所以10q -<<,()213110a a a q -=->,()224110a a a q q -=-<,所以13a a >,24a a <, 故选:B. 【点睛】关键点点睛:本题解题的关键是利用等比数列求和公式将已知条件化简得到()232111q q a q +=-+,结合11a >求出q 的范围.3.C解析:C 【分析】用1a 和q 表示出2a 和3a 代入2312a a a ⋅=求得4a ,再根据3474422a a a a q +=+,求得q ,进而求得1a 到6a 的值,即得解. 【详解】2231112a a a q a q a ⋅=⋅=42a ∴=3474452224a a a a q +=+=⨯12q ∴=,41316a a q == 故1415116()2222n n n n a ---=⨯=⨯=,所以123456116,8,4,2,1,12a a a a a a ======<, 所以数列的前4或5项的积最大,且最大值为16842=1024⨯⨯⨯. 故选:C 【点睛】结论点睛:等比数列{}n a 中,如果11,01a q ><<,求123n a a a a ⋅⋅⋅⋅⋅的最大值,一般利用“1交界”法求解,即找到大于等于1的项,找到小于1的项,即得解.4.D解析:D由2n n S a =-利用1112n nn S n a S S n -=⎧=⎨-≥⎩ ,得到数列{}na 是以1为首项,12为公比的等比数列,进而得到{}2n a 是以1为首项,14为公比的等比数列,利用等比数列前n 项和公式得到n S ,n T ,将20n n S T λ+>恒成立,转化为6321nλ-<-+,从而得出答案. 【详解】当1n =时,112S a =-,得 11a =;当2n ≥时,由2n n S a =-,得112n n S a --=-,两式相减得112n n a a -=, 所以数列{}n a 是以1为首项,12为公比的等比数列. 因为112n n a a -=,所以22114n n a a -=.又211a =,所以{}2n a 是以1为首项,14为公比的等比数列,所以1112211212n n n S ⎛⎫- ⎪⎡⎤⎛⎫⎝⎭==-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦-,11414113414nn n T ⎛⎫- ⎪⎡⎤⎛⎫⎝⎭==-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦-, 由20n n S T λ+>,得()()321210nnλ-++>,所以()()321321663212121n nn n n λ-+--<==-+++, 所以6332121λ-<-=-=+, 所以1λ>-.综上,实数λ的取值范围是(1,)-+∞. 故选: D 【点睛】方法点睛:数列与不等式知识相结合的考查方式主要有三种: 一是判断数列问题中的一些不等关系; 二是以数列为载体,考查不等式的恒成立问题;三是考查与数列问题有关的不等式的证明.在解决这些问题时,往往转化为函数的最值问题.5.B解析:B 【分析】利用倒数法求出数列{}n a 的通项公式,进而利用裂项相消法可求得n T .已知数列{}n a 满足11a =,+121nn n a a a =+, 在等式+121n n n a a a =+两边同时取倒数得112112n n n n a a a a ++==+,1112n n a a +∴-=, 所以,数列1n a ⎧⎫⎨⎬⎩⎭是等差数列,且首项为111a ,公差为2,则()112121n n n a =+-=-,121n a n ∴=-, ()()11111212122121n n a a n n n n +⎛⎫∴==- ⎪-+-+⎝⎭,因此,1111111111111112323525722121221n T n n n ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-++-=- ⎪ ⎪ ⎪ ⎪ ⎪-++⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭21n n =+. 故选:B. 【点睛】使用裂项法求和时,要注意正负项相消时消去了哪些项,保留了哪些项,切不可漏写未被消去的项,未被消去的项有前后对称的特点,实质上造成正负相消是此法的根源与目的.6.C解析:C 【分析】由2110n n n a a a -+-+=,可得2112n n n n a a a a -++==,得到2n a =,再根据等差数列的求和公式,得到2138(21)n n n S a --==,代入即可求解,得到答案. 【详解】由题意,等差数列{}n a 中,()21102n n n a a a n -+-+=≥,可得2112n n n n a a a a -++==,又0,n a ≠解得2n a =, 又由12121(21)()(2)3812n n n n a a n a S ---+==-=,即(21)823n -⨯=,解得10n =,故选C . 【点睛】本题主要考查了等差数列的性质,以及等差数列的求和公式的应用,其中解答中熟记等差数列的性质,求得2n a =和2138(21)n n n S a --==是解答本题的关键,着重考查了推理与运算能力,属于基础题.7.A【解析】等差数列{}n a 的前n 和为n S ,1239a a a ++=,636S =,11339656362a d a d +=⎧⎪∴⎨⨯+=⎪⎩,解得1a 1,d 2,12111223a =+⨯=,故选A.8.C解析:C 【解析】依题意有11111121,2n n n n n n n n a a a a a a a a -++--=-=-,由此计算得323a =,424a =,…… 101110112221,,101155a a a a ==+=. 9.A解析:A 【解析】由题意得,111121,1,n n n a a a a S S -=-==- ,则21nn S =- ,即666332S a = ,故选A. 10.D解析:D 【分析】 根据11233n nn a a a T n-+++=,且3nn T =,得到112333n n n a a a n -+++=⋅,然后利用数列通项与前n 项和的关系求得21n a n =+,再利用等差数列求和公式求解. 【详解】 ∵11233n nn a a a T n-+++=,且3nn T =,∴112333n n n a a a n -+++=⋅,当2n ≥时,有()211213313n n n a a a n ---+++⋅=-⋅,两式相减可得:()()1113313213n n n n n a n n n ---⋅=⋅--⋅=+⋅.∴21n a n =+(2n ≥). 当1n =时,13a =适合上式. ∴21n a n =+.则数列{}n a 是以3为首项,以2为公差的等差数列.∴()202032202012020S 202220202+⨯+⨯==⨯.∴202020222020S =. 故选:D . 【点睛】本题主要考查数列通项与前n 项和的关系以及等差数列的定义和求和公式的应用,属于中档题.11.D解析:D 【分析】根据等差数列的性质得162512a a a a +=+=,再根据等差数列前n 项和公式计算即可得答案. 【详解】解:因为等差数列{}n a 中, 23a =,59a =, 所以根据等差数列的性质得162512a a a a +=+=, 所以根据等差数列前n 项和公式()12n n n a a S +=得()16666123622a a S +⨯===. 故数列{}n a 的前6项之和等于36. 故选:D. 【点睛】本题考查等差数列的性质,前n 项和公式,考查运算能力,是中档题.12.A解析:A 【详解】设等比数列{a n }的公比为q ,∵a 1+a 2+a 3+a 4+a 5=31,a 2+a 3+a 4+a 5+a 6=62, ∴q=2,∴a1(1+q+q 2+q 3+q 4)=31, 则a 1=1, 故an=2n−1. 故选A.二、填空题13.【分析】先利用求出再利用时可知是首项为1公差为1的等差数列即可求出【详解】当时解得当时整理可得是首项为1公差为1的等差数列是正项数列故答案为:【点睛】本题考查等差数列的判断考查和的关系属于中档题【分析】先利用11a S =求出1S ,再利用2n ≥时1n n n a S S -=-可知{}2n S 是首项为1,公差为1的等差数列,即可求出10S . 【详解】 当1n =时,1111112S a a a ,解得11a =,11S = 当2n ≥时,11112nn n n nS S S S S ,整理可得2211n n S S --=,2n S 是首项为1,公差为1的等差数列, 2111n S n n ,{}n a 是正项数列,n S ∴=1010S .【点睛】本题考查等差数列的判断,考查n a 和n S 的关系,属于中档题.14.【分析】先证明当共线且则根据题意可求得的值然后利用等差数列求和公式可求得的值【详解】当共线时则共线可设所以又则由于(向量不平行)共线则由等差数列的求和公式可得故答案为:【点睛】本题考查等差数列求和同 解析:1010【分析】先证明当A 、C 、B 共线且OB mOA nOC =+,则1m n +=,根据题意可求得12020a a +的值,然后利用等差数列求和公式可求得2020S 的值. 【详解】当A 、C 、B 共线时,则AB 、AC 共线,可设AB AC λ=, 所以,()OB OA OC OA λ-=-,()1OB OA OC λλ∴=-+, 又OB mOA nOC =+,则()11m n λλ+=-+=,由于12020OB a OA a OC =+(向量OA 、OC 不平行),A 、C 、B 共线,则120201a a +=,由等差数列的求和公式可得()120202020202020201101022a a S +⨯===.故答案为:1010.【点睛】本题考查等差数列求和,同时也考查了三点共线结论的应用,考查计算能力,属于中等题.15.【分析】分别计算出进而得出再由可得出的值【详解】由题意可得故答案为:【点睛】本题考查数列求和找出数列的规律是解答的关键考查计算能力属于中等题 解析:1008【分析】分别计算出43k a -、42k a -、41k a -、()4k a k N*∈,进而得出43424146k k k k a a a a ---+++=,再由201845042=⨯+可得出2018S 的值.【详解】由题意可得()434243sin 112k k a k π--⎛⎫=-+=⎪⎝⎭,()424142sin 1342k k a k k π--⎛⎫=-+=- ⎪⎝⎭,()()4141sin 211k a k k π-=-+=,4414sin 1412k k a k k π+⎛⎫=+=+ ⎪⎝⎭,()()43424141341416k k k k a a a a k k ---∴+++=+-+++=, 201845042=⨯+,201820172018450534505265046504S a a a a ⨯-⨯-∴=⨯++=⨯++()30241345051008=++-⨯=.故答案为:1008. 【点睛】本题考查数列求和,找出数列的规律是解答的关键,考查计算能力,属于中等题.16.②【分析】利用等和数列的定义对每一个命题逐一分析判断得解【详解】①等和数列不一定是常数数列如数列是等和数列但是不是常数数列所以该命题错误;②如果一个数列既是等差数列又是等和数列则这个数列一定是常数列解析:② 【分析】利用“等和数列”的定义对每一个命题逐一分析判断得解. 【详解】①“等和数列”不一定是常数数列,如数列1,0,1,0,1,0,1,0,1,0,是“等和数列”,但是不是常数数列,所以该命题错误;②如果一个数列既是等差数列又是“等和数列”,则这个数列一定是常数列.如果数列{}n a 是等差数列,所以112(2)n n n a a a n +-+=≥,如果数列{}n a 是“等和数列”,所以11+(2),n n n n a a a a n -+=+≥所以11(2),n n a a n -+=≥所以122(2)n n a a n -=≥,所以1(2)n n a a n -=≥,所以这个数列一定是常数列,所以该命题是正确的.③如果一个数列既是等比数列又是“等和数列”,则这个数列一定是常数列. 如果数列{}n a 是等比数列,所以211(2)n n n a a a n +-⋅=≥,如果数列{}n a 是“等和数列”,所以11+(2),n n n n a a a a n -+=+≥所以11(2),n n a a n -+=≥所以221(2)n n a a n -=≥,所以1(2)n n a a n -=±≥,所以这个数列不一定是常数列,所以该命题是错误的.④数列{}n a 是“等和数列”且公和100h =,则其前n 项之和50n S n =,是错误的.举例“等和数列”1,99,1,99,1,其5201505S =≠⨯,所以该命题是错误的. 故答案为:② 【点睛】本题主要考查数列的新定义的理解和应用,考查等差数列和等比数列的应用,意在考查学生对这些知识的理解掌握水平和分析推理能力.17.①②③④【解析】由条件a1>1a49a50-1>0(a49-1)(a50-1)<0可知a49>1a50<1所以0<q<1①对;∵a1a99=<1②对;因为a49>1a50<1所以T49的值是Tn 中最解析:①②③④ 【解析】由条件a 1>1,a 49a 50-1>0,(a 49-1)(a 50-1)<0可知a 49>1,a 50<1,所以0<q <1,①对;∵a 1a 99=250a <1,②对;因为a 49>1,a 50<1,所以T 49的值是T n 中最大的,③对;∵T n =a 1a 2a 3…a n ,又∵a 1a 98=a 49a 50>1,a 1a 99=250a <1,所以使T n >1成立的最大自然数n 等于98.故填①②③④.18.【分析】由递推公式依次计算出数列的前几项得出数列是周期数列从而可求和【详解】由题意∴数列是周期数列且周期为4故答案为:【点睛】本题考查数列的周期性考查求周期数列的和解题时可根据递推公式依次计算数列的解析:4256【分析】 由递推公式依次计算出数列的前几项,得出数列是周期数列,从而可求和. 【详解】 由题意2241322a ==-,33a =,42a =-,512a =, ∴数列{}n a 是周期数列,且周期为4.10012341442525()2532236S a a a a ⎛⎫=+++=⨯++-= ⎪⎝⎭.故答案为:4256.本题考查数列的周期性,考查求周期数列的和,解题时可根据递推公式依次计算数列的项,然后归纳出周期性.19.①③【分析】选①②在①中令在②中令联立方程由方程无解推出矛盾;选①③在③中由通项与前项和之间的关系求出公比在①中令在③中用表示出联立方程求出确定数列;选②③由通项与前项和之间的关系即可作出判断【详解解析:①③ 【分析】选①②,在①中令1m n ==,在②中令1n =联立方程,由方程无解推出矛盾;选①③,在③中由通项与前n 项和之间的关系求出公比,在①中令1m n ==,在③中用12,a a 表示出12,S S 联立方程,求出1,a p 确定数列{}n a ;选②③,由通项与前n 项和之间的关系即可作出判断. 【详解】在①中,令1m n ==,得221a a =;在②中,11n n S a +=+,当2n ≥时, 11n n S a -=+,两式相减,得1n n n a a a +=-,即12n n a a +=;在③中,11112,2n n n n S a S a p p++=+=+,两式相减,得 1122n n n a a a ++=-,即 12n n a a +=,若选①②,则22112,1a a a a ⎧=⎨=+⎩即 2211111,10a a a a =--+=, 2(1)41130∆=--⨯⨯=-<,方程无解,故不能选①②作为条件;若选①③,则由12n n a a +=知,数列{}n a 的公比为2,由 221111221212a a a a p a a a p ⎧⎪=⎪⎪=+⎨⎪⎪+=+⎪⎩得1212a p =⎧⎪⎨=-⎪⎩,所以数列 {}n a 是首项为2,公比为2的等比数列; 若选②③作为条件,则无法确定首项,数列{}n a 不唯一,故不能选②③作为条件. 