七年级数学有理数知识点章节复习与练习题

合集下载

人教版七年级数学第一章有理数知识点归纳及巩固练习

人教版七年级数学第一章有理数知识点归纳及巩固练习

教师: 学生: 学科: 日期: 年月日星期: 时段:课题第1讲有理数学习目标与考点分析1、理解有理数的意义,能用数轴上的点表示有理数,能比较有理数的大小。

2、借助数轴理解相反数和绝对值的意义,掌握求有理数的相反数与绝对值的方法。

3、理解乘方的意义,掌握有理数的加、减、乘、除、乘方及简单的混合运算4、会用科学记数法表示数(包括负指数幂的科学记数法)5、了解近似数,在解决实际问题中,会按问题的要求对结果取近似值。

学习重点难点1、有理数的实际意义。

2、求一个数的相反数、绝对值、倒数;在数轴上找出相应的数;数的比较大小。

3、用科学记数法表示一个数(含负指数幂的科学记数法)。

4、有理数基本概念(相反数、绝对值、倒数)的辨析及综合运用。

5、有理数的运算。

教学方法讲练结合教学过程【知识网络】1. 掌握有理数有关分类、数轴、相反数、近似数、有效数字和科学计数法等有关概念 2. 熟练去括号法则,以及有理数的有关运算数学符号的由来在文明和科学的发展过程中,人类创造用符号代替语言、文字的方法,这是因为符号比语言、文字更简练、更直观、更具一般性。

纵观历史,数学的发展创造了数学符号,新的数学符号的使用又反过来促进了数学的发展,历史是这样一步一步走过来的,并将这样一步步继续走下去,数学的每一个进步都必须伴随着新的数学符号的产生。

“+”是15世纪德国数学家魏德美所创造的。

它的意思是:在横线上加上一竖,表示增加 “-”也是德国数学家魏德美创造的。

它的意思是:从加号中减去一竖,表示减少“⨯”是18世纪美国数学家欧德莱最先使用的。

它的意思是:表示增加的另一种方法,因而把加好斜过来写“÷”是18世纪瑞士人哈纳创造的。

它的含义是分解的意思,因此用一条横线把两个原点分开“=”是16世纪英国学者列科尔德创造的。

列科尔德认为世界上再也没有比两条平行而相等的直线更相同了,所以用来表示两数相等。

17世纪初,法国数学家笛卡尔在他的《几何学》中,第一次使用“”表示根号17世纪德国数学家莱布尼茨在几何学中用“∽”表示相似,用“≌”全等。

第一章-有理数知识点复习与练习题(含答案)

第一章-有理数知识点复习与练习题(含答案)

第一章-有理数知识点复习与练习题(含答案)本页仅作为文档封面,使用时可以删除This document is for reference only-rar21year.March第一章 有理数复习题班级 姓名一、知识点1、有理数分类2、数轴(1)数轴的三要素: 、 、 。

3、相反数(1)只有 不同的两个数叫做互为相反数。

(2)一般地,a 的相反数是 ,0的相反数是 。

(3)相反数的性质:互为相反数的两数 。

4、绝对值(1)定义:一般地,数轴上表示数a 的点与原点的 叫做数a 的绝对值。

(2)正数的绝对值是 ,负数的绝对值是 ,0的绝对值是 。

的绝对值等于它本身。

的绝对值是等于它的相反数(3)绝对值的性质: 2者性质有相似之处典型例题:已知a =3,2b =4,且a b >,求a b +若0)2(12=++-y x ,求x 、y 的值(4)两个数比较大小的方法:根据有理数在数轴上对应的点的位置直接比较,数轴上的数从左到右是逐渐 。

①异号两数比较大小:正数 0,0 负数,正数 负数;②同号两数比较大小:两个负数,绝对值大的 。

5、倒数(1) 的数称为互为倒数有理数 ⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧--------⎪⎩⎪⎨⎧------------分数整数有理数 ⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧--------⎩⎨⎧--------负有理数零正有理数平方(偶次方)①有理数的平方是一个非负数 02≥a ②两个互为相反数的平方相等①有理数的绝对值是一个非负数 0≥a ②两个互为相反数的绝对值相等(2)倒数的性质:1a互为倒数。

(0没有倒数)b⇔ab,=6、科学计数法:把一个数表示成n a 10⨯的形式(其中1≤a<10,n 为正整数);二、巩固练习:一、填空题1、把下列各数填入相应的大括号里:,2- 21-, , 0, 32, 611, 35-,2005 , 整数集合:{ … }正数集合:{ …}正整数集合:{ …}负分数集合:{ …}非负有理数集合:{ …}2、-5的相反数是 ,-5的倒数是 ,-10的绝对值是 ;3、比较大小:0 -,2334- ⎽⎽⎽⎽⎽⎽-; 4、简化符号:1(71)2--= ,8--= ; 5、计算:1555-÷⨯= ,200720082008(1)0(1)--+-= ; 6、最大的负整数是 ,绝对值最小的有理数是绝对值等于本身的是___ __绝对值是其相反数的是____ ___;一个数的平方等于它的相反数,则这个数是7、已知a 、b 互为相反数,c 、d 互为倒数,m 是绝对值等于3的负数,则20082)()(cd m b a cd m +⨯+++的值为 .8、用科学记数法表示:000= ;9、,相反数是它本身的数是 ;倒数是它本身的数是绝对值是它本身的数是 平方等于是它本身的数是 ;立方等于是它本身的数是10、若0,0,a b a b <<>,则a b - 0。

第1章有理数(单元复习课件)(知识导图+考点梳理+数学活动+课本复习题)七年级数学上册人教版2024

第1章有理数(单元复习课件)(知识导图+考点梳理+数学活动+课本复习题)七年级数学上册人教版2024
时间
第一季度
第二季度
第三季度
第四季度
盈利/万元
-6.8
-10.7
31.5
27.8
31.5> 27.8 > -6.8 > -10.7
6. 某年我国人均水资源比上年的增幅是 -5.6%. 后续
三年各年比上年的增幅分别是 -4.0%,13.0%,-9.6%.
这些增幅中哪个最小?增幅是负数说明什么?
-9.6%最小
(1)一般地,数轴上表示数 a 的点与原点的距离叫作数 a 的绝对值,记作| a |,
读作“a的绝对值”.
(2)绝对值的性质(非负性).
一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0 的绝对值是
0.
即: ①如果a>0,那么│a│= a;
②如果a=0,那么│a│= 0;
③如果a<0,那么│a│= -a.
7. 在数轴上表示下列各数、并将这些数按从小到大的顺序排列,
再用“<”连接起来.
3,-4,0,2,-2,-1
-4
-4
-3
-2
-1
0
-2
-1
0
-4 < -2 < -1 <
1
2
3
2
3
0 < 2 < 3
4
知识梳理
4. 相反数
(1)相反数:只有符号不同的两个数,互为相反数;
(2)相反数的几何意义:
在数轴上位于原点两侧并且到原点距离相等的两个点所表示
–(–2) > –|+2|
(3)+|–3| 和 |–(+5)|; (4)–(+ ) 和 –|–
(3)+|–3| = 3, |–(+5)| = 5;

七年级有理数知识点小结与练习

七年级有理数知识点小结与练习

第一章《有理数》知识点有理数的分类分数:有限小数,无限循环小数,百分数。

特别的,π不是分数也不是有理数。

一、基本概念1、正数与负数①表示大小②在实际中表示意义相反的量:上升5米记为5; -8则表示下降8米。

③带“-”号的数并不都是负数,如-a可以是正数、负数或0.④0既不是正数也不是负数。

0是整数,也是自然数。

例.某圆形零件的直径要求是(30±0.1mm),下表中6个已生产出来的零件圆孔直径的检测结(2)哪些零件的误差最小?2、数轴(1)三要素:原点、正方向、单位长度;(2)数轴上的点与有理数:①数轴上的点与有理数一一对应②右边的数>左边的数;例1:数轴上的两点A、B分别表示-6和-3,那么A、B两点间的距离是()A、-6+(-3)B、-6-(-3)C、|-6+(-3)|D、|-3-(-6)|例2数轴上表示整数的点称为整点某数轴的单位长度为1cm,若在数轴上随意画出一条长2005cm长的线段AB,则线段AB盖住的的整点有()个A、2003或2004B、2004或2005;C、2005或2006;D、2006或20073、相反数①只有符号不同的两个数,叫做互为相反数,0的相反数是0 ②a的相反数-a③a与b互为相反数:a+b=0 ④a-b的相反数是:-a+b或b-a⑤a+b的相反数是:-a-b ⑥求一个数的相反数方法:在这个数的前面加“-”号.⎧⎨⎩⑦在数轴上,表示相反数的两个点位于原点的两侧,并且到原点的距离相等。

