北师大版八年级数学下线段的垂直平分线知识点
北师大版八年级数学下册第一章三角形的证明第8课 线段垂直平分线的性质与判定课件
几何语言:∵CD是AB的垂直平分线, 线段垂直平分线上的点到这条线段两端点的距离________. P点在AB的垂直平分线上
∴∠ABN=∠A. 如图,在△ABC中,AB=AC,∠A=40°,AB的垂直平分线分别交AB、AC于点D、E.
中正确的是( D ) ∴∠ABC-∠MBC=∠ACB-∠MCB,
∴∠BAF=∠B=30°. 即直线AO垂直平分BC ∴∠BAP=∠B,∠CAQ=∠C
A.AO=BO 如图,AB=AD,则添加一个条件_________,即可得到AC是BD的垂直平分线.
(1)若BC=15,求△APQ的周长; (1)AD=________,∠ADC=________°,AC=________; 求证:直线AO垂直平分线段BC.
4.(例2)如图,在△ABC中,AB=AC,∠BAC=120°, AB的垂直平分线交AB于点E,交BC于点F,连接AF, 求∠AFC的度数. 解:∵AB=AC,∠BAC=120°, ∴∠B=∠C=(180°-120°)÷2=30°. ∵EF垂直平分AB,∴BF=AF. ∴∠BAF=∠B=30°. ∵∠AFC为△ABF的外角, ∴∠AFC=∠BAF+∠B=30°+30°=60°.
=BP+PQ+C80° ∴∠B+∠C=180°-∠BAC=180°-105°=75° ∵MP,NQ分别垂直平分AB和AC ∴AP=BP,AQ=CQ ∴∠BAP=∠B,∠CAQ=∠C ∴∠BAP+∠CAQ=∠B+∠C=75° ∴∠PAQ=∠BAC-(∠BAP+∠CAQ)=105°-75°=30°
∵∠BNC是△ABN的外角, ∴∠ABC-∠MBC=∠ACB-∠MCB,
第一章三角形的证明1.3线段的垂直平分线第1课时线段垂直平分线的的性质与判定北师大版八年级数学下册
无数 种.
3. 下列说法:
① 若点 P、E 是线段 AB 的垂直平分线上两点,则 EA=
EB,PA=PB; ② 若 PA=PB,EA=EB,则直线 PE 垂直平分线段 AB; ③ 若 PA=PB,则点 P 必是线段 AB 的垂直平分线上的 点;
④ 若 EA=EB,则经过点 E 的直线垂直平分线段 AB. 其中正确的有 ①②③ (填序号).
A.三条角平分线的交点 B.三边垂直平分线的交点 C.三边高线的交点 D.没有这样的点
3. 在△ABC 中,AB 的中垂线与 AC 边所在直线相交所得的锐角为 50°,则∠A 的
度数为( C)
A. 50°
B. 40°
C. 40°或140°
D. 40°或50°
4. 已知:如图,在△ABC 中,边 AB、
P3,… 到点 A 与点 B 的距离之间的数量关系. P3
P1A _=___P1B
P2 P1
P2A __=__ P2B
A
B
P3A __=__ P3B
l
活动探究 将△ABC 沿直线 l 对折,由于 l
是线段 AB 的垂直平分线,因此点 A 与点 B 重合. 从而线段 PA 与线段 PB 重合,于是 PA = PB.
l
证明:∵ l⊥AB,
P
∴∠PCA =∠PCB.
又 AC = CB,PC = PC,
∴△PCA≌△PCB (SAS). A
C
B
∴ PA = PB.
微课——证明线段垂直平分线的性质
点击 视频 开始 播放 ←
总结归纳
线段垂直平分线的性质定理:
线段垂直平分线上的点到这条线段两个端点 的距离相等.
练习
AA′ 沿直线 l 折叠,则点 A 与点 A′ 重合,AD = A′D,
八年级数学下册 1.3 线段的垂直平分线 线段垂直平分线定理知识总结素材 (新版)北师大版
线段垂直平分线定理知识总结一、线段垂直平分线的性质定理文字语言 符号语言 图形语言线段垂直平分线上的点到这条线段两个端点的距离相等 因为点P 在线段AB 的垂直平分线上,所以PA=PBP OBA说明:1、这里的距离指的是点与点之间的距离,也就是两点之间线段的长度。
2、在使用该定理时必须保证两个前提条件:一是垂直于线段,二是平分这条线段。
例题、如下图,在△ABC 中,AC=27,AB 的垂直平分线交AB 于点D ,交AC 于点E ,△BCE 的周长等于50,求BC 的长。
分析:题中给出了线段垂直平分线这个条件,所以可以考虑运用其性质定理,从而得出AE=BE ,把BE 与AE 进行等量代换,再根据△BCE 的周长及AC 的长,可求出BC 的长。
解:因为ED 是线段AB 的垂直平分线, 所以BE=AE 。
因为△BCE 的周长等于50, 即BE +EC +BC=50, 所以AE +EC +BC=50。
又因为AE +EC=AC=27, 所以BC=50-27=23。
二、线段垂直平分线定理的逆定理文字语言 符号语言 图形语言到一条线段两个端点距离相等的点,在这条线段的垂直平分线上。
因为PA=PB ,所以点P 在线段AB 的垂直平分线上。
P OBA证明某一条直线是另一条线段的垂直平分线有两种方法:第一种:根据线段垂直平分线的定义,也就是经过线段的中点,并且垂直于这条线段的EDCBA直线,叫做这条线段的垂直平分线。
使用这种方法必须满足两个条件:一是垂直二是平分;第二种:可以证明有两个点都在线段的垂直平分线上,根据两点确定一条直线,就可以判断这两点所在的直线就是这条线段的垂直平分线。
例题1、如下图,P 为线段AB 外的一点,并且PA=PB 。
求证:点P 在线段AB 的垂直平分线上。
分析:要想说明某一点在线段的垂直平分线上,可以根据线段的垂直平分线的定义来进行判断。
证明:过点P 作PC ⊥AB ,垂足为点C 。
北师大版八下数学1.3《线段的垂直平分线》知识点精讲
注意:要证明一条线为一个线段的垂直平分线,应证明两个点到这条线段的距离相等且这两个点都在要求证的直线上才可以证明通常来说,垂直平分线会与全等三角形来使用。
垂直平分线的性质:线段垂直平分线上的点到这条线段的两个端点的距离相等。
巧记方法:点到线段两端距离相等。
可以通过全等三角形证明。
垂直平分线的尺规作法方法之一:(用圆规作图)1、在线段的中心找到这条线段的中点通过这个点做这条线段的垂线段。
2、分别以线段的两个端点为圆心,以大于线段的二分之一长度为半径画弧线。
得到两个交点(两交点交与线段的同侧)。
3、连接这两个交点。
原理:等腰三角形的高垂直平分底边。
方法之二:1、连接这两个交点。
原理:两点成一线。
等腰三角形的性质:1、三线合一 ( 等腰三角形底边上的高、底边上的中线、顶角平分线相互重合。
)2、等角对等边(如果一个三角形,有两个内角相等,那么它一定有两条边相等。
)3、等边对等角(在同一三角形中,如果两个角相等,即对应的边也相等。
