2.2.1整式的加减

合集下载

人教版数学七年级上册2.2《整式的加减》教学设计1

人教版数学七年级上册2.2《整式的加减》教学设计1

人教版数学七年级上册2.2《整式的加减》教学设计1一. 教材分析人教版数学七年级上册2.2《整式的加减》是学生在掌握了整式的概念和基本运算法则的基础上进行学习的内容。

本节内容主要介绍整式的加减法运算,包括同类项的定义、合并同类项的方法以及整式的加减法法则。

通过本节的学习,使学生能够熟练掌握整式的加减法运算,进一步培养学生的逻辑思维能力和解决问题的能力。

二. 学情分析学生在学习本节内容之前,已经掌握了整式的基本概念和运算法则,具备了一定的数学基础。

但是,对于整式的加减法运算,尤其是同类项的识别和合并同类项的方法,部分学生可能还存在一定的困难。

因此,在教学过程中,需要关注学生的学习情况,针对性地进行辅导和指导。

三. 教学目标1.知识与技能目标:使学生掌握同类项的定义,学会合并同类项的方法,能够正确进行整式的加减法运算。

2.过程与方法目标:通过观察、思考、操作、交流等活动,培养学生的问题解决能力和逻辑思维能力。

3.情感态度与价值观目标:激发学生学习数学的兴趣,培养学生的团队合作意识,使学生感受到数学在生活中的应用。

四. 教学重难点1.重点:同类项的定义,合并同类项的方法,整式的加减法法则。

2.难点:同类项的识别,合并同类项的技巧,复杂整式的加减法运算。

五. 教学方法1.情境教学法:通过生活实例引入同类项的概念,激发学生的学习兴趣。

2.启发式教学法:引导学生观察、思考、发现整式加减法的规律,培养学生的逻辑思维能力。

3.合作学习法:学生进行小组讨论和合作,共同解决难题,培养学生的团队合作意识。

4.巩固练习法:通过大量的练习题,使学生熟练掌握整式的加减法运算。

六. 教学准备1.教学课件:制作精美的课件,辅助讲解和展示教学内容。

2.练习题:准备一定数量的练习题,用于巩固所学知识。

3.教学工具:准备黑板、粉笔、投影仪等教学工具。

七. 教学过程1.导入(5分钟)利用生活实例,如购物时计算总价,引入同类项的概念,激发学生的学习兴趣。

人教版七年级数学上册2.2.1《整式的加减》教案

人教版七年级数学上册2.2.1《整式的加减》教案
(4)整式加减的应用:解决实际问题,如购物找零、物品重量总和等。
二、核心素养目标
1.培养学生运用数学语言表达现实问题的能力,提高数学抽象思维;
2.培养学生独立思考、合作交流的学习习惯,增强问题解决能力;
3.培养学生具备分类、归纳和概括能力,形成严密的逻辑推理素养;
4.培养学生将数学知识应用于实际生活,增强数学应用意识和创新意识。
举例:
a.难点突破:展示具体的合并同类项的例子,如3x^2与-2x^2的合并,强调正负号的处理方法。
b.去括号:通过具体的算式,如(-3)(x-2y+1)和(-3)(-x+2y-1),讲解去括号时符号的变化规律。
c.实际问题:以购物问题为例,如何将购买不同单价商品的数量和价格表达为整式,并进行加减运算得到总价。
人教版七年级数学上册2.2.1《整式的加减》教案
一、教学内容
人教版七年级数学上册2.2.1《整式的加减》教案:
1.理解整式的概念,掌握整式的加减法则;
2.能够正确列出整式,熟练进行整式的加减运算;
3.了解整式的加减在实际问题中的应用。
教学内容:
(1)单项式与多项式的概念;
(2)同类项的定义及辨识;
(3)整式的加减法则:合并同类项、去括号;
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与整式加减相关的实际问题,如计算班级同学的体重总和。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。这个操作将演示整式加减的基本原理,如使用计数器模拟合并同类项。
3.成果展示:每个小组将向全班展示他们讨论成果和实验操作的结果。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了整式的加减的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对整式加减的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。