例:(- 2)2004+(- 2)2005=4、绝对值①一般地,数轴上表示数a 的点与原点距离,表示成|a |。

几何意义:从数轴上看,一个实数的绝对值是表示这个数的点离开原点距离。

a (a ≥0) 绝对值是它本身的数是非负数(正数和0)②|a |= -a (a ≤0) 绝对值是它相反的数是非正数(负数和0) 其它简单变形:|a+b |=a+b,则a+b 为正数 例 若|-2a |=-2a,则a 为:③|a|是重要的非负数,即|a|≥0;注意:|a|·|b|=|a ·b|;例1:若ab ≠0,则ba ab +的取值不可能是( )A 0B 1C 2D -2例2:如果有理数a,b 满足∣ab -2∣+(1-b)2=0,试求1111(1)(1)(2)(2)(2007)(2007)ab a b a b a b ++++++++++的值。

七年级数学有理数知识点章节复习及练习题

七年级数学有理数知识点章节复习及练习题

有理数章节复习知识详解一、有理数概念及意义整数与分数统称为有理数.有理数⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数零正整数整数 0的特殊性:0既不是正数也不是负数,是整数,不是分数。

0是最小的自然数,1是最小的正整数,-1是最大的负整数。

有限小数:小数部分的位数是有限的小数。

无限小数:小数部分的位数是无限的小数。

循环小数:一个小数,从小数部分的某一位起,一个数字或几个数字依次不断重复出现,这样的小数叫做循环小数。

例如: 0.333 …, 5.32727 …等等。

注意 :循环小数是无限小数,也称作无限循环小数。

整数和分数都可以写成有限小数或无限循环小数,所以有理数也可以分类为有限小数和无限循环小数。

1.下列说法中正确的是(???)A 、一个有理数,不是正数就是负数 ? ?B 、一个有理数,不是整数就是分数C 、有理数可分为非负有理数和非正有理数??D 、整数和小数统称有理数2.若两个有理数的和是正数,那么一定有结论(?????)?A 、两个加数都是正数B 、两个加数有一个是正数C 、一个加数正数,另一个加数为零D 、两个加数不能同为负数3.下列数中,为有理数的是()二、数轴的概念及应用规定了原点、正方向和单位长度的直线叫做数轴.1.数轴上表示2和5的两点之间的距离是_______个单位长度;表示1和-3两点之间的距离是___个单位长度;2.如图,数轴上A 、B 两点分别对应实数a 、b ,则下列结论正确的是( )A .0>abB .0>-b aC .0>+b aD .0||||>-b a三、相反数 1 0 -1 a b B A(第1题图)1. 概念:只有符号不同的两个数叫做互为相反数。

0的相反数仍是0.2. 几何定义:在数轴上原点的两侧,到原点的距离相等的两点所表示数为相反数。

3. 任何一个数都有它的相反数4. 相反数性质:a 与b 互为相反数,则a+b=0.1.如果a 和b 是符号相反的两个数,在数轴上a 所对应的数和b 所对应的点相距6个单位长度,如果a=-2,则b 的值为_________________.????2.已知x 、y 互为相反数,则-15(x +y )=__________________.3.如果a 的相反数是最大的负整数,b 的相反数是最小的正整数,a+b=___________.????四、绝对值在数轴上,一个数所对应的点与原点的距离叫做该数的绝对值。

新人教版初中数学七年级上册知识点汇总附典型练习题

新人教版初中数学七年级上册知识点汇总附典型练习题

新人教版初中数学七年级上册知识点汇总附典型练习题第一章有理数知识要点本章的主要内容可以概括为有理数的概念与有理数的运算两部分。

有理数的概念可以利用数轴来认识、理解,同时,利用数轴又可以把这些概念串在一起。

有理数的运算是全章的重点。

在具体运算时,要注意四个方面,一是运算法则,二是运算律,三是运算顺序,四是近似计算。

1.有理数: (1)凡能写成)0p q ,p (pq≠为整数且形式的数,都是有理数, 和 统称有理数. 注意:0即不是正数,也不是负数;-a 不一定是负数,+a 也不一定是正数;π (是不是)有理数;(2)有理数的分类: ① ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数零正分数正整数正有理数有理数 ② ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数零正整数整数有理数(3)注意:有理数中,1、0、-1是三个特殊的数,它们有自己的特性;这三个数把数轴上的数分成四个区域,这四个区域的数也有自己的特性;(4)自然数⇔ 0和正整数; a >0 ⇔ a 是正数; a <0 ⇔ a 是负数;a ≥0 ⇔ a 是正数或0 ⇔ a 是非负数; a ≤ 0 ⇔ a 是负数或0 ⇔ a 是非正数. 2.数轴:数轴是规定了 (数轴的三要素)的一条直线.3.相反数:(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0; (2)注意: a-b+c 的相反数是 ;a-b 的相反数是 ;a+b 的相反数是 ; (3)相反数的和为 ⇔ a+b=0 ⇔ a 、b 互为相反数. (4)相反数的商为 .(5)相反数的绝对值相等w w w .x k b 1.c o m 4.绝对值:(1)正数的绝对值等于它 ,0的绝对值是 ,负数的绝对值等于 ; 注意:绝对值的意义是数轴上表示某数的点离开原点的距离;(2) 绝对值可表示为:⎪⎩⎪⎨⎧<-=>=)0a (a )0a (0)0a (a a 或 ⎩⎨⎧≤-≥=)0()0(a a a a a ;(3)0a 1aa >⇔= ;0a 1aa <⇔-=;(4) |a|是重要的非负数,即|a|≥0,非负性; 5.有理数比大小:(1)正数永远比0大,负数永远比0小; (2)正数大于一切负数;(3)两个负数比较,绝对值大的反而小;(4)数轴上的两个数,右边的数总比左边的数大;(5)-1,-2,+1,+4,-0.5,以上数据表示与标准质量的差,绝对值越小,越接近标准。

《有理数》单元试题+复习(8套)

《有理数》单元试题+复习(8套)

1七年级数学《有理数》单元复习题有理数有关概念复习✍一、知识小结:1. 学习了正数、负数的知识后,大的可以说成小,小的可以说成大。

支出可以说成 。

可以说成增加等。

如“弟弟比哥哥小3岁。

”可以说成是“弟弟比哥哥大 岁”。

又如,小明的爸爸做生意亏损5000元,可以说成是“小明的爸爸做生意盈利 元”。

2. 大于零的数叫 , 在正数前加一个“- ”号的数叫做 , 既不是正数,也不是负数.3. 和 统称为有理数. 有理数的分类为:特别注意:下面分类是否有错误?并请你指出错误的原因。

(1)0⎧⎪⎨⎪⎩正数有理数负数 (2)0⎧⎪⎨⎪⎩整数有理数分数 (3)⎧⎪⎨⎪⎩整数有理数小数分数 (4)⎧⎪⎨⎪⎩正有理数有理数负有理数4. 规定了 、 和 的直线叫数轴。

所有的有理数都可以用数轴上的 表示,但并不是所有的点都表示有理数.数轴上的原点表示数________,原点左边的数表示 ,原点及原点右边的数表示 .在原点右边,越靠近原点的点表示的数越 (填“大”或“小”),在原点左边,越靠近原点的点表示的数越 (填“大”或“小”)。

5. 有理数的大小比较:⑴在数轴上表示的两个数,右边的数总比左边的数 .⑵正数都 0,负数都 0,正数 一切负数; ⑶两个负数比较大小, .6. 数a 的相反数是 . 的相反数大于它本身, 的相反数小于它本身,的相反数等于它本身. 的倒数等于它本身.7. 一个数a 的绝对值是指数轴上表示数a 的点与 距离,记作 .①一个正数的绝对值是 ; 即:如果a >0,则|a | = ; ②一个负数的绝对值是 ; 如果a <0,则|a | = ;③0的绝对值是 . 如果a = 0,则|a | = .反之:若一个数的绝对值是它本身,则这个数是 ;若一个数的绝对值是它相反数,则这个数是 ;即若||a a =,则a 0;若||a a =-,则a 0.二、练习:8. 绝对值最小的有理数是 ,最大的负整数是 ,最小的正整数是 ;9. 在数轴上距离原点4个单位的数是 ,距离表示-1的点有3个单位的数是 ;10. 数轴上的点A 所对应的数是4,点B 所对应的数是-2,则A 、B 两点之间的距离是 .⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数零正整数整数有理数⎧⎧⎫⎨⎪⎪⎩⎪⎪⎪⎪⎨⎬⎪⎪⎧⎪⎪⎨⎪⎪⎭⎩⎩正整数正有理数正分数有理数零负整数负有理数负分数12()有限小数;()无限循环小数.211. 写出所有比-5大的非正整数为 , 比5小的非负整数 ,到原点的距离不大于3的所有整数有 .12. 绝对值等于3的数是 ;绝对值小于3的整数是 ;绝对值小于2011的所有整数的和等于 ;绝对值不大于100的所有整数的和等于 。