综上所述,能使数列{}n a 为唯一确定的等比数列的条件是①③. 故答案为:①③思路点睛:本题考查利用递推关系求数列中的项,涉及等比数列的判定和通项公式,遇到和与项的递推关系时,一般有两种方法:(1)消去和,得到项的递推关系;(2)消去项,得到和的递推关系.20.【解析】所以 解析:22(1)4n n n +++-【解析】1112222n n n n n T S b a b a b a n +-=-+-++-=+-所以222(1)4n n n n n n T T S S T n n +=-++=++-三、解答题21.答案见解析 【分析】选择①,由n S 求出1a 和3a ,常数k 不存在,数列不存在;选择②,得数列为等差数列,求出通项公式n a ,用裂项相消法结果; 选择③,得数列为等比数列,从而11{}n n a a +也是等比数列,由等比数列前n 项和公式可得结论. 【详解】解.如果选择①,由11332,,a S a S S =⎧⎨=-⎩即31142743324k k k ⎧=-+⎪⎪⎨⎪=--+⎪⎩解得3414k k ⎧=⎪⎪⎨⎪=-⎪⎩该方程组无解, 所以该数列不存在.如果选择*1,(n n a a d n N d +=+∈②为常数),即数列{}n a 为等差数列,由131,4==a a ,可得公差31322a a d -==, 所以3122n a n =-所以12231011122310111112111111538a a a a a a a a a a a a ⎛⎫++⋅⋅⋅+=-+-+⋅⋅⋅+-= ⎪⎝⎭ 如果选择*1(0,,n n a qa q n N q +=>∈③为常数),即数列{}n a 为等比数列,由131,4==a a,可得公比2q ==,所以11114(2)1n n n n n a a a a +-÷=≥, 所以数列11n n a a +⎧⎫⎨⎬⎩⎭是首项为12,公比为14的等比数列,所以其前10项和为1021134⎛-⎫ ⎪⎝⎭. 【点睛】关键点点睛:本题考查由前n 项和n S 求通项公式n a ,解题时要注意1(2)n n n a S S n -=-≥,而11a S =,是两种不同的求法,如果要求通项公式,注意最后的结论能否统一,否则写成分段函数形式.22.(1)21n a n =-,132n n b -=⋅;(2)2323n n T n =⨯+-.【分析】(1)设等差数列{}n a 的公差为d ,根据已知条件求出d 、2b 的值,进而可求得数列{}n a 与{}n b 的通项公式;(2)求出数列{}n c 的通项公式,利用分组求和法可求得n T . 【详解】(1)设等差数列{}n a 的公差为d ,则()13323392a a S a +===,23546b S ∴==,则32212b b ==, 由3216b S +=可得2122264S a a a d d =+=-=-=,2d ∴=,因此,()()2232221n a a n d n n =+-=+-=-,221226232n n n n b b ---=⨯=⨯=⋅;(2)12132n n n n c a b n -=+=-+⋅,()()()()01211323325322132n n T n -⎡⎤∴=+⋅++⨯++⨯++-+⨯⎣⎦()()121135213323232n n -=++++-++⨯+⨯++⨯⎡⎤⎣⎦()()2312121323212nn n n n ⨯-+-=+=⨯+--.【点睛】方法点睛:数列求和的常用方法:(1)对于等差等比数列,利用公式法直接求和;(2)对于{}n n a b 型数列,其中{}n a 是等差数列,{}n b 是等比数列,利用错位相减法求和;(3)对于{}n n a b +型数列,利用分组求和法; (4)对于11n n a a +⎧⎫⎨⎬⎩⎭型数列,其中{}n a 是公差为()0d d ≠的等差数列,利用裂项相消法求和.23.(1)211n a n =-;(2)最小项为第7项为297. 【分析】(1)由等比中项的性质以及等差数列的通项公式求出数列{}n a 的通项公式; (2)当5n ≤时,由112n a n =-得出n S ,由二次函数的性质得出数列n S n ⎧⎫⎨⎬⎩⎭的最小项,当6n >时,由211n a n =-得出n S 结合导数数列n S n ⎧⎫⎨⎬⎩⎭的最小项. 【详解】(1)由题知:2715a a a =⋅,则()()2111128a a a +=⋅+得:19a =-即1(1)211n a a n d n =+-=- (2)当5n ≤时,112n a n =-,29112102n nS n n n +-=⨯=- 则21010n S n n n n n-==-,即5n =时,min 5n S n ⎛⎫= ⎪⎝⎭当6n ≥时,211n a n =-,251211(5)10502n n S S n n n +-=+⨯-=-+,则5010n S n n n=+- 令50()10,6f x x x x =+-≥,2225050()1x f x x x -'=-=当6x <<()0f x '<,当x >时,()0f x '>即函数()f x在(上单调递减,在()+∞上单调递增 即7n =时,min297n S n ⎛⎫=⎪⎝⎭ 最小项为第7项为297【点睛】关键点睛:解决本题的关键在于先讨论211n a n =-的正负,从而确定{}n a 的通项公式,进而得出n S ,最后由二次函数的性质以及导数得出数列n S n ⎧⎫⎨⎬⎩⎭的单调性,由此得出最小值. 24.(1)13-=n n a ,3n b n =;(2)1321344n n n T +-=+⋅. 【分析】(1)由数列的递推关系式求出等比数列{}n a 的通项公式,利用等差数列的基本量运算得出{}n b 的通项公式; (2)利用错位相减法求出n T . 【详解】(1)1211n n a S n +=+≥①1212n n a S n -=+≥②①-②得:13n n a a +=,2n ≥ 又因为11a =,23a =所以数列{}n a 是以1为首项,3为公比的等比数列 所以13-=n n a因为{}n b 为等差数列且39b =,15272b b +=所以有:()111292724b d b b d +=⎧⎨+=+⎩解得:13b =,3d =,所以3n b n =(2)由(1)知3nn c n =⋅213233n n T n =⋅+⋅+⋅①()23131323133n n n T n n +=⋅+⋅+-⋅+⋅②①-②得:2312333...33n n n T n +-=++++-⋅()11131333233132n n n n n T n n +++---=-⋅=-⋅-1321344n n n T +-=+⋅【点睛】方法点睛:本题考查数列的通项公式,考查数列的求和,数列求和的方法总结如下: 1.公式法,利用等差数列和等比数列的求和公式进行计算即可;2.裂项相消法,通过把数列的通项公式拆成两项之差,在求和时中间的一些项可以相互抵消,从而求出数列的和;3.错位相减法,当数列的通项公式由一个等差数列与一个等比数列的乘积构成时使用此方法;4.倒序相加法,如果一个数列满足首末两项等距离的两项之和相等,可以使用此方法求和.25.(1)11a =,12n n a ;(2)证明见解析.【分析】(1)已知等式中令1n =,可求得1a ,在232n n n T S S =+中用1n +代n ,然后两式相减,得出n a 的递推关系,从而可得其通项公式; (2)4n ≥时,由111212(2)2n n n ---=-11528n -≥⋅,用放缩法求出23n b b b +++后可证得不等式成立. 【详解】(1)在232n n n T S S =+中令1n =得2211132a a a =+,因为10a >,所以11a =, 又由232n n n T S S =+①得211132n n n T S S +++=+②②-①得211113()()2n n n n n n a S S S S a ++++=-++,即211113()2n n n n n a a S S a ++++=++,因为10n a +>,所以1132n n n a S S ++=++③,于是有132(2)n n n a S S n -=++≥④, ③-④得1133n n n n a a a a ++-=+,所以2n ≥时,12n na a +=, 又由222232T S S =+,即222223(1)(1)2(1)a a a +=+++,整理得22220a a -=,又20a >,所以22a =,所以212a a =. 所以12n na a +=,*n N ∈. 所以{}n a 通项公式为12n n a ;(2)由(1)111121n n n b a +==--, 4n ≥时,111112121222(2)22n nn n n n ------=⋅-=-11528n -≥⋅,所以118121152n n -≤⋅-, 所以23341118111()3715222n n b b b -+++<+++++ 11081110210313()2115422115212121n -=+-<+<+=. 【点睛】 关键点点睛:本题考查由n S 的关系式求通项公式,考查数列不等式的证明.已知n S 的关系一般可用1(2)n n n a S S n -=-≥转化为n a 的递推式,然后求解.与数列和有关的不等式的证明,在和不能直接求出时,可利用放缩法适当放缩后使得和能求出,从而证明不等式成立.26.(1)3nn a =;(2)13112212n n ⎛⎫-- ⎪++⎝⎭. 【分析】(1)由已知13213,,22a a a 成等差数列求出公比q 后可得通项公式; (2)用裂项相消法求和n S . 【详解】(1)解:设等比数列{}n a 的公比为q , 由题意得:31212322a a a ⨯=+, 即211132a q a a q =+,即232q q =+,所以3q =或1q =-(舍),所以1333n nn a -=⋅=.(2)由(1)知233233111log log log 3log 3(2)n n n n n b a a n n ++===⋅⋅+,则11122n b n n ⎛⎫- ⎪+⎝⎭=, 所以1111111112324112n S n n n n ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=-+-++-+- ⎪ ⎪ ⎪ ⎪⎢⎥-++⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦111112212n n ⎛⎫=+-- ⎪++⎝⎭13112212n n ⎛⎫=-- ⎪++⎝⎭【点睛】本题考查求等比数列的通项公式,裂项相消法求和.数列求和的常用方法: 设数列{}n a 是等差数列,{}n b 是等比数列,(1)公式法:等差数列或等比数列的求和直接应用公式求和; (2)错位相减法:数列{}n n a b 的前n 项和应用错位相减法; (3)裂项相消法;数列1{}n n ka a +(k 为常数,0n a ≠)的前n 项和用裂项相消法; (4)分组(并项)求和法:数列{}n n pa qb +用分组求和法,如果数列中的项出现正负相间等特征时可能用并项求和法;(5)倒序相加法:满足m n m a a A -+=(A 为常数)的数列,需用倒序相加法求和.。
(常考题)北师大版高中数学必修五第一章《数列》测试卷(包含答案解析)
一、选择题1.已知数列{}n a 的前n 项和为n S ,112a =,对任意的*n ∈N 都有1(2)n n na n a +=+,则2021S =( )A .20192020B .20202021C .20212022D .101010112.已知数列{}n a 的前n 项和为n S ,且0n a >,n *∈N ,若数列{}n a 和{}n S 都是等差数列,则下列说法不正确的是( ) A .{}n n a S +是等差数列 B .{}n n a S ⋅是等差数列 C .{}2na 是等比数列D .{}2nS 是等比数列3.数列{}n a 中,11a =,113,3,3n n n n a N a n a N *+*-⎧+∉⎪⎪=⎨⎪∈⎪⎩,使2021n a <对任意的()n k k *≤∈N 恒成立的最大k 值为( ) A .1008B .2016C .2018D .20204.已知等差数列{}n a 的公差为2,前n 项和为n S ,且1S ,2S ,4S 成等比数列.令21n n n b a a +=,数列{}n b 的前n 项和为n T ,若对于*n N ∀∈,不等式n T λ<恒成立,则实数λ的取值范围是( ) A .13λ≥B .15λ>C .15λ≥D .0λ>5.“杨辉三角”是中国古代重要的数学成就,它比西方的“帕斯卡三角形”早了300多年.如图是由“杨辉三角”拓展而成的三角形数阵,记n a 为图中虚线上的数1,3,6,10,构成的数列{}n a 的第n 项,则100a 的值为( )A .5049B .5050C .5051D .51016.设数列{}n a 满足12a =,26a =,且()*2122n n n a a a n N ++-+=∈,若[]x 表示不超过x 的最大整数(例如[]1.61=,[]1.62-=-),则222122018232019a a a ⎡⎤⎡⎤⎡⎤+++⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦=( ) A .2018B .2019C .2020D .20217.数列{}n a 的前n 项和为()21n S n n =-(*n ∈N ),若173a a ka +=,则实数k 等于( )A .2B .3C .269 D .2598.数列{}n a 满足122,1a a ==,并且()111212n n n n a a a -+=-≥,则1011a a +=( ) A .192B .212C .2155D .23669.数列{}n a 的通项公式是*1()(1)n a n n n =∈+N ,若前n 项的和为1011,则项数为( ). A .12B .11C .10D .910.若{}n a 是等比数列,其公比是q ,且546,,a a a -成等差数列,则q 等于( ) A .-1或2B .1或-2C .1或2D .-1或-211.正整数数列{}n a 满足:1,2(*)22,21n n n k a k a k N k a k +=⎧=∈⎨+=-⎩,则( ) A .数列{}n a 中不可能同时有1和2019两项 B .n a 的最小值必定为1 C .当n a 是奇数时,2n n a a +≥D .n a 的最小值可能为212.记等差数列{}n a 的前n 项和为n S .若64a =,19114S =,则15S =( ) A .45B .75C .90D .95二、填空题13.已知{}n a 为等差数列,其公差为2-,且7a 是3a 与9a 的等比中项,n S 为{}n a 的前n 项和,则10S 的值为__________.14.数列{}n a 中,已知22a =,21n n n a a a ++=+,若834a =,则数列{}n a 的前6项和为______.15.已知数列{}n a 的前n 项和是n S ,若111,n n a a a n +=+=,则1916S S -的值为________.16.在数列{}n a 中,11a =()*1n =∈N ;等比数列{}n b 的前n 项和为2n n S m =-.当n *∈N 时,使得n n b a λ≥恒成立的实数λ的最小值是_________.17.