人教版七年级数学上册教案(RJ) 第二章 整式的加减

人教版七年级数学上册教案(RJ) 第二章 整式的加减

第二章 整式的加减 2.1 整式(2课时) 第1课时 单项式1.使学生理解单项式及单项系数、次数的概念,并会找出单项式的系数、次数. 2.初步培养学生的观察分析和归纳概括的能力,使学生初步认识特殊与一般的辩证关系.重点掌握单项式及单项式系数、次数的概念,并会找出单项式的系数、次数. 难点识别单项式的系数和次数.一、创设情境,导入新课师:出示图片. 青藏铁路线上,在格尔木到拉萨之间有段很长的冻土地段,列车在冻土地段的行驶速度是100千米/小时,在非冻土地段的行驶速度可以达到120千米/小时,请根据这些数据回答:(1)列车在冻土地段行驶时,2小时能行驶多少千米?3小时呢?利用怎样的一个等量关系来解决?(2)t 小时呢? 二、推进新课(一)用含字母的式子表示数量关系. 师:出示第54页例1.生:解答例1后,讨论问题,用字母表示数有什么意义?学生经过讨论得出一定的答案,但可能不会太规范,教师总结.师:用字母表示数,在具有某些共性的问题上具有更广泛的意义,在形式上更简单,使用上更方便(可考虑补充:像这样的用运算符号把数或字母连接起来的式子叫做代数式.一个数或表示数的字母也是代数式).师生共同完成例2,进一步体会用字母表示数的意义.巩固练习:第56页练习. (二)单项式的概念. 师:出示问题.引言与例1中的式子100t ,0.8p ,mn ,a 2h ,-n 这些式子有什么特点? 生:通过观察、对比、讨论得出,各式都是数或字母的积.师:指出单项式的概念,特别地,单独的一个数或字母也是单项式. 巩固练习:下列各式是单项式的式子是____________. 0.7,-a ,-3+b ,2a 2b 7,0,1x .(三)单项式的系数,次数.师:提出问题,观察单项式,6a 2,2.5x ,-n ,2a 2b7,它们各由哪几个部分组成? 生:观察讨论得出结果.师:指出,单项式中的数字因数叫做这个单项式的系数.应当注意的是,单项式的系数包括它前面的性质符号.而如-n,a3这样的式子的系数分别是-1和1,不能说没有系数.师:进一步提出问题:以上各式中的字母部分,每个字母的指数是多少?每个单项式中所有字母的指数的和是多少?生:举手回答.师:指出,一个单项式中,所有字母的指数的和叫做这个单项式的次数.一般地,一个单项式的次数是几,我们就称它为几次单项式.如:6a2叫二次单项式,-n叫做一次单项式,你能举出一个三次单项式的例子吗?练习:第57页练习第1题.(四)例题讲解.例3:用单项式填空,并指出它们的系数和次数:(1)每包书有12册,n包书有________册.(2)底边长为a,高为h的三角形面积是________.(3)一个长方体的长和宽都是a,高是h,它的体积是________.(4)一台电视机原价是a元,现按原价的9折出售,现在的售价是________.(5)一个长方形的长是0.9,宽是a,这个长方形的面积是________.生:独立完成,然后举手回答.师:针对学生的问题,进行点拨和进一步的解释.师:进一步提出问题,观察(4),(5)两个题的答案,你有什么看法?生:自由发表意见.师总结:用字母表示数,相同的字母在同一个式子中表示的意义相同,在不同的式子中可以有不同的含义.请同学们大胆想一想,你还能赋予0.9a什么实际的意义.生:自由发言即可.(教师不必太苛求学生,对学生的回答只要符合题意,就一律给予鼓励)三、练习与小结练习:第57页练习第2题.小结:学习本节内容以后,(1)请你谈一谈你对用字母表示数的认识;(2)请你谈一谈你对单项式的认识.四、布置作业习题2.1第1题.教学中要加强直观性,即为学生提供足够的感知材料,丰富学生的感性认识,帮助学生认识概念,同时也要注重分析,即在剖析单项式结构时,借助反例练习,抓住概念易混淆处和判断易出错处,强化认识,帮助学生理解单项式系数、次数,为进一步学习新知做好铺垫.第2课时多项式1.掌握多项式的概念,进而理解整式的概念.2.掌握多项式的项数、次数的概念,并能熟练地说出多项式的项数和次数.重点多项式的概念及多项式的项数、次数的概念.难点多项式的次数.一、创设情境,导入新课师:出示问题(投影).观察一列数1,4,9,16,25,…,第6个数是多少?第n 个数呢?你能用含n 的式子表示第n 个数吗?观察一列数2,5,10,17,26,…,第6个数是多少?第n 个数呢?你能用含n 的式子表示第n 个数吗?生:思考得出答案,第一列中第6个数是36,第n 个数是n 2,第二列中第6个数是37,第n 个数是n 2+1. 师:我们知道,n 2是一个单项式,而n 2+1不是单项式,那么,它属于哪一类代数式呢?这就是我们今天要解决的问题. 二、推进新课(一)多项式及多项式的项数、次数的概念师:引导学生回想课本55页例2的内容,进一步观察所列之式υ+2.5,υ-2.5,3x +5y +2z ,12ab -πr 2,x 2+2x +18,有何特点?生:思考讨论.师:进一步提出问题,以上各式显然不是单项式,它们和单项式有联系吗? 生:讨论,交流.自由发言回答上面的问题.师:指出多项式的概念及其相关的几个概念.每个单项式叫做多项式的项,不含字母的项叫做常数项.一个多项式有几个单项式组成,我们就把它叫做几项式,如2x -3可以叫做二项多项式,3x +5y +2x 可以叫做三项多项式.师:进一步引导学生探究多项式次数的概念. 生:可以发挥自己的想象去探究给多项式的次数命名的方法,教师不必苛求学生怎样想,让学生大胆发言,只要能发挥他们的想象力即可.师:在这一过程中教师可以引导,多项式的次数是不是也可以将所有字母的指数加在一块呢?如果字母多的话是不是有点太乱呢?如果这样的话我们是不是派个代表就行了,派谁当代表呢?引导学生说出,以次数最高的项的次数作为代表.师:多项式中次数最高的项的次数叫做多项式的次数.同单项式一样,一个多项式的次数是几,我们就称它为几次式.如2x -3可以叫做一次二项式,3x +5y +2z 可以叫做一次三项式.(二)整式的概念学生阅读教材,找出整式的概念.师:什么是整式?生:单项式和多项式统称为整式.师:进一步提问,你能说一说单项式、多项式和整式三者之间的关系吗? 生:讨论后回答.师:根据学生回答情况予以点拨、强调. (三)例题例4:如图,用式子表示圆环的面积,当R =15 cm ,r =10 cm 时,求圆环的面积.(π取3.14)解析:圆环的面积是外部大圆的面积与内部小圆面积的差.生:写解答过程.师:巡回指导,发现问题,及时点拨.三、练习与小结练习:58~59页练习.小结:1.说一说单项式、多项式、整式各有什么特点?2.它们三者之间的关系是怎样的?四、布置作业习题2.1第2题.本课的知识点比较简单,属于概念介绍型的,先让学生自己阅读课本,了解相关的概念,然后完成自学检测.教师进行适当点评后,学生完成分层练习,巩固对概念的掌握.整节课基本以学生自学为主线,完成整个教学过程,意在培养学生的自学能力.2.2整式的加减(4课时)第1课时同类项1.理解同类项的概念,在具体情境中,认识同类项.2.理解合并同类项的概念,掌握合并同类项的法则.重点理解同类项的概念,掌握合并同类项的法则.难点根据同类项的概念在多项式中找同类项.活动1:创设情境,导入新课师出示图片引言中的问题2.在西宁到拉萨路段,如果列车通过冻土地段的时间是t小时,那么它通过非冻土地段的时间是2.1t小时,这段路的全长(单位:千米)是100t+120×2.1t,即100t+252t.怎样化简这个式子呢?活动2:探究同类项及合并同类项的方法教师出示教材第62页探究1;学生讨论完成,然后教师继续出示63页探究2内容,学生讨论交流完成.师生共同归纳特点,引出同类项的定义.像100t与252t,3ab2与-4ab2这样的式子,它们所含字母相同,并且相同字母的指数也相同的项叫做同类项.师进一步提出问题,在探究2中,你是如何化简的?学生观察、讨论、交流,然后归纳出合并同类项的法则.尝试运用:化简:4x2+2x+7+3x-8x2-2(找出多项式中的同类项)=(4x2-8x2)+(2x+3x)+(7-2)(运用运算律进行整理)=(4-8)x2+(2+3)x+(7-2)(运用分配律进行合并)=-4x2+5x+5一般结果按某个字母的升降幂排列.活动3:巩固运用法则教师出示例1.师生共同完成,教师要给学生示范,可以采用学生口述,教师板书的方法.过程中注意结合法则和方法.练习:教材第65页练习第1题.教师出示例3.学生尝试独立完成,然后同学交流.教师点拨:这里的结果用整式表示.练习:教材第65页练习2,3题.活动4:小结与作业小结:谈谈你对同类项及合并同类项的认识.作业:习题2.2第1题.本节课在概念的讲解时通过典型的例题让学生充分去感受概念的意义,启发学生,鼓励学生合作交流,让学生充分发表意见,使学生真正成为学习的主人.因而,人人都开动脑筋,积极发言,积极参与,掌握知识效果较好.第2课时去括号法则能运用运算律探究去括号法则,并且利用去括号法则将整式化简.重点去括号法则,准确应用法则将整式化简.难点括号前面是“-”号去括号时,括号内各项变号容易产生错误.活动1:创设情境,导入新课师:数学爱好者发现了一个非常有趣的现象,将一个两位数的个位和十位对调得到一个新的两位数以后,这两个数的差能被9整除,和能被11整除,这是为什么呢?提示:如果设这个两位数的个位数字是a,十位数字是b,如何表示这个两位数?学生讨论以后师生共同得出以下结果:原数10b+a,新数10a+b差是10b+a-(10a+b),和是10b+a+(10a+b).将10b,a,10a,b看做几个数,类似小学中的计算,你能化简这两个式子吗?学生讨论交流,然后尝试完成.10b+a+(10a+b)=10b+a+10a+b==11a+11b10b+a-(10a+b)=10b+a-10a-b=9b-9a现在你能说明为什么一个能被9,另一个能被11整除了吗?再看下面的问题,你能化简这两个式子吗?你的依据是什么?100u+120(u-0.5)100u-120(u-0.5)学生交流讨论,然后尝试完成.活动2:归纳去括号法则师:观察以上各式,在去括号的过程中,你发现有什么规律?学生讨论交流.归纳:如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同;如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反.特别地,对于形如+(10a+b),-(10a+b)的式子,可以将因数看做1或者-1.活动3:运用法则教材展示教材例4.教师提示:先观察判断是哪种类型的去括号,括号内的每一项原来是什么符号?去括号时,要同时去掉括号前的符号.易犯错误:①括号前是“-”时,去括号以后,只是第一项改变了符号,而其他各项未变号.②括号前面的系数不为1或者-1时,容易漏乘除第一项以外的项.师生共同完成,学生口述,教师板书.教师展示例5.问题:船在水中航行时它的速度都与哪些量有关,它们之间的关系如何?学生思考、小组交流.然后学生完成,同学间交流.活动4:练习与小结练习:教材第67页练习.小结:1.谈谈你对去括号法则的认识.2.去括号的依据是什么?活动5:作业布置习题2.2第2,5,8题.通过回顾小学学过的去括号方法,运用类比方法,得到了整式的去括号法则,这样的设计起点低,学生学起来更自然,对新知识更容易接受.第3课时去括号法则的深入1.使学生进一步掌握去括号法则,并能熟练运用去括号法则解决问题.2.培养学生分析解决问题的能力.重点准确应用去括号法则将整式化简.难点括号前面是“-”号去括号时,括号内各项变号容易产生错误.活动1:复习提问,导入新课师提出问题:①合并同类项法则的内容是什么?②去括号法则的内容是什么?活动2:熟练运用合并同类项,去括号法则师:刚才我们回忆了合并同类项,去括号法则,它们是进行整式加减运算的基础.师:出示教材例6.计算:(1)(2x-3y)+(5x+4y);(2)(8a-7b)-(4a-5b).分析:根据法则,应如何进行计算?学生讨论后,教师归纳:先去括号,然后合并同类项.师生共同完成,边讲解边叙述法则.解:(1)(2x-3y)+(5x+4y)=2x-3y+5x+4y………………………………去括号=(2x+5x)+(-3y+4y)……………………找同类项=7x+y ……………………………………合并同类项(2)略教师出示教材例7.教师引导学生从不同的角度去列算式,①小明花________元,小红花________元,二人共花________元.②买笔记本花________元,买圆珠笔花________元,共花________元.学生独立完成,然后交流.教师出示教材例2.(这里将教材内容做了一个调整,没有完全按照教材次序,一来是出于对第一课时时间过紧的考虑,二是为下一节课的化简求值作准备)学生独立完成,教师告诉学生一般这种类型题目先化简再求值.活动3:练习与小结练习:教材第69页练习1,2题.小结:谈谈你这节课的收获.活动4:布置作业习题2.2第3,6题.本节课采用去括号法则与实例相结合的方式导入,经历对同一问题的数量关系的不同表示方法,让学生更形象更具体地体会去括号法则的合理性,整个过程以学生为主,让学生观察思考、合作交流来发现并亲身体会去括号法则的过程和数与式之间的关系,收到效果较好.但在教学中还应给予学生较多的思考反思总结的时间效果会更好些.第4课时整式的加减让学生从实际背景中去体会进行整式的加减的必要性,并能灵活运用整式的加减的步骤进行运算.重点整式的加减.难点总结出整式的加减的一般步骤.一、创设情境,复习引入练习:化简:(1)(x+y)-(2x-3y);(2)2(a2-2b2)-3(2a2+b2).提问:以上化简实际上进行了哪些运算?怎样进行整式的加减运算?二、推进新课师:出示投影.例8:做两个长方体纸盒,尺寸如下(单位:cm)(1)做这两个纸盒共用料多少平方厘米?(2)做大纸盒比做小纸盒多用料多少平方厘米?分析:做一个纸盒用料多少,实际上是在求什么?学生回答.大盒用料多少,小盒用料多少?请列式表示.解:略教师讲解后归纳:几个整式相加减,通常用括号把每一个整式括起来,再用加减号连接,然后去括号,合并同类项.教师出示教材例9.教师点拨:求代数式的值的问题,一般地,先对多项式进行化简,然后再代入求值.三、练习与小结练习:教材第69页练习第3题.小结:如何进行整式的加减,你能谈谈你学完本节的收获吗?四、布置作业习题2.2第4,7题.其实整式的加减本质上就是合并同类项的问题,重点是让学生较好的记住法则,依据法则去解决问题.只是学生的基本计算能力有待加强,计算出现的错误比较多,说明学生计算的基本功有待加强.有理数的学习不够优秀是本章学习的一大难题.。

人教版七年级数学上册整式的加减——合并同类项课件

人教版七年级数学上册整式的加减——合并同类项课件
2.若5xy2+axy2=-2xy2,则a=-7___;
3.在6xy-3x2-4x2y-5yx2+x2中没有同类项 的项是_6_x_y___;
知 识 延 伸:
4.已知:_2 x3my3 3
求 m、n的值 .