)垂直平分线的判定①利用定义.②到一条线段两个端点距离相等的点,在这条线段的垂直平分线上.(即线段垂直平分线可以看成到线段两端点距离相等的点的集合)例1.如图,已知:在△ABC中,∠C=90°∠A=30°,BD平分∠ABC交AC于D.求证:D在AB的垂直平分线上.分析:根据线段垂直平分线的逆定理,欲证D在AB的垂直平分线上,只需证明BD=DA即可.证明:∵∠C=90,°∠A=30°(已知),∴∠ABC=60°(Rt△的两个锐角互余)又∵BD平分∠ABC(已知)∴∠DBA=1/2∠ABC=30°=∠A∴BD=AD(等角对等边)∴D在AB的垂直平分线上(和一条线段两个端点距离相等的点,在这条线段的垂直平分线上).例2.如图,已知:在△AB C中,AB=AC,∠BAC=120°,AB的垂直平分线交AB于E,交BC于F。
北师大版八年级数学(下)第一章 线段的垂直平分线
1.3线段的垂直平分线一、知识点梳理1.线段垂直平分线性质定理:①线段垂直平分线垂直平分某条线段②线段垂直平分线上的点到这条线段的两个端点的距离相等2.线段垂直平分线判定定理:到一条线段两个端点距离相等的点,在这条线段的垂直平分线上3.作图要求:掌握尺规作图做已知线段的垂直平分线4.三角形外心:三角形三条边垂直平分线的交点二、经典题型总结题型一:利用线段垂直平分线的性质求线段长题型二:利用三角形的垂直平分线的性质求角度题型三:利用线段垂直平分线解决与周长有关问题题型四:利用作线段垂直平分线解决实际问题题型五:线段垂直平分线的判定定理的应用三、解题技巧点睛1.若题目中出现“求一点到某几个点的距离相等”则可以想到运用垂直平分线的性质画出中垂线2.三角形外心也是三角形外接圆的圆心,锐角三角形的外心在三角形的内部,直角三角形的外心在三角形的斜边中点,钝角三角形的外心在三角形的外部3.求两条线短的最短距离,通常是想到过一个已知点做已知直线的对称点,连接对称点与另一个已知点的连线即为最短距离。
4.灵活运用垂直平分线逆定理解决题目四、易错点分析在运用线段垂直平分线计算周长的时候容易出现错误五、典型例题分析题型一:利用线段垂直平分线的性质求线段长例题:在△ABC中,AC=5,AB的垂直平分线DE交AB、AC于点E、D.(1)若△BCD的周长为8,求BC之长. (2)若BC=4,求△BCD的周长.题型二:利用三角形的垂直平分线的性质求角度例题:如图,在等腰三角形ABC中,AB=AC,DE垂直平分AB,已知∠ADE=40°,则∠DBC=___∘.题型三:利用线段垂直平分线解决与周长有关问题例题:如图,在直角中,∠BAC=90∘,AB=8 ,AC=6 ,DE 是AB 边的垂直平分线,垂足为D ,交BC 于点E ,连接AE ,则△ACE 的周长为________.题型四:利用作线段垂直平分线解决实际问题例题:如图,某城市规划局为了方便居民的生活,计划在三个住宅小区A,B,C 之间修建一个购物中心,试问:该购物中心应建于何处,才能使得它到三个小区的距离相等?题型五:线段垂直平分线的判定定理的应用如图,在△ABC中,∠C=90°,∠A=30°,BD平分∠ABC交AC于点D,求证:点D在AB的垂直平分线上.六、中考真题再现(2019.长沙.9题)如图,Rt△ABC中,∠C=90°,∠B=30°,分别以点A和点B为圆心,大于12AB的长为半径作弧,两弧相交于M、N两点,作直线MN,交BC于点D,连接AD,则∠CAD的度数是A.20° B.30° C.45° D.60°(2019.江苏.15题)如图,在△ABC中,BC的垂直平分线MN交AB于点D,CD 平分∠ACB.若AD=2,BD=3,则AC的长.七、习题巩固训练1.如图所示,在△ABC中,AB=AC,∠A=50°,AB的垂直平分线交AB于D,交AC于E,连接BE,则∠EBC的度数是()A.15°B.20°C.65°D.100°2.如图,在△ABE中,∠A=105°,AE的垂直平分线MN交BE于点C,且AB+BC=BE,则∠B的度数是()A.45°B.60°C.50°D.55°3.如图,在等腰中,,,的平分线与AB的垂直平分线交于点O、点C沿EF折叠后与点O重合,则的度数是A. B. C. D.4.如图,△ABC中,AB=5,AC=6,BC=4,边AB的垂直平分线交AC于点D,则△BDC的周长是______.5.如图,线段AB的垂直平分线与BC的垂直平分线的交点P恰好在AC上,且AC=10cm,则B点到P点的距离为______.6.如图,△ABC的外角∠ACD的平分线CP与内角∠ABC的平分线BP交于点P,若∠BPC=40°,则∠CAP=__________.7.如图,AD和EF分别是△ABC中BC与AB垂直平分线,且BE+CE=20cm,则AB=.8.如图,△ABC中,D是AB的中点,DE⊥AB,∠ACE+∠BCE=180°,EF⊥AC交AC于F,AC=12,BC=8,则AF=.9.在Rt△ABC中,∠A=40°,∠B=90°,AC的垂直平分线MN分别与AB,AC交于点D,E,则∠BCD的度数为10.如图,等腰三角形ABC的底边BC长为6,面积是18,腰AC的垂直平分线EF分别交AC,AB于E,F点,若点D为BC边的中点,点M为线段EF 上一动点,则的周长的最小值为______.11.如图,某校两个班的学生分别在C,D两处参加植树活动,现要在道路AO,OB的交叉区域内设一个茶水供应点M,使点M到两条路的距离相等,且MD=MC,这个茶水供应点应建在何处?12.如图所示,Rt△ABC中,∠C=90°,AC=4,BC=3.(1)根据要求用尺规作图:作斜边AB边上的高CD,垂足为D;(2)求CD的长.13.如图在△ABC中,∠ACB=90°,BC=3,AC=4,AB的垂直平分线DE(垂足为D)交BC的延长线于点E,求线段CE的长.14.如图所示,∠BAC=∠ABD,AC=BD,点O是AD,BC的交点,E是AB的中点.求证:OE 是线段AB的垂直平分线.15.如图,在△ABC中,AC边的垂直平分线DM交AC于D,BC边的垂直平分线EN交BC于E,DM与EN相交于点F,若∠MFN=70°,求∠MCN的度数.16.两个城镇A,B与一条公路CD,一条河流CE的位置如图所示,某人要修建一避暑山庄,要求该山庄到A,B的距离必须相等,到CD和CE的距离也必须相等,且在∠DCE的内部,请画出该山庄的位置P.(不要求写作法,保留作图痕迹.)17.尺规作图:某学校正在进行校园环境的改造工程设计,准备在校内一块四边形花坛内栽上一棵桂花树.如图,要求桂花树的位置(视为点P),到花坛的两边AB、BC的距离相等,并且点P到点A、D的距离也相等.请用尺规作图作出栽种桂花树的位置点P(不写作法,保留作图痕迹).18.铁路上A,B两站(视为直线上的两点)相距50km,C,D为两村庄(视为两个点),DA⊥AB于点A,CB⊥AB于点B(如图).已知DA=20km,CB=10km,现在要在铁路AB上建一个土特产收购站E,使得C,D两村庄到收购站E的直线距离相等,请你设计出收购站的位置,并计算出收购站E到A站的距离.19.已知甲村和乙村靠近公路a、b,为了发展经济,甲乙两村准备合建一个工厂,经协商,工厂必须满足以下要求:(1)到两村的距离相等;(2)到两条公路的距离相等.你能帮忙确定工厂的位置吗?20.已知:如图,直线l1,l2,l3表示三条相互交叉的公路,现要建一个塔台,若要求它到三条公路的距离都相等,试问:(1)可选择的地点有几处?(2)你能画出塔台的位置吗?21.如图,在△ABC中,∠ACB=90°,点D,E在AB上,且AF垂直平分CD,BG垂直平分CE(1)求∠ECD的度数;(2)若∠ACB为α,则∠ECD的度数能否用含α的式子来表示.22.已知:如图,∠BAC的角平分线与BC的垂直平分线DG交于点D,DE⊥AB,DF ⊥AC,垂足分别为E,F.①求证:BE=CF;②若AF=6,BC=7,求△ABC的周长.23.如图,OE,OF分别是△ABC中AB,AC边的中垂线(即垂直平分线),∠OBC、∠OCB的平分线相交于点I,试判定OI与BC的位置关系,并给出证明.24.如图,在四边形ABCD中,AD∥BC,E为CD的中点,连接AE、BE,BE⊥AE,延长AE交BC的延长线于点F.求证:(1)FC=AD;(2)AB=BC+AD.。