七年级第一章有理数---全章复习知识点加例题

七年级第一章有理数---全章复习知识点加例题

复习练习: 1、下面关于有理数的说法正确的是( ) A.整数集合和分数集合合在一起就是有理数集合 B.正数集合与负数集合合在一起就构成整数集合 C.正数和负数统称为有理数 D.正数、负数和零统称为有理数 2、如果两个数的有理数的和是正数,那么这两个数( ) A.一定都是整数 B.一定都是负数 C.一定都是非负数 D.至少有一个数是正数 4.下面说法正确的有( ) ①一个有理数不是整数就是分数 ②一个有理数不是正数就是负数 ③一个整数不是正数就是负数 ④一个分数不是正数就是负数 A.1个 B.2个 C.3个 D.4个 二、数轴 1、像这样规定了原点、正方向和单位长度的直线叫做数轴. 2、数轴的三要素:原点、正方向、单位长度,缺一不可. 3、在数轴上比较两个有理数大小的法则:①在数轴上表示的两个数,右边的数总比左边的大。

②正数都大于0,负数都小于0,正数大于负数。

考场_____________ 班级________________ 姓名________________ 学号______________ ………密…………………封…………………装…………………订…………………线…………1、如果在数轴上点A 表示-4,将A 向右移动7个单位长度,那么终点B 表示的数为________, 那么AB 间的距离为______。

与点A 相距7个单位长度的点所表示的数为_____或_____。

2、如果点A 表示-4,将A 向右移动7个单位长度,再向左移动4个单位长度,那么终点B 表示的数为______.3、下面语句正确的是( )A.数轴上的点都只能表示整数B.两个不同的有理数可以用数轴上的同一个点表示C.数轴上的一个点,只能表示一个数D.数轴上的点所表示的数都是有理数三、相反数:只有正负号不同的两个数叫做互为相反数。

注意:①相反数是成对出现的.②若a 和b 是互为相反数,则a+b=0③我们规定:零的相反数仍然是零.复习联系:1、判断下面句子的对错:①符号不同的两个数是相反数。

有理数-2023年新七年级数学核心知识点与常见题型(人教版)(解析版)

有理数-2023年新七年级数学核心知识点与常见题型(人教版)(解析版)