-
1_ 4
x6yn+1
是同类项,
解:∵
_2 x3my3 与 3
-
1_ 4
x6yn+1
是同类项
二、展示目标和任务
学习目标: 1、掌握同类项的概念,能辨认同类项,学会合并同 类项并知道合并同类项所根据的运算律。 2、通过视察、思考、分析、归纳、小组合作,学会 了解数学的分类思想。 学习重难点: 1.同类项概念,以及合并同类项法则和基本步骤。 2.正确的判断同类项以及准确合并同类项。
三、自主合作与交流
(5) 2.1与 3 4
(4)2a与2ab
(6)53与b3
4a + 2a =66 a 4xy ――xy== 3xy
探究A:
(1)运用运算律计算:
100 2 252 2 __1_0_0___2_5_2___2__; 1002 2522 _1_0_0___2_5_2_____2__
(2)根据(1)中的方法完成下面的运算,并说说
3x2=-2(2+1-3)x2+(-5+4)x-2
(3
3)a
3
abc
(
1
3
1)c2
=-x-2
33
当x 1 时,原式 1 2 5
2
2
2
abc
当a 1,b 2,c 3时, 6
原式=(- 1) 2 (3) 1 6
随堂练习:

2.2.1整式的加减(1)合并同类项

2.2.1整式的加减(1)合并同类项
所含字母相同
3与-4
注意:
“两无关”
相同字母的指数也相同
与系数无关 与字母排列顺序无关
Байду номын сангаас
例1:判断下列各组式子是同类项. 3a2b与-ab2( x2y与-yx2( 4abc与4ab
否)
2 3与 3 2 ( 是 ) 2ab3与-8a3b( 否 ) -5与3( 是 )
是)
(否 )
判断几个项是否是同类项: 一看字母是否相同; 二看相同字母的指数是否相同.
知识点二:合并同类项
合并同类项:把多项式中的同类项合并成一
项.
法则:合并同类项后,所得项的系数是合并
前各同类项的系数的和,且字母连同字母的 指数不变.

12a+4a =(12+4)a
=16a
4xy2-6xy2 =(4-6) xy2 =-2xy2
(1)12x-20x
(2)-0.3a+5b-2.7a
(3)x-5+7x
解:(1)原式=(12-20)x=-8x
(2)原式=(-0.3-2.7)a+5b=-3a+5b (3)原式=(1+7)x-5=8x-5
小组讨论“合作探究”例题
例1:若-5x2ym与xny是同类项,求m、n的值.
例2:求多项式3a+2b-5a-b的值,其中a=-2, b=1.
能说出同类项、合并同类项的概念
能在多项式中找到同类项 能说出合并同类项的法则,并会合并同类项
请同学们阅读课本 62-65 页,填写
导学提纲中的“自主探知”部分.
知识点一:同类项
所含字母相同,并且相同字母的指数也相
同的项叫做同类项.几个常数项也是同类项.

2.2.1整式的加减(合并同类项)

2.2.1整式的加减(合并同类项)

温故知新
举一反三
趁热打铁
画龙点睛
融会贯通
(3)填空:(课本P63 探究) ① 100t-252t=( -152 )t ; ② 3X² +2X² =( 5 ) X² ③ 3ab² -4ab²=( -1 ) ab²
问题3:观察多项式100t+252t,100t-252t,
3X² +2X² ,3ab² -4ab² : (1)上述各多项式的项有什么共同特点? (2)你能从上述运算中得出什么规律?
4x² +2x+7+3x -8x² -2 =4x² -8x² +2x+3x+7-2 (交换律) =(4x² -8x² )+(2x+3x)+(7-2)(结合律) =(4-8)x²+(2+3)x+(7-2) (分配律) =-4x² +5x+5
温故知新
举一反三
趁热打铁
画龙点睛
融会贯通
归纳化简多项式的一般步骤: ①找出同类项并做标记; ②运用交换律、结合律将多项式的同类项合并; ③合并同类项; ④通常按同一个字母的降幂(或升幂)排列。 强调: (1)运用交换律、交换律将多项式变形时, 不要忘记各项系数的符号; (2)不要漏项;
2 2
2.若2a b
2
n 1
与 4a b 是同类项,
2m 3
1 2 则m ____, n _____ 。
温故知新
举一反三
趁热打铁
画龙点睛
融会贯通
A组:基础训练 3.下列各题合并同类项的结果对不对? 若不对,指出错在哪里? (1) 3a+2b=5ab (2) 5y² -2y² =3 (3) 4x² y-5y² x=-x² y (4) a+a=2a (5) 7ab-7ba=0 (6) 3c 2 2c3 5c5

七年级数学第二章2.2.1整式的加减

七年级数学第二章2.2.1整式的加减

2.2.1整式的加减◆随堂检测1、下列是同类项的是( )A 、223xy y x -与B 、c ab bc a 2222-与C 、yx xy 54与D 、222与x2、填空:(1)=-t t 3210( )t ; (2)=+22155a a ( )2a ;(3)=-2263mn mn ( )2mn . 3、下列各题的合并同类项正确吗?若不正确,请说明理由.(1)xy y x 752=+; (2)56=-ab ab ;(3)y x yx y x 33398=-; (4)422853x x x =+.4、若单项式2363y x y x m n --与是同类项,则n m 32+的值是 .5、合并同类项(1)228.010x x -; (2)xy xy xy 32-+-;(3)14325--+-a b b a ; (4)x x x x x 365345322++--+.◆典例分析求多项式22543222-+-++-x x x x x 的值,其中31=x分析:在求多项式的值时,先将多项式中的同类项合并,然后再代入求值,这样可以简化运算.但部分同学会直接代入求值,当未知数的值较复杂时,计算量会非常大.我们习惯上“先化简,再求值”.解:22543222-+-++-x x x x x2)54()213(2--+++-=x x2--=x当31=x 时,原式=37231-=--◆课下作业●拓展提高1、 合并同类项(1)5433222-+--xy y x xy y x ;(2)ab b a ab b a ab 634864622222--+++-;(3))(4)(2)()(522b a b a b a b a +++-+-+.2、若两个单项式6253243b a b a n m -与的和仍为单项式,则m= , n= . 3、设m 为正整数,nm n m b a b a 44218++-与是同类项,则满足条件的m 的值有( )个 A 、1个 B 、2个 C 、3个 D 、无数个4、有一列单项式,.,20,19,,4,3,2,2019432 x x x x x x ---(1)根据你发现的规律,写出第100个,第101个,第102个单项式;(2)你能进一步写出第n 个单项式吗?5、求代数式的值:222232253b ab a b ab a ---+-,其中3,21-==b a●体验中招1、(2009年,烟台)若n m y x y x 3253与+的和是单项式,则=n m . (原题中式求m n ,现改为n m )2、(2009年,长春)计算:=-a a 25 .参考答案随堂检测1、 C2、 3,20,22--3、 (1)不正确,不是同类项不能合并;(2)不正确,正确答案是ab 5;(3)不正确,正确答案是y x 3-;(4)不正确,正确答案是28x .4、由题意得2732,5,6=+∴==n m n m5、(1)原式=22.9x ;(2)原式=xy xy 2)321(-=-+-;(3)原式=11)32()45(+-=-+-+-b a b a ;(4)原式=42264)53()35(62323+-+=+-+-+x x x x x x 拓展提高1、(1)原式=55)43()32(22-+-=-+-+-xy y x xy y x(2)原式=3838)44()66(3322+=+++-+-ab ab b a ab(3)原式=)(3)(2))(41())(35(22b a b a b a b a +++-=++-++- 2、5,3==n m3、D4、(1)第100个,第101个,第102个单项式分别是102101100102,101,100x x x -(2)第n 个单项式是n n nx ⋅-)1(5、222232253b ab a b ab a ---+-22226)32()15()23(b ab a bab a --=-+--+-= 当3,21-==b a 时,原式=41)3()3(216)21(22=---⨯⨯- 体验中招1、 由题意得,4)2(,2,22=-==-=n mn m 则 2、 3a。

2.2.1整式的加减

2.2.1整式的加减
2 2
2.类比探究,学习新知
例题 4 x 2 x 7 3 x 8 x 2 解:4 x 2 2 x 7 3 x 8 x 2 2
2 2
4x 8x 2x 3x 7 2
2 2
( 交换律 )
2.类比探究,学习新知
例题 4 x 2 x 7 3 x 8 x 2 解:4 x 2 2 x 7 3 x 8 x 2 2
2 2
4x 8x 2x 3x 7 2 ( 交换律 ) 2 2 (4 x 8 x ) (2 x 3 x) (7 2) ( 结合律 ) 2 ( 分配律 ) (4 8) x (2 3) x (7 2)
2 2
2.类比探究,学习新知
例题 4 x 2 x 7 3 x 8 x 2 解:4 x 2 2 x 7 3 x 8 x 2 2
2 2 2 2
(3) 4a 3b 2ab 4a 4b
2 2 2
2
4.基础训练,巩固新知
练习1 判断下列说法是否正确,正确的 在括号内打“√”,错误的打“×” (1) 3 x 与 3mx 是同类项( ) (2) 2ab 与 5ab 是同类项( ) 1 2 2 (3) 3 xy 与 y x 是同类项( ) 2 2 2 (4) 5a b 与 2a bc 是同类项( ) 2 3 ( 5) 2 与 3 是同类项( )
(1)上述各多项式的项有什么共同特点? (2)上述多项式的运算有什么共同特点? 你能从中得出什么规律?
2.类比探究,学习新知
(1)上述各多项式的项有什么共同特点? ①每个式子的项含有相同的字母; ②并且相同字母的指数也相同. (2)上述多项式的运算有什么共同特点? ①根据分配律把多项式各项的系数相加; ②字母部分保持不变.