北师大版数学八年级下册《线段的垂直平分线》教案
北师大版数学八年级下册《线段的垂直平分线》教案一. 教材分析《线段的垂直平分线》是北师大版数学八年级下册的一章内容。
本章主要介绍线段的垂直平分线的性质和判定方法。
通过学习本章,学生能够理解线段的垂直平分线的概念,掌握其性质和判定方法,并能够运用到实际问题中。
二. 学情分析学生在学习本章之前,已经学习了线段的基本概念和性质,具备了一定的几何基础。
但是,对于线段的垂直平分线的概念和性质可能较为抽象,需要通过实例和练习来加深理解。
同时,学生可能对于证明过程和方法还不够熟练,需要通过练习和指导来提高。
三. 教学目标1.知识与技能:学生能够理解线段的垂直平分线的概念,掌握其性质和判定方法,并能够运用到实际问题中。
2.过程与方法:学生能够通过观察、操作、证明等方法,探索线段的垂直平分线的性质和判定方法。
3.情感态度与价值观:学生能够培养对几何学科的兴趣和好奇心,提高对问题的思考和解决能力。
四. 教学重难点1.重点:线段的垂直平分线的性质和判定方法。
2.难点:证明过程和方法的运用。
五. 教学方法1.引导法:通过问题和情境引导学生思考和探索,激发学生的学习兴趣和主动性。
2.示范法:通过教师的示范和讲解,引导学生理解和掌握知识。
3.练习法:通过练习和实例,巩固学生的知识和技能。
六. 教学准备1.教具准备:黑板、粉笔、几何图形、直尺、圆规等。
2.教学资源:教案、PPT、练习题等。
七. 教学过程1.导入(5分钟)教师通过提问方式引导学生回顾线段的基本概念和性质,为新课的学习做好铺垫。
2.呈现(10分钟)教师通过PPT或板书,介绍线段的垂直平分线的定义和性质,同时给出一些实例来说明。
3.操练(10分钟)教师提出一些练习题,让学生独立完成。
通过练习,让学生加深对线段的垂直平分线的性质和判定方法的理解。
4.巩固(10分钟)教师选取一些练习题,进行讲解和解析。
通过讲解,帮助学生巩固所学知识,并解决学生在练习中遇到的问题。
5.拓展(10分钟)教师提出一些拓展问题,引导学生进行思考和讨论。
线段的垂直平分线 第一课时-八年级数学下册课件(北师大版)
2 到三角形三个顶点的距离都相等的点是这个三角形的( D ) A.三条高的交点 B.三条角平分线的交点 C.三条中线的交点 D.三条边的垂直平分线的交点
3 如图,点D 在△ABC 的BC 边上,且BC=BD+AD, 则点D 在线段( B )的垂直平分线上. A.AB B.AC C.BC
D.不确定
A.16
B.15
C.14
D.13
3 如图,已知AC⊥BC,BD⊥AD,AC,BD 相交于点O,如果 AC=BD,那么下列结论:①AD=BC;②∠ABC=∠BAD;③ ∠DAC=∠CBD;④点O 在线段AB 的垂直平分线上.
其中正确的是( D ) A.①②③
B.②③④
C.①③④
D.①②③④
4 如图,已知△ABE 中,AB,AE 边上的垂直平分线m1, m2分别交BE 于点C,D,且BC=CD=DE. (1)求证:△ACD 是等边三角形; (2)求∠BAE 的度数.
(1)证明:∵AD∥BC,∴∠ECF=∠ADE. ∵E 为CD 的中点,∴CE=DE. 在△FEC 与△AED 中,
∠FEC=∠AED, CE=DE, ∠ECF=∠EDA, ∴△FEC ≌ △AED (ASA). ∴CF=AD.
(2)解:当BC=6时,点B 在线段AF 的垂直平分线上.理由: ∵BC=6,AD=2,AB=8, ∴AB=BC+AD. 又∵CF=AD,BC+CF=BF, ∴AB=BF. ∴点B 在线段AF 的垂直平分线上.
2
2
(4)不需要修改.
线段:在线段垂直平分线上的点到线段两个端点 距离都相等. 判定:与线段两个端点距离相等的点都在线段的 垂直平分线上. 线段垂直平分线的集合定义: 线段垂直平分线可以看作是与线段两个端点距离 相等的所有点的集合.
北师大版八年级数学下册1.3线段的垂直平分线及作图
提示:AB是线段CD的垂直平 分线能带给我们哪些新的条 件?
合作探究
合作探究
逆命题: 到一条线段两个端点距离相等的点,在这条线段的垂直平 分线上.
证明思路: 1.PA=PB能判定△PAB为何种特殊形状 2.等腰三角形 “三线合一” 3.顶角顶点P一定在线段AB的垂直平分线上
∵c,a,b分别是AB,BC,AC的垂直平分线(已知), ∴c,a,b相交于一点P,且PA=PB=PC
aA
c
b
P
B
C
合作探究
(1)已知三角形的一条边及这条边上的高,你能作出三角形吗? 如果能,能作出几个?所作出的三角形都全等吗? C
A
D
B
合作探究
(2)已知等腰三角形的底及底边上的高,你能用尺规作出等腰 三角形吗?能作几个?
1.垂直平分线的性质定理
“
“
三
二
个 定
2.垂直平分线的判定定理
个 作
理 ”
aA
图 ”
c
b
P
B
C
合作探究 垂直平分线的判定定理
几何语言描述: 如图, ∵PA=PB(已知),
∴点P在AB的垂直平分线上
合作探究
剪一个三角形纸片通过折叠找出每条边的垂直平分线.
aA
观察这三条垂直平分线,你发现了什么?
结论:三角形三条边的垂直平分线相交于一点. c
b
如何证明这个结论呢?
P
B
C
证明思路:我们知道,两条直线相交只有一个交点。要想证明 三条直线相交于一点只要能证明两条直线的交点在第三条直线上 即可.可应用垂直平分线的逆定理来证明.
北师大版八年级下册数学《线段的垂直平分线》三角形的证明说课教学课件复习
实践探究,交流新知
已知等腰三角形的底边和该边上的高,求作等腰三角形
(1)已知三角形的一条边及这条边上的高,你能作出三角形吗?如果能,能作 几个?所作出的三角形都全等吗? (2)已知等腰三角形的底边,你能用尺规作出等腰三角形吗?如果能,能作几 个?所作出的三角形都全等吗? (3)已知等腰三角形的底边及底边上的高,你能用尺规作出等腰三角形吗?如 果能,能作几个?