有理数【知识梳理】1、有理数的概念:整数和分数统称为有理数.2、有理数的分类:①按整数、分数的关系分类:有理数;②按正数、负数与0的关系分类:有理数.注意:如果一个数是小数,它是否属于有理数,就看它是否能化成分数的形式,所有的有限小数和无限循环小数都可以化成分数的形式,因而属于有理数,而无限不循环小数,不能化成分数形式,因而不属于有理数.【考点剖析】一、有理数的意义一、单选题1.(2022秋·广东河源·七年级校考期末)下列结论正确的是()A.有理数包括正数和负数B.有理数包括整数和分数C.0是最小的整数D.两个有理数的绝对值相等,则这两个有理数也相等【答案】B【分析】根据有理数的相关联的知识点分析判断即可.【详解】∵有理数包括正有理数,零和负有理数,∴A错误,不符合题意;∵有理数包括整数和分数,∴B正确,符合题意;∵没有最小的整数,∴C错误,不符合题意;∵两个有理数的绝对值相等,则这两个有理数相等或互为相反数,∴D错误,不符合题意;故选B.【点睛】本题考查了有理数的相关概念,正确理解相关概念是解题的关键.【答案】C【分析】根据整数和分数统称为有理数,判断即可.【详解】解:A、1.21是有理数,故此选项不符合题意;B、2−是有理数,故此选项不符合题意;C、2π不是有理数,故此选项符合题意;D、12是有理数,故此选项不符合题意,故选:C.【点睛】本题考查了有理数的概念,解题的关键是掌握整数和分数统称为有理数,注意有限小数或无限循环小数是有理数.【答案】C【分析】根据有理数的概念进行判别即可.【详解】解:5,32−,103003,211,0,0.12−,是有理数,共6个,2π−是无理数,故选:C.【点睛】本题主要考查了有理数的概念,熟练掌握有理数的概念是解题的关键.0.35,有理数有【答案】5【分析】根据有理数的概念进行判断即可.【详解】解:有理数包括整数和分数,∴是有理数的有221.2,020%0.357−,,,,共5个 故答案为:5【点睛】本题主要考查有理数的概念,熟练掌握有理数的概念是解决本题的关键. 0.13,117−,0.1010010001(相邻两个【答案】3【分析】根据有理数的概念解答即可.有理数的概念:整数和分数统称为有理数.【详解】解:在 3.5+,0.13,117−,2π,0.1010010001(相邻两个1之间依次增加1个0)中,有理数有 3.5+,0.13,117−,共3个. 故答案为:3.【点睛】本题考查了有理数,掌握有理数的概念是解题的关键.6.(2022秋·河北邯郸·七年级统考期中)一个九位数,最高位上是最大的一位数,千万位上是5,十万位上是最小的合数,百位上是最小的质数,其余各位都是0,这个数写作_______.【答案】950400200【分析】根据最大的一位数是9,千万位上是5,最小的合数是4,最小的质数是2,其余各位都是0即可解答.【详解】解:∵最大的一位数是9,千万位上是5,最小的合数是4,最小的质数是2,其余各位都是0, ∴这个数是950400200.故答案为:950400200.【点睛】本题考查的是有理数,熟知最小的合数是4,最小的质数是2是解题的关键.一、单选题 1.(2023秋·广西河池·七年级统考期末)下列说法错误的是( )A .0既不是正数,也不是负数B .零上4摄氏度可以写成4C +︒,也可以写成4C ︒C .若盈利100元记作100+元,则20−元表示亏损20元D .向正北走一定用正数表示,向正南走一定用负数表示【答案】D【分析】根据0的特征、正负数的意义和相反意义的量进行判断即可.【详解】解:A .0既不是正数,也不是负数,故选项正确,不符合题意;B .零上4摄氏度可以写成4C +︒,也可以写成4C ︒,故选项正确,不符合题意;C .若盈利100元记作100+元,则20−元表示亏损20元,故选项正确,不符合题意;D .规定向正北走用正数表示,向正南走才用负数表示,故选项错误,符合题意.故选:D .【点睛】此题考查了0的特征、正负数的意义和相反意义的量,熟练掌握相关基础知识是解题的关键.2.(2022秋·河北秦皇岛·七年级校联考阶段练习)下列语句正确的是( )①一个数前面加上“−”号,这个数就是负数;②如果a 是正数,那么a −一定是负数;③一个有理数不是正的就是负的;④0︒表示没有温度;A .0个B .1个C .2个D .3个 【答案】B【分析】根据正负数的定义和0的意义进行逐一判断即可.【详解】解:①一个正数前面加上“−”号,这个数就是负数,说法错误;②如果a 是正数,那么a −一定是负数,说法正确;③0是有理数,但是0既不是正数也不是负数,说法错误;④0︒表示有温度,说法错误;故选B .【点睛】本题主要考查了正负数的定义和0的意义,熟知相关知识是解题的关键.3.(2022秋·全国·七年级专题练习)下面关于0的说法:(1)0是最小的正数;(2)0是最小的非负数;(3)0既不是正数也不是负数;(4)0既不是奇数也不是偶数;(5)0是最小的自然数;(6)海拔0m就是没有海拔.其中正确说法的个数是()A.0B.1C.2D.3【答案】D【分析】0既不是正数也不是负数,是最小的非负数,最小的自然数,是偶数,判断即可得到结果.【详解】解:(1)0是最小的正数,错误,0不是正数也不是负数;(2)0是最小的非负数,正确,非负数即为正数与0;(3)0既不是正数也不是负数,正确;(4)0既不是奇数也不是偶数,错误,0是偶数;(5)0是最小的自然数,正确;(6)海拔0m就是没有海拔,错误,海拔0m就是与海平面高度相同;则正确的说法有3个.故选:D.【点睛】此题考查了有理数的分类和意义,掌握有理数的分类和0的意义是解本题的关键.4.(2022秋·河北保定·七年级统考期中)下面关于0的说法,正确的是()A.0既不是正数也不是负数B.0既不是整数也不是分数C.0不是有理数D.0的倒数是0【答案】A【分析】依据倒数,有理数相关概念以及有理数分类判断即可.【详解】A.0既不是正数,也不是负数,故此选项正确,符合题意;B.0是整数,不是分数,故此选项错误,不符合题意;C.0是有理数,故此选项错误,不符合题意;D.0不存在倒数,故此选项错误,不符合题意.故选A.【点睛】本题考查了有理数,0是重要的数字,掌握有理数的相关概念和分类是解题的关键.5.(2022秋·天津北辰·七年级统考期中)下列说法正确的是()A.1是最小的正数B.﹣1是最大的负数C.绝对值等于本身的数是0D.0既不是正数也不是负数【答案】D【分析】根据正数、负数的概念,绝对值的意义分析判断即可.【详解】解:A、0是正数和负数的分界点,大于0的数都是正数,故1不是最小的正数,本选项不符合题意;B、0是正数和负数的分界点,小于0的数都是负数,故﹣1不是最大的负数,本选项不符合题意;C、0和正数的绝对值都等于本身,故本选项不符合题意;D、0既不是正数,也不是负数,故本选项符合题意.故选:D.【点睛】本题考查了正数和负数以及0的意义,解题的关键是掌握0是正数和负数的分界点,0既不是正数也不是负数,正数大于0,负数小于0.6.(2023秋·江苏宿迁·七年级统考期末)既不是正数也不是负数的数是()A.2−B.1−C.0D.1【答案】C【分析】根据有理数的分类,即可求解.【详解】解:A、2−是负数,故本选项不符合题意;B、1−是负数,故本选项不符合题意;C、0既不是正数也不是负数,故本选项符合题意;D、1是正数,故本选项不符合题意;故选:C【点睛】本题主要考查了有理数的分类,熟练掌握0既不是正数也不是负数是解题的关键.7.(2022秋·山西临汾·七年级统考阶段练习)有下列两个判断:①正整数和负整数统称为整数;②整数和分数统称为有理数.其中正确的是()A.①对,②错B.①错,②对C.①②都对D.①②都错【答案】B【分析】根据整数的分类和有理数的定义进行判断即可.【详解】解:①整数包括正整数、负整数和零,故①错误;②整数和分数统称为有理数,故②正确;综上分析可知,①错,②对,故B正确.故选:B.【点睛】本题主要考查了整数的分类和有理数的定义,熟练掌握整数包括正整数、负整数和零,是解题的关键.8.(2022秋·吉林长春·七年级统考期中)课堂上老师要求就数“”发表自己的意见,四位同学共说了下列四句话:①是整数,但不是自然数;②既不是正数,也不是负数;③不是整数,是自然数;④没有实际意义.其中正确的个数是()A.4B.3C.2D.1【答案】D【分析】分别依据整数的定义、0的性质、和0的意义进行判断即可.【详解】解:自然数中包括0,当然0也是整数,所以①③都不正确;0既不是正数也不是负数,所以②正确;而在实际生活中0具有实际的意义,如0℃,所以④不正确;故正确的只有②,故选:D.【点睛】本题主要考查对0的理解,解题的关键是知道0是整数,也是自然数;0既不是正数也不是负数;0具有实际的意义.二、填空题9.(2023秋·全国·七年级专题练习)正数:比____大的数;负数:在正数前面加上_______的数,______既不是正数,也不是负数.【答案】0 负号0【分析】根据有理数的有关概念判断即可.【详解】解:根据题意,正数:比0大的数;负数:在正数前面加上负号的数,0既不是正数,也不是负数.故答案为:0,负号,0【点睛】本题考查了有理数,解题的关键是掌握有理数的定义进行判断.10.(2022秋·全国·七年级专题练习)下列关于零的说法中,正确的是________①零是正数②零是负数③零既不是正数,也不是负数④零仅表示没有【答案】③【分析】根据零既不是正数也不是负数以及不同情形下零表示的意义不同进行逐一判断即可.【详解】解:①零不是正数,说法错误;②零不是负数,说法错误;③零既不是正数,也不是负数,说法正确;④零不仅仅表示没有,不同情形下,零表示的意义不同,说法错误;故答案为:③.【点睛】本题主要考查了有理数的分类,熟知零表示的意义是解题的关键.三、解答题11.(2022秋·山西太原·七年级太原市第十八中学校校考阶段练习)请写四句话,说明数“零”(0)的数学特性.(例:0是绝对值最小的数.例句除外)【答案】见解析【分析】根据题意可以写出零的数学特性,本题得以解决.【详解】解:①零既不是正数也不是负数;②零小于正数,大于负数;③零不能做分母;④零是最小的非负数;⑤零的相反数是零;⑥任何不为零的数的零次幂为1;⑦零乘以任何数都是零等.【点睛】本题考查有理数,解题的关键是明确题意,可以仿照例句写出关于零的别的数学特性.三、有理数的分类一、单选题 1.(2022秋·贵州贵阳·七年级校考阶段练习)下列说法正确的是( )A .0既不是正数,也不是负数B .非负数就是正数C .一个数前面加上“−”号这个数就是负数D .正数和负数统称为有理数【答案】A【分析】根据有理数的有关概念判断即可.【详解】解:A 、0既不是正数,也不是负数,故符合题意;B 、非负数就是0和正数,故不符合题意;C 、一个数前面加上“−”号,这个数不一定是负数,如2−,故不符合题意;D 、零和正数和负数统称为有理数,故不符合题意;故选:A .【点睛】此题考查有理数,关键是根据有理数的有关概念判断.【答案】C【分析】根据整数的定义,即可得到答案.【详解】解:根据题意可得:11405+−−,,,属于整数, ∴整数一共有4个,故选:C .【点睛】本题主要考查了有理数,利用整数的定义是解题的关键.【答案】C 【分析】根据负分数的定义可以得到答案,要注意负小数也可以化为负分数.【详解】解:在数3570.5405156569−−−,,,,,中,负分数有370.54659−−−,,,共有3个, 故选:C .【点睛】本题考查了有理数的分类,解题的关键是掌握负分数的定义,要注意很容易将负小数漏掉,出现错误.二、填空题【答案】0.618,30%,7;7,0,1006+;132−【分析】根据有理数的分类即可解答.【详解】解:正分数集合:(0.618,30%,227);非负整数集合:(7,0,1006+);负分数集合:(132−). 故答案为:0.618,30%,227;7,0,1006+;132−. 【点睛】本题考查了有理数的分类,熟练掌握有理数的分类是解决本题的关键.【答案】 62.49,, 60, 630−,, 3.144−−,【分析】根据分母为1的数是整数,可得整数集合;根据小于零的数是负数,可得负数集合;根据大或等于零的整数是非负整数,可得非负整数集合,根据小于零的分数是负分数,可得负分数集合,根据有理数是有限小数或无限循环小数,可得有理数集合.【详解】解:正数:{6,2.4,29…}非负整数:{6,0…} 整数:{6,3−,0…} 负分数:{3 3.144−−,…}故答案为:6,2.4,29;6,0;6,3−,0;34−, 3.14−.【点睛】此题考查了有理数,熟练掌握有理数的分类是解本题的关键.三、解答题【答案】(1)2,3,7(2) 3.14−,5−,0.1212212221−⋯ (3)2,5− (4) 3.14−,227【分析】根据有理数的分类方法求解即可. 【详解】(1)解:正数有:2,3π,227,故答案为:2,3π,227;(2)解:负数有: 3.14−,5−,0.1212212221−⋯; 故答案为: 3.14−,5−,0.1212212221−⋯; (3)解:整数有:2,5−; 故答案为:2,5−;(4)解:分数有: 3.14−,227;故答案为: 3.14−,227.【点睛】本题主要考查了有理数的分类,熟知有理数的分类方法是解题的关键.【答案】正数:3.14,72+,0.618;负数: 2.5−,2−,0.6−,0.101−;分数: 2.5−,3.14,0.6−,0.618,0.101−;非负数:3.14,72+,0.618,0.【分析】根据有理数的分类方法进行求解即可. 【详解】解: 2.5−是负数,是分数; 3.14是正数,是分数,是非负数;2−是负数;72+是正数,是非负数; 0.6−是负数,是分数;0.618是正数,是分数,是非负数;0是非负数;0.101−是负数,是分数;∴正数:3.14,72+,0.618; 负数: 2.5−,2−,0.6−,0.101−;分数: 2.5−,3.14,0.6−,0.618,0.101−; 非负数:3.14,72+,0.618,0.