2.2.1整式的加减-合并同类项

2.2.1整式的加减-合并同类项
2 2 2
2
(3) 4a 3b 2ab 4a 4b
2 2 2
2
方法:(1)系数:系数和是结果的系数; (2)字母:字母和字母的指数不变。
先 (1)求多项式2x - 5x x 4 x - 3x - 2 的值,
2 2 2
1 其中x ; 2
1 2 (2)求多项式3a abc - c 3 1 其中a , b 2, c 3. 6
相同 ;2、相同字母的指 判断同类项:1、字母_____ 系数 无关,与_________ 数也_____ 字母顺序 无关。 相同 。与______ 同类项的系数 相加,作为 合并同类项的法则:______________ 不变 。 结果的系数,字母和字母的指数______
对自己说,你有什么收获?
瞧一瞧:
下列各题计算的结果对不对?
(1) 3a 2b 5ab ( 2) 5 y 2 y 3
2 2
(错 )
(错
(对
)
)
2
(3) 2ab 2ba 0
2 2
(4) 3 x y 5 xy 2 x y
(5)b3+b3=2b6
( 错)
(错 )
(7)-5x3+2x3= -3 (错)
化 简 , 1 - 3a c 的值, 再 3 求 值
2
变式练习:
4 1、若 5x y ay x 9x y ,则a=__________ 2、已知单项式2x6y2m+1与-3x3ny5的差仍是单 项式,则mn的值为__________ 4 3、在 a 2 (2k 6)ab b 2 9 中,不含ab项,则k= ___ 3
2 3 3 2 2 3

人教版数学七年级上册2.2.2整式的加减去括号法则教学设计

人教版数学七年级上册2.2.2整式的加减去括号法则教学设计
(二)过程与方法
1.通过小组合作、讨论交流等方式,让学生在自主探究中发现整式的加减运算规律,培养学生独立思考、合作解决问题的能力。
2.通过实际例子的讲解,让学生理解整式的加减运算在实际问题中的应用,提高学以致用的能力。
3.引导学生总结和归纳整式的加减运算方法,培养学生的逻辑思维和概括能力。
4.设计不同难度的练习题,让学生在练习中巩固所学知识,提高解题技巧。
在教学过程中,教师应关注学生的情感态度,激发学生的学习兴趣,鼓励学生积极参与课堂讨论,培养良好的数学思维习惯。同时,注重课后辅导,针对学生的薄弱环节进行有针对性的指导,提高学生的学习效果。
三、教学重难点和教学设想
(一)教学重难点
1.教学重点:
-理解并掌握去括号法则,能够灵活运用到整式的加减运算中。
-能够正确识别和合并同类项,提高整式运算的速度和准确性。
3.实际应用题:布置2道与生活实际相关的问题,要求学生将问题转化为整式加减运算。这类题目旨在让学生体会数学知识在实际生活中的应用,培养学生的应用意识和创新精神。
4.思考总结题:要求学生撰写一篇关于本节课学习心得的短文,内容包括对去括号法则的理解、操作步骤、注意事项等。这有助于学生对自己的学习过程进行反思,提高自我学习能力。
-评价内容不仅包括整式加减运算的正确性和速度,还包括学生在解决问题时的思维过程和方法运用。
-鼓励学生自我评价和同伴评价,培养学生的自我反思和批判性思维能力。
4.教学拓展:
-结合本章节内容,引导学生探索整式加减运算在实际问题中的更广泛应用。
-开展数学活动,如数学竞赛、数学游戏等,激发学生的学习兴趣,提高学生的数学素养。
人教版数学七年级上册2.2.2整式的加减去括号法则教学设计
一、教学目标

2.2整式的加减数学教案

2.2整式的加减数学教案

2.2整式的加减数学教案
标题: 2.2 整式的加减数学教案
一、教学目标
1. 理解并掌握整式加减运算的基本概念和方法。

2. 能够运用整式加减运算法则解决实际问题。

3. 培养学生的逻辑思维能力和解决问题的能力。

二、教学重点与难点
1. 重点:理解整式加减运算法则,能够熟练进行整式的加减运算。

2. 难点:理解和运用整式加减运算法则解决实际问题。

三、教学过程
1. 引入新课
通过一些生活中的实例,引入整式加减的概念,激发学生的学习兴趣。

2. 新课讲解
(1)定义与性质:讲解整式的定义,整式的加法和减法运算法则,以及整式加减运算的一些基本性质。

(2)例题解析:通过具体的例题,让学生理解和掌握整式加减运算的方法。

3. 练习与讨论
设计一些练习题,让学生自己尝试解答,然后集体讨论,强化对整式加减运算法则的理解和应用。

4. 小结与作业
对本节课的内容进行小结,布置课后作业,让学生进一步巩固所学知识。

四、教学反思
在教学过程中,教师应注意观察学生的学习情况,及时调整教学策略,确保每一个学生都能理解和掌握整式加减运算法则。

人教版七年级数学教材上册《整式的加减》全章教案

人教版七年级数学教材上册《整式的加减》全章教案

第一学时 整式(1)学习内容:教科书第54—56页,2.1整式:1.单项式。

学习目标:1.理解单项式及单项式系数、次数的概念。

2.会准确迅速地确定一个单项式的系数和次数。

3.通过小组讨论、合作学习等方式,经历概念的形成过程,培养自主探索知识和合作交流能力。

学习重点和难点:重点:掌握单项式及单项式的系数、次数的概念,并会准确迅速地确定一个单项式的系数和次数。

难点:单项式概念的建立。

一、自主学习;1、先填空,再分析写出式子特点,与同伴交流。

(1)若正方形的边长为a ,则正方形的面积是 ;(2)若三角形一边长为a ,并且这边上的高为h ,则这个三角形的面积为 ;(3)若x 表示正方体棱长,则正方体的体积是 ;(4)若m 表示一个有理数,则它的相反数是 ;(5)小明从每月的零花钱中贮存x 元钱捐给希望工程,一年下来小明捐款 元。

2、观察以上式子的运算,有什么共同特点?3、单项式定义:由数与字母的乘积组成的代数式称为单项式。

[老师提示] 单独一个数或一个字母也是单项式,如a ,5,0。

4、练习:判断下列各代数式哪些是单项式? (1)21 x ; (2)a bc ; (3)b 2; (4)-5a b 2; (5)y ; (6)-xy 2; (7)-5。

5、单项式系数和次数:观察“1”中所列出的单项式,发现单项式是由数字因数和字母因数两部分组成。

单项式中的数字因数叫单项式的系数;单项式中所有字母指数的和叫单项式的次数。

说说四个单项式31a 2h ,2πr ,a bc ,-m 的数字因数和字母因数及各个字母的指数?二、合作探究:1、教材p56例1:阅读例题,体会单项式及系数次数概念。

2、判断下列各代数式是否是单项式。

如不是,请说明理由;如是,请指出它的系数 和次数。

①x +1; ②x 1; ③πr 2; ④-23a 2b 。

3、下面各题的判断是否正确?①-7xy 2的系数是7; ②-x 2y 3与x 3没有系数; ③-a b 3c 2的次数是0+3+2; ④-a 3的系数是-1; ⑤-32x 2y 3的次数是7; ⑥31πr 2h 的系数是31。

第二章整式的加减2.2.1同类项与合并同类项

第二章整式的加减2.2.1同类项与合并同类项

(1) (3) (4)
3a 2b 5ab
2 2
(2) 5 y 2 y 3 2ab 2ba 0 3 x y 5 xy 2 x y
2 2 2
(1)水库中水位第一天连续下降了a小 时,每小时平均下降2cm;第二天连
续上升了a小时,每小时平均上升
0.5cm,这两天水位总的变化情况如
a bc ba
解:由题意得:
∵a<0;b-c<0;b+a<0

a a; b c (b c) b c; b a (b a) b a;
原式=-a+(-b+c)-(-b-a) =-a-b+c+b+a =c
问题回顾:


(1)什么是同类项? 几个常数项是不是同类项?
第三课时
(3)4a 3b 2ab 4a 4b .
2 2 2 2
解:原式 (4a 4a ) (3b 4b ) 2ab
2 2 2 2
(4 4)a (3 4)b 2ab
2 2
0 (1)b 2ab
2
b 2ab
2
下列各题计算的结果对不对? 如果不对,指出错在哪里?
(2) 1.618 9 0.118 9 0.5 9
原式 9 (1.618 0.118 0.5)
复习与探究
二、填空,并解释其中依据: ) (1)79t 21t (79 21 t
100t
2
2
(2)3ab
2
4ab ( 3 4 )ab ab
特别的:所有常数项都是同类项。
如: 3与 - 4

整式的加减(一)说课稿

整式的加减(一)说课稿

整式的加减(一)说课稿今天我说课的题目是《整式的加减(一)》,下面我将从教材地位及作用分析、教学目标、教法与学法、教学过程及板书设计等方面进行说课。

一、教材地位及作用分析本节课选自新人教版数学七年级上册第二章第二节第一课时,是在结合学生已有的生活经验,在学习了用字母表示数,单项式、多项式以及有理数运算的基础上,对同类项进行合并、探索、研究的一个课题。

“合并同类项”这一知识点是整式部分的核心,因为它是本章重点“整式加减”的基础,其法则以及去括号的法则应用是整式加减的重点。

合并同类项这一节的教学内容有同类项的概念、合并同类项法则及其运用,其法则的应用是整式加减的基础,另一方面,这节课与前面所学的知识有千丝万缕的联系:合并同类项的法则是建立在数的运算的基础之上;在合并同类项过程中,要不断运用数的运算。

可以说合并同类项是有理数加减运算的延伸与拓广。

因此学好本节知识是学好后续知识的主要纽带,同时在合并同类项过程中不断运用数的运算,又合并同类项是建立在数的运算律的基础上,让学生体会到认识事物是一个由特殊到一般,又由一般到特殊的过程,从而培养学生初步的辩证唯物主义思想。

(1)教学重点:同类项的概念、合并同类项的法则及应用。

(2)教学难点:正确判断同类项;准确合并同类项。

(3)关键:正确理解同类项概念和合并同类项法则。

二、教学目标:1、知识目标:(1)使学生理解多项式中同类项的概念,会识别同类项。

(2)使学生掌握合并同类项法则。

(3)利用合并同类项法则来化简整式。

2、能力目标:(1)通过具体情境的观察、思考、类比、探索、交流和反思等数学活动培养学生创新意识和分类思想,使学生掌握研究问题的方法,从而学会学习。

(2)通过具体情境贴近学生生活,让学生在生活中挖掘数学问题,解决数学问题,使数学生活化,生活数学化。

会利用合并同类项的知识解决一些实际问题。

(3)通过知识梳理,培养学生的概括能力、表达能力和逻辑思维能力。

3、情感、态度与价值观:(1)在整式的加减运算中体会数学的简洁美。

2.2.1整式的加减-合并同类项

2.2.1整式的加减-合并同类项

把多项式中的同类项合并成一项 ,叫做合并同类项
合并同类项
38.5 a + 34.2a + 27.3a = (38.5+34.2+27.3) a =100a
式的运算
数的运算
想一想
上面等式变形是逆用了哪个运 算定律?
合作学习: 1、合并同类项
(1) 7x + 3x = 10x 2 2 -8ab2 (3) 5ab - 13ab =
我们常常把 具有相同特 征的事物归 为一类.
解决两个问题: 1、什么是同类项; 2、怎样合并同类项。
探究一:什么是同类项
找一找
问题:以下几组单项式有什 相同点 么
相同字母的指数相同 指数都是2 指数都是1
(1)2x 和 -3 x (2)5st 和 7ts 2 2 (3)3x y 和 5x y (4)2 ab2c 和 -ab2c
化简的,要先化简,再 代入求值。
要记了!!
化简求值 2 2 2 2 3x y 4 xy 3 5x y 2 y x 5
其中x 1, y 2.