已知等差数列{}n a 的前n 项和为()*n S n N∈,公差0d ≠,690S=,7a 是3a 与9a 的等比中项,当0n S >时,n 的最大值为______.18.等差数列{}n a 的前n 项和为n S ,且4873a a a +-=_________.19.记n S 为等差数列{}n a 的前n 项和,若22a =-,714S =,则10a =__________. 20.我们知道,斐波那契数列是数学史上一个著名数列,在斐波那契数列{}n a 中,()*12211,1,n n n a a a a a n ++===+∈N .用n S 表示它的前n 项和,若已知2020S m =,那么2022a =_______.三、解答题21.已知等差数列{}n a 的前n 项和为n S ,满足332S a =,8522a a =-. (1)求数列{}n a 的通项公式; (2)记121n n n n b a a a ++=⋅⋅,求数列{}n b 的前n 项和n T .22.已知等比数列{}n a 的公比不为1,且11a =,32a 是23a 与4a 的等差中项. (Ⅰ)求{}n a 的通项公式; (Ⅱ)若数列{}n b 满足()()1211nn n n a b a a +=++,求数列{}n b 的前n 项和n T .23.已知各项均为正数的数列{}n a 的前n 项和满足1n S >,且()()*612,n n n S a a n =++∈N .(1)求{}n a 的通项公式: (2)设数列{}n b 满足,2n n na nb n ⎧=⎨⎩是奇数,是偶数,并记n T 为{}n b 的前n 项和,求2n T . 24.数列{}n a 的前n 项之和为n S ,11a =,11n n a pa +=+(p 为常数) (1)当1p =时,求数列1n S ⎧⎫⎨⎬⎩⎭的前n 项之和; (2)当2p =时,求证数列{}1n a +是等比数列,并求n S .25.已知数列{}n a 是等差数列,n S 是数列{}n a 的前n 项和,35a =,749=S . (1)求数列{}n a 的通项公式及前n 项和n S ;(2)若数列{}n b满足2n b =,求数列{}n b 的前n 项和n T . 26.已知数列{}n a ,11a =,121n n a a +=+. (1)求证数列{}1n a +是等比数列;(2)令()2log 1n n b a =+,求数列21n n b b +⎧⎫⎨⎬⎩⎭的前n 项和n T .【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】由1(2)n n na n a +=+,可得1(1)(1)(2)n n n n a n n a ++=++,数列{}(1)n n n a +为常数列,令1n =,可得1(1)21n n n a a +==,进而可得1(1)n a n n =+,利用裂项求和即可求解.【详解】 数列{}n a 满足112a =,对任意的*n ∈N 都有1(2)n n na n a +=+, 则有1(1)(1)(2)n n n n a n n a ++=++,可得数列{}(1)n n n a +为常数列, 有1(1)2n n n a a +=,得(1)1n n n a +=,得1(1)n a n n =+,又由111(1)1n a n n n n ==-++,所以20211111112021112232021202220222022S =-+-+⋅⋅⋅-=-=. 故选:C 【点睛】方法点睛:数列求和的方法(1)倒序相加法:如果一个数列{}n a 的前n 项中首末两端等距离的两项的和相等或等于同一个常数,那么求这个数列的前n 项和即可以用倒序相加法(2)错位相减法:如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,那么这个数列的前n 项和即可以用错位相减法来求;(3)裂项相消法:把数列的通项拆成两项之差,在求和时,中间的一些项可相互抵消,从而求得其和;(4)分组转化法:一个数列的通项公式是由若干个等差数列或等比数列或可求和的数列组成,则求和时可用分组转换法分别求和再相加减;(5)并项求和法:一个数列的前n 项和可以两两结合求解,则称之为并项求和,形如()()1nn a f n =-类型,可采用两项合并求解.2.D解析:D 【分析】由题意,判断出数列{}n a 是公差为0的等差数列,然后分别利用等差数列的定义与等比数列的定义判断每个选项即可. 【详解】因为数列{}n a 和{}n S 都是等差数列,1n n n a S S -=-,所以可判断n a 为定值,所以数列{}n a 是公差为0的等差数列,即10n n a a --=.对A ,()()1111----++-=-+-=n n n n n n n n n a S a S S S a a a ,所以数列{}n n a S +是等差数列;对B ,1121----=⋅⋅⋅⋅-=n n n n n n n n n a S a S a S a S a ,所以数列{}n n a S ⋅是等差数列;对C ,222211-==n n n n a a a a ,所以数列{}2n a 是等比数列;对D ,设n a a =,则222,==n n S na S n a ,则221222222(1)(1)-==--n n n a n n a n S S ,所以数列{}2n S 不是等比数列. 故选:D 【点睛】解答本题的关键在于判断出数列{}n a 是公差为0的等差数列,然后结合等差数列的定义,等比数列的定义列式判断是否为等差或者等比数列.3.C解析:C 【分析】根据数列的通项公式,列出各项,找数列的规律,判断到哪一项是大于2021,即可得答案. 【详解】由已知可得,数列{}n a :1,4,7,4,7,10,7,10,13,,可得规律为1,4,7,4,7,10,7,10,13……此时将原数列分为三个等差数列:1,4,7,n a n =,{}31,n n n m m N ∈=+∈;4,7,10,2n a n =+,{}32,n n n m m N ∈=+∈;7,10,13,4n a n =+,{}33,n n n m m N ∈=+∈,当673m =时,312020n m =+=,即2020202120222020,2023,2026a a a ===. 而672m =时,312017n m =+=,即2017201820192017,2020,2023a a a ===, 所以满足2021n a <对任意的()n k k *≤∈N 恒成立的最大k 值为2018.故选:C. 【点睛】关于数列的项的判断,一般有两种题目类型,一种是具有周期的数列,可以通过列出前几项找出数列的周期,利用周期判断;另一种是数列的项与项之间存在规律,需要通过推理判断项与项之间的规律从而得数列的通项.4.A解析:A【分析】根据1S ,2S ,4S 成等比数列,所以2214S S S =⋅,根据d =2,即可求得1a 的值,即可求得n a ,进而可得211111()(21)(23)42123n n n b a a n n n n +===--+-+,利用裂项相消法即可求得n T 的表达式,分析即可得答案. 【详解】因为1S ,2S ,4S 成等比数列,所以2214S S S =⋅ 所以2141214()()[]2a a a a a ++=⋅,整理可得2111(22)2(26)a a a +=⋅+ 解得11a =,所以*12(1)21,n a n n n N =+-=-∈,所以211111()(21)(23)42123n n n b a a n n n n +===--+-+, 所以1111111111(1+++)45375923212123n T n n n n =-+-+-⋅⋅⋅---+-+=11111111(1)()432123342123n n n n +--=-+++++, 因为对于*n N ∀∈,不等式n T λ<恒成立, 所以111()042123n n +>++,即13n T <, 所以13λ≥. 故选:A【点睛】解题的关键是熟练掌握等差数列、等比数列的性质,并灵活应用,易错点为:在利用裂项相消法求和时,需注意是相邻项相消还是间隔项相消,考查分析理解,计算化简的能力,属中档题.5.B解析:B 【分析】观察数列的前4项,可得(1)2n n n a +=,将100n =代入即可得解. 【详解】由题意得11a =,2312a ==+,36123a ==++,4101234a ==+++⋅⋅⋅ 观察规律可得(1)1232n n n a n +=+++⋅⋅⋅+=,所以10010010150502a ⨯==. 故选:B. 【点睛】关键点点睛:本题考查了观察法求数列的通项公式,关键是将各项拆成正整数的和的形式发现规律.6.B解析:B 【分析】由2122n n n a a a ++-+=,可得()2112n n n n a a a a +++---=,214a a -=.利用等差数列的通项公式、累加求和方法、取整函数即可得出. 【详解】2122n n n a a a ++-+=,()2112n n n n a a a a +++∴---=,214a a -=.{}1n n a a +∴-是等差数列,首项为4,公差为2.142(1)22n n a a n n +∴-=+-=+.2n ∴≥时,()()()112211n n n n n a a a a a a a a ---=-+-+⋯⋯+-+ (1)22(1)..2222(1)2n n n n n n +=+-+⋯+⨯+=⨯=+. 2(1)1n n n a n++∴=.∴当2n ≥时,2(1)11⎡⎤++⎡⎤==⎢⎥⎢⎥⎣⎦⎣⎦n n n a n . 222122018232019220172019a a a ⎡⎤⎡⎤⎡⎤∴+++=+=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦. 故选:B . 【点睛】本题考查了数列递推关系、等差数列的通项公式、累加求和方法、取整函数,考查了推理能力与计算能力,属于中档题.7.C解析:C 【分析】由已知结合递推公式可求n a ,然后结合等差数列的通项公式即可求解. 【详解】因为()21n S n n =-, 所以111a S ==,当2n ≥时,()()()12112343n n n a S S n n n n n -=-=----=-,111a S ==适合上式,故43n a n =-,因为173a a ka +=, ∴1259k +=, 解可得269k = 故选:C. 【点睛】本题主要考查了由数列前n 项和求数列的通项公式,考查来了运算能力,属于中档题.8.C解析:C 【解析】 依题意有11111121,2n n n n n n n n a a a a a a a a -++--=-=-,由此计算得323a =,424a =,……101110112221,,101155a a a a ==+=. 9.C解析:C 【解析】分析:由已知,111(1)1n a n n n n ==-++,利用裂项相消法求和后,令其等于1011,得到n 所满足的等量关系式,求得结果.详解:111(1)1n a n n n n ==-++ ()n *∈N ,数列{}n a 的前n 项和11111(1)()()2231n S n n =-+-+⋯+-+ 1111n n n =-=++,当1011n S =时,解得10n =,故选C. 点睛:该题考查的是有关数列的问题,在解题的过程中,需要对数列的通项公式进行分析,选择相应的求和方法--------错位相减法,之后根据题的条件,建立关于n 的等量关系式,从而求得结果.10.A解析:A 【解析】分析:由546,,a a a -成等差数列可得5642a a a -+=,化简可得()()120q q +-=,解方程求得q 的值. 详解:546,,a a a -成等差数列,所以5642a a a -+=,24442a q a q a ∴-+=,220q q ∴--=,()()120q q ∴+-=,1q ∴=-或2,故选A.点睛:本题考查等差数列的性质,等比数列的通项公式基本量运算,属于简单题. 等比数列基本量的运算是等比数列的一类基本题型,数列中的五个基本量1,,,,,n n a q n a S ,一般可以“知二求三”,通过列方程组所求问题可以迎刃而解,解决此类问题的关键是熟练掌握等比数列的有关性质和公式,并灵活应用.11.A解析:A 【分析】根据题意知,数列{}n a 中的任意一项都是正整数,利用列举法直接写出数列中的项,进而可得结论. 【详解】对于选项A ,假设:12019a =,则后面依次为:2022,1011,1014,507,510,255,258,129,132,66,33,36,18,9,12,6,3,6,3…循环; 假设:11a =,则后面依次为:4,2,1,4,2,1,4,2,1,4,2……循环, 综上,数列{}n a 中不可能同时有1和2019两项,故选项A 正确; 由选项A 知,选项B 、D 都不对;对于选项C ,令11a =,则24a =,32a =,所以13a a <,故选项C 不正确. 故选:A. 【点睛】本题考查数列中的项数的求法,考查数列的递推公式求通项公式,属于基础题.12.B解析:B 【分析】结合题意根据等差数列的通项公式和前n 项和公式列方程115419199114a d a d +=⎧⎨+⨯=⎩,解得11232d a ⎧=⎪⎪⎨⎪=⎪⎩,再利用前n 项和公式即可求得答案. 【详解】解:根据题意64a =,19114S =,结合等差数列的通项公式和前n 项和公式得:115419199114a d a d +=⎧⎨+⨯=⎩,即:115496a d a d +=⎧⎨+=⎩,解得11232d a ⎧=⎪⎪⎨⎪=⎪⎩, 所以()1511515131451051515157752222S a d -+=+=⨯+⨯⨯==. 故选:B. 【点睛】本题考查利用等差数列的通项公式和前n 项和公式求等差数列的基本量,考查数学运算能力,是基础题.二、填空题13.110【分析】根据题意求出首项再代入求和即可得【详解】是与的等比中项解得故答案为:110【点睛】本题主要考查等差数列等比数列的通项公式及等差数列求和是基础题解析:110 【分析】根据题意,求出首项120a =,再代入求和即可得. 【详解】31124a a d a =+=-,711612a a d a =+=-,911816a a d a =+=-,7a 是3a 与9a 的等比中项,()()2111(12)416a a a ∴-=--,解得120a =,()101102010921102S ∴=⨯+⨯⨯⨯-=.故答案为:110. 【点睛】本题主要考查等差数列、等比数列的通项公式及等差数列求和,是基础题.14.32【分析】利用数列的递推公式推导出由此能求出数列的前6项和【详解】∵数列中∴解得∴数列的前6项和为:故答案为:32【点睛】本题主要考查数列的前6项和的求法考查递推公式递推思想等基础知识考查运算求解解析:32 【分析】利用数列的递推公式推导出11a =,由此能求出数列{}n a 的前6项和. 【详解】∵数列{}n a 中,22a =,21n n n a a a ++=+,834a =,∴32112a a a a =+=+,43211224a a a a a =+=++=+,543162a a a a =+=+,6541103a a a a =+=+, 7651165a a a a =+=+,876126834a a a a =+=+=,解得11a =,∴数列{}n a 的前6项和为:()()()()61111112246210324832S a a a a a a =+++++++++=+=,故答案为:32. 