【点睛】本题主要考查了有理数的分类,熟知有理数的分类方法是解题的关键.四、带“非”字的有理数一、单选题【答案】B【分析】根据有理数的分类进行分析解答即可.【详解】解:没有最小的整数,故①错误,0既不是正数也不是负数,但是有理数,故②错误,非负数是正数和0,故③错误,237是有限小数,故④错误,正数中没有最小的数,负数中没有最大的数,故⑤正确,综上可知,错误的说法为①②③④,故选:B【点睛】此题考查了有理数,熟练掌握有理数的分类是解题的关键.【答案】A【分析】根据有理数的分类方法进行逐一判断即可.【详解】解:A.113,0.3,43−都是分数,故此选项符合题意;B.1, 2.5−−都是负数,故此选项不符合题意;C.0不是正数,故此选项不符合题意;D.132是分数,不是整数,故此选项不符合题意.故选:A.【点睛】本题主要考查了有理数的分类,熟知有理数的分类方法是解题的关键.3.(2022秋·山东日照·七年级校考期末)下列说法中:①0是最小的整数;②有理数不是正数就是负数;③非负数就是正数和0;④整数和分数统称有理数,其中正确的个数是()A.0B.1C.2D.3【答案】C【分析】根据有理数定义及其分类解答即可.【详解】没有最小的整数,故①错误;有理数包括正数、0、负数,故②错误;非负数就是正数和0,故③正确;整数和分数统称有理数,故④正确;故选:C【点睛】本题侧重考查的是有理数,掌握有理数定义及其分类是解决此题的关键.【答案】C【分析】根据非负整数的概念求解即可.【详解】解:()33−−=,∴在3.67,0,1,23−,()3−−,157,6−中,非负整数有:0,1,()3−−,共3个,故选:C.【点睛】此题考查了非负整数的概念,解题的关键是掌握非负整数的概念.非负整数包括正整数和零.5.(2022秋·贵州遵义·七年级校考阶段练习)下列说法正确的是()A.正整数和负整数统称整数B.a−一定是负数C.21n+(n为整数)表示一个奇数D.非负数包括零和负数【答案】C【分析】根据有理数的分类进行判断即可.【详解】解:A.正整数、0和负整数统称整数,说法错误,不符合题意;B.a−不一定是负数,说法错误,不符合题意;C.21n+(n为整数)表示一个奇数,说法正确,符合题意;D .非负数包括零和正数,说法错误,不符合题意; 故选:C .【点睛】本题考查了有理数的分类,熟练掌握正数、负数、整数、分数、正有理数、负有理数、非负数的定义与特点是解题的关键.二、填空题【答案】6【分析】根据非负数包括正数和判断即可.【详解】解:在11+,,37−,45+,12,5−,0.26,1.38中,非负数有11+,,45+,12,0.26,1.38,共6个. 故答案为:6.【点睛】本题考查有理数的分类.正确掌握有理数的分类标准是解题的关键.三、解答题【答案】(1) 6.5+,0.5,52;(2)0,13,9−,1−;(3) 6.5+,0.5,0,13,152,3π.【分析】(1)根据正分数的定义:比0大的分数叫正分数,正数前面常有一个符号“+”,通常可以省略不写,据此逐一进行判断即可得到答案;(2)根据整数的定义:整数是正整数、零、负整数的集合,据此逐一进行判断即可得到答案; (3)根据非负数的定义:正数和零总称为非负数,据此逐一进行判断即可得到答案 【详解】(1)解:根据正分数的定义,正分数有: 6.5+,0.5,152,故答案为: 6.5+,0.5,152;(2)解:根据整数的定义,整数有:0,13,9−,1−, 故答案为:0,13,9−,1−;(3)解:根据非负数的定义,非负数有: 6.5+,0.5,0,13,152,3π,故答案为: 6.5+,0.5,0,13,152,3π.【点睛】本题考查了有理数的分类,解题关键是理解正分数,整数,非负数的定义,并正确区别.【答案】(1)13−, 2.23−,0,15%−,132−(2)0.1,27+,0,227(3)13−,0 (4)27+,0【分析】(1)根据“负数和0统称为非正数”即可进行解答; (2)根据“正数和0统称为非负数”即可进行解答; (3)根据“0和负整数统称为非正整数”即可进行解答; (4)根据“0和正整数统称为非负整数”即可进行解答.【详解】(1)解:非正数:{13−, 2.23−,0,15%−,132−,…};故答案为:13−, 2.23−,0,15%−,132−;(2)解:非负数:{0.1,27+,0,227,…};故答案为:0.1,27+,0,227;(3)解:非正整数:{13−,0,…}; 故答案为:13−,0;(4)解:非负整数:{27+,0,…}. 故答案为:27+,0.【点睛】本题主要考查了有理数的分类,熟练掌握有理数的各个分类依据是解题的关键.【答案】(1)0,2021,101− (2)23.01,2021,13−−−(3)22,15%,3.14,0.6187+ (4)22,15%,101,3.14,0.6187+(5)0,2021−(6)22,0,15%,101,3.14,0.6187+【分析】根据有理数的分类即可解答.【详解】(1)解:整数:0,2021,101−(2)解:负数:23.01,2021,13−−−(3)解:正分数:22,15%,3.14,0.6187+ (4)解:正有理数:22,15%,101,3.14,0.6187+(5)解:非正整数:0,2021−(6)解:非负数:22,0,15%,101,3.14,0.6187+【点睛】本题考查的是有理数的分类,熟练掌握有理数的分类是解题的关键.【答案】5、0.75−、310+;3−、2021−;5、0、3+、310+.【分析】直接根据有理数的分类进行解答即可.【详解】分数集合:{15、0.75−、310+…};负整数集合:{3−、2021−…};非负数集合:{15、0、3+、310+…}.故答案为:15、0.75−、310+;3−、2021−;15、0、3+、310+.【点睛】此题考查的是有理数,掌握分数、负整数、非负数的概念是解决此题关键.【过关检测】一.选择题(共10小题)1.(2022秋•东港区校级期末)下列说法中:①0是最小的整数;②有理数不是正数就是负数;③非负数就是正数和0;④整数和分数统称有理数,其中正确的个数是( ) A .0B .1C .2D .3【分析】根据有理数定义及其分类解答即可.【解答】解:①没有最小的整数,故①错误,不符合题意;②有理数包括正有理数、0、负有理数,故②错误,不符合题意;③非负数就是正数和0,故③正确,符合题意;④整数和分数统称有理数,故④正确,符合题意;故选:C.【点评】本题侧重考查的是有理数,掌握有理数定义及其分类是解决此题的关键.2.(2022秋•朝阳区期末)下面的说法中,正确的是()A.正有理数和负有理数统称有理数B.整数和小数统称有理数C.整数和分数统称有理数D.整数、零和分数统称有理数【分析】根据有理数的分类进行判断即可.【解答】解:A.正有理数、0和负有理数统称为有理数,故不符合题意;B.无限不循环小数是无理数,故不符合题意;C.整数和分数统称为有理数,故符合题意;D.整数包括零,故不符合题意.故选:C.【点评】本题考查有理数的分类,熟练掌握有理数的分类方法是解题的关键.3.(2022秋•河池期末)下列数中,是正整数的是()A.﹣1B.0C.1D.【分析】根据正整数的定义进行逐一判断即可.【解答】解:∵这四个数中,只有1是正整数,∴只有选项C符合题意,故选:C.【点评】本题主要考查了正整数的定义,熟知定义是解题的关键.4.(2022秋•巴南区期末)在﹣2022,﹣1,0,1这四个有理数中,最小的有理数是()A.﹣2022B.﹣1C.0D.1【分析】根据有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.依此即可求解.【解答】解:∵﹣2022<﹣1<0<1,所以最小的有理数是﹣2022.故选:A.【点评】本题考查了有理数大小比较,关键是熟练掌握有理数大小比较的方法.5.(2022秋•隆回县期末)在,,0,﹣1,0.12,14,﹣2,﹣1.5这些数中,正有理数有m个,非负整数有n个,分数有k个,则m﹣n+k的值为()A.3B.4C.6D.5【分析】先求出m,n,k的值,再进行计算即可.【解答】解:∵,0.12,14是正有理数,共3个;0,14是非负整数,共2个;,,0.12,﹣1.5是分数,共4个,∴m=3,n=2,k=4,∴m﹣n+k=3﹣2+4=5.故选:D.【点评】本题考查的是有理数,熟知有理数的分类是解题的关键.6.(2022秋•竞秀区期末)在下列选项中,所填的数正确的是()A.分数{﹣3,0.3,,…}B.非负数{0,﹣1,﹣2.5,…}C.正数{2,1,5,0,…}D.整数{3,﹣5,…}【分析】根据有理数的分类方法进行逐一判断即可.【解答】解:A.都是分数,故此选项符合题意;B.﹣1,﹣2.5都是负数,故此选项不符合题意;C.0不是正数,故此选项不符合题意;D.是分数,不是整数,故此选项不符合题意.故选:A.【点评】本题主要考查了有理数的分类,熟知有理数的分类方法是解题的关键.7.(2022秋•宛城区校级期末)下列说法错误的是()A.0既不是正数,也不是负数B.零上6摄氏度可以写成+6℃,也可以写成6℃C.向东走一定用正数表示,向西走一定用负数表示D.没有最小的有理数【分析】根据有理数的概念和性质判断即可.【解答】A.0既不是正数,也不是负数,正确,故该选项不符合题意;B.零上6摄氏度可以写成+6℃,也可以写成6℃,正确,故该选项不符合题意;C.向东走可以用正数表示,也可以用负数表示,根据相反意义的关系,即可表示另一个方向,故该选项不正确,符合题意;D.没有最小的有理数,正确,故该选项不符合题意.故选:C.【点评】本题考查了有理数的基本概念,熟练掌握有理数的基本概念是解题的关键.8.(2022秋•荆门期末)数0.1不属于()A.正数B.整数C.分数D.有理数【分析】根据有理数的分类解得即可.【解答】解:数0.1是正数,是分数(小数可以化成分数),是有理数,但不是整数.故选:B.【点评】本题考查了有理数,解题的关键是熟练掌握有理数的分类.9.(2022秋•广阳区校级期末)下列各数:,1.010010001,,0,﹣π,﹣2.626626662…,0.,其中有理数的个数是()A.2B.3C.4D.5【分析】直接利用有理数的概念分析得出答案.【解答】解:﹣,1.010010001,,0,﹣π,﹣2.626626662…,0.,其中有理数为:﹣,1.010010001,,0,0.,共5个.故选:D.【点评】此题主要考查了有理数的相关概念,正确把握相关定义是解题关键.10.(2022秋•南宫市期末)若有理数的分类表示为:,则“”表示的是()A.正有理数B.负有理数C.0D.非负数【分析】根据有理数及整数的分类方法判断即可.【解答】解:有理数包括:整数与分数,整数包括:正整数,0和负整数,则“”表示的是0.故选:C.【点评】此题考查了有理数,熟练掌握有理数的分类方法是解本题的关键.二.填空题(共8小题)11.(2022秋•枣阳市期末)在数﹣1,﹣9,﹣2.23,0,+3,,﹣π,,﹣0.01001中,是负分数.【分析】根据有理数的分类逐一判断即可得到答案.【解答】解:负整数:﹣1,﹣9;正整数:+3;正分数:;负分数:﹣2.23,,﹣0.01001;无理数:﹣π,故答案为:﹣2.23,,﹣0.01001.【点评】本题考查了有理数的分类,熟练掌握负分数的概念是解题关键,注意所有的有限小数和无限循环小数都可以化成分数的形式,而无限不循环小数,不能化成分数的形式.12.(2022秋•福清市期末)写一个比﹣1小的有理数.(答案不唯一)(只需写出一个即可)【分析】根据负数的大小比较,绝对值大的反而小,只要绝对值大于1的负数都可以.【解答】解:根据题意,绝对值大于1的负数均可,例如﹣2(答案不唯一).【点评】只要是负数并且绝对值大于1的数就可以,也可以利用数轴根据右边的总比左边的大,选择﹣1左边的数.13.(2022秋•魏县期中)一个九位数,最高位上是最大的一位数,千万位上是5,十万位上是最小的合数,百位上是最小的质数,其余各位都是0,这个数写作.【分析】根据最大的一位数是9,千万位上是5,最小的合数是4,最小的质数是2,其余各位都是0即可解答.【解答】解:∵最大的一位数是9,千万位上是5,最小的合数是4,最小的质数是2,其余各位都是0,∴这个数是950400200.故答案为:950400200.【点评】本题考查的是有理数,熟知最小的合数是4,最小的质数是2是解题的关键.14.(2022秋•新城区校级期中)月考成绩出来后,组长记录了她们组6名同学的数学成绩,她以80分作为计分标准,超过的部分计为正数,不足的部分计为负数,若她们组6名同学的成绩为+16,﹣10,0,+18,﹣4,﹣8,则这6名同学的实际成绩最高分数是分.【分析】这列数字中的最大数加上80就是实际的最高分.【解答】解:80+18=98(分),故答案为:98.【点评】本题考查了有理数,有理数的比较是解题的关键.15.(2022秋•西峰区校级期末)在“﹣1,﹣0.3,+1,0,﹣2.7”这五个数中,负有理数是.【分析】根据小于零的有理数是负有理数,可得答案.【解答】解:负有理数是﹣1,﹣0.3,﹣2.7.故答案为:﹣1,﹣0.3,﹣2.7.【点评】本题考查了有理数,掌握小于零的有理数是负有理数是关键.16.(2022秋•新市区校级期末)在﹣15,,﹣0.23,0.51,0,7.6,2,﹣,314%中,非负数有个.【分析】利用有理数的定义判断.【解答】解:在﹣15,,﹣0.23,0.51,0,7.6,2,﹣,314%中,。