解:3x² y-4xy² -3+5x² y+2xy² +5 =(3x² y+5x² y)+(-4xy² +2xy² )+(-3+5) =8x² y-2xy² +2 当x=-1,y=-2时, 原式=8x² y-2xy² +2 =8×(-1)² ×(-2)-2×(-1)×(-2)² +2 =-16-(-8)+2 =-6
2 合并同类项
一变两不变
3 合并同类项步骤 一找二移三合并
4 求代数式的值 能化简的,要先化简,再求值。

【人教版】七年级数学上册:第二章《整式的加减》全章教学设计

【人教版】七年级数学上册:第二章《整式的加减》全章教学设计

: 2.1 整式(第 1 )一、教课目1. 列式表示数目关系的程,展符号感.2. 知道式及其系数、次数的意,会正确确立一个式的系数和次数.二、教课要点和点1. 要点:列式表示数目关系,式及其系数、次数的意.2.点:列式表示数目关系 . 三、教课程(一)基本,稳固旧知1. 填空:x3的指数是,底数是;a2的指数是,底数是; n 的指数是,底数是.(二)情境,入新:前方我学了第一章有理数,从今日开始,我要学第二章整式的加减. (板:第二章整式的加减)同学自然会:什么是整式?我将在本和下学什么是整式 . (板: 2.1 整式)我第一学整式的一种,叫式 . (板:(式))(三)指,授新:什么的式子是式呢?大家看一个例子. (出示下边的板)一种笔本售价是每本 2 元,那么 2 本所需是元,5本所需是元, 10 本所需是元,100本所需是元,x 本所需是元.:(指板)一种笔本售价是每本 2 元,那么 2 本所需是多少元?生: 4 元 . (板: 4):(指板)那么 5 本所需是多少元?生: 10 元. (板: 10):(指板)那么10 本所需是多少元?100 本所需是多少元?生: 20 元,200 元 . (板: 20,200 ):(指板)一种笔本售价是每本 2 元,那么 x 本所需是多少元?生:⋯⋯(多几位同学表见解):(指板)一种笔本售价是每本2 元,那么 x 本所需是 2×x 元 . (板:2×x)了写方便,(指乘号)往常将乘号写成“·”,(将“2×x”改“ 2·x”)或许将乘号省略不写 .(用彩笔将“ 2·x ”改“ 2x”) 2x 就表示 2×x.:(板: 2x 并指 2x)2x 就是一个式 . 式自然不仅2x 么一个,在生活中,存在大批的其余的式,同学通把下边的列成式子,就能找到大批的式 .(四)探,回授2.填空:(1)一支笔的售价是 x 元,一支珠笔的售价是笔的 2.5 倍,一支珠笔的售价是元;(2) a 的正方形面;(3) a 正方体的体;(4)一汽的速度是每小v 千米,它 t 小行的行程千米;( 5)数 n 的相反数是.(生做,巡指,达成后,生答案,假如必需,酌情解,并将2.5x ,a2,a3, vt ,- n 板出来)(五)指,授新:(指准板) 2x 是式, 2.5x , a2,a3,vt ,-n 些式子也是式 . 在:什么的式子叫做式?生:⋯⋯(多几名学生表见解,要必定学生回答中合理的部分):些式子有一个共同的特色,什么特色呢?它都是数字与字母的. (指准式子) 2x 是数2 与字母 x 的, 2.5x 是数 2.5 与字母 x 的 . a 2是数 1 与字母 a2的, a3是数 1 与字母 a3的, vt 是数 1 与字母 v、t 的,- n 是数- 1 与字母 n 的 .:通上边的剖析,哪位同学知道:什么叫做式?生:⋯⋯:数字与字母的,的式子叫做式. (板:数字与字母的,的式子叫做式):需要指出的是,唯一个数或一个字母也是式. (板:唯一个数或一5,-1,2008 等都是式;又比如,个字母也是式)比如,唯一个数2独的一个字母x 也是式 .(六)探,回授3.判断以下式子是否是式:(1)4x;(2)- 4x2 y;(3)3a2bc;(4)7.2 ;(5)a;(6)2+x.(七)指,授新:(板:- 4x2y)我都知道,- 4x2y 是式,(指准式子)它是数字- 4 与字母 x2、y 的,一种法,- 4 是数字因数, x2、y 是字母因数,我把数字因数- 4 叫做个式的系数 . (板:的系数是- 4):(指已板的式2x)哪位同学知道2x 个式的系数?生: 2.(以下生回答已板的其余式的系数):明确了式系数的观点,下边我再来看式的次数的观点. (板:次数):(指准- 4x2y)个式含有两个字母,字母 x 指数是 2,字母 y 的指数是 1,全部字母的指数和是 3,我把式- 4x2y 全部字母指数的和 3 叫做个式的次数 . (板:是 3):一个式的次数是几次,我就把个式叫做几次式. (指- 4x2y)个式的次数是3,就叫做三次式 . (板:是三次式):(指已板的式2x)个式的次数是几次?生:⋯⋯:(指 2x)个式只含有一个字母,x 的指数是 1,所以全部字母指数的和也是 1,所以个式的次数是 1,个式是一次式 .(以下生回答已板的其余式的次数)(八)探,回授4.填空:( 1)式 2a2的系数是,次数是,是次式;( 2)式- 1.2h 的系数是,次数是,是次式;( 3)式 x2y 的系数是,次数是,是次式;( 4)式- t 2的系数是,次数是,是次式;( 5)式 5a4b 的系数是,次数是,是次式;( 6)式 x 的系数是,次数是,是次式;( 7)式3xyz 的系数是,次数是,是次式;5( 8)式2vt,次数是,是次式 .的系数是35.用式填空:( 1)每包有 12 册, n 包有册;( 2)一个方形的是0.9 ,是 a,个方形的面是;(3)全校学生数是x,此中女生占数48%,女生人数是,男生人数是;(4)量由 m千克增 10%,就达到千克.(九)小,部署作:本我学了什么?学了本你有什么收?生:⋯⋯(多几位同学归纳)(作: P59 1. )四、板第二章整式的加减2.1 整式(式)232.5x , a,a , vt ,- n一种笔本售价是每本 2 元⋯⋯叫做式那么⋯⋯唯一个数或一个字母也是式- 4x2y 的系数是- 4,次数是 3,是三次式: 2.1 整式(第 2 )一、教课目1. 知道多式及其、常数、次数的意,会指出多式的各与多式次数.2.知道整式的意.二、教课要点和点1.要点:多式及其、常数、次数的观点 .2.点:指出多式的各 . 三、教课程(一)基本,稳固旧知1.判断正:的画“√” ,的画“×” .(1)5y 是式;()(2)5y+1 是式;()(3)1是式;()3(4)单项式 ab 的系数是 0;()(5)单项式2ab()的系数是 2;3(6)单项式 xy2次数是 2;()(7)单项式 4xy2是三次单项式 .()2. 填空:青藏铁路线上,在格尔木到拉萨之间有一段很长的冻土地段. 列车在冻土地段行驶速度是每小时100 千米,它 2 小时行驶的行程是千米,3小时行驶的行程是千米, t 小时行驶的行程是千米.3.用单项式填空:( 1)底边长为 a,高为 h 的三角形面积是;(2)一辆汽车从拉萨出发, 3 小时后抵达相距 s 千米的尼木县城,这辆长途汽车的均匀速度是;(3)一台电视机原价 a 元,现按原价的9 折(9 折就是 90%)销售,这台电视机此刻的售价为元 .(二)创建情境,导入新课师:上节课我们学习了整式的一种:单项式,本节课我们学习整式的另一种:多项式 . (板书课题:整式(多项式))(三)试试指导,解说新课(师出示下边的板书)4x- 56x2-2x+ 7师:这两个式子是单项式吗?生:不是 .师:这两个式了有什么共同的特色?(稍停)它们都是几个单项式的和. 它们怎么都是几个单项式的和呢?师:(指 4x-5)4x-5 能够转变为 4x+ ( - 5) ,(板书:(4x+( -5) )),所以, 4x -5 能够当作是单项式4x 与- 5 的和 .师:(指 6x2- 2x+7)6x2-2x+7 能够转变为 6x2+ ( - 2x) +7, (板书:( 6x2+( -2x) +7))所以, 6x2-2x+7 能够当作是 6x2,- 2x,7 的和 .师:(指两个式子)所以这两个式子的共同特色都是几个单项式的和.师:几个单项式的和叫做多项式. 所以 4x-5 是多项式,(板书:多项式)6x2-2x +7 也是多项式 .(板书:多项式)师:(指准式子)在多项式中,每个单项式叫做多项式的项. 所以,多项式4x- 52的项是 4x,- 5. (板书:的项是 4x,- 5)多项式 6x -2x+ 7 的项有哪些?22生: 6x ,- 2x,7. (师板书:的项是 6x ,- 2x,7)师:不含字母的项,叫做常数项. 所以,(指准式子)多项式4x-5 的常数项是-5.(板书:常数项是-5)多项式 6x2-2x+7 的常数项是什么?生:7. (板书:常数项是7)(四)尝试练习,回授调理4.填空:( 1)多项式 x2+3x+ 4 是单项式,,常数项是2(2)多项式- x -3+x 是单项式,,的和,它的项是;,,的和,它的项是,,,2,常数项是;,的和,它的项是,,(3)多项式 m-1 是单项式常数项是;(4)多项式 2x+3y2-3xy2是单项式,,的和,它的项是,,.(五)试试指导,解说新课师:(指准 4x- 5)这个多项式有两项, 4x 这一项的次数是一次,常数项的次数是0 次. 次数最高项的次数是一次,我们就说多项式4x-5 的次数是一次 . (板书:次数是 1 次)师:(指准 6x2-2x+ 7)这个多项式有三项,6x2这一项的次数是二次,-2x 这一项的次数是一次,常数项的次数是 0 次. 次数最高项的次数是二次,我们就说多项式 6x2-2x+ 7 的次数是二次 . (板书:次数是 2 次)(六)尝试练习,回授调理5. 填空:(1)多项式 3+2x2-4x 次数最高项是,次数最高项的次数是,这个多项式的次数是;3,次数最高项的次数是,这个多(2)多项式 m-1 次数最高项是项式的次数是;(3)多项式 2x- 3xy2+1 次数最高项是,次数最高项的次数是,这个多项式的次数是;(4)多项式 3x4-2x2y2次数最高项是,次数最高项的次数是,这个多项式的次数是.(七)归纳小结,部署作业师:本节课我们学习了整式的另一种,叫做多项式 . (指准板书)几个单项式的和叫做多项式 . 在多项式中,每个单项式叫做多项式的项 . 此中,不含字母的项叫做常数项 . 多项式中,次数最高项的次数,就是这个多项式的次数 . 单项式和多项式统称整式 . (板书:单项式和多项式统称整式)(作业: P76复习题 2. )四、板书设计2.1 整式(多项式)多项式 4x- 5(4x + ( - 5)) 的项是 4x, - 5,常数项是- 5,次数是 1 次多项式 6x 222,常数项是7,次数是 2 次- 2x+ 7(6x+ ( - 2x)+ 7) 的项是 6x , - 2x,7单项式和多项式统称整式课题: 2.1 整式(第 3 课时)一、教课目的1.稳固单项式、多项式的相关观点 .2.会列较简单的多项式表示数目关系,发展符号感 .二、教课要点和难点1.要点:列多项式表示数目关系 .2.难点:列多项式表示数目关系 .三、教课过程(一)基本训练,稳固旧知1. 填空:(1)单项式 3x 的系数是,次数是,是次单项式;(2)单项式πr 2的系数是,次数是,是次单项式;(3)单项式- x2y 的系数是,次数是,是次单项式;(4)单项式 a2b2的系数是,次数是,是次单项式 .22. 