. 39°
3.如图,在△ABC中,∠BAC是钝角. (1)画出边BC上的中线AD; (2)画出边BC上的高AH.
第1题
第2题
第3题
课堂小结,整体感知
1.课堂小结:请同学们回顾本节课所学的内容,有哪些收获? (1)三角形三条边的垂直平分线的性质 (2)尺规作线段的垂直平分线、等腰三角形
2.布置作业:
开放训练,体现应用
例1 (教材第22页例1)已知:如图,在△ABC中,AB=AC,O是△ABC内一点, 且OB=OC.求证:直线AO垂直平分线段BC.(解法不唯一)
证明:∵AB=AC, ∴点A为线段BC垂直平分线上的一点 ∵OB=OC, ∴点O为线段BC垂直平分线上的一点 ∴直线AO是线段BC的垂直平分线
课堂检测,巩固新知
解:(1)∵∠BAC=50°,AD平分∠BAC ∴∠EAD=1∠BAC=25°
2
∵DE⊥AB ∴∠AED=90° ∴∠EDA=90°-25°=65° (2)证明:∵DE⊥AB ∴∠AED=90°=∠ACB 又∵AD平分∠BAC ∴∠DAE=∠DAC 又∵AD=AD ∴△AED≌△ACD(AAS) ∴AE=AC ∵AD平分∠BAC ∴AD⊥CE,AD平分线段EC 即直线AD是线段CE的垂直平分线
北师大版八年级数学下册课件:线段的垂直平分线(1)
解:∵DE 是 AB 边上的垂直平分线, ∴EA=EB,AD=1AB,
2
∵△BCE 的周长为 16 cm, ∴BC+CE+BE=BC+CE+EA=BC+AC=16 cm, ∵△ABC 的周长为 24 cm,∴BC+AC+AB=24 cm, ∴AB=24-16=8 cm, ∴AD=1AB=4 cm.
∴Rt△AED≌Rt△AFD(HL),∴AE=AF. 又∵DE=DF,∴AD 垂直平分 EF.
★11.如图,AB=AC,DB=DC,E是AD延长线上的一点,BE是否 与CE相等?试说明理由. 解:BE=CE.理由如下:连接BC, ∵AB=AC, ∴点A在线段BC的垂直平分线上. 同理,点D也在线段BC的垂直平分线上. ∵两点确定一条直线, ∴AD是线段BC的垂直平分线. ∵E是AD延长线上的点,∴BE=CE.
2
7.【例4】(北师8下P32、人教8上P93)如图,在△ABC中,AD是 ∠BAC的平分线,DE⊥AB于E,DF⊥AC于F.求证:AD垂直平分 EF. 证明:∵AD是∠BAC的平分线, DE⊥AB,DF⊥AC, ∴DE=DF, ∠AED=∠AFD=90°.
在 Rt△AED 和 Rt△AFD 中, AD=AD, DE=DF,
谢谢大家多提宝贵意见
如图,∵CA=CB,PC⊥AB,
几何 ∴ PA=PB.
语言
2.(北师8下P23改编)如图,在△ABC中,直线DE垂直平分线段 AB,垂足为E,交BC于点D,∠B=60°,∠C=50°,则∠CAD的 度数为 10° .
知识点三:线段垂直平分线的判定定理
内容
到一条线段两个端点距离 的垂直平分线上
相等
如图,∵ PA=PB , 几何 ∴点P在AB的垂直平分线上
语言
北师大版八年级数学下册 线段的垂直平分线---知识讲解(基础) 含答案解析
线段的垂直平分线----知识讲解(基础)责编:杜少波【学习目标】1.掌握线段的垂直平分线的性质定理及其逆定理,能够利用尺规作已知线段的垂直平分线.2.会证明三角形的三条中垂线必交于一点.掌握三角形的外心性质定理.3.已知底边和底边上的高,求作等腰三角形.4.能运用线段的垂直平分线的性质定理及其逆定理解决简单的几何问题及实际问题.【要点梳理】要点一、线段的垂直平分线1.定义经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线,也叫线段的中垂线.2.线段垂直平分线的做法求作线段AB 的垂直平分线.作法:(1)分别以点A ,B 为圆心,以大于21AB 的长为半径作弧,两弧相交于C ,D 两点; (2)作直线CD ,CD 即为所求直线.要点诠释:(1)作弧时的半径必须大于21AB 的长,否则就不能得到两弧的交点了. (2)线段的垂直平分线的实质是一条直线.要点二、线段的垂直平分线定理线段的垂直平分线定理:线段垂直平分线上的点到这条线段两个端点的距离相等. 要点诠释:线段的垂直平分线定理也就是线段垂直平分线的性质,是证明两条线段相等的常用方法之一.同时也给出了引辅助线的方法,“线段垂直平分线,常向两端把线连”.就是遇见线段的垂直平分线,画出到线段两个端点的距离,这样就出现相等线段,直接或间接地为构造全等三角形创造条件.要点三、线段的垂直平分线逆定理线段的垂直平分线逆定理:到一条线段两个端点距离相等的点,在这条线段的垂直平分线上. 要点诠释:到线段两个端点距离相等的所有点组成了线段的垂直平分线.线段的垂直平分线可以看作是与这条线段两个端点的距离相等的所有点的集合.要点四、三角形的外心三角形三边垂直平分线交于一点,该点到三角形三顶点的距离相等,这点是三角形外接圆的圆心——外心.要点诠释:1.三角形三条边的垂直平分线必交于一点(三线共点),该点即为三角形外接圆的圆心.2.锐角三角形的外心在三角形内部;钝角三角形的外心在三角形外部;直角三角形的外心在斜边上,与斜边中点重合.3.外心到三顶点的距离相等.要点五、尺规作图作图题是初中数学中不可缺少的一类试题,它要求写出“已知,求作,作法和画图”,画图必须保留痕迹,在现行的教材里,一般不要求写出作法,但是必须保留痕迹.证明过程一般不用写出来.最后要点题即“xxx即为所求”.【典型例题】类型一、线段的垂直平分线定理1、如图,△ABC中AC>BC,边AB的垂直平分线与AC交于点D,已知AC=5,BC=4,则△BCD的周长是()A.9 B.8 C.7 D.6【思路点拨】先根据线段垂直平分线的性质得到AD=BD,即AD+CD=BD+CD=AC,再根据△BCD 的周长=BC+BD+CD即可进行解答.【答案】A;【解析】因为BD=AD,所以△BCD的周长=BD+CD+BC=AD+CD+BC=5+4=9.【总结升华】此题正是应用了线段垂直平分线的性质定理,也就是已知直线是线段垂直平分线,那么垂直平分线上的点到线段的两个端点距离相等,从而把三角形的边进行转移,进而求得三角形的周长.举一反三:【变式1】如图,在△ABC中,AB=AC,∠A=36°,AB的垂直平分线DE交AC于D,交AB于E,下述结论错误的是()A.BD平分∠ABC B.△BCD的周长等于AB+BCC.AD=BD=BC D.点D是线段AC的中点【答案】D;提示:根据等边对等角、三角形内角和定理及线段垂直平分线的性质定理即可推得选项A、B、C正确;所以选D,另外,注意排除法在解选择题中的应用.【变式2】(2015秋•江阴市校级月考)如图,△ABC中,BC=7,AB的垂直平分线分别交AB、BC于点D、E,AC的垂直平分线分别交AC、BC于点F、G.求△AEG的周长.【答案】解:∵DE为AB的中垂线,∴AE=BE,∵FG是AC的中垂线,∴AG=GC,△AEG的周长等于AE+EG+GA,分别将AE和AG用BE和GC代替得:△AEG的周长等于BE+EG+GC=BC,所以△AEG的周长为BC的长度即7.类型二、线段的垂直平分线的逆定理2、如图,已知AB=AC,∠ABD=∠ACD,求证:AD是线段BC的垂直平分线.A【答案与解析】证明:∵ AB=AC(已知)∴∠ABC=∠ACB (等边对等角)又∵∠ABD=∠ACD (已知)∴∠ABD-∠ABC =∠ACD-∠ACB (等式性质)即∠DBC=∠DCB∴DB=DC (等角对等边)∵AB=AC(已知)DB=DC(已证)∴点A和点D都在线段BC的垂直平分线上(和一条线段两个端点距离相等的点,在这条线段的垂直平分线上)∴AD是线段BC的垂直平分线。