秋七年级数学上《有理数》期末复习知识点+检测试卷

秋七年级数学上《有理数》期末复习知识点+检测试卷

2022-2023七年级上期末复习(有理数)知识点1:正数负数有理数知识回顾:(1)大于0的数叫做正数,在正数前加上符号“-”(负)的数叫做负数。

用正、负数可表示一对具有相反意义的量。

(2)0既不是正数,也不是负数。

(3)正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称为有理数。

巩固练习:1.(2022-2023韶关市南雄市七上期末)如果“节约10%”记作+10%,那么“浪费6%”记作: .2.(2022-2023武汉市黄陂区七上期末)如果水位升高2m 时水位变化记作+2m ,那么水位下降3m 时水位变化记作( )A .3m ;B .-3m ;C .5m ;D .-5m 。

3.(2022-2023深圳市龙华新区七上期末)如果节约20元记作+20元,那么浪费10元记作 元.4.(2022-2023阜阳市太和县七上期末)一袋面粉的质量标识为“25±0.25千克”,则下列一袋面粉质量中,合格的是( )A .25.30千克;B .24.70千克;C .25.51千克;D .24.80千克。

5.(2022-2023北京市海淀区七上期末)在“1,-0.3,31 ,0,-3.3”这五个数中,非负有理数是 .(写出所有符合题意的数)知识点2:数轴知识回顾:(1)规定了原点、正方向和单位长度的直线叫做数轴。

一般地,规定向右的方向为正方向,因此数轴上,原点左边表示的数是负数,原点右边表示的数是正数,原点表示的数是0。

(2)设a 是一个正数,那么在数轴上,表示数a 的点与原点的距离为a ;表示数-a 的点与原点的距离为a 。

因此,数轴上与原点的距离是a 的点的两个,它们分别在原点左右,表示的数是-a 和a 。

我们说这两点关于原点对称。

巩固练习:1.(2022-2023广东省深圳市七上期末)数轴的A 点表示﹣3,让A 点沿着数轴移动2个单位到B 点,B 点表示的数是 ;线段BA 上的点表示的数是 .2.(2022-2023天津市和平区七上期末)数轴上的点A 到原点的距离是4,则点A 表示的数为( )A .4;B .﹣4;C .4或﹣4;D .2或﹣2。

(完整版)最新人教版七年级数学上册知识点归纳总结及典型试题汇总

(完整版)最新人教版七年级数学上册知识点归纳总结及典型试题汇总

人教版七年级数学上册第一章有理数知识要点本章的主要内容可以概括为有理数的概念与有理数的运算两部分。

有理数的概念可以利用数轴来认识、理解,同时,利用数轴又可以把这些概念串在一起。

有理数的运算是全章的重点。

在具体运算时,要注意四个方面,一是运算法则,二是运算律,三是运算顺序,四是近似计算。

1.有理数:(1)凡能写成形式的数,都是有理数, 和 统称有理数.)0p q ,p (pq≠为整数且注意:0即不是正数,也不是负数;-a 不一定是负数,+a 也不一定是正数;π (是不是)有理数;(2)有理数的分类: ① ② ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数零正分数正整数正有理数有理数⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数零正整数整数有理数(3)注意:有理数中,1、0、-1是三个特殊的数,它们有自己的特性;这三个数把数轴上的数分成四个区域,这四个区域的数也有自己的特性;(4)自然数⇔ 0和正整数; a >0 ⇔ a 是正数; a <0 ⇔ a 是负数;a≥0 ⇔ a 是正数或0 ⇔ a 是非负数; a≤ 0 ⇔ a 是负数或0 ⇔ a 是非正数.2.数轴:数轴是规定了 (数轴的三要素)的一条直线.3.相反数:(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0; (2)注意: a-b+c 的相反数是 ;a-b 的相反数是;a+b 的相反数是;(3)相反数的和为 ⇔ a+b=0 ⇔ a 、b 互为相反数.(4)相反数的商为 .(5)相反数的绝对值相等w w w .x k b 1.c o m4.绝对值:(1)正数的绝对值等于它 ,0的绝对值是 ,负数的绝对值等于 ;注意:绝对值的意义是数轴上表示某数的点离开原点的距离;(2) 绝对值可表示为: 或 ;⎪⎩⎪⎨⎧<-=>=)0a (a )0a (0)0a (a a ⎩⎨⎧≤-≥=)0()0(a a a a a (3);;0a 1a >⇔=0a 1a <⇔-=(4) |a|是重要的非负数,即|a|≥0,非负性;5.有理数比大小:(1)正数永远比0大,负数永远比0小;(2)正数大于一切负数;(3)两个负数比较,绝对值大的反而小;(4)数轴上的两个数,右边的数总比左边的数大;(5)-1,-2,+1,+4,-0.5,以上数据表示与标准质量的差,绝对值越小,越接近标准。