填空:( 1)多项式― x 2― 3x +4 的项是,最高次项是,常数项是,次数是;2,最高次项是,常数项是( 2)多项式 3- m 的项是,次数是;( 3)多项式 a3+ a2 b+ ab2的项是,最高次项是,次数是.3.判断正误:对的画 " √ " ,错的画 " ×".(1)多项式 3a- 5 的项是 3a,5;()(2)多项式 x3+x2y2的次数是 3 次;()(3)几个多项式的和还是多项式;()(4)单项式和多项式统称整式 .()(二)创建情境,导入新课师:上节课,我们学习了多项式的观点,本节课我们要学惯用多项式表示数目关系. 请看例 1.(三)试试指导,解说新课例 1 用多项式填空:(1)温度由 t 度降落 5 度后是度;( 2)甲数 x 的1与乙数 y 的1的和能够表示为;32( 3)如图,圆环的面积为.r(四)尝试练习,回授调理4. 用多项式填空:R( 1)温度由- 3 度降落 t度后是度;(2)温度由- 3 度上涨 t 度后是度;(3)一个数比 x 的 2 倍小 3,这个数为;(4)a 与 b 两数平方的和为;a(5)如图,三角尺的面积为.r5. 用整式填空:b( 1)体重由 x 千克增添 2 千克后是千克;( 2) 1 千克大米售价 1.2元, x 千克大米售价元;( 3) a, b 分别表示长方形的长与宽,则长方形的周长为;(4)a, b 分别表示梯形的上底和下底, h 表示梯形的高,则梯形的面积为;(5)买一个篮球需要 x 元,买一个排球需要y 元,买一个足球需要z 元,买 3个篮球、 5 个排球、 2 个足球共需元.(6)如,是一所住所的建筑平面,所住x米6米所的建筑面是x 米平方米 .4米6. 思虑:如,搭 1 个正方形需要 4 根小棒,搭 2 个正方形需要根小棒,搭 3 个正方形需要根小棒,搭x 个正方形需要根小棒,搭2008 个正方形需要根小棒.(教课建:许多学生而言,些可能有必定度. 要学生充足思虑,要学生安下心来做,快者快做,慢者慢做,不要催学生,不要求全部学生达成全部,差生能真实独立思虑达成二三小就不了,中下生能达成 4 就很好了 . 老要加巡指,各学生以适合鼓舞)(五)小,部署作:今日我学了什么?通本学,你有什么收?生:⋯⋯(多几位同学回答)(作: P60 2. )四、板例 1: 2.2 整式的加减(第 1 )一、教课目1. 同观点的形成程,知道什么是同.2. 归并同法的形成程,会集并同.二、教课要点和点1.要点:同的观点,归并同 .2.点:同观点的形成 . 三、教课程(一)情境,入新:前方我学了整式的观点,从本开始,我学整式的加减. (板:2.2 整式的加减)整式的加减上就是归并同,本我先来学归并同 . (板:(归并同))(二)指,授新:要归并同,我第一要弄清什么是同 . 我一同来看下边的例子 . : 5 个 x 加上 2个 x 等于什么?(板: 5x+2x=)生: 7 个 x. (板: 7x)2222:- 5ab 加上 3ab 等于什么?(板:-5ab +3ab =):依据分派律,- 5ab2+3ab2= ( - 5+ 3)ab 2(板: ( - 5+ 3)ab 2)等于-2ab2 .(板:=- 2ab2):(指准 5x+ 2x=7x)个式子的左是5x 与 2x 两,右只有 7x 一,就是,左的两能够归并成右的一.:(指准- 5ab2+ 3ab2=- 2ab2)个式子的左也有两-5ab2,3ab2,右只有一- 2ab2,就是,左的两也能够归并成一.:(指式子)察、剖析两个式子,大家分么一个:怎么的两能够归并成一?(出示板:怎么的两能够归并成一?)(生疏,巡指):哪位同学知道怎么的两能够归并成一?生:⋯⋯(多几位同学表见解):(在- 5ab2,3ab2下边划,并指准)两所含字母相同,-5ab2一所含字母是 a,b,3ab2一所含字母也是 a, b. (板:所含字母相同) 2 2一字母 a 的指数也是 1;一字母 b 的指数是 2,一字母 b 的指数也是 2. (板:并且相同的字母的指数也相同):(指- 5ab2,3ab2)像所含字母相同,相同字母的指数也相同的,叫做同 . (板:的,叫做同):在,我再回到本来的:怎么的两能够归并成一?生:⋯⋯:同能够归并成一,并且只有同才能够归并成一,不是同不能归并成一 .(三)探,回授1.判断以下各的两是否是同:( 1) 12x 与 2x;(2)2x2y与-5x2y;(3)2a与a2;(4)4xy 与 5yx;(5)4abc与4ab;(6)7xy2与7x2y;33(7)a 与 5 ;(8)-25与12.(因为- 25 与 12 能够归并成一- 13,所以,常数与常数也是同)2.找出多式 4x2-8x+ 5-3x2+6x-2 中的同:( 1) 4x2与是同;( 2)- 8x 与是同;(3)5 与是同.(四)指,授新:我已知道,同是能够归并在一同的归并成一,叫做归并同.. (指板的)把几个同:(指板的两个式子)从两个式子,哪位同学知道怎么归并同?生:⋯⋯(多几位同学表见解):系数相加,字母部分不. (板:系数相加,字母部分不)例 1归并以下各式的同:(1)xy2-1xy2;( 2)- 3ab+ba-2ab. 5(先生,再板演解,解要扣法)3. 填空:( 1) 6x-4x=()x=;( 2)- 7ab+6ab= ()ab=;( 3) 10y2+y2= ()y 2 =;( 4)- 0.5a +2a- 3.5a =()a=.4. 归并以下各式的同:( 1)- 8x2-7x2=(2)1xy- xy=3(3)- 4a2 b+ 4a2b=(4)1y-1y+2y=425.判断正:的画 " √" ,的画 " ×".( 1) 3a2- 2a2= 1;()( 2)3y-y=3;()( 3) 5a+2b=7ab;()( 4) 7ab-7ba=0;()( 5)4x2y-2xy2= 2x2y;()( 6)3x2+2x3=5x5.()6. 思虑:如,大的半径是 R,小的面是大面的4,暗影部分的面9.R(五)小,部署作. (指准- 5ab2+3ab2:本,我学了什么是同及怎么归并同个式子)所含字母相同,并且相同字母的指数也相同的叫做同. 归并同的方法是系数相加,字母部分不. 归并同的个方法是依据什么获得的?生:⋯⋯(依据分派律)(作: P661.2. )四、板2.2 整式的加减(归并同)5x+2x=7x例 1-5ab2+ 3ab2=( -5+3)ab 2=- 2ab2怎的两能够归并成一?⋯⋯叫做同 .系数相加,字母部分不.: 2.2 整式的加减(第 2 )一、教课目1.会集并多式中的同 .2.会先归并同,再求多式的 .二、教课要点和难点1.要点:归并多项式中的同类项 .2.难点:把多项式中的同类项写在一同 .三、教课过程(一)基本训练,稳固旧知1.判断以下各组中的两项是否是同类项:(1)0.2x 2y 与 0.2xy 2;(3)mn与- nm;( 2)4abc 与 4ac;( 4)- 125 与 20.2.归并以下各式的同类项:(1) 4x2- 8x2=(2)- 3x2 y+ 2x2y=(3) 3xy2-2xy2=(4) 2x2+ x2-3x2=3.判断正误:对的画“√” ,错的画“×” .( 1)a+b=b+a;()(2)a- b= b- a;()(3)a- b=- b+a;()(4)x2+2-x=x2+x-2;()(5)x2+ 2- x= x2-x+2;()(6)x2+2-x=x+2-x2;()(7)x2+2-x=- x+2+x2.()(重申:互换多项式的项,要连同符号一同互换)(二)创建情境,导入新课师:上节课我们学习了什么是同类项及怎么归并同类项,本节课我们将学习怎样归并多项式中的同类项 . 请看例 1.(三)试试指导,解说新课例 1 归并多项式 4x2+2x+7+ 3x-8x2-2 的同类项 .解: 4x2+2x+7+3x- 8x2-2第一步:划线,找出同类项;=4x2-8x2+2x+ 3x+7-2第二步:把找出的同类项写在一同;=- 4x2+5x+5第三步:归并同类项 .(第二步不宜加括号,第三步可直接算出结果,这样可能会简单些)(四)尝试练习,回授调理4.归并以下各式的同类项:(1) a2-3a+ 8- 3a2+ 5a-7==(2)- 3x2 y- 2xy2+3xy2+2x2y==(3) 4a2+ 3b2+ 2ab-4a2-4b2==(五)试试指导,解说新课例 2求多式 3a+abc-1c2-3a+1c2的,此中,a=-1, b= 2,c =- 3. 336(先归并多式的同,再代入数,最后获得果,解格式要与教材相同)(六)探,回授5.求多式 2x2- 5x+x2+ 4x-3x2-2 的,此中 x=1 .2(五)小,部署作:本我学了归并多式的同,归并多式的同有三步,是哪三步?生:⋯⋯(作: P71 1.P 76复 2. )四、板例1例2: 2.2 整式的加减(第 3 )一、教课目1.去括号法的形成程,知道去括号法 .2.会去括号 .二、教课要点和点1.要点:去括号 .2.点:去括号法的形成程 . 三、教课程(一)基本,稳固旧知1.归并以下多式的同:(1) 8a+2b-5a- b=(2) 8x-3y+z-4x- 3y+2z=2.求多式 3x2- 8x+2x3-13x2+ 2x-2x3+3 的,此中 x=- 4.3. 填空:分派律是a(b +c) =,利用分派律可得:6(x - 3) =,- 6(x - 3) =.(二)情境,入新:(板: 8a+ 2b-(5a -b) )个式子归并同的果是什么?生: 3a+b.:个果是的!什么呢?因个式子中含有括号,(用彩笔括号)要归并含有括号的式子的同,先要去括号 . 怎样去括号呢?就是我要学的内容 . (板: 2.2 整式的加减(去括号))(三)指,授新:怎样去括号呢?先看两个去括号的例子.:(板: 6(x -3) =)利用分派律, 6(x -3) 等于什么?生: 6x-18. (板: 6x-18):(板:- 6(x - 3) =)利用分派律,- 6(x -3) 等于什么?生:- 6x+18. (板:- 6x+ 18):从两个例子,我能够看到,(指准-6(x-3)=-6x+18)去括号上就是运用分派律,把括号外的因数分乘括号内的各 .(板:+ (x -3) =-(x-3)=):运用分派律,我又怎么去掉(指式子)两个式子中的括号呢?大家自己笔先一 . (生,巡):(指+ (x -3) )个式子不好用分派律,我能够把+(x -3) 写成 1× (x -3) ,(板:1×(x -3) )就能够用分派律了,运用分派律获得的果是什么?生: x-3. (板:= x-3):(指- (x - 3) )个式子也不好用分派律,我能够把-(x - 3) 写成 ( -1) ×(x - 3) ,(板: ( -1) × (x -3) )就能够用分派律了,运用分派律获得的果是什么?生:- x+ 3. (板:=- x+3):从上边的四个例子明,去括号的程上就是运用分派律的程. 前两个式子(指 6(x -3) ,- 6(x -3) )是直接用分派律去括号,尔后两个式子(指+ (x - 3) ,- (x -3) )用分派律去括号比麻,就有必需找去括号的律 .:去掉中程,(擦掉中程,板成+(x - 3) =x -3,- (x -3) =- x +3)获得+ (x -3) = x-3,- (x -3) =- x+3. 从两个式子,同学去括号有什么律?(生疏,巡指):哪位同学了去括号的律?