【点睛】本题主要考查数列的前6项和的求法,考查递推公式、递推思想等基础知识,考查运算求解能力,属于中档题.15.27【分析】由得相减后得数列的奇数项与偶数项分别成等差数列由此可得通项从而求得结论【详解】∵∴相减得又所以数列的奇数项与偶数项分别成等差数列公差为1故答案为:27【点睛】易错点睛:本题考查等差数列的解析:27 【分析】由1n n a a n ++=得121n n a a n +++=+相减后得数列的奇数项与偶数项分别成等差数列,由此可得通项,从而求得结论. 【详解】∵1n n a a n ++=,∴121n n a a n +++=+,相减得21n n a a +-=,又1121,1a a a =+=,20a =,211a a -=-,所以数列{}n a 的奇数项与偶数项分别成等差数列,公差为1,21n a n -=,21n a n =-,1916171819981027S S a a a -=++=++=.故答案为:27. 【点睛】易错点睛:本题考查等差数列的通项公式,解题时由已知等式中n 改写为1n +,两相减后得21n n a a +-=,这里再计算21a a -,如果2211()22n n a a a a +--==,则可说明{}n a 是等差数列,象本题只能说明奇数项与偶数项分别成等差数列.不能混淆,误以为{}n a 是等差数列.这是易错的地方.16.【分析】分别求出的通项再构建新数列求出最大项后可得实数的最小值【详解】因为故是以1为首项以1为公差的等差数列所以当时是等比数列也适合故即又恒成立等价于恒成立令则当时当时故【点睛】方法点睛:含参数的数解析:94【分析】分别求出{}n a、{}n b的通项,再构建新数列212n nnc-=,求出{}n c最大项后可得实数λ的最小值.【详解】()*1n=∈N,故是以1为首项,以1为公差的等差数列,()11n n=+-⨯=,2*()na n n N∴=∈.当2n≥时,111(2)(2)2n n nn n nb S S m m---=-=---=,{}nb是等比数列,112b S m∴==-也适合12nnb-=,故21m-=即1m=,1*2()nnb n N-∴=∈.又n nb aλ≥恒成立等价于212nnλ-≥恒成立,2max max1()()2nnna nbλ-∴≥=,令212n nnc-=,则()2221121142222n n n n nnn n nc c--------=-=,当23n≤≤时,1-->n nc c,当4n≥时,10n nc c--<,故max39()4nc c==,94λ∴≥.【点睛】方法点睛:含参数的数列不等式的恒成立,可利用参变分离将参数的取值范围问题转化新数列的最值问题,后者可利用数列的单调性来处理.17.【分析】根据是与的等比中项求出和再根据等差数列的求和公式求出解不等式即可得解【详解】因为是与的等比中项所以所以化简得因为所以因为所以即将代入得解得所以所以由得即解得所以正整数的最大值为故答案为:20解析:【分析】根据690S=,7a是3a与9a的等比中项求出1a和d,再根据等差数列的求和公式求出nS,解不等式0nS>即可得解.【详解】因为7a是3a与9a的等比中项,所以2739a a a=⋅,所以()()()2111628a d a d a d+=++,化简得21100a d d+=,因为0d≠,所以110a d=-,因为690S=,所以1656902a d⨯+=,即15152a d+=,将110a d=-代入得510152d d-+=,解得2d=-,所以120a=,所以2(1)20(2)212n n n S n n n -=+⨯-=-+, 由0n S >得2210n n -+>,即2210n n -<,解得021n <<, 所以正整数n 的最大值为20. 故答案为:20 【点睛】关键点点睛:熟练掌握等差数列的通项公式和求和公式以及等比中项的应用是解题关键.18.【分析】首先设出等差数列的首项和公差根据其通项公式得到再根据其求和公式得到从而得到结果【详解】设等差数列的首项为公差为则有因为所以故答案为:【点睛】思路点睛:该题考查的是有关等差数列的问题解题思路如 解析:13313S 【分析】首先设出等差数列的首项和公差,根据其通项公式,得到487733a a a a +-=,再根据其求和公式,得到13713S a =,从而得到结果. 【详解】设等差数列的首项为1a ,公差为d ,则有48711117333(7)(6)318=3a a a a d a d a d a d a +-=+++-+=+, 因为11313713()132a a S a +==,所以487133313a a a S +-=, 故答案为:13313S . 【点睛】思路点睛:该题考查的是有关等差数列的问题,解题思路如下: (1)首先设出等差数列的首项和公差;(2)利用等差数列的通项公式,得到项之间的关系,整理得出487733a a a a +-=; (3)利用等差数列的求和公式,求得13713S a =; (4)比较式子,求得结果.19.14【分析】本题先求再求即可解题【详解】解:因为数列是等差数列所以解得所以故答案为:14【点睛】本题考查等差数列的基本量法是基础题解析:14 【分析】本题先求1a 、d ,再求10a 即可解题. 【详解】解:因为数列{}n a 是等差数列,22a =-,714S =所以217127(71)7142a a d S a d =+=-⎧⎪⎨⨯-=+=⎪⎩,解得142a d =-⎧⎨=⎩, 所以101914a a d =+= 故答案为:14 【点睛】本题考查等差数列的基本量法,是基础题.20.【分析】由已知利用累加法即可得到答案【详解】由已知各式相加得即又所以故答案为:【点睛】本题考查了累加求和方法斐波那契数列的性质考查了推理能力与计算能力属于中档题 解析:1m +【分析】由已知,123a a a +=,234,a a a +=202020212022a a a +=,利用累加法即可得到答案. 【详解】由已知,123a a a +=,234,a a a +=202020212022a a a +=,各式相加得1234202020222a a a a a a +++++=,即220202022a S a +=,又21a =,2020S m =,所以20221a m =+. 故答案为:1m + 【点睛】本题考查了“累加求和”方法、“斐波那契数列”的性质,考查了推理能力与计算能力,属于中档题.三、解答题21.(1)n a n =;(2)()()23412n nn n +++.【分析】(1)由已知求得1a 和公差d ,可得通项公式; (2)用裂项相消法求和. 【详解】(1)因为数列{}n a 为等差数列,设其公差为d ,结合332S a =,8522a a =-,()()111133227242a d a d a d a d ⎧+=+⎪⎨+=+-⎪⎩ 解得:11a d == 所以11n a n n =+-=(2)()()()()()1211111122112n n n n b a a a n n n n n n n ++⎡⎤===-⎢⎥⋅⋅+++++⎣⎦()()()11111111121223223342112n T n n n n ⎛⎫⎛⎫⎛⎫=-+-++- ⎪ ⎪ ⎪ ⎪⨯⨯⨯⨯+++⎝⎭⎝⎭⎝⎭所以()()()()211132212412n n nT n n n n ⎡⎤+=-=⎢⎥++++⎣⎦. 【点睛】本题考查求等差数列的通项公式,裂项相消法求和.数列求和的常用方法: 设数列{}n a 是等差数列,{}n b 是等比数列,(1)公式法:等差数列或等比数列的求和直接应用公式求和; (2)错位相减法:数列{}n n a b 的前n 项和应用错位相减法; (3)裂项相消法;数列1{}n n ka a +(k 为常数,0n a ≠)的前n 项和用裂项相消法; (4)分组(并项)求和法:数列{}n n pa qb +用分组求和法,如果数列中的项出现正负相间等特征时可能用并项求和法;(5)倒序相加法:满足m n m a a A -+=(A 为常数)的数列,需用倒序相加法求和. 22.(Ⅰ)13-=n n a ;(Ⅱ)11231n n T =-+. 【分析】(Ⅰ)设数列{}n a 的公比为q ,由32a 是23a 与4a 的等差中项.求出q 后可得通项公式; (Ⅱ)求出n b ,用裂项相消法求和n T . 【详解】(Ⅰ)设数列{}n a 的公比为q ,由条件知32443a a a =+,即2311143a q a q a q =+,整理可得2430q q -+=,解得3q =(1q =舍去),所以11133n n n a a --=⋅=.(Ⅱ)()()()()1111223111131313131n n nn n n n n n a b a a ---+⋅===-++++++,所以01121111111313131313131n n nT -⎫⎫⎫⎛⎛⎛=-+-+⋅⋅⋅+- ⎪ ⎪ ⎪++++++⎝⎝⎝⎭⎭⎭011113131231n n =-=-+++. 【点睛】本题考查求等差数列的通项公式,裂项相消法求和.数列求和的常用方法: 设数列{}n a 是等差数列,{}n b 是等比数列,(1)公式法:等差数列或等比数列的求和直接应用公式求和; (2)错位相减法:数列{}n n a b 的前n 项和应用错位相减法; (3)裂项相消法;数列1{}n n ka a +(k 为常数,0n a ≠)的前n 项和用裂项相消法; (4)分组(并项)求和法:数列{}n n pa qb +用分组求和法,如果数列中的项出现正负相间等特征时可能用并项求和法;(5)倒序相加法:满足m n m a a A -+=(A 为常数)的数列,需用倒序相加法求和.23.(1)31n a n =-;(2)1224433n n T n n +-=+-.【分析】(1)令1n =,结合111a S =>可得12a =,由()()612n n n S a a =++,*n ∈N 可得()()111612n n n S a a +++=++,两式相减可得13n n a a +-=即可求{}n a 的通项公式;(2)24221321()(222)nn n T a a a -=++⋅⋅⋅++++⋅⋅⋅+,利用分组并项求和,以及等差和等比数列求和公式即可求解. 【详解】 (1)由()()11111126a S a a ==++,即()()11210a a --=, 因为111a S =>,所以12a =, 由()()612n n n S a a =++,*n ∈N 可得()()111612n n n S a a +++=++,两式相减可得()()()()11161212n n n n n a a a a a +++=++-++, 得()()1130n n n n a a a a +++--=, 又0n a >,得13n n a a +-=,所以{}n a 是首项为2公差为3的等差数列, 故{}n a 的通项公式为31n a n =-.(2)24221321()(222)nn n T a a a -=++⋅⋅⋅++++⋅⋅⋅+()242(28146222)4n n ++⋅⋅⋅+=++++-+12(264)4(14)4432143n n n n n n ++---=+=+--.【点睛】方法点睛:数列求和的方法(1)倒序相加法:如果一个数列{}n a 的前n 项中首末两端等距离的两项的和相等或等于同一个常数,那么求这个数列的前n 项和即可以用倒序相加法(2)错位相减法:如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,那么这个数列的前n 项和即可以用错位相减法来求;(3)裂项相消法:把数列的通项拆成两项之差,在求和时,中间的一些项可相互抵消,从而求得其和;(4)分组转化法:一个数列的通项公式是由若干个等差数列或等比数列或可求和的数列组成,则求和时可用分组转换法分别求和再相加减;(5)并项求和法:一个数列的前n 项和可以两两结合求解,则称之为并项求和,形如()()1nn a f n =-类型,可采用两项合并求解.24.(1)21n n +;(2)证明见解析,122n n S n +=--. 【分析】(1)由已知条件判定数列为等差数列,求得通项公式,进而得到n S ,利用裂项求和法进一步求得n T ;(2)在已知递推关系两边同时加上1,可以证得数列{}1n a +为等比数列,求得通项公式,进而利用分组求和法和等比数列的求和公式计算n S . 【详解】(1)当1p =, 11n n a a +=+,∴数列{}n a 为等差数列,公差1d =,又11a =,∴1(1)1(1)n a a n d n n =+-=+-=,()()1122n n a a n n n S ++∴==,()122211n S n n n n ∴==-++, ∴数列1n S ⎧⎫⎨⎬⎩⎭的前n 项之和 121112222222221334111n n n T S S S n n n n =++⋯+=-+-+⋯+-=-=+++; (2)当2p =时,121n n a a +=+,1211)12(1n n n a a a +=++=++,又11a =,∴112a +=,∴数列{}1n a +是首相为2,公比为2的等比数列,∴12nn a +=,∴21n n a =-,∴1212(21)(21)...(21)22...2n n n S n=-+-++-=+++-()12122212nn n n +-=-=---.【点睛】本题考查等差数列的判定与求和,等比数列的判定与求和,裂项求和法和分组求和法,难度不大.关键是掌握裂项相消求和方法和利用定义证明等比数列.25.(1)21n a n =-,2n s n =;(2)21n nT n =+. 【分析】(1)根据条件列出式子求出数列{}n a 的首项和公差,即可求出通项公式和前n 项和; (2)可得112+1n b n n ⎛⎫=- ⎪⎝⎭,利用裂项相消法即可求出. 【详解】(1)设等差数列{}n a 的公差为d ,则3171+25767+492a a d S a d ==⎧⎪⎨⨯==⎪⎩,解得1a 1,d 2, ()1+1221n a n n ∴=-⨯=-,()21+212n n n S n -==; (2)()2112+1+1n b n n n n ⎛⎫===- ⎪⎝⎭, 1111122122311n nT n n n ⎛⎫∴=-+-++-=⎪++⎝⎭. 【点睛】方法点睛:数列求和的常用方法:(1)对于等差等比数列,利用公式法可直接求解;(2)对于{}n n a b 结构,其中{}n a 是等差数列,{}n b 是等比数列,用错位相减法求和; (3)对于{}+n n a b 结构,利用分组求和法; (4)对于11n n a a +⎧⎫⎨⎬⎩⎭结构,其中{}n a 是等差数列,公差为d ,则111111n n n n a a d a a ++⎛⎫=- ⎪⎝⎭,利用裂项相消法求和. 26.(1)证明见解析;(2)()()235412n n nT n n +=++【分析】(1)利用等比数列的定义变形为()1121n n a a ++=+,证明数列{}1n a +是等比数列;(2)首先求数列{}n b 的通项公式,再利用裂项相消法求和. 【详解】(1)121n n a a +=+,()1121n n a a +∴+=+,即1121n n a a ++=+,且112a +=, 所以数列{}1n a +是公比为2的等比数列;(2)由(1)可知11222n nn a -+=⋅=, 所以2log 2nn b n ==,()211111222n n b b n n n n +⎛⎫==- ⎪++⎝⎭, 则11111111111...232435112n T n n n n ⎛⎫=-+-+-++-+- ⎪-++⎝⎭111112212n n ⎛⎫=+-- ⎪++⎝⎭()()235412n n n n +=++ 【点睛】关键点点睛:本题第二问考查裂项相消法求和,这样的形式不是连续相消,如果前面剩下两个正数项,那么最后一定剩下两个负数项.。
北师大版高中数学必修五本章练测:第一章数列(含答案解析).docx