北师大版八年级数学下册 线段的垂直平分线---知识讲解(基础) 含答案解析
线段的垂直平分线----知识讲解(基础)责编:杜少波【学习目标】1.掌握线段的垂直平分线的性质定理及其逆定理,能够利用尺规作已知线段的垂直平分线.2.会证明三角形的三条中垂线必交于一点.掌握三角形的外心性质定理.3.已知底边和底边上的高,求作等腰三角形.4.能运用线段的垂直平分线的性质定理及其逆定理解决简单的几何问题及实际问题.【要点梳理】要点一、线段的垂直平分线1.定义经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线,也叫线段的中垂线.2.线段垂直平分线的做法求作线段AB 的垂直平分线.作法:(1)分别以点A ,B 为圆心,以大于21AB 的长为半径作弧,两弧相交于C ,D 两点; (2)作直线CD ,CD 即为所求直线.要点诠释:(1)作弧时的半径必须大于21AB 的长,否则就不能得到两弧的交点了. (2)线段的垂直平分线的实质是一条直线.要点二、线段的垂直平分线定理线段的垂直平分线定理:线段垂直平分线上的点到这条线段两个端点的距离相等. 要点诠释:线段的垂直平分线定理也就是线段垂直平分线的性质,是证明两条线段相等的常用方法之一.同时也给出了引辅助线的方法,“线段垂直平分线,常向两端把线连”.就是遇见线段的垂直平分线,画出到线段两个端点的距离,这样就出现相等线段,直接或间接地为构造全等三角形创造条件.要点三、线段的垂直平分线逆定理线段的垂直平分线逆定理:到一条线段两个端点距离相等的点,在这条线段的垂直平分线上. 要点诠释:到线段两个端点距离相等的所有点组成了线段的垂直平分线.线段的垂直平分线可以看作是与这条线段两个端点的距离相等的所有点的集合.要点四、三角形的外心三角形三边垂直平分线交于一点,该点到三角形三顶点的距离相等,这点是三角形外接圆的圆心——外心.要点诠释:1.三角形三条边的垂直平分线必交于一点(三线共点),该点即为三角形外接圆的圆心.2.锐角三角形的外心在三角形内部;钝角三角形的外心在三角形外部;直角三角形的外心在斜边上,与斜边中点重合.3.外心到三顶点的距离相等.要点五、尺规作图作图题是初中数学中不可缺少的一类试题,它要求写出“已知,求作,作法和画图”,画图必须保留痕迹,在现行的教材里,一般不要求写出作法,但是必须保留痕迹.证明过程一般不用写出来.最后要点题即“xxx即为所求”.【典型例题】类型一、线段的垂直平分线定理1、如图,△ABC中AC>BC,边AB的垂直平分线与AC交于点D,已知AC=5,BC=4,则△BCD的周长是()A.9 B.8 C.7 D.6【思路点拨】先根据线段垂直平分线的性质得到AD=BD,即AD+CD=BD+CD=AC,再根据△BCD 的周长=BC+BD+CD即可进行解答.【答案】A;【解析】因为BD=AD,所以△BCD的周长=BD+CD+BC=AD+CD+BC=5+4=9.【总结升华】此题正是应用了线段垂直平分线的性质定理,也就是已知直线是线段垂直平分线,那么垂直平分线上的点到线段的两个端点距离相等,从而把三角形的边进行转移,进而求得三角形的周长.举一反三:【变式1】如图,在△ABC中,AB=AC,∠A=36°,AB的垂直平分线DE交AC于D,交AB于E,下述结论错误的是()A.BD平分∠ABC B.△BCD的周长等于AB+BCC.AD=BD=BC D.点D是线段AC的中点【答案】D;提示:根据等边对等角、三角形内角和定理及线段垂直平分线的性质定理即可推得选项A、B、C正确;所以选D,另外,注意排除法在解选择题中的应用.【变式2】(2015秋•江阴市校级月考)如图,△ABC中,BC=7,AB的垂直平分线分别交AB、BC于点D、E,AC的垂直平分线分别交AC、BC于点F、G.求△AEG的周长.【答案】解:∵DE为AB的中垂线,∴AE=BE,∵FG是AC的中垂线,∴AG=GC,△AEG的周长等于AE+EG+GA,分别将AE和AG用BE和GC代替得:△AEG的周长等于BE+EG+GC=BC,所以△AEG的周长为BC的长度即7.类型二、线段的垂直平分线的逆定理2、如图,已知AB=AC,∠ABD=∠ACD,求证:AD是线段BC的垂直平分线.A【答案与解析】证明:∵ AB=AC(已知)∴∠ABC=∠ACB (等边对等角)又∵∠ABD=∠ACD (已知)∴∠ABD-∠ABC =∠ACD-∠ACB (等式性质)即∠DBC=∠DCB∴DB=DC (等角对等边)∵AB=AC(已知)DB=DC(已证)∴点A和点D都在线段BC的垂直平分线上(和一条线段两个端点距离相等的点,在这条线段的垂直平分线上)∴AD是线段BC的垂直平分线。
北师大版八年级(下)数学第3讲:线段的垂直平分线(教师版)——王琪
线段的垂直平分线一、线段垂直平分线的性质1. 垂直平分线性质定理:线段垂直平分线上的点到这条线段两个端点的距离相等。
定理的作用:证明两条线段相等。
2. 线段关于它的垂直平分线对称。
二、线段垂直平分线的判定定理到一条线段两个端点距离相等的点在这条线段的垂直平分线上。
定理的作用:证明一个点在某线段的垂直平分线上。
三、关于线段垂直平分线性质定理的推论1. 关于三角形三边垂直平分线的性质三角形三边的垂直平分线相交于一点,并且这一点到三个顶点的距离相等。
性质的作用:证明三角形内的线段相等。
2. 三角形三边垂直平分线的交点位置与三角形形状的关系若三角形是锐角三角形,则它三边垂直平分线的交点在三角形内部;若三角形是直角三角形,则它三边垂直平分线的交点是其斜边的中点;若三角形是钝角三角形,则它三边垂直平分线的交点在三角形外部。
反之,也成立。