生:⋯⋯(多几位同学表见解):从两个式子,我能够,(指准+ (x -3) =x-3)假如括号前是“+”号,去括号后括号里的各都不符号;(板上边句)(指准- (x - 3) =-x+3)假如括号前是“-”号,去括号后括号里各都改符号 . (板上边的句)大家把两句一遍 . (生)例 1 去括号:( 1) a+ (b +c-d) ;(2)a+(-b+c-d);( 3) a- (b +c-d) ;(4)a-(-b+c-d).(四)探,回授4. 去括号:( 1) a+ (b -c) ;(2)a-(b-c);( 3) a- ( - b+ c) ;(4)a+(-b+c);( 5) (a +b) -c;(6)-(a+b)-c.(五)指,授新例 2 先去括号,再归并同:( 1) 8a+2b- (5a -b) ;( 2) (5a -3b) -3(a 2- 2b).(生先,再板演解;(2)除教材中的解法,也能够用分派律直接去掉括号)(六)探,回授5.化:(1)12(x -0.5) =(2)- 5(1 -1x) =5(3)- 5a+(3a -2) -(3a -7) =(4)1(9y - 3) +2(y +1) =3(七)归纳小结,部署作业师:本节课我们学习了怎样去括号. (指准+(x -3) =x-3)假如括号前是“+”号,去括号后括号里各项都不变符号;(指准-(x -3) =-x+3)假如括号前是“-”号,去括号后括号里各项都改变符号;(指准- 6(x - 3) =- 6x+18)假如括号前是其余因数,那么用分派律能够直接去掉括号 .(作业: P71习题 2. )四、板书设计2.2 整式的加减(去括号)6(x - 3) = 6x- 18例 1例 2- 6(x -3)=- 6x+ 18+ (x -3)= x-3假如括号前是“+”号⋯⋯-(x -3) =- x+ 3假如括号前是“-”号⋯⋯课题: 2.2 整式的加减(第 4 课时)一、教课目的1.会进行整式加减运算 .2.会先进行整式的加减,再求值 .二、教课要点和难点1.要点:进行整式加减运算 .2.难点:求值 .三、教课过程(一)基本训练,稳固旧知1.判断正误:对的画“√” ,错的画“×” .( 1) a- (b -c+d) =a-b- c+ d;()( 2) a- (b +c) -d=a-b- c- d;()( 3) (a +b) - ( - c+ d) =a+b-c-d;()( 4)a+( -b+c-d) = a- b+ c- d;()( 5)- (a - b) +(c -d) =- a+ b- c+ d.()2. 去括号:( 1) (a +b) +(c - d) =( 2) (a +b) -(c - d) =( 3)- (a + b) -( -c-d) =( 4) (a -b) -( -c+d) =( 5)- (a - b) +( -c-d) =(6) a- ( - b+ c) -d=(二)情境,入新:前方我学了归并同、去括号,本我学整式的加减. (板: 2.2 整式的加减)行整式的加减运算,上就是做两件事,第一件事是去括号,第二件事是归并同 . 看例 1.(三)指,授新例1 算:( 1) (2x -3y) +(5x +4y) ;(2)(8a-7b)-(4a-5b).(按去括号、归并同两步先生)例 2 算:(2a - 3b) +[4a -(3a -b)].(先去小括号)(四)探,回授3.算:(1) ( - x+ 2x2+ 5) +(4x 2- 3- 6x) ;(2) (3a 2-ab+7) - ( - 4a2+2ab+ 7) ;(3) (2a -3b) -[4a + (3a - b)].4. 填空:整式 x+y 与整式 x-y 的和,差.(五)指,授新例 3 求1x- 2(x -1y2) +( -3x+1y2) ,此中 x=- 2,y=2. 23233(按教材格式板演)(六)探,回授5.先化,再求:5(3a 2b-ab2) - (ab 2+3a2b) ,此中 a=1,b=1.23(七)小,部署作:本我学了整式的加减,行整式的加减运算有两步,是哪两步?生:⋯⋯(作: P3.4. )71四、板2.2整式的加减例 1例 2例 3: 2.2 整式的加减(第 5 )一、教课目1.会列式算整式加减的文字 .2.会列的整式加减式子表示中的数目关系,展符号感.二、教课要点和点1.要点:列的整式加减式子表示数目关系 .2.点:列的整式加减式子表示数目关系 . 三、教课程(一)创建情境,导入新课师:前方我们学习了怎样进行整式加减运算,本节课我们学习几个与整式加减有关的例题,算作是对整式加减的一种应用 .(板书课题: 2.2 整式的加减(应用))请看例 1.(二)试试指导,解说新课例 1 列式表示比 x 的 7 倍大 3 的数与比 x 的-2 倍小 5 的数,计算这两个数的差 . 解:比 x 的 7 倍大 3 的数为 7x+3,比 x 的- 2 倍小 5 的数为- 2x-5,这两个数的差为 (7x + 3) -( -2x-5) = 7x+3+2x+5= 9x+8(每一步都让学生试试)(三)尝试练习,回授调理1.求整式 8xy- x2+y2与 x2-y2+8xy 的差 .2.列式表示比 a 的 5 倍大 4 的数与比 a 的 2 倍小 3 的数,计算这两个数的和 .(四)试试指导,解说新课例2一种笔录本的单价是x元,圆珠笔的单价是y元.卓玛买这种笔录本3个,买圆珠笔 2 支;扎西买这种笔录本 4 个,买圆珠笔 3 支 . 买这些笔录本和圆珠笔,卓玛和扎西一共花销多少钱?(教课建议:按教材P69解法一解比较自然,要让学生充足熟习题意,充足试试的基础上再解说,熟习题意的时间要下足,这是需要耐心的,能够经过读题、说题、画题、列表、实物展现等方式让学生熟习题意)(五)尝试练习,回授调理3. 某村土豆栽种面积是 a 亩,白菜栽种面积比土豆栽种面积少8 亩,青稞栽种面积是白菜栽种面积的10 倍,问该村土豆、白菜、青稞一共栽种多少亩.(六)试试指导,解说新课例 3 两船从同一港口同时出发反向而行,甲船顺流,速度为每小时 (50 + a) 千米,乙船逆水,速度为每小时 (50 - a) 千米 .(1) 2 小时后两船相距多远?(2) 2 小时后甲船比乙船多航行多少千米?(解题格式与板材P67例题相同)(七)尝试练习,回授调理4.填空:已知某轮船顺流航行速度为每小时 (a + y) 千米,逆水航行速度为每小时(a - y) 千米,(1)轮船顺流航行 3 小时,航行了千米;(2)轮船逆水航行 1.5 小时,航行了千米;(3)轮船顺流航行 3 小时,逆水航行 1.5 小时,一共航行了千米.(八)归纳小结,部署作业师:本节课我们学习了几个例题,例 2 例 3 都是和实质问题相关的 . 做这种应用题,要点是要静下心来,好好读题,好好画题——把题目的意思画出来,搞清题目的意思 . 做应用题还需来有信心和毅力,不要被题目吓倒!假如你真的动了脑筋,自己做出了一道题,那么再做第二道题、第三道题就有希望了 .(作业: P68练习 2.P 71习题 7. )四、板书设计2.2 整式的加减(应用)例1例2例3:第二章整式的加减复(第1、 2 )一、教课目1.知道第二章整式的加减知构 .2.通基本,稳固第二章所学的基本内容 .3.通典型例和合运用,加深理解第二章所学的基本内容,展能力 . 二、教课要点和点1.要点:知构和基本 .2.点:典型例和合运用 . 三、教课程(一),完美知单项式归并同类项用字母列含字母整式a(b + c) = ab+ ac整式的加减表示数的式子多项式去括号(上边的知构,要合下边的解逐渐板出来):我已学完了第二章整式的加减,今日我就来复第二章. (板:第二章整式的加减复):第二章的内容不像第一章那么多,哪位同学能用几个字来归纳第二章的内容?生:⋯⋯(多几位学生):!整式的加减 . 因要学整式的加减,我学了归并同和去括号;因要学整式的加减,我学了什么是整式,以及式和多式 . 整式的加减是本章学的点,其余内容都是了学整式的加减做准的 . 那么,本章的内容是从什么地方开始,又是怎样一步一步走向“整式的加减”的呢?(出示下边的目)一本笔本售价 2 元, n 本需元.:本章的内容是从“用字母表示数”开始的. (板:用字母表示数)用字母表示数是什么意思?大家看个例子,(指板的目)一本笔本售价 2 元, n 本需多少元?里 n 本中的 n 就是用字母表示数, n 详细表示是什么数?可能是 0,可能是 1,2 , 3,4 等等 .就是用字母表示数的意思 .:有了表示数的字母,我就能够列出含字母的式子. (板:列含字母的式子)比如,在才的个例子中,(指板的目)一本笔本售价 2 元, n 本需2n 元. (板: 2n)里 2n 就是列出的含字母的式子.:在中,可能列出含各样各字母的式子,此中比的一种叫式 . (板:式)数字与字母的,的式子叫做式. (指板)2n 是一个式 . 学式需掌握式的系数、次数的观点.:在学式的基上,我又学了多式的观点. (板:多式)什么是多式呢?几个式的和叫做多式. 学多式需掌握多式的、常数、次数的观点 .:式是整式,多式也是整式,式和多式称整式. (板:整式):接着,我又学了归并同(板:归并同)和去括号.(板:去括号)归并同、去括号从表面上看,它干的是两件不相同的事,但出人不测的是,它都是依照分派律a(b +c) = ab+ac. (板: a(b + c) =ab+ac)分派律这个式子,从左到右看是去括号,(加箭头)从右到左看是归并同类项 .(加箭头)师:学习了归并同类项和去括号,实质上也就学了整式的加减. (板书:整式的加减)为何这样说呢?因为做整式的加减只有两个步骤,第一步是去括号,第二步是归并同类项 .师:(指板书出的知识构造图)这就是本章知识的线索,从字母表示数出发,终点是整式的加减 .(二)基本训练,掌握双基1.填空:(以下空你最好直接填,实在想不起来,你能够在教材中找,这些内容是需要你仔细理解的;先用铅笔填,校正时用其余笔填)(1)数字与字母的积,像这样的式子叫;单项式中的数字因数叫做单项式的;一个单项式中,全部字母的指数和叫做这个单项式的.(2)几个单项式的和叫做;此中,每个单项式叫做多项式的,不含字母的项叫做;多项式里次数最高项的次数,叫做这个多项式的.(3)与统称整式.(4)所含字母相同,并且相同字母的指数也相同的项叫做;归并同类项的方法是:系数,字母部分.(5)去括号的方法是:假如括号前方是“+”号,去括号后括号里各项都符号;假如括号前是“-”号,去括号后括号里各项都符号 .(6)几个整式相加减,假如有括号就先去括号,而后再2. 填空:( 1)单项式- 15ab 的系数是,次数是;22( 2)单项式 4a b 的系数是,次数是;.( 3)单项式3x2y的系数是,次数是. 53. 填空:2(2)多项式 a3-2a2b2+b3的项是,次数是4. 填空:( 1)全班学生总数是x,此中男生占总数的52%,则女生人数是;( 2)底边长为 6,高为 h 的三角形面积是;( 3)一台 a 元的电视机,降价30%后售价是元;( 4)一台 a 元的电视机,打七折销售,售价是元;( 5)温度由 t 度降落 8 度后是度;( 6)今年扎西 m岁,昨年扎西岁,5年后扎西岁;;.(7)某商铺上月收入为 a 元,本月的收入比上月的 2 倍还多 10 元,本月的收入是元;(8)西藏某景点的门票价钱是:成人10 元,学生 5 元 . 一个旅行团有成人学生 y 人,那么该旅行团对付元门票费;x 人,5.归并同类项:。