高中数学学习材料鼎尚图文*整理制作第一章 数 列(北京师大版必修5)建议用时 实际用时满分实际得分120分钟150分一、选择题(每小题5分,共60分)1.等差数列{ }的前n 项和为 , =-18, =-52,等比数列{ }中, = , = ,则 的值为A.64B.-64C.128D.-1282.已知{a n }是递增数列,且对任意n ∈N *都有a n =n 2+λn 恒成立,则实数λ的取值范围是( ) A.(-72,+∞) B.(0,+∞)C.(-2,+∞)D.(-3,+∞) 3.设数列{ }是以2为首项,1为公差的等差数列,数列{ }是以1为首项,2为公比的等比数列,则 = A.1033B.1034C.2057D.20584.等比数列{ }的前n 项和为 , =1,若4 ,2 , 成等差数列,则 =A.7B.8C.16D.155.已知一等比数列的前三项依次为33,22,++x x x ,那么2113-是此数列的第()项.A .2B .4C .6D .8 6.在ABC ∆中,tan A 是以-4为第三项,4为第七项的等差数列的公差,tan B 是以13为第三项,9为第六项的等比数列的公比,则这个三角形是( )A .钝角三角形B .锐角三角形C .等腰直角三角形D .以上都不对 7.等比数列{}n a 的各项均为正数,且564718a a a a +=,则31lo gl oa a +++3l o g a =( ) A.12 B.10C.31log 5+D.32log 5+ 8.在公比为整数的等比数列{}n a 中,如果,12,183241=+=+a a a a 那么该数列的前8项之和为( ) A.513B.512 C.510D.82259.已知数列{ }的通项公式为 =1(1)n -- •(4n -3),则它的前100项之和为( ) A.200 B.-200 C.400 D.-40010.若数列{ }的前n 项和S n =n 2-2n +3,则此数列的前3项依次为 ( ) A.-1,1,3 B.2,1,3 C.6,1,3 D.2,3,611.等差数列{ }中,a 1>0,S 5=S 11,则第一个使a n <0的项是( )A.a 7B.a 8C.a 9D.a 10 12.已知{}n a 是等比数列,41252==a a ,,则13221++++n n a a a a a a =( ) A.)41(16n -- B.)21(16n -- C.)41(332n -- D.)21(332n --二、填空题(每小题4分,共16分)13.三个不同的实数c b a ,,成等差数列,且b c a ,,成等比数列,则::a b c =_________.14.在数列{ }中,a 1=3,且对任意大于1的正整数n ,点(n a ,1-n a )在直线x -y -3=0上,则 =_________.15.等比数列{}n a 的前n 项和为21n-,则数列{}2na 的前n 项和为______________.16.等差数列{ }的前n 项和为 ,且 - =8,+ =26.记 =,如果存在正整数M ,使得对一切正整数n , ≤M 都成立,则M 的最小值是.三、解答题(本大题共6题,共74分)17.有四个数,其中前三个数成等比数列,其积为216,后三个数成等差数列,其和为36,求这四个数.18.在数列{ }中, =,并且对任意n ∈ ,n≥2都有 = - 成立,令 =(n ∈ ).(1)求数列{ }的通项公式;(2)求数列{}的前n 项和 .19.已知{}为各项都为正数的等比数列,=1,=256,为等差数列{}的前n项和,=2,5=2.(1)求{}和{}的通项公式;(2)设=++…+,求.20. 互不相等的三个数之积为-8,这三个数适当排列后可成为等比数列,也可排成等差数列,求这三个数排成的等差数列.21.已知数列{a n }满足a 1=1,1n a +=2a n +1(n ∈N *).(1)求数列{a n }的通项公式;(2)若数列{b n }满足114b -•214b -•…•14n b -=(1)n b n a + (n ∈N *),证明:{b n }是等差数列.22.已知函数f (x )=-2x 2+22x ,数列{ }的前n 项和为 ,点 (n , )(n ∈ )均在函数y =f (x )的图象上.(1)求数列{ }的通项公式 及前n 项和 ;(2)存在k ∈ ,使得++…+<k 对任意n∈ 恒成立,求出k 的最小值.第一章数列(北京师大版必修5)答题纸得分:一、选择题题号 1 2 3 4 5 6 7 8 9 10 11 12 答案二、填空题13. ; 14. ;15.;16..三、解答题17.18.19.20.21.22.第一章数列(北京师大版必修5)参考答案1.B解析:因为=(+)=9=-18,=(+)=13=-52,所以=-2,=-4.又=,=,所以=2,=·=-4×16=-64.2.D 解析:由{a n }为递增数列得1n a +-a n =2n +1+λ>0恒成立,即λ>-2n -1在n ≥1时恒成立,只需λ>(-2n -1)max =-3,故选D.3.A 解析:由题意知 =n +1, = ,则 = +1,所以 + +…+ =10+=1033.4.D 解析:设公比为q ,则4 ,2 q , 成等差数列,∴4q =4+ ,∴q =2, ∴ =( )=16-1=15.5.B 解析:由题意得 ,得x =-1或x =-4, 当x =-1时,2x +2=0,故舍去,所以,所以-13,所以n =4.6.B 解析:设等差数列为{a n },公差为d ,则 =-4, =4,所以d =2,所以设等比数列为{b n },公比为q ,则, =9,所以q =3,所以 所以tan tan()1C A B =-+=,所以,,A B C 都是锐角,即此三角形为锐角三角形.7.B 解析:313231031210log log log log ()a a a a a a +++=5103563log ()log (3)10a a ===.8.C 解析:332112131(1)18,()12,,2,22q a q a q q q q q q ++=+====+得或 而q ∈Z ,∴q =2,-2=510.9.B 解析:S 100=a 1+a 2+…+a 100=1-5+9-13+17-…+(4×99-3)-(4×100-3)=(1-5)+(9-13)+…+[(4×99-3)-(4×100-3)]=-4×50=-200.10.B 解析:当n =1时,a 1=S 1=12-2×1+3=2;当n =2时,由S 2=a 1+a 2=22-2×2+3=3,得a 2=1;当n =3时,由S 3=a 1+a 2+a 3=32-2×3+3=6,得a 3=3.11.C 解析:由S 5=S 11 得2a 1+15d =0.又a 1>0,所以d <0.而2 =2a 1+2(n -1)d =(2n -17)d <0,所以2n -17>0,即n >8.5.12.C 解析: 41252==a a ,,∴.21,41==q a ∴=++++13221n n a a a a a a )41(332n --.13.)2(:1:4- 解析:22222,2,(2),540a cbc b a a b c b a a a b b +==-==--+=,又,4,2a b a b c b≠∴==-. 14.3n 2解析:将点代入直线方程得n a -1-n a =3,由定义知{n a }是以3为首项,以3为公差的等差数列,故n a =3n ,即a n =3n 2.15.413n -解析:1121121,21,2,4,n n n n n n n n S S a a ----=-=-==21144-11,4,=143n n n a q S -==∴=-. 16.2 解析:∵{ }为等差数列,由 - =8, + =26,得a 1=1,d =4,可解得 =2 -n ,∴ =2-.若 ≤M 对一切正整数n 恒成立,则只需 的最大值≤M 即可. 又 =2-<2,∴只需2≤M ,故M 的最小值是2.17.解:设这四个数为,a ,aq ,2aq -a ,则216,(2)36,a a aq qa aq aq a ⎧=⎪⎨⎪++-=⎩①② 由①,得a 3=216,a =6, ③将③代入②,得q =2 , ∴ 这四个数为3,6,12,18.18.解:(1)当n =1时, ==3.当n ≥2时,由 = - ,得-=1,所以 - =1.所以数列{ }是首项为3,公差为1的等差数列, 所以数列{ }的通项公式为 =n +2. (2)因为== (-),=(1- +- +-+…+- + - )= [ -( +)]=. 19.解:(1)设{ }的公比为q ,由 = ,得q =4,所以 = .设{ }的公差为d ,由5 =2 及 =2得d =3, 所以 = +(n -1)d =3n -1.(2)因为 =1×2+4×5+ ×8+…+ (3n -1),① 4 =4×2+ ×5+…+ (3n -1),②由②-①,得3 =-2-3(4+ +…+ )+ (3n -1)=2+(3n -2)· . 所以 =(n -)· +.20.解:设这三个数为 ,a ,aq ,∴ =-8,即a =-2,∴这三个数为-,-2,-2q .(1)若-2为-和-2q 的等差中项,则+2q =4,∴ -2q +1=0,∴q =1,与已知矛盾;(2)若-2q 为-与-2的等差中项,则+2=4q ,∴2 -q -1=0,∴q =-或q =1(舍去),∴这三个数为4,1,-2;(3)若-为-2q 与-2的等差中项,则2q +2=,∴ +q -2=0,∴q =-2或q =1(舍去),∴这三个数为4,1,-2.综合(1)(2)(3)可知,这三个数排成的等差数列为4,1,-2. 21.(1)解: ∵ =2 +1(n ∈ ),∴1+1=2+1n n a a +(),即1+1=2+1n n a a +, {}1n a ∴+是以112a +=为首项,2为公比的等比数列.12.n n a ∴+=即 -1( ).(2)证法1:12(...)42.n n b b b n nb +++-∴=122[(...)],n n b b b n nb ∴+++-=①12112[(...)(1)](1).n n n b b b b n n b ++++++-+=+②②-①,得112(1)(1),n n n b n b nb ++-=+- 即1(1)20,n n n b nb +--+=③21(1)20.n n nb n b ++-++=④④-③,得2120,n n n nb nb nb ++-+=即2120,n n n b b b ++-+= , 故{b n }是等差数列.22.解:(1)因为点 (n , )(n ∈ )均在函数y =f (x )的图象上,所以 =-2 +22n .当n =1时, = =20;当n ≥2时, = - =-4n +24. 所以 =-4n +24(n ∈ ).(2)存在k ∈ ,使得 + +…+<k 对任意n ∈ 恒成立, 只需k >,由(1)知 =-2 +22n ,所以=-2n+22=2(11-n).当n<11时,>0;当n=11时,=0;当n>11时,<0. 所以当n=10或n=11时,++…+有最大值是110.所以k>110.又因为k∈,所以k的最小值为111.。
北师大版高二数学必修5第一单元检测试题及答案
高二数学必修5第一单元质量检测试题一. 选择题:1.在数列{}a n 中,311=a , )2(2)1(1≥-=-n a a n nn ,则=a 5( ) A. 316- B.316 C.38- D.38 2.在等差数列{}a n 中,=++a a a 74139 ,=++a a a 85233 则=++a a a 963( ) A. 30 B. 27 C. 24 D. 213.设{}a n是递增等差数列,前三项的和是12,前三项的积为48,则它的首项是( ) A. 1 B. 2 C. 4 D. 64.在等差数列{}a n 中,若8171593=+++a a a a ,则=a 11( )A.1B.-1C.2D.-25. 等差数列前10项和为100,前100项和为10。
则前110项的和为A .-90B .90C .-110D .106.两个等差数列,它们的前n 项和之比为1235-+n n ,则这两个数列的第9项之比是( ) A .35 B .58 C .38 D .47 7. 设等比数列{a n }中,每项均为正数,且a 3·a 8=81,log 3a 1+log 3a 2+…+log 3a 10等于A.5B.10C.20D.408.已知等比数列的公比为2,若前4项之和为1,则前8项之和为( )A.15B.17C.19D.219. 等差数列{a n }中,已知a 1=-6,a n =0,公差d ∈N *,则n (n ≥3)的最大值为( )A .5B .6C .7D .810.设直角三角形a 、b 、c 三边成等比数列,公比为q, 则q 2的值为( ) A.2 B.215- C. 215+ D. 215± 11.若数列22331,2cos ,2cos,2cos ,,θθθ 前100项之和为0,则θ的值为( ) A. ()3k k Z ππ±∈ B. 2()3k k Z ππ±∈ C. 22()3k k Z ππ±∈ D.以上的答案均不对 12.设2a =3,2b =6,2c =12,则数列a,b,c 成A.等差数列B.等比数列C.非等差数列也非等比数列D.既是等差数列也是等比数列二. 填空题:13.在等差数列{}a n 中,a 3 、a 10 是方程0532=--x x 的两根, 则=+a a 85 . 14. 已知数列{}an 的通项公式n a =,若它的前n 项和为10,则项数n 为 .15.小于200的自然数中被7除余3的所有的数的和是______________.16. 在数列{a n }中,a 1=1,a n +1=22+n n a a (n ∈N *),则72是这个数列的第______项. 三、解答题(本大题共5小题,共54分.解答应写出文字说明、证明过程或演算步骤)17.(本小题满分8分)若等差数列5,8,11,…与3,7,11,…均有100项,问它们有多少相同的项?18.(本小题满分10分)在等差数列{a n }中,若a 1=25且S 9=S 17,求数列前多少项和最大.19.(本小题满分12分)数列通项公式为a n =n 2-5n +4,问(1)数列中有多少项是负数?(2)n 为何值时,a n 有最小值?并求出最小值.20.(本小题满分12分)甲、乙两物体分别从相距70 m 的两处同时相向运动,甲第一分钟走2 m ,以后每分钟比前1分钟多走1 m ,乙每分钟走5 m .(1)甲、乙开始运动后,几分钟相遇.(2)如果甲、乙到达对方起点后立即折返,甲继续每分钟比前1分钟多走1 m ,乙继续每分钟走5 m ,那么开始运动几分钟后第二次相遇?21.(本小题满分12分)已知数列{a n }的前n 项和为S n ,且满足a n +2S n ·S n -1=0(n ≥2),a 1=21.1)求证:{nS 1}是等差数列; (2)求a n 表达式;(3)若b n =2(1-n )a n (n ≥2),求证:b 22+b 32+…+b n 2<1.参考答案:1—12、BBBCC 、CCB C D 、CA13、3 14、120 15、2929 16、617.考查等差数列通项及灵活应用.【解】设这两个数列分别为{a n }、{b n },则a n =3n +2,b n =4n -1,令a k =b m ,则3k +2=4m -1.∴3k =3(m -1)+m ,∴m 被3整除.设m =3p (p ∈N *),则k =4p -1.∵k 、m ∈[1,100].则1≤3p ≤100且1≤p ≤25.∴它们共有25个相同的项.18.考查等差数列的前n 项和公式的应用.解:∵S 9=S 17,a 1=25,∴9×25+2)19(9-⨯d =17×25+2)117(17-d 解得d =-2,∴S n =25n +2)1(-n n (-2)=-(n -13)2+169. 由二次函数性质,故前13项和最大.注:本题还有多种解法.这里仅再列一种.由d =-2,数列a n 为递减数列. a n =25+(n -1)(-2)≥0,即n ≤13.5.∴数列前13项和最大.19.考查数列通项及二次函数性质.解:(1)由a n 为负数,得n 2-5n +4<0,解得1<n <4.∵n ∈N *,故n =2或3,即数列有2项为负数,分别是第2项和第3项.(2)∵a n =n 2-5n +4=(n -25)2-49,∴对称轴为n =25=2.5 又∵n ∈N *,故当n =2或n =3时,a n 有最小值,最小值为22-5×2+4=-2.20.考查等差数列求和及分析解决问题的能力.解:(1)设n 分钟后第1次相遇,依题意得2n +2)1(-n n +5n =70 整理得:n 2+13n -140=0,解得:n =7,n =-20(舍去)∴第1次相遇在开始运动后7分钟.(2)设n 分钟后第2次相遇,依题意有:2n +2)1(-n n +5n =3×70 整理得:n 2+13n -6×70=0,解得:n =15或n =-28(舍去) 第2次相遇在开始运动后15分钟.21.考查数列求和及分析解决问题的能力.解:(1)∵-a n =2S n S n -1,∴-S n +S n -1=2S n S n -1(n ≥2)S n ≠0,∴n S 1-11-n S =2,又11S =11a =2,∴{nS 1}是以2为首项,公差为2的等差数列. (2)由(1)n S 1=2+(n -1)2=2n ,∴S n =n21当n ≥2时,a n =S n -S n -1=-)1(21-n n n =1时,a 1=S 1=21,∴a n =⎪⎪⎩⎪⎪⎨⎧≥=)2( 1)-(21-)1( 21n n n n (3)由(2)知b n =2(1-n )a n =n 1 ∴b 22+b 32+…+b n 2=221+231+…+21n <211⨯+321⨯+…+n n )1(1- =(1-21)+(21-31)+…+(11-n -n 1)=1-n 1<1.。