1.如图,DE是△ABC中边AC的垂直平分线,若BC=18cm,AB=10cm,则△ABD的周长为()A.16 cm B.28 cm C.26 cm D.18 cm解:∵DE是AC的垂直平分线,∴AD=CD,∴△ABD的周长=AB+BD+AD=AB+BD+CD=AB+BC,∵BC=18cm,AB=10cm,∴△ABD的周长=18+10=28cm.故选B.2.在三角形内部,有一点P到三角形三个顶点的距离相等,则点P一定是()A.三角形三条角平分线的交点B.三角形三条垂直平分线的交点C.三角形三条中线的交点D.三角形三条高的交点解:∵在三角形内部,有一点P到三角形三个顶点的距离相等,∴点P一定是三角形三条垂直平分线的交点.故选B.3.如图,在△ABC中,BC的垂直平分线EF交∠ABC的平分线BD于E,如果∠BAC=60°,∠ACE=24°,那么∠BCE的大小是()A.24° B.30° C.32° D.36°解:∵EF是BC的垂直平分线,∴BE=CE,∴∠EBC=∠ECB,∵BD是∠ABC的平分线,∴∠ABD=∠CBD,∴∠ABD=∠DBC=∠ECB,∵∠BA C=60°,∠ACE=24°,∴∠ABD=∠DBC=∠ECB=(180°﹣60°﹣24°)=32°.故选C.4.如图,△ABC中,∠A=30°,∠C=90°,AB的垂直平分线交AC于D点,交AB于E点,则下列结论错误的是()A.DE=DC B.AD=DB C.AD=BC D.BC=AE解:∵△ABC中,∠A=30°,∠C=90°,AB的垂直平分线交AC于D点,交AB于E点,∴AB=2BC,AD=DB>AE,∴AD=DB,故选项B正确,AD>BC,故选项C错误,BC=AE,故选项D正确,∵∠DEB=∠DCB=90°,在Rt△DBE和Rt△DBC中,,∴Rt△DBE≌Rt△DBC(HL),∴DE=DC,故选项A正确,故选C.5.如图,在△ABC中,∠ACB=90゜,BE平分∠ABC,交AC于E,DE垂直平分AB于D,求证:BE+DE=AC.证明:∵∠ACB=90°,∴AC⊥BC,∵ED⊥AB,BE平分∠ABC,∴CE=DE,∵DE垂直平分AB,∴AE=BE,∵AC=AE+CE,∴BE+DE=AC.6.已知:如图,AD是△ABC的角平分线,DE⊥AB于点E,DF⊥AC于点F,BE=CF,求证:AD是BC 的中垂线.证明:∵AD是△ABC的角平分线,DE⊥AB,DF⊥AC,∴DE=DF,∠BED=∠CFD=90°,在Rt△BED和Rt△CFD中,,∴Rt△BED≌Rt△CFD(SAS),∴∠B=∠C,∴AB=AC,∵AD是△ABC的角平分线,∴AD是BC的中垂线.7.如图.AB=AC,MB=MC.求证:直线AM是线段BC的垂直平分线.证明:∵AB=AC,∴点A在BC的垂直平分线上,∵BM=CM,∴点M在BC的垂直平分线上,∴直线AM是BC的垂直平分线.8.如图,在△ABC中,BC的垂直平分线交BC于点D,交AB延长线于点E,连接CE.求证:∠BCE=∠A+∠ACB.证明:∵BC的垂直平分线交BC于点D,交AB延长线于点E,∴CE=BE,∴∠ECB=∠EBC,∵∠EBC=∠A+∠ACB,∴∠BCE=∠A+∠ACB.9.如图,在Rt△ABC中,∠C=90°,AB边的垂直平分线DE交BC于点E,垂足为D.求证:∠CAB=∠AED.证明:∵DE是AB的垂直平分线,∴EA=EB.∴∠EAB=∠B.∵∠C=90°,∴∠CAB+∠B=90°.又∵∠AED+∠EAB=90°,∴∠CAB=∠AED.基础演练1.如图,AC=AD,BC=BD,则()A.CD垂直平分AB B.AB垂直平分CDC.CD平分∠ACB D.以上结论都不正确解:AC=AD,BC=BD根据线段垂直平分线的性质可得:AB垂直平分CD故选B.2.已知△ABC的三边的垂直平分线交点在△ABC的边上,则△ABC的形状为()A.锐角三角形B.直角三角形C.钝角三角形D.不能确定解:∵△ABC的三边的垂直平分线交点在△ABC的边上,∴△ABC的形状为直角三角形.故选B.3.如图,在△ABC中,分别以点A,B为圆心,大于AB长为半径画弧,两弧分别交于点D,E,则直线DE是()A.∠A的平分线 B.AC边的中线C.BC边的高线 D.AB边的垂直平分线解:∵分别以点A,B为圆心,大于AB长为半径画弧,两弧分别交于点D,E,∴DA=DB,EA=EB,∴点D,E在线段AB的垂直平分线上,故选D.4.如图,四边形ABCD,∠A=110°,若点D在AB、AC的垂直平分线上,则∠BDC为()A.90° B.110°C.120°D.140°解:连接AD,∵点D在AB、AC的垂直平分线上,∴BD=AD,DC=AD,∴∠B=∠BAD,∠C=∠CAD,∵∠BAC=110°=∠BAD+∠CAD,∴∠B+∠C=110°,∴∠BDC=360°﹣(∠B+∠C)﹣∠BAC=360°﹣110°﹣110°=140°,故选D.5.如图,AD与BC相交于点O,OA=OC,∠A=∠C,BE=DE.求证:OE垂直平分BD.证明:在△AOB与△COD中,,∴△AOB≌△COD(ASA),∴OB=OD,∴点O在线段BD的垂直平分线上,∵BE=DE,∴点E在线段BD的垂直平分线上,∴OE垂直平分BD.巩固提高6.如图,在△ABC中,∠C=90°,∠A=36°,DE是线段AB的垂直平分线,交AB于点D,交AC于点E.求∠EBC的度数.解:∵∠C=90°,∠A=36°,∴∠ABC=90°﹣36°=54°,∵DE是线段AB的垂直平分线,∴AE=BE,∴∠ABE=∠A=36°,∴∠EBC=∠ABC﹣∠ABE=54°﹣36°=18°.7.如图,在△ABC中,BD=DC,∠ADB=∠ADC,求证:AD⊥BC.证明:∵在△ADB和△ADC中∴△ADB≌△ADC,∴AB=AC,∴A在线段BC的垂直平分线上,∵DB=DC,∴D在线段BC的垂直平分线上,即AD是线段BC的垂直平分线,∴AD⊥BC.8.如图,在△ABC中,BD是∠ABC的平分线,EF垂直平分BD.求证:∠ABD=∠BDF.证明:∵EF垂直平分BD,∴FB=FD,∴∠FBD=∠BDF,∵BD是∠ABC的平分线,∴∠ABD=∠FBD,∴∠ABD=∠BDF.9.如图,在△ABC中,∠B=30°,∠C=45°,AB的垂直平分线交BC于点D,BD=6,AE⊥BC于点E,求CE的长.解:连接AD,∵AB的垂直平分线交BC于点D,∴BD=AD=6,∴∠DAB=∠B=30°,∴∠ADE=60°,∵AE⊥BC,∴AE=3,∵∠C=45°,∴EC=AE=3.1.和三角形三个顶点的距离相等的点是()A.三条角平分线的交点B.三边中线的交点C.三边上高所在直线的交点D.三边的垂直平分线的交点解:根据线段垂直平分线的性质可得:三角形三个顶点的距离相等的点是三边的垂直平分线的交点.故选D.2.如图:DE是△ABC中AC边的垂直平分线,若BC=8厘米,AB=10厘米,则△EBC的周长为()厘米.A.16 B.18 C.26 D.28解:∵DE是△ABC中AC边的垂直平分线,∴AE=CE,∴AE+BE=CE+BE=10,∴△EBC的周长=BC+BE+CE=10厘米+8厘米=18厘米,故选B.3.如图,在△ABC中,∠ACB=90°,BC=6,DE垂直平分AC交AB于点E,则DE的长为()A.6 B.5 C.4 D.3解:∵DE垂直平分AC,∴AD=DC,DE∥BC,∴DE=BC=3,故选:D.4.