人教版数学七年级上册第一章有理数正负数知识点总结练习题带答案

人教版数学七年级上册第一章有理数正负数知识点总结练习题带答案

数学七年级上(人教版)基础知识点及习题第一章有理数1.1正数和负数正数:正数是大于零的数。

有时为了明确表达意义,在正数前面也加上“+”(正)号,例如+1,+5,+0.01,+13,一般情况下正数前正号省略不写。

负数:负数是小于零的数。

在正数前面加上符号“-”(负)号,书写负数是负号不可以省略。

零既不是正数,也不是负数。

可以理解为“0”是正数与负数的分界点,所以不属于两方的任意一方。

注:①正数和负数表示相反意义的量,例如零上5摄氏度记作“+5”,那么“-5”表示为零下5摄氏度;向正东方向走10米记作“+10”,那么“-10”表示为向正西方向走10米。

②0不只是表示没有,还有其它的意义,例如0摄氏度温度为0的时候,而不是没有温度。

练习1.给下列各数分类,哪些是正数,哪些是负数。

-1,-2.5,0,-3.8,3.6,+150,+5.32.如果支出10元记作-10元,那么+10元的意义是。

3.如果海拔500米(海拔:高出海平面的高度)记作+500米,那么-500米的意义是。

4.三层楼记作+3层,地下2层记作。

5.初一二班第一周的数学考试成绩的平均分是92,瑶瑶的成绩为98记为+6分,远远数学的成绩记为-3,那么远远的数学成绩为分。

6.每年的防汛期间,各地的防汛指挥部要密切关注水位的变化以应对洪涝灾害,下面是某地七月中一周的水位变化其中有水位上升天,水位下降天。

7.瑶瑶的妈妈记录了最近十天减肥的体重变化,+0.1kg、-0.2kg、-0.05kg、-0.1kg、0kg、+0.05kg、-0.01kg、-0.2kg、+0.02kg、-0.5kg其中达到减肥得到目的天数天。

8.下图是某同学微信的收支情况,按图中表示。

其中“+”、“-”分别表示的含义、。

9.小明的妈妈在2020年测量小明的升高为158cm,2021年记录为+5,2022年至今记录为+8,小明比2020年长高。

10.下列说法正确的是()A.考试中答对得分答错扣分最低分是0分B.0是非自然数B.0°c表示没有温度 D.0既不是正数也不是负数11.下列说法中正确的是()A.+a是正数B.任一自然数前边加上负号就是负数C.负数的前边一定有负号D.b既是正数也是负数12.一盒罐头的净含量为(450±50)g,则下面合格的产品是()A.420gB.380gC.550gD.580g13.下列各组语句中,表示互为相反意义的是()A.升高3米与下降-3米B.收入增加a元与收入减少a元C.快跑50米与慢跑50米D.上午1时30分与下午1时30分14.甲比乙年龄大-3岁,那么下面的说法正确的是()A.甲比乙大3岁B.甲比乙小3岁C.乙比甲小3岁D.乙比甲小-3岁15.下列对0的说法中,错误的是()A.0是自然数B.0既不是正数也不是负数C.0是偶数D.0是最小的数16.小刚同学制定了新学期的学习计划,每天规定学习一小时,超过一小时记为“+”不足记为“-”如果小刚每日从20:00开始学习,11:00要准时休息。

初一数学有理数知识点与经典例题

初一数学有理数知识点与经典例题

初一数学有理数知识点与经典例题一、有理数知识点。

(一)有理数的概念。

1. 有理数的定义。

- 整数和分数统称为有理数。

整数包括正整数、0、负整数;分数包括有限小数和无限循环小数。

例如:5是正整数,属于有理数; - 3是负整数,属于有理数;(1)/(2)是分数,属于有理数;0.25(有限小数,可化为(1)/(4))也是有理数。

2. 有理数的分类。

- 按定义分类:- 有理数整数正整数 0 负整数分数正分数负分数- 按性质符号分类:- 有理数正有理数正整数正分数 0 负有理数负整数负分数(二)数轴。

1. 数轴的定义。

- 规定了原点、正方向和单位长度的直线叫做数轴。

2. 数轴上的点与有理数的关系。

- 所有的有理数都可以用数轴上的点来表示,但数轴上的点不都表示有理数(例如√(2)等无理数也可以用数轴上的点表示)。

一般地,设a是一个正数,则数轴上表示数a的点在原点的右边,与原点的距离是a个单位长度;表示数 - a的点在原点的左边,与原点的距离是a个单位长度。

(三)相反数。

1. 相反数的定义。

- 只有符号不同的两个数叫做互为相反数。

特别地,0的相反数是0。

例如,3和 - 3互为相反数,-(1)/(2)和(1)/(2)互为相反数。

2. 相反数的性质。

- 互为相反数的两个数的和为0,即若a与b互为相反数,则a + b=0。

(四)绝对值。

1. 绝对值的定义。

- 一般地,数轴上表示数a的点与原点的距离叫做数a的绝对值,记作| a|。

2. 绝对值的性质。

- 当a>0时,| a|=a;当a = 0时,| a|=0;当a<0时,| a|=-a。

例如,|3| = 3,| - 3|=3,|0| = 0。

- 非负性:| a|≥s lant0。

(五)有理数的大小比较。

1. 法则。

- 正数大于0,0大于负数,正数大于负数。

- 两个负数,绝对值大的反而小。

例如,比较 - 2和 - 3,| - 2|=2,| - 3| = 3,因为2<3,所以 - 2>- 3。

人教版七年级数学上册第一章《有理数》期末复习知识点+易错题(含答案)

人教版七年级数学上册第一章《有理数》期末复习知识点+易错题(含答案)

人教版七年级数学上册期末复习有理数知识点+易错题有理数习知识点复习1、有理数的定义:________和________统称为有理数。

2、有理数的分类:按照符号分类,可以分为________、________和________;按照定义分类,可以分为________和________:整数分为________、________和________;分数分为________和________。

3、数轴的定义:规定了________、________和________的________叫数轴。

4、数轴的三要素:数轴的三要素是指________、________和________,缺一不可。

5、用数轴比较有理数的大小:在数轴上,________的点表示的数总比________的点表示的数大。

6、绝对值的定义:数轴上____________与________的________,叫做这个数的绝对值。

7、绝对值的表示方法如下:-2的绝对值是2,记作________;3的绝对值是3,记作________;0的绝对值是________。

8、相反数的定义:__________、__________的两个数互为相反数,其中一个数是另一个数的________。

9、表示一个数的相反数就是在这个数的前面添一个________号,如2的相反数可表示为________。

10、有理数加法法则:①同号两数相加,取________的符号,并把________相加;②异号两数相加,________相等时,和为________;绝对值不等时,取__________符号,并用________________。

③一个数与0相加,________。

11、有理数减法法则:减去一个数,等于____________。

12、有理数加法运算律:加法交换律:a+b=________;加法结合律:(a+b)+c=________。

13、有理数乘法法则:两数相乘,同号________,异号________,并把________相乘;任何数与0相乘都得________。

人教版七年级上有理数全章总复习及试题

人教版七年级上有理数全章总复习及试题

人教版七年级上有理数全章总复习及试题1.1 正数与负数一、必记概念:0既 ,也。

在实际生活中,常常用正数和负数表示具有意义的量。

如果上升10米记作+10米,那么下降5米记作。

二、练习:1. 下列结论中错误的是()A. 零是整数B. 零不是正数 C。

零是偶数 D. 零不是自然数2. 如果顺时针旋转30°记作-30°,那么逆时针旋转45°记作。

3. 某人向东走5米,又回头向西走5米,此人实际距原地米.4. 如果中午以后的2小时记作+2小时,那么+2小时前3小时应记作。

5。

观察下面依次排列的一列数,你能发现它们排列的规律是什么吗?后面空格内的三个数是什么,试把它写出来.(1) 2、-3、4、-5、6、、、、…(2) 1、2、3、5、8、、、、…6. “一个数前面加‘-’,它一定是负数”对吗?1。