(常考题)北师大版高中数学必修五第一章《数列》检测(答案解析)(1)
一、选择题1.已知数列{}n a 的前n 项和为n S ,11a =,23a =,且()11222n n nn S S S n +-+=+≥,若()()72n n S a n λλλ-++≥-对任意*n ∈N 都成立,则实数λ的最小值为( ) A .52-B .116C .332D .12.在数列{}n a 中,11a =-,33a =,212n n n a a a ++=-(*n N ∈),则10a =( ) A .10B .17C .21D .353.已知数列{}n a 的前n 项和是n S ,且21n n S a =-,若()0,2021n a ∈,则称项n a 为“和谐项”,则数列{}n a 的所有“和谐项”的和为( ) A .1022B .1023C .2046D .20474.已知数列{}n a 中,13n n a S +=,则下列关于{}n a 的说法正确的是( ) A .一定为等差数列 B .一定为等比数列C .可能为等差数列,但不会为等比数列D .可能为等比数列,但不会为等差数列 5.对于数列{}n a ,定义11233n nn a a a T n-+++=为{}n a 的“最优值”,现已知数列{}n a 的“最优值”3n n T =,记数列{}n a 的前n 项和为n S ,则20202020S=( ) A .2019B .2020C .2021D .20226.我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的底层共有灯( ) A .64盏B .128盏C .192盏D .256盏7.已知n S 是等差数列{}n a 的前n 项和,且675S S S >>,下列说法错误的是( ) A .0d <B .110S >C .120S <D .67a a >8.已知1,1x ,2x ,7成等差数列,1,1y ,2y ,8成等比数列,点()11,M x y ,()22,N x y ,则直线MN 的方程是( )A .10x y -+=B .10x y --=C .70x y --=D .70x y +-=9.已知数列{}n a 的通项公式为)*n a n N =∈,其前n 项和为n S ,则在数列1S ,2S …,2019S 中,有理数项的项数为( )A .42B .43C .44D .4510.等差数列{}n a 的前n 项和为n S ,1000S >,1010S <,则满足10n n a a +<的n =( ) A .50B .51C .100D .10111.根据下面一组等式:11s =, 2235s =+=,345615s =++=, 47891034s =+++=, 5111213141565s =++++=, 6161718192021111s =+++++=,……可得21n S -=( )A .324641n n n -+-B .1413n -C .2184023n n -+D .(1)12n n -+12.公元前四世纪,毕达哥拉斯学派对数和形的关系进行了研究.他们借助几何图形(或格点)来表示数,称为形数.形数是联系算术和几何的纽带.如图所示,数列1,6,15,28,45,…,从第二项起每一项都可以用六边形表示出来,故称它们为六边形数,那么该数列的第11项对应的六边形数为( )A .153B .190C .231D .276二、填空题13.在平面直角坐标系xOy 中,点A 在y 轴正半轴上,点n P 在x 轴上,其横坐标为n x ,且{}n x 是首项为1、公比为2的等比数列,记*1,n n n P AP n N θ+∠=∈.若32arctan9θ=,则点A 的坐标为________.14.已知首项为1的数列{}n a 的前n 项和为n S ,若()21n n S n a =+,则数列()2121*1n n a n N a -+⎧⎫⎨⎬⎭∈⋅⎩的前n 项和n T =______. 15.数列{}n a 的通项()sin2n n a n n N π*=⋅∈,则前10项的和12310a a a a ++++=______16.n S 为等差数列{}n a 的前n 项和,且11a =,621S =,记[]lg n n b a =,其中[]x 表示不超过x 的最大整数,如[]0.90=,[]lg991=,则数列{}n b 的前100项和为________.17.在数列{}n a 中, 11a =,212(2)n n n a a n ---=≥,则n a =_____.18.设数列{}n a 的前n 项和n S 满足11n n n n S S S S ++=⋅-()n N *∈,且11a =,则n a =_____.19.已知数列{}n a 与{}n b 前n 项和分别为n S ,n T ,且0n a >,22n n n S a a =+,1121(2)(2)n n n n n n b a a +++=++,对任意的*n N ∈,n k T >,恒成立,则k 的最小值是__________.20.若数列}{n a2*3()n n n N =+∈,则n a =_______.三、解答题21.已知数列{}n a 满足11a =,13(1)n n na n a +=+. (1)设nn a b n=,求证:数列{}n b 是等比数列; (2)求数列{}n a 的前n 项和n S .22.已知各项均为正数的数列{}n a 的前n 项和满足1n S >,且()()*612,n n n S a a n =++∈N .(1)求{}n a 的通项公式:(2)设数列{}n b 满足,2n n n a n b n ⎧=⎨⎩是奇数,是偶数,并记n T 为{}n b 的前n 项和,求2n T .23.已知数列{}n a 满足132a =,112n n a a -=-,2n ≥,*n N ∈.(1)证明:数列1{}1n a -为等差数列,并求数列{}n a 的通项公式; (2)若2n n na c n =⋅,记数列{}n c 的前n 项和为n T ,求证:314n T ≤<. 24.设等差数列{}n a 的首项1a 为()0a a >,其前n 项和为n S . (Ⅰ)若1S ,2S ,4S 成等比数列,求数列{}n a 的通项公式;(Ⅱ)若对任意的*n ∈N ,恒有0n S >,问是否存在()*2,k k k ≥∈N ,使得ln k S 、1ln k S +、2ln k S +成等比数列?若存在,求出所有符合条件的k 值;若不存在,请说明理由.25.已知数列{}n a 的前n 项和n S 满足()*224n n S a a n N =-∈,且1a ,2a ,31a-成等差数列.(1)求数列{}n a 的通项公式; (2)设()()222221log log +=n n n b a a ,{}n b 的前项和为n T ,对任意*n N ∈,23n mT >恒成立,求m 的取值范围.26.在①222n n S n a =+,②3516a a +=且3542S S +=,③2142n n S n S n +=+且756S =这三个条件中任选一个,补充在下面的问题中,并加以解答.问题:设数列{}n a 为等差数列,其前n 项和为n S ,_________.数列{}n b 为等比数列,11b a =,23b a =.求数列1n n b S ⎧⎫+⎨⎬⎩⎭的前n 项和n T .【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】由n S 与n a 的关系得21nn a =-,则272n maxn λ-⎛⎫≥⎪⎝⎭,设272nn n c -=,利用数列的单调性即可求解. 【详解】解:数列{}n a 的前n 项和为n S ,11a =,23a =,且()11222n n nn S S S n +-+=+≥, 所以112nn n n n S S S S +--=+-,故()122nn n a a n +-=≥,因为1212a a -=,所以()121nn n a a n +-=≥,所以112n n n a a ---=,2122n n n a a ----=,⋯,1212a a -=, 则1211222n n a a --=++⋯+,故11211222121n n n n a --=++⋯+==--, 所以()123122122222221n n n nS n n n +-=+++⋯+-=-=---,所以21nn n S a n -=--,因为()()72n n S a n λλλ-++≥-对任意*n N ∈都成立, 所以272nmaxn λ-⎛⎫≥ ⎪⎝⎭. 设272n nn c -=,则111252792222n nn n n n n nc c +++----=-=, 当4n ≤时,1n n c c +>,当5n ≥时,1n n c c +<, 因此1234567c c c c c c c <<⋯<><> 即5332c λ≥=,故λ的最小值为332. 故选:C 【点睛】本题解答的关键利用11,1,2n nn S n a S S n -=⎧=⎨-≥⎩求出数列n a 的递推公式,再利用累加法求出na 的通项;2.B解析:B 【分析】根据等式关系得到数列{}n a 为等差数列,求出公差得到其通项公式,最后代值求解即可. 【详解】212n n n a a a ++=-(*n N ∈),212n n n a a a ++∴+=,即数列{}n a 是等差数列, 11a =-,33a =,312a a d ∴=+即312d =-+,则公差2d =,则()11223n a n n =-+-⨯=-(*n N ∈), 所以10210317a =⨯-=. 故选:B . 【点睛】关键点点睛:本题的解题关键是由题中所给关系得出其为等差数列,进而求出通项公式进行计算.3.D解析:D 【分析】由1(2)n n n a S S n -=-≥求出{}n a 的递推关系,再求出1a 后确定数列是等比数列,求出通项公式,根据新定义确定“和谐项”的项数及项,然后由等比数列前n 项和公式求解. 【详解】当2n ≥时,11121(221)2n n n n n n n a S S a a a a ---=--==---,∴12n n a a -=, 又11121a S a ==-,11a =,∴{}n a 是等比数列,公比为2,首项为1, 所以12n na ,由122021n n a -=<得110n -≤,即11n ≤,∴所求和为1112204712S -==-.故选:D . 【点睛】关键点点睛:本题考查数列新定义,考查等比数列的通项公式与前n 项和公式,解题思路是由1(2)n n n a S S n -=-≥得出递推关系后确定数列是等比数列,从而求得通项公式.解题关键是利用新定义确定数列中“和谐项”的项数及项.4.C解析:C 【分析】根据13n n a S +=得14n n S S +=,分类讨论当10S =和10S ≠两种情况分析得数列{}n a 可能为等差数列,但不会为等比数列. 【详解】解:13n n a S +=,13n n n S S S +∴=-, 14n n S S +∴=,若10S =,则数列{}n a 为等差数列;若10S ≠,则数列{}n S 为首项为1S ,公比为4的等比数列,114n n S S -∴=⋅,此时21134n n n n a S S S -==-⋅﹣(2n ≥),即数列从第二项起,后面的项组成等比数列.综上,数列{}n a 可能为等差数列,但不会为等比数列. 故选:C. 【点睛】本题考查等差数列、等比数列的判断,考查学生分析解决问题的能力,正确分类讨论是关键.5.D解析:D 【分析】 根据11233n nn a a a T n-+++=,且3nn T =,得到112333n n n a a a n -+++=⋅,然后利用数列通项与前n 项和的关系求得21n a n =+,再利用等差数列求和公式求解. 【详解】∵11233n nn a a a T n-+++=,且3nn T =,∴112333n n n a a a n -+++=⋅,当2n ≥时,有()211213313n n n a a a n ---+++⋅=-⋅,两式相减可得:()()1113313213n n n n n a n n n ---⋅=⋅--⋅=+⋅.∴21n a n =+(2n ≥). 当1n =时,13a =适合上式. ∴21n a n =+.则数列{}n a 是以3为首项,以2为公差的等差数列. ∴()202032202012020S 202220202+⨯+⨯==⨯.∴202020222020S =. 故选:D . 【点睛】本题主要考查数列通项与前n 项和的关系以及等差数列的定义和求和公式的应用,属于中档题.6.C解析:C 【分析】设塔的顶层共有1a 盏灯,第n 层的灯有n a 盏,则数列{}n a 是公比为2的等比数列,利用等比数列的前n 项和公式可求得1a 的值,进而可求得塔的底层的灯的盏数7a . 【详解】设塔的顶层共有1a 盏灯,第n 层的灯有n a 盏,则数列{}n a 是公比为2的等比数列, 由题意可知,一座7层塔所挂的灯的盏数为()71711212738112a S a -===-,解得13a =.因此,塔的底层的灯的盏数为6732192a =⨯=. 故选:C. 【点睛】本题考查等比数列及其前n 项和基本量的计算,考查推理能力与计算能力,属于中等题.7.C解析:C 【分析】根据{}n a 是等差数列,且675S S S >>,变形为7666555567,,a a S S S S S a S a ++>++>>判断即可.【详解】数列{}n a 是等差数列675S S S >>,7666555567,,a a S S S S S a S a ++>++>>, 76670,0,0a a a a <>+>,所以0d <,()111116111102a a S a +==>, ()()11267121212022a S a a a ++==>,67a a >,故选:C 【点睛】本题主要考查等差数列的通项与前n 项和的关系及应用,还考查了转化求解问题的能力,属于中档题.8.B解析:B 【分析】本题先根据题意求出1x 、2x 、1y 、2y ,再写出点M 、N 的坐标并求MN k ,最后求直线MN 的方程即可. 