如图,在△ABC中,DE垂直平分AB,交边AC于点D,交边AB于点E,连接BD.若AC=6,△BCD 的周长为10,则BC的长为()A.2 B.4 C.6 D.8解:∵DE垂直平分AB,∴DA=DB,∴CD+BD+BC=10,∴CD+AD+BC=10,即AC+BC=10,∴BC=4,故选:B.5.如图,DE是等腰△ABC的腰AB的垂直平分线,交AB于D,交AC于E,若∠C=70°,求∠AEB的大小.解:∵三角形ABC为等腰三角形,∴∠ABC=∠C=70°,∴∠A=180°﹣70°﹣70°=40°,又∵DE是AB的垂直平分线,∴EA=EB,∴∠ABE=∠A=40°,∴∠AEB=180°﹣∠A﹣∠ABE=180°﹣40°﹣40°=100°.6.如图,在Rt△ABC中,∠C=90°,AB边的垂直平分线DE交BC于点E,垂足为D.求证:∠CAB=∠AED.证明:∵DE是线段AB的垂直平分线,∴AE=BE,∠ADE=90°,∴∠EAB=∠B.在Rt△ABC中,∵∠C=90°,∴∠CAB+∠B=90°.在Rt△ADE中,∵∠ADE=90°,∴∠AED+∠EAB=90°,∴∠CAB=∠AED.1.如图,△ABC中,∠BAC=100°,DF,EG分别是AB,AC的垂直平分线,则∠DAE等于()A.50° B.45° C.30° D.20°解:根据线段的垂直平分线性质,可得AD=BD,AE=GE.故∠EAC=∠ECA,∠ABD=∠BAD.因为∠BAC=100°,∠ABD+∠ACE=180°﹣100°=80°,∴∠DAE=100°﹣∠BAD﹣∠EAC=20°.故选D。
北师大数学八年级下册第一章-线段的垂直平分线与角平分线经典讲义
第02讲_线段的垂直平分线与角平分线知识图谱线段的垂直平分线知识精讲垂直平分线(中垂线)定义1:经过某条线段的中点,且垂直于这条线段的直线定义2:中垂线可以看成到线段两个端点距离相等的点的集合,中垂线是线段的一条对称轴性质(1)垂直平分线垂直且平分其所在线段(2)垂直平分线上任意一点到线段两端点的距离相等l为中垂线AC=BC,AD=BD判定在同一平面内,到线段两个端点的距离相等的点在线段的垂直平分线上A BlOA BlOCD尺规作图作法:如图(1)分别以点A 、B 为圆心,以大于12AB 的长为半径作弧,两弧相交于C 、D 两点;(2)作直线CD ,CD 为所求直线三点剖析重难点:垂直平分线的性质和判定,垂直平分线的画法 考点:垂直平分线的性质和判定,垂直平分线的画法 易错点:①垂直平分线的画法和角平分线的画法进行区分②垂直平分线垂直平分的一定是线段,不能是射线或直线,这根据射线和直线可以无限延长有关,再看后面的,垂直平分线是一条直线。
垂直平分线的概念和性质例题1、 如图,△ABC 中,AC=8,BC=5,AB 的垂直平分线DE 交AB 于点D ,交边AC 于点E ,则△BCE 的周长为 .【答案】 13【解析】 △DE 是AB 的垂直平分线, △EA=EB ,则△BCE 的周长=BC+EC+EB=BC+EC+EA=BC+AC=13例题2、 如图,在△ABC 中,BC 边上的垂直平分线DE 交边BC 于点D ,交边AB 于点E .若△EDC 的周长为24,△ABC 与四边形AEDC 的周长之差为12,则线段DE 的长为___.【答案】 6【解析】 ∵DE 是BC 边上的垂直平分线, ∴BE=CE .∵△EDC 的周长为24, ∴ED+DC+EC=24,①∵△ABC 与四边形AEDC 的周长之差为12,∴(AB+AC+BC )﹣(AE+ED+DC+AC )=(AB+AC+BC )﹣(AE+DC+AC )﹣DE=12, ∴BE+BD ﹣DE=12,② ∵BE=CE ,BD=DC , ∴①﹣②得,DE=6例题3、 已知△ABC ,∠BAC=110°,DE ,FG 分别是AB ,AC 的垂直平分线且DE 交BC 于M 点,FG 交BC 于N 点,求∠MAN 的度数。
线段的垂直平分线课件数学北师大版八年级下册
EF, PQ 相交于一点 O,且 OA=OB=OC.
拓展 几种三角形三条边的垂直平分线交点
的情况如图 1-3-6 所示 .
知3-讲
感悟新知
知3-练
例3 如图 1-3-7, OE, OF 所在 直线分 别是 △ ABC 中
AB, AC 边的垂直平分线,∠ OBC,∠ OCB 的平分
线相交于点 I,试判断 OI 与 BC 的位置关系,并给予
感悟新知
知2-练
(2)∠ ABE= ∠ ADE.
证明:易知四边形ABCD是以直线AC为对称轴的
轴对称图形,∴∠ABE=∠ADE.
感悟新知
知3-讲
知识点 3 三角形三条边的垂直平分线的性质定理
性质定理
三角形三条边的垂直平分线相交于一点,并且这
一点到三个顶点的距离相等 .
感悟新知
知3-讲
特别解读
因为三角形任意两条边的垂直平分线一定交
第一章
三角形的证明
1.3
线段的垂直平分线
学习目标
1 课时讲授
线段垂直平分线的性质定理
线段垂直平分线的判定定理
三角形三条边的垂直平分线的性质
2 课时流程
逐点
导讲练
定理
用尺规作已知直线(或线段)的垂线
课堂
小结
作业
提升
感悟新知
知识点 1 线段垂直平分线的性质定理
1. 性质定理
知1-讲
线段垂直平分线上的点到这条线段两个端点
线上,思路有两种:
一是作垂直,证平分;二是取中点,证垂直 .
2. 用判定定理证明线段的垂直平分线,必须证
明两个点在线段的垂直平分线上 .
感悟新知
例2
北师大版八年级数学下册线段的垂直平分线
B.
段两个端点的距离相等.
用数学语言描述:
A
∵ MN⊥AB,AC=BC, P是MN上任意一点.
∴ PA=PB
用来证明两条线 段相等非常方便
C
B
N
小试牛刀
如图,已知AB是线段CD的垂直平分线,E是AB上 的一点,如果EC=7cm,那么ED= 7 cm;如果 ∠ECD=600,那么∠EDC= 60 0.
C
②会用线段垂直平分线的有关定理进行 简单的证明.
③理解了尺规作线段垂直平分线的理论根据.
作业布置
必做题:P121页,习题10.10第1—3题 选做题:P121页,习题10.10第4题
如图,A,B表示两个仓库,要在A,B一侧的河岸 边建造一个码头,使它到两个仓库的距离相等,码 头应建在什么位置?
命题 线段垂直平分线上的点到 M 这条线段两个端点的距离相等. P
要判断一个命题是不是真命
题,仅仅靠经验、视察、实验和
Байду номын сангаас
A
猜想是不够的,必须一步一步、
有根有据地进行推理.
C
B
N
命题证明
命题:
M
线段垂直平分线上的点到这条线 P
段两个端点的距离相等.
A
C
B
N
命题证明
命定题理::
M
线段垂直平分线上的点到这条线 P
A E
B D
动动脑
命题 线段垂直平分线上的点到这 条线段两个端点的距离相等.