2 有理数1.2。

1 有理数一、必记概念:1. 正整数、零和负整数统称为 ;正分数和负分数统称为 ;和统称为有理数。

2。

把一些数放在一起,就组成一个数的,简称数集。

3。

零和正数统称为 ,零和负数统称为。

4. 正整数和零统称为,又统称为;零和负整数统称为。

二、练习:(一)把下列各数填在相应的集合中:-1、-0。

4、35、0、13-、6、9、317-、114、-19正数集合:﹛…﹜负数集合:﹛…﹜整数集合:﹛…﹜分数集合:﹛…﹜非正数集合:﹛…﹜非负数集合:﹛…﹜非正整数集合:﹛…﹜非负整数集合:﹛…﹜(二)判断题:1. 一个有理数不是正数就是分数。

( )2。

一个有理数不是整数就是分数。

( )3。

有限小数和无限小数都是有理数。

( )4. 0C︒表示没有温度。

( )(三)选择题:5。

下列说法:(1)零是正数;(2)零是整数;(3)零是有理数;(4)零是非负数;(5)零是偶数。

其中正确的说法的个数为( )A. 2个B. 3个C. 4个 D。

5个6. 下列说法正确的是()A。

一个有理数不是正数就是负数B. 一个有理数不是整数就是分数C. 有理数是指整数、分数、正有理数、零、负有理数这五类D。

人教版七年级数学第一章(有理数)梳理+同步练习(重点讲解+练习题)

人教版七年级数学第一章(有理数)梳理+同步练习(重点讲解+练习题)

第一章有理数【知识梳理】1.数轴:数轴三要素:原点,正方向和单位长度;数轴上的点与实数是一一对应的。

2.相反数实数a的相反数是-a;若a与b互为相反数,则有a+b=0,反之亦然;几何意义:在数轴上,表示相反数的两个点位于原点的两侧,并且到原点的距离相等。

3.倒数:若两个数的积等于1,则这两个数互为倒数。

4.绝对值:代数意义:正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0;几何意义:一个数的绝对值,就是在数轴上表示这个数的点到原点的距离.5.科学记数法:,其中。

6.实数大小的比较:利用法则比较大小;利用数轴比较大小。

7.在实数范围内,加、减、乘、除、乘方运算都可以进行,但开方运算不一定能行,如负数不能开偶次方。

实数的运算基础是有理数运算,有理数的一切运算性质和运算律都适用于实数运算。

正确的确定运算结果的符号和灵活的使用运算律是掌握好实数运算的关键。

【能力训练】一、选择题。

1.下列说法正确的个数是 ( )①一个有理数不是整数就是分数②一个有理数不是正数就是负数③一个整数不是正的,就是负的④一个分数不是正的,就是负的A 1B 2C 3D 42.a,b是有理数,它们在数轴上的对应点的位置如下图所示:把a,-a,b,-b按照从小到大的顺序排列 ( )A -b<-a<a<bB -a<-b<a<bC -b<a<-a<bD -b<b<-a<a3.下列说法正确的是 ( )①0是绝对值最小的有理数②相反数大于本身的数是负数③数轴上原点两侧的数互为相反数④两个数比较,绝对值大的反而小A ①②B ①③C ①②③D ①②③④4.下列运算正确的是 ( )A B -7-2×5=-9×5=-45C 3÷D -(-3)2=-95.若a+b<0,ab<0,则 ( )A a>0,b>0B a<0,b<0C a,b两数一正一负,且正数的绝对值大于负数的绝对值D a,b两数一正一负,且负数的绝对值大于正数的绝对值6.某粮店出售的三种品牌的面粉袋上分别标有质量为(25±0.1)kg,(25±0.2)kg, (25±0.3)kg的字样,从中任意拿出两袋,它们的质量最多相差()A 0.8kgB 0.6kgC 0.5kgD 0.4kg7.一根1m长的小棒,第一次截去它的,第二次截去剩下的,如此截下去,第五次后剩下的小棒的长度是()A ()5mB [1-()5]mC ()5mD [1-()5]m8.若ab≠0,则的取值不可能是()A 0B 1C 2D -2二、填空题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.如图,数轴上A、B两点分别对应实数a、b,则下列结论正确的是( )
A. B. C. D.
三、相反数
1.概念:只有符号不同的两个数叫做互为相反数。0的相反数仍是0.
2.几何定义:在数轴上原点的两侧,到原点的距离相等的两点所表示数为相反数。
3.任何一个数都有它的相反数
4.相反数性质:a与b互为相反数,则a+b=0.
1.如果a和b是符号相反的两个数,在数轴上a所对应的数和b所对应的点相距6个单位长度,如果a=-2,则b的值为_________________.
2.已知x、y互为相反数,则-15(x+y)=__________________.
3.如果a的相反数是最大的负整数,b的相反数是最小的正整数,a+b=___________.
注意:循环小数是无限小数,也称作无限循环小数。整数和分数都可以写成有限小数或无限循环小数,所以有理数也可以分类为有限小数和无限循环小数。
1.下列说法中正确的是( )
A、一个有理数,不是正数就是负数 B、一个有理数,不是整数就是分数
C、有理数可分为非负有理数和非正有理数 D、整数和小数统称有理数
2.若两个有理数的和是正数,那么一定有结论( )
2.计算:
3.计算
七、科学计数法
将一个大于10的数字表示成 的形式(其中1≤a<10,n表示正整数),这种记数方法叫科学记数法.
1.某市2013年底机动车的数量是2×106辆,2014年新增3×105辆,用科学记数法表示该市2014年底机动车的数量是( )
A.2.3×105辆 B.3.2×105辆 C.2.3×106辆 D.3.2×106辆
四、绝对值
在数轴上,一个数所对应的点与原点的距离叫做该数的绝对值。正数的绝对值是他的本身、负数的绝对值是他的相反数、0的绝对值是0。两个负数比较大小,绝对值大的反而小。
1.已知|x|=3,|y|=2,且xy<0,则x+y的值等于( )t;0,那么a-b的值是_____________.
1.在-4,2,-1,3这四个数中,比-2小的数是()
2.一个非0实数 与 , 的大小关系是________________________
六、有理数的运算 ---加减、乘除、乘方
1.若a、b表示有理数,且a>0,b<0,a+b<0,则下列各式正确的是( )
A、-b<-a<b<a B、-a<b<a<-b C、b<-a<-b<a D、b<-a<a<-b
3.倒数是它本身的有+1、-1
4.a、b互为倒数则ab=1,前提a、b不为零。
1.若a、b互为倒数,则6ab等于( )
2.若a、b互为倒数,x、y互为相反数,且︱m︱=3,求:
(1)x+y-ab+m2-8的值(2)5ab-m+x-4+y的值(3)5x-ab+5y的值
3.若a,b互为相反数,c和d互为倒数,m的绝对值为2,求代数式 的值.
3.︱x+4︱+(y-3)2=0,则x+y2的值_______
4.已知
5.已知|a+4|与|b+5|互为相反数,2a-5b的值是______________
6.已知a,b,c在数轴上的位置如图所示,化简|a|+|c-b|+|a-c|+|b-a|
五、倒数
1.概念:乘积是1的两个数互为倒数。
2.0没有倒数;正数的倒数为正数,负数的倒数为负数;小数化成分数后再求其倒数。
有理数章节复习
知识详解
一、有理数概念及意义
整数与分数统称为有理数.有理数
0的特殊性:0既不是正数也不是负数,是整数,不是分数。0是最小的自然数,1是最小的正整数,-1是最大的负整数。
有限小数:小数部分的位数是有限的小数。
无限小数:小数部分的位数是无限的小数。
循环小数:一个小数,从小数部分的某一位起,一个数字或几个数字依次不断重复出现,这样的小数叫做循环小数。例如: 0.333 …, 5.32727 …等等。
比较有理数大小的常用方法:
利用有理数大小的比较法则:正数都大于零,负数都小于零;正数大于一切负数;两个负数,绝对值大的反而小.
利用数轴比较法:在数轴上表示的两个数,右边的数总比左边的数大.根据这一点可把须比较的有理数在数轴上表示出来,通过数轴判断两数的大小
注意对字母的分类讨论法:如a表示的数可分为正数、零、负数三种情况。
A、两个加数都是正数 B、两个加数有一个是正数
C、一个加数正数,另一个加数为零 D、两个加数不能同为负数
3.下列数中,为有理数的是()
二、数轴的概念及应用
规定了原点、正方向和单位长度的直线叫做数轴.
1.数轴上表示2和5的两点之间的距离是_______个单位长度;表示1和-3两点之间的距离是___个单位长度;
相关文档
最新文档