【详解】解:∵1,1x ,2x ,7成等差数列,∴12121721x x x x +=+⎧⎨=+⎩,解得1235x x =⎧⎨=⎩,∵1,1y ,2y ,8成等比数列,∴12212181y y y y ⋅=⨯⎧⎨=⨯⎩,解得1224y y =⎧⎨=⎩∴点()3,2M ,()5,4N ,42153MN k -==- ∴直线MN 的方程:41(5)y x -=⨯-,即10x y --=.故选:B. 【点睛】本题考查等差中项,等比中项,根据两点求直线的一般式方程,是基础题.9.B解析:B 【分析】本题先要对数列{}n a 的通项公式n a 运用分母有理化进行化简,然后求出前n 项和为n S 的表达式,再根据n S 的表达式的特点判断出那些项是有理数项,找出有理数项的下标的规律,再求出2019内属于有理数项的个数. 【详解】解:由题意,可知:n a ====. 12n n S a a a ∴=++⋯+1=11n =-+. 3S ∴,8S ,15S ⋯为有理项,又下标3,8,15,⋯的通项公式为21(2)n b n n =-,212019n ∴-,且2n ,解得:244n ,∴有理项的项数为44143-=.故选:B . 【点睛】本题主要考查分母有理化的运用,根据算式判断有理数项及其下标的规律,属于中档题.10.A解析:A 【分析】由题意和等差数列求和公式与性质可得50510a a +>;510a <,进而可得500a >,据此分析可得答案. 【详解】根据题意,等差数列{}n a 中,1000S >,1010S <, 则有110010*********()10050()50()02a a S a a a a +⨯==+=+>,则有50510a a +>;又由110110151()10110102a a S a +⨯==<,则有510a <;则有500a >,若10n n a a +<,必有50n =; 故选:A . 【点睛】本题考查等差数列的前n 项和公式的应用,涉及等差数列的性质,属于基础题.11.A解析:A 【分析】求出第()1n -行最后一项,可得第n 行为第一项,求出第n 行最后一项,根据第n 是等差数列求出n S ,即可求出21n S -. 【详解】易得第()1n -行最后一项为[]21(1)(1)22n n n n +---=,则第n 行第一项为212n n-+,第n 行最后一项为2(1)22n n n n++=, 故第n 行为第一项212n n -+,最后一项为22n n+,项数为n 的等差数列, 故22312222n n n n n n n n S ⎛⎫-+++ ⎪+⎝⎭==, 所以32214641n S n n n -=-+-.故选:A. 【点睛】本题考查对数列的理解,以及等差数列的前n 项和的求法,属于中档题.12.C解析:C 【分析】根据题中所给图与对应的六边形数,记第n 个六边形数为n a ,找出规律,相邻两项差构成等差数列,累加求得22n a n n =-,将11n =代入求得结果.【详解】记第n 个六边形数为n a ,由题意知:11a =,215141a a -==+⨯,32142a a -=+⨯,43143a a -=+⨯,,114(1)n n a a n --=+-,累加得21(1)[543]59[14(1)]212n n n a a n n n -+--=++++-==--,即22n a n n =-,所以21121111231a =⨯-=,故选:C.【点睛】该题考查的是有关数列的问题,涉及到的知识点有利用累加法求数列的通项公式,属于中档题目.二、填空题13.或【分析】设点的坐标利用两角差正切公式求列式解得结果【详解】设因为所以或故答案为:或【点睛】本题考查两角差正切公式等比数列考查综合分析求解能力属中档题解析:(0,2)或(0,16) 【分析】设点A 的坐标,利用两角差正切公式求3tan θ,列式解得结果. 【详解】设(0,),0A a a >,因为233443343,124,128P AP AP OAP O x x θ=-=⨯==⨯=∠∠=∠所以238442284t 21an 39a a a a a a aθ-===∴=++⋅或16 故答案为:(0,2)或(0,16)【点睛】本题考查两角差正切公式、等比数列,考查综合分析求解能力,属中档题.14.【分析】根据求数列通项分析时求解数列通项得到整理可得即可求出通项公式代入数列的通项中进行列项整理最后利用裂项相消法即可求出数列的前项和【详解】∵∴∴∴即∴即故则故故答案为:【点睛】本题主要考查了利用 解析:21nn + 【分析】根据n S 求数列通项,分析2n ≥时求解数列通项得到()121n n n a n a na -=+-,整理可得()121n n a a n n n -=≥-,即可求出通项公式,代入数列21211n n a a -+⎧⎫⎨⎬⋅⎩⎭的通项中进行列项整理,最后利用裂项相消法即可求出数列21211n n a a -+⎧⎫⎨⎬⋅⎩⎭的前n 项和.【详解】∵()21n n S n a =+,∴()1122n n S na n --=≥, ∴()()112212n n n n S S n a na n ---=+-≥, ∴()121n n n a n a na -=+-,即()11n n n a na --=,∴()121n n a a n n n -=≥-, 即11111n n a a a n n -====-,故n a n =, 则()()212111111212122121n n a a n n n n -+⎛⎫==- ⎪⋅-+-+⎝⎭,故11111111112335212122121n n T n n n n ⎛⎫⎛⎫=-+-++-=-= ⎪ ⎪-+++⎝⎭⎝⎭. 故答案为:21nn +. 【点睛】本题主要考查了利用递推公式求解通项公式,考查了裂项相消法求和问题,属于中档题.15.5【分析】利用的周期性求解即可【详解】的周期当时的值为10-10则前10项的和故答案为:5【点睛】本题考查利用数列的周期性求和属于基础题解析:5 【分析】利用()sin2n n N π*∈的周期性求解即可. 【详解】()sin 2n n N π*∈的周期2=42T ππ=,当1,2,3,4n =时sin 2n π的值为1,0,-1,0,则前10项的和123101+0305070905a a a a ++++=-+++-+++=,故答案为:5 【点睛】本题考查利用数列的周期性求和,属于基础题.16.92【分析】设的公差为d 由解得则然后由分和三种情况求解【详解】设的公差为d 所以解得∴记的前n 项和为则当时当时当即时∴故答案为:92【点睛】本题主要考查等差数列的基本运算和数列求和以及取整函数的应用还解析:92 【分析】设{}n a 的公差为d ,由11a =,621S =,解得1d =,则n a n =,然后由[]lg n n b a =,分0lg 1n a ≤<, 1lg 2n a ≤<和 lg 2n a =三种情况求解.【详解】设{}n a 的公差为d ,()6166212s a a =+=, 所以167a a +=,解得1d =, ∴n a n =,记{}n b 的前n 项和为n T ,则[][][]1001210012100lg lg lg T b b b a a a =++⋯+=++⋯+, 当0lg 1n a ≤<时,1,2,9n =⋅⋅⋅,0n b =, 当1lg 2n a ≤<时,10,11,99n =⋅⋅⋅,1n b =, 当lg 2n a =,即100n a =时,2n b = ∴10009190292T =⨯+⨯+=. 故答案为:92 【点睛】本题主要考查等差数列的基本运算和数列求和以及取整函数的应用,还考查了运算求解的能力,属于中档题.17.【分析】利用累加法可求得数列的通项公式【详解】当时符合上式则故答案为:【点睛】本题考查由累加法求数列的通项公式属于基础题 解析:12n -【分析】利用累加法可求得数列的通项公式. 【详解】11a =,212(2)n n n a a n ---=≥∴()()()121321=+n n n a a a a a a a a --+-+⋅⋅⋅+-0121+2+2++2n -=⋅⋅⋅()()2212122+2221212n n n ----==+-=-∴12nna ()2,*n n N ≥∈当=1n 时,11a =符合上式,则12n n a .故答案为:12n - 【点睛】本题考查由累加法求数列的通项公式,属于基础题.18.【分析】由两本同除以可构造是等差数列由此可求出再利用即可求得【详解】由得是以为首相1为公差的等差数列当时故答案为:【点睛】本题主要考查了由数列的递推关系式求数列的通项公式是常考题型属于中档题解析:1,11,2(1)n n a n n n =⎧⎪=⎨-≥⎪-⎩【分析】由11n n n n S S S S ++=⋅-,两本同除以1n n S S +⋅,可构造1n S ⎧⎫⎨⎬⎩⎭是等差数列,由此可求出a 1n S n =,再利用1n n n a S S -=-,即可求得n a 【详解】 由11n n n n S S S S ++=⋅-,得1111n nS S +-= ()n N *∈ 1n S ⎧⎫∴⎨⎬⎩⎭ 是以11111S a ==为首相,1为公差的等差数列,11(1)1nn n S ∴=+-⨯=, 1n S n∴=, 当2n ≥ 时,11111(1)n n n a S S n n n n -=-=-=---, 1,11,2(1)n n a n n n =⎧⎪=⎨-≥⎪-⎩故答案为:1,11,2(1)n n a n n n =⎧⎪=⎨-≥⎪-⎩【点睛】本题主要考查了由数列的递推关系式,求数列的通项公式,是常考题型,属于中档题.19.【分析】首先利用与的关系式求数列的通项公式再利用裂项相消法求再利用的最值求的最小值【详解】当时解得或当两式相减后可得整理后得:所以数列是公差为1的等差数列即数列单调递增当时对任意的恒成立即的最小值是解析:13【分析】首先利用n S 与n a 的关系式,求数列{}n a 的通项公式,再利用裂项相消法求n T ,再利用n T 的最值求k 的最小值. 【详解】当1n =时,2111122S a a a =+=,解得10a =或11a =,0n a >,11a ∴=,当2n ≥,2211122n n nn n n S a a S a a ---⎧=+⎨=+⎩,两式相减后可得()()()221112n n n n n n S S a a a a ----=-+-,整理后得:()()1110n n n n a a a a --+--=,所以11n n a a --=,∴数列{}n a 是公差为1的等差数列,即n a n =,()()112111221221n n n n n n b n n n n +++==-++++++, 2231111111...21222223221n n n T n n +⎛⎫⎛⎫⎛⎫=-+-++- ⎪ ⎪ ⎪+++++++⎝⎭⎝⎭⎝⎭1112121n n +=-+++ 111321n n +=-++, 数列{}n T 单调递增,当n →+∞时,13n T → 对任意的*n N ∈,n k T >,恒成立,()max n k T ∴>,即13k ≥,k 的最小值是13.故答案为:13【点睛】易错点睛:本题主要考查函数与数列的综合问题,属于难题.解决该问题应该注意的事项: (1)数列是一类特殊的函数,它的图象是一群孤立的点;(2)转化以函数为背景的条件时,应该注意题中的限制条件,如函数的定义域,这往往是很容易被忽视的问题;(3)利用函数的方法研究数列中的相关问题时,应准确构造相应的函数,注意数列中相关限制条件的转化.20.【分析】有已知条件可得出时与题中的递推关系式相减即可得出且当时也成立【详解】数列是正项数列且所以即时两式相减得所以()当时适合上式所以【点睛】本题考差有递推关系式求数列的通项公式属于一般题 解析:()241n +【分析】有已知条件可得出116a =,2n ≥时()()2*131()n n n N =-+-∈,与题中的递推关系式相减即可得出()241n a n =+,且当1n =时也成立.【详解】数列}{n a 2*3()n n n N =+∈4=,即116a =2n ≥()()2*131()n n n N =-+-∈22n =+, 所以()241n a n =+(2n ≥ )当1n =时,116a =适合上式,所以()241n a n =+ 【点睛】本题考差有递推关系式求数列的通项公式,属于一般题.三、解答题21.(1)证明见解析;(2)(21)3144n n n S -=+.【分析】(1)将13(1)n n na n a +=+变形为131n na a n n+=+,得到{}n b 为等比数列, (2)由(1)得到{}n a 的通项公式,用错位相减法求得n S 【详解】(1)由11a =,13(1)n n na n a +=+,可得131n na a n n+=+, 因为nn a b n=则13n n b b +=,11b =,可得{}n b 是首项为1,公比为3的等比数列, (2)由(1)13n n b -=,由13n na n-=,可得13n n a n -=⋅, 01211323333n n S n -=⋅+⋅+⋅++⋅, 12331323333n n S n =⋅+⋅+⋅++⋅,上面两式相减可得:0121233333n n n S n --=++++-⋅13313n n n -=-⋅-, 则(21)3144n n n S -=+.【点睛】数列求和的方法技巧:(1)倒序相加:用于等差数列、与二项式系数、对称性相关联的数列的求和. (2)错位相减:用于等差数列与等比数列的积数列的求和. (3)分组求和:用于若干个等差或等比数列的和或差数列的求和.(4) 裂项相消法:用于通项能变成两个式子相减,求和时能前后相消的数列求和.22.(1)31n a n =-;(2)1224433n n T n n +-=+-.【分析】(1)令1n =,结合111a S =>可得12a =,由()()612n n n S a a =++,*n ∈N 可得()()111612n n n S a a +++=++,两式相减可得13n n a a +-=即可求{}n a 的通项公式;(2)24221321()(222)nn n T a a a -=++⋅⋅⋅++++⋅⋅⋅+,利用分组并项求和,以及等差和等比数列求和公式即可求解. 【详解】 (1)由()()11111126a S a a ==++,即()()11210a a --=, 因为111a S =>,所以12a =, 由()()612n n n S a a =++,*n ∈N 可得()()111612n n n S a a +++=++,两式相减可得()()()()11161212n n n n n a a a a a +++=++-++, 得()()1130n n n n a a a a +++--=, 又0n a >,得13n n a a +-=,所以{}n a 是首项为2公差为3的等差数列, 故{}n a 的通项公式为31n a n =-.(2)24221321()(222)nn n T a a a -=++⋅⋅⋅++++⋅⋅⋅+()242(28146222)4n n ++⋅⋅⋅+=++++-+12(264)4(14)4432143n n n n n n ++---=+=+--.【点睛】方法点睛:数列求和的方法(1)倒序相加法:如果一个数列{}n a 的前n 项中首末两端等距离的两项的和相等或等于同一个常数,那么求这个数列的前n 项和即可以用倒序相加法(2)错位相减法:如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,那么这个数列的前n 项和即可以用错位相减法来求;(3)裂项相消法:把数列的通项拆成两项之差,在求和时,中间的一些项可相互抵消,从而求得其和;(4)分组转化法:一个数列的通项公式是由若干个等差数列或等比数列或可求和的数列组成,则求和时可用分组转换法分别求和再相加减;(5)并项求和法:一个数列的前n 项和可以两两结合求解,则称之为并项求和,形如()()1nn a f n =-类型,可采用两项合并求解.23.