逆 命 题
命题 到线段两个端点距离相等的 点在这条线段垂直平分线上.
命题证明
P
已知:线段AB,P是平面上一点,且PA=PB
求证:点P在线段AB的垂直平分线上
八年级数学下册 1.3 线段的垂直平分线 如何利用线段的垂直平分线证明角的相等素材 (新版)北师大版
如何利用线段的垂直平分线证明角的相等?
难易度:★★★★
关键词:线段的垂直平分线 -角相等
答案:
利用线段的垂直平分线的性质定理和判定定理,找到所需的关系,再结合其它知识证明角的相等。
【举一反三】
典例:.如图.AD是∠BAC的平分线,EF垂直平分AD交BC的延长线于点F,交AD于点E,连接AF.求证:∠B=∠CAF.
思路导引:由EF是AD的垂直平分线可知FA=FD,所以∠1=∠DAF=∠B+∠2,又∠DAF=∠3+∠4,且∠2=∠3,这样,结论即可获证.
标准答案:
证明:∵EF为AD的中垂线,
∴FA=FD,∠1=∠FAD.
又∵AD平分∠BAC.
∴∠2=∠3.
又∵∠1为△ABD的外角,
∴∠1=∠B十∠2.
又∵∠FAD=∠3+∠4,
∴∠FAD=∠2+∠4,
∴∠B+∠2=∠2+∠4.
∴∠B=∠4,则∠B=∠CAF.
百度文库是百度发布的供网友在线分享文档的平台。
百度文库的文档由百度用户上传,需要经过百度的审核才能发布,百度自身不编辑或修改用户上传的文档内容。
网友可以在线阅读和下载这些文档。
百度文库的文档包括教学资料、考试题库、专业资料、公文写作、法律文件等多个领域的资料。
百度用户上传文档可以得到一定的积分,下载有标价的文档则需要消耗积分。
当前平台支持主流的doc(.docx)、.ppt(.pptx)、.xls(.xlsx)、.pot、.pps、.vsd、.rtf、.wps、.et、.dps、.pdf、.txt 文件格式。
本文档仅用于百度文库的上传使用。
北师大版数学八年级下册《线段的垂直平分线》教学设计
北师大版数学八年级下册《线段的垂直平分线》教学设计一. 教材分析北师大版数学八年级下册《线段的垂直平分线》是初中数学的重要内容,主要让学生了解线段的垂直平分线的性质和判定方法。
通过本节课的学习,使学生能够熟练运用线段的垂直平分线解决实际问题,提高他们的数学应用能力。
二. 学情分析学生在学习本节课之前,已经掌握了线段的基本概念和相关性质,具备一定的逻辑思维和空间想象能力。
但对于线段的垂直平分线的性质和判定方法,还需要通过本节课的学习来进一步理解和掌握。
三. 教学目标1.理解线段的垂直平分线的性质和判定方法。
2.能够运用线段的垂直平分线解决实际问题。
3.培养学生的逻辑思维和空间想象能力。
四. 教学重难点1.线段的垂直平分线的性质和判定方法。
2.如何运用线段的垂直平分线解决实际问题。
五. 教学方法1.采用问题驱动法,引导学生探究线段的垂直平分线的性质和判定方法。
2.利用多媒体辅助教学,直观展示线段的垂直平分线的特点。
3.运用实例分析法,让学生学会运用线段的垂直平分线解决实际问题。
4.小组讨论,培养学生的合作意识和团队精神。
六. 教学准备1.多媒体教学课件。
2.相关实例和习题。
3.尺子、圆规等学具。
七. 教学过程1.导入(5分钟)利用多媒体展示线段的垂直平分线的图片,引导学生思考:什么是线段的垂直平分线?为什么它具有特殊的性质?2.呈现(10分钟)介绍线段的垂直平分线的性质和判定方法,通过示例和讲解,让学生理解并掌握这些性质。
3.操练(10分钟)学生分组讨论,利用尺子和圆规实际画出线段的垂直平分线,并验证其性质。
教师巡回指导,解答学生疑问。
4.巩固(10分钟)出示一些有关线段垂直平分线性质的判断题和应用题,让学生独立完成,检验他们对于知识点的掌握情况。
5.拓展(10分钟)引导学生思考:线段的垂直平分线在实际生活中有哪些应用?如何运用这些性质解决实际问题?教师出示一些实例,让学生分小组讨论并展示解题过程。
北师大版数学八年级下册1.3《线段的垂直平分线》说课稿
北师大版数学八年级下册1.3《线段的垂直平分线》说课稿一. 教材分析北师大版数学八年级下册1.3《线段的垂直平分线》这一节主要介绍了线段的垂直平分线的性质和判定。
通过这一节的学习,学生能够理解线段的垂直平分线的概念,掌握其性质和判定方法,并能够运用到实际问题中。
二. 学情分析在八年级下册的学生已经有了一定的几何基础,他们已经学习了线段、射线、直线等基本概念,并对这些概念有了初步的理解。
但是,对于线段的垂直平分线这一概念,学生可能比较陌生,需要通过具体的实例和讲解来进行理解和掌握。
三. 说教学目标1.知识与技能:学生能够理解线段的垂直平分线的概念,掌握其性质和判定方法。
2.过程与方法:学生能够通过观察、实验、推理等方法来探索线段的垂直平分线的性质和判定方法。
3.情感态度与价值观:学生能够培养对数学的兴趣和好奇心,提高对几何图形的观察和思考能力。
四. 说教学重难点1.教学重点:线段的垂直平分线的性质和判定方法。
2.教学难点:线段的垂直平分线的判定方法的理解和运用。
五.说教学方法与手段1.教学方法:采用问题驱动法、实例教学法、合作学习法等。
2.教学手段:利用多媒体课件、几何画板等辅助教学。
六. 说教学过程1.引入:通过一个实际问题,引出线段的垂直平分线的概念。
2.讲解:讲解线段的垂直平分线的性质和判定方法,结合具体的实例进行讲解。
3.探索:学生分组进行实验和探索,通过观察和推理来验证线段的垂直平分线的性质和判定方法。
4.总结:学生进行总结,教师进行点评和讲解。
5.练习:学生进行练习,教师进行指导和解答。
七. 说板书设计板书设计要清晰、简洁,能够突出线段的垂直平分线的性质和判定方法。
可以采用图示和的形式进行展示。
八. 说教学评价教学评价可以通过学生的课堂表现、作业完成情况、练习的正确率等方式进行。
同时,还要关注学生的思维过程和方法,以及对几何图形的观察和思考能力的培养。
九. 说教学反思在教学过程中,要注意观察学生的反应和学习情况,及时进行调整和讲解。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
北师大版八年级数学下线段的垂直平分线
知识点
知识点
(1)定义:垂直平分一条线段的直线是这条线的垂直平分线。
(2)性质:
①线段垂直平分线上的点到这条线段两个端点的距离相等;
②到一条线段两个端点距离相等的点,在这条线段的垂直平分线上。
注意:根据线段垂直平分线的这一特性可以推出:三角形三边的垂直平分线交于一点,并且这一点到三个顶点的距离相等。
线段的垂直平分线可看作和线段两端点距离相等的所有点的集合
定理1:关于某条直线对称的两个图形是全等形
定理2:如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线
定理3:两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上
逆定理:如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称
课后练习
线段的垂直平分线知识点的全部内容就是这些,不知道大家是否已经都掌握了呢?预祝大家以更好的学习,取得优异的成绩。