(1)证明见解析,21n n a n +=+;(2)证明见解析. 【分析】(1)根据已知,表示出1111111n n n n a a a a -----=-=,然后代入11111n n a a ----计算可得1,所以证明出数列1{}1n a -是等差数列,求出首项,利用等差数列通项公式计算;(2)表示出1211(1)22(1)2n n n nn c n n n n -+==-⋅+⋅⋅+⋅,然后利用裂项相消法计算前n 项和n T ,再判断出数列的单调性,即可证明. 【详解】(1)当132a =时,因为112n n a a -=-,1111111n n n n a a a a -----=-=,所以1111111111111111n n n n n n n a a a a a a a ---------=--==---, 所以数列1{}1n a -为首项为111a -,公差为1的等差数列. 又132a =,1121a =-,所以111n n a =+-,解得21n n a n +=+. (2)因为21n n a n +=+,所以1211(1)22(1)2n n n n n c n n n n -+==-⋅+⋅⋅+⋅. 所以121n n n T c c c c -=++⋅⋅⋅++1121111111112222322(1)2(1)2n n nn n n -=-+-+⋅⋅⋅+-=-⋅⋅⋅⋅+⋅+⋅, 即11(1)2n n T n =-+⋅,显然1n T <,另一方面, 111111121(1)0(1)222(1)2(1)2n n n n n n nn T T n n n n n n ---+-=---=-=>+⋅⋅⋅+⋅⋅+⋅,故数列{}n T 是递增数列,所以134n T T ≥=,因此,314n T ≤<. 【点睛】常见的数列求和的方法技巧:(1)倒序相加:用于等差数列、与二项式系数、对称性相关联的数列的求和. (2)错位相减:用于等差数列与等比数列的积数列的求和. (3)分组求和:用于若干个等差或等比数列的和或差数列的求和.(4)裂项相消:用于通项为分式形式的数列的求和.24.(Ⅰ)0d =时,n a a =;2d a =时,2n a an a =-;(Ⅱ)不存在,理由见解析. 【分析】(Ⅰ)根据等差数列写出(1)2n n n dS na -=+,利用等比中项性质列式代入求解;(2)设存在()*2,k k k ≥∈N ,根据等比中项列式,整理化简之后分类讨论0d =与0d >是否成立. 【详解】(Ⅰ)因为1S ,2S ,4S 成等比数列,所以2214S S S ,又因为数列{}n a 是等差数列,首项1a 为()0a a >,所以(1)2n n n d S na -=+,则()()2246a d a a d +=+,可得0d =或2d a =,当0d =时,n a a =;当2d a =时,2(1)2n a a n a an a =+-=-.(Ⅱ)设存在()*2,k k k ≥∈N,使ln kS、1ln k S +、2ln k S +成等比数列,则122ln l ln n k k k S S S ++=⋅,对任意的*n ∈N ,恒有0n S >,首项0a >,所以0d ≥因为()22222ln ln ln ln ln 22k k k k k k S S S S S S +++⋅⎡⎤+⎡⎤⋅<=⎢⎥⎢⎥⎣⎦⎣⎦()()()22211121112ln ln 22k k k k k k k k S dS a a S a S a ++++++++⎡⎤+--+⎡⎤⎢⎥==⎢⎥⎢⎥⎣⎦⎣⎦, 当0d =时,()()()2222222111211+121ln ln ln ln 222k k k k k k k k S dS a a S a S S +++++++⎡⎤⎡⎤⎡⎤+--⎢⎥⎢⎥⎢⎥=<=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦即122ln l ln n k k k S S S ++>⋅,不成立;当0d >时,()()()2222222111211+121ln ln ln ln 222k k k k k k k k k S dS a a S dS a S S +++++++⎡⎤⎡⎤⎡⎤+-+-⎢⎥⎢⎥⎢⎥=<=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦,即122ln l ln n k k k S S S ++>⋅,不成立;综上,不存在()*2,k k k ≥∈N ,使得ln kS、1ln k S +、2ln k S +成等比数列.【点睛】关于等比中项性质的运用,需要注意,,a b c 三个数成等比数列,列式得2b ac =,然后再根据数列是等差还是等比数列化为基本量1,a d 或1,a q 计算. 25.(1)12n na ;(2)233m <.【分析】(1)根据题设中的递推关系有12n n a a -=,算出1a 后可求{}n a 的通项. (2)利用裂项相消法可求n T ,求出n T 的最小值后可得m 的取值范围. 【详解】(1)因为()*224n n S a a n N=-∈,故11224n n Sa a --=-,所以1244n n n a a a -=-即12n n a a -=,其中2n ≥,所以322a a =且212a a =, 因为1a ,2a ,31a -成等差数列,故21321a a a =+-即111441a a a =+-,故11a =且10a ≠,故0n a ≠,故12nn a a -=即{}n a 为等比数列且公比为2,故12n n a .(2)()()()()2222211111log log 212122121n n n b a a n n n n +⎛⎫===- ⎪-+-+⎝⎭,所以1111111111213352121221n T n n n ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=-+-++-=- ⎪ ⎪ ⎪ ⎪⎢⎥-++⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦, 因为0n b >,故{}n T 为增数列,故()1min 13n T T ==,故1323m>即233m <. 【点睛】方法点睛:数列求和关键看通项的结构形式,如果通项是等差数列与等比数列的和,则用分组求和法;如果通项是等差数列与等比数列的乘积,则用错位相减法;如果通项可以拆成一个数列连续两项的差,那么用裂项相消法;如果通项的符号有规律的出现,则用并项求和法. 26.见解析 【分析】根据选择的条件求出{}n a 的通项,再利用分组求和可得n T . 【详解】若选①,由222n n S n a =+可得1122a a =+,故12a =,又22422S a ⨯=+,故()222224a a =+⨯+,故24a =, 故等差数列的公差422d =-=,故()2212n a n n =+-=, 所以()()2212n n n S n n +==+, 所以12b =,26b =,所以等比数列{}n b 的公比为3q =,故123n n b -=⨯故()111111=232311n n n n b S n n n n --++⨯=-+⨯++, 故11111111131=231223341131n nn T n n n -⎛⎫⎛⎫⎛⎫⎛⎫-+-+-++-+⨯=- ⎪ ⎪ ⎪ ⎪+-+⎝⎭⎝⎭⎝⎭⎝⎭.若选②,由题设可得11126163351042a d a d a d +=⎧⎨+++=⎩,解得122a d =⎧⎨=⎩, 同①可得131nn T n =-+. 若选③,由题设可得1213S S =即212a a =,故1d a =,故1n a na =, 而74567S a ==,故48a =,故12a =,故2n a n =,同①可得131n n T n =-+. 【点睛】方法点睛:等差数列或等比数列的处理有两类基本方法:(1)利用基本量即把数学问题转化为关于基本量的方程或方程组,再运用基本量解决与数列相关的问题;(2)利用数列的性质求解即通过观察下标的特征和数列和式的特征选择合适的数列性质处理数学问题.另外求和注意根据通项的特征选择合适的求和方法.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分
高二数学必修五第一章试题 第I 卷(选择题,共90分)
注意事项:
1.答第I 卷前,考生务必将答题卡及第II 卷密封线内项目填写清楚。
2.第I 卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再涂其他答案,答案不能答在试题纸上。
3.非选择题答案必须写在答题卡各题目指定区域内相应位置上,不按以上要求作答的答案无效。
考生必须保持答题卡的整洁,
一、选择题:本大题共有12小题,每小题5分,共60分.在每小题给出的四个选项中,有且只有一项是符合题目要求的.
1.数列252211,,
,,的一个通项公式是
A. 33n a n =-
B. 31n a n =-
C. 31n a n =+
D. 33n a n =+ 2.已知数列{}n a 的首项11a =,且()1212n n a a n -=+≥,则5a 为 A .7 B .15 C.30 D .31
3.下列各组数能组成等比数列的是
A. 111,,369
B. lg3,lg9,lg 27
C. 6,8,10
D. 3,33,9-
4. 等差数列{}n a 的前m 项的和是30,前2m 项的和是100,则它的前3m 项的和是
A .130
B .170
C .210
D .260
5.若{}n a 是等比数列,前n 项和21n
n S =-,则2222123n a a a a +++
+=
A.2(21)n -
B.21(21)3n -
C.41n
- D.1(41)3
n -
6.各项为正数的等比数列{}n a ,478a a ⋅=,则1012222log log log a a a
+++=
A .5
B .10
C .15
D .20
7.已知等差数列{a n }的公差d ≠0,若a 5、a 9、a 15成等比数列,那么公比为 (A)
(B)
(C)
(D)
8.在等差数列{}n a 和{}n b 中,125a =,175b =,100100100a b +=,则数列{}n n a b +的前100项和为
A. 0
B. 100
C. 1000
D. 10000
9.已知等比数列{}n a 的通项公式为1
23n n a -=⨯,则由此数列的偶数项所组成的新数列的前n 项
和n S =
A.31n
- B.3(31)n
- C.91
4
n - D.3(91)4n -
10.等比数列{}n a 中,991a a 、为方程016102=+-x x 的两根,则805020a a a ⋅⋅ 的值为
A .32
B .64
C .256
D .±64 11.在等差数列{}n a 中,若4681012120a a a a a ++++=,则10112
3
a a -
的值为 A. 6 B. 8 C. 10 D. 16
12. 设由正数组成的等比数列,公比q=2,且303021
2=a a a ……·,则30963a a a a ……··等于 A .10
2 B .20
2 C .16
2 D .15
2
二、填空题:共6小题,每小题5分,共30分.将答案填在题中的横线上.
13.等差数列的前4项和为40,最后4项的和为80,所有各项的和为720,则这个数列
一共有 项. 14.若{}n a 是等比数列,下列数列中是等比数列的所有代号为 .
① {}2n a ② {}2n a ③ 1n a ⎧⎫⎨⎬⎩⎭
④ {}
lg n a
15.若{a n }是等差数列,a 3,a 10是方程x 2-3x-5=0的两根,则a 5+a 8= .
16.已知{}n a 是等比数列,n a >0,又知2a 4a +23a 5a +4a 6a =25,那么35a a +=__________. 17. 在等差数列{}n a 中,14101619100a a a a a ++++=,则161913a a a -+的值是________
18. 已知数列{}n a 的前n 项和n
n S 23+=,则n a =__________.
答题卡:
班级:______姓名:_________学号:_______得分:_______
二、填空题:
13、____________ 14、____________ 15、____________
16、____________ 17、____________ 18、____________
第II 卷(非选择题,共60分)
注意事项:用钢笔或圆珠笔直接答在试题卷上。
三、解答题:本大题共4小题,共60分.解答应写出文字说明,证明过程或演算步骤.
19(14分).已知四个数,前三个数成等比数列,和为19,后三个数成等差数列,和为12,求
此四个数.
20(14分).已知{}n a 满足13a =,121n n a a +=+,
(1)求证:{}1n a +是等比数列;(2)求这个数列的通项公式n a .
21(15分).已知数列{}n a 中,13a =,1021a =,通项n a 是项数n 的一次函数, ① 求{}n a 的通项公式,并求2009a ;
② 若{}n b 是由2468,,,,,a a a a 组成,试归纳{}n b 的一个通项公式.
22(17分).设{}n a 是公比大于1的等比数列,n S 为数列{}n a 的前n 项和.已知37S =,且
123334a a a ++,,构成等差数列.
(1)求数列{}n a 的通项公式.
(2)令31ln 12n n b a n +==,,,,求数列{}n b 的前n 项和n T
答 案
一.选择题:BDDCD CCDDD BB
二.填空题:13. 48 ;14. ①②③ ;15. 3 ;16. 5 ;17. 20 ; 18. ⎩
⎨⎧≥==-)2(,2)
1(,51n n a n n ;
三.解答题:19. 依题意可设这四个数分别为:2
(4)4
d -,4d -,4, 4d +,则由前三个数和为19
可列方程得,
2
(4)44194
d d -+-+=,整理得,212280d d -+=,解得2d =-或14d =. ∴这四个数分别为:25,-10,4,18或9,6,4,2.
20. 1
21n n a +=-
21. 设n a kn b =+,则31021k b k b +=⎧⎨+=⎩,解得21
k b =⎧⎨=⎩,∴21()n a n n N *=+∈,∴20094019a =, 又∵2a ,4a ,6a ,8a ,即为5,9,13,17,…,∴41n b n =+.
22. 解:(1)由已知得12313
27:(3)(4)3.2
a a a a a a ++=⎧⎪
⎨+++=⎪⎩,解得22a =.设数列{}n a 的公比为q ,由22a =,
可得1322a a q q =
=,.又37S =,可知2
227q q
++=,即22520q q -+=, 解得121
22
q q ==
,.由题意得1
2q q >∴=,.11a ∴=. 故数列{}n a 的通项为1
2n n a -=.
(2)由于31ln 12n n b a n +==,,,,由(1)得3312n
n a +=
3ln 23ln 2n n b n ∴==。
又13ln 2n n b b +-={}n b ∴是等差数列.
12n n T b b b ∴=++
+
1()(3ln 23ln 2)3(1)ln 2.222n n b b n n n +++=
== 故3(1)ln 22
n n n T +=.。