2.2.1整式的加减-合并同类项(教案)

2.2.1整式的加减-合并同类项(教案)
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“合并同类项在实际数学问题中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
在新课讲授环节,我发现学生们对于理论知识的掌握程度有所不同。有些学生能够迅速理解并掌握合并同类项的法则,而部分学生则需要更多的时间来消化。因此,在接下来的课程中,我需要针对不同学生的学习需求,适当调整教学节奏和策略,确保每位学生都能跟上进度。
实践活动和小组讨论环节,学生们表现得相当积极。他们通过分组讨论和实验操作,加深了对合并同类项的理解。但同时,我也注意到有些小组在讨论过程中,个别成员参与度不高。为了提高学生的参与度,我打算在下一节课中,增加一些互动性强的环节,鼓励更多学生积极参与。
2.2.1整式的加减-合并同类项(教案)
一、教学内容
本节课选自教科书第二章“整式的加减”中的2.2.1节“合并同类项”。教学内容主要包括以下方面:
1.掌握同类项的定义及判断方法。
2.学习合并同类项的法则及运算步骤。
3.能够运用合并同类项法则进行整式的简化。
4.通过实例分析,让学生理解合并同类项在解决实际问题时的重要性。
-教学策略:通过具体案例分析,引导学生学习如何提取关键信息,建立数学模型。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《整式的加减-合并同类项》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过需要将相同类别的物品进行合并计算的情况?”(如购物时买了几件相同的商品,需要计算总价。)这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索合并同类项的奥秘。

人教版七年级数学上册(RJ)第2章 整式的加减 第3课时 整式的加减

人教版七年级数学上册(RJ)第2章 整式的加减 第3课时 整式的加减

第二章 整式的加减2.2 整式的加减 第2课时 整式的加减学习目标:1.熟练进行整式的加减运算.2.能根据题意列出式子,表示问题中的数量关系.重点:熟练进行整式的加减运算.难点:能根据题意列出式子,表示问题中的数量关系.一、知识链接1.同类项:必须同时具备的两个条件(缺一不可):①所含的 相同;②相同 也相同. 合并同类项,就是把多项式中的同类项合并成一项.方法:把同类项的 相加,而 不变. 2.去括号法则:①如果括号外的因数是 ,去括号后原括号内各项的符号与原来的符号 ;②如果括号外的因数是 ,去括号后原括号内各项的符号与原来的符号 .去括号法则的依据实际是.二、新知预习做一做:小亮和小莹到希望小学去看望小同学,小亮买了10支钢笔和5本字典作为礼物;小莹买了6支钢笔、4本字典和2个文具盒作为礼物品.钢笔的售价为每支a元,字典的售价为每本b元,文具盒的售价为每个c 元.请你计算:(1)小亮花了________元;小莹花了__________元;小亮和小莹共花___________________元.(2)小亮比小莹多花_______________元.想一想:如何进行整式的加减运算?【自主归纳】整式加减运算的基础是__________、_____________,运算结果仍是____________.三、自学自测1.求单项式24xy2xy,2-的和.5x y,22x y-,22.求2x xy467+-的差.x xy-+与231一、要点探究探究点1:整式的加减合作探究:如果用a,b分别表示一个两位数的十位数字和个位数字,那么这个两位数可以表示为 .交换这个两位数的十位数字和个位数字,得到的数是 .将这两个数相加可得: + = .结论:这些和都是_________的整数倍.做一做:任意写一个三位数交换它的百位数字与个位数字,又得到一个数,两个数相减.你又发现什么规律了吗?例如:原三位数728,百位与个位交换后的数为827,由728 -827= -99.你能看出什么规律并验证它吗?任意一个三位数可以表示成100a+10b+c设原三位数为100a+10b+c,百位与个位交换后的数为100c+10b+a,它们的差为:(100a+10b+c)-( 100c+10b+a)= 100a+10b+c-100c-10b-a=99a-99c=99(a -c).议一议:在上面的两个问题中,分别涉及了整式的什么运算?说说你是如何运算的?例1 计算: (1)(2a-3b)+(5a+4b);(2)(8a-7b)-(4a-5b)例2 求多项式 2453x x -+ 与多项式 2273x x -+- 的和与差.练一练:求上述两多项式的差.总结归纳:1. 几个整式相加减,如果有括号就先去括号,然后再合并同类项.2. 整式加减实际上就是:去括号、合并同类项.3. 对于运算结果,常将多项式按某个字母(如 x )的降幂(升幂)排列. 探究点2:整式的加减的应用例3 一种笔记本的单价是x 元,圆珠笔的单价是y 元.小红买这种笔记本3本,买圆珠笔2支;小明买这种笔记本4本,买圆珠笔3支.买这些笔记本和圆珠笔,小红和小明一共花费多少钱?例4 做大小两个长方体纸盒,尺寸如下(单位:cm):(1)做这两个纸盒共用料多少平方厘米?(2)做大纸盒比小纸盒多用料多少平方厘米?总结归纳:整式加减解决实际问题的一般步骤:(1)根据题意列代数式;(2)去括号、合并同类项;(3)得出最后结果.例5 求2211312()()2323x x y x y --+-+的值,其中32,2=-=y x .【能力提升】有这样一道题“当a =2,b =-2时,求多项式3a 3b 3-12a 2b +b -(4a 3b 3-14a 2b -b 2)+(a 3b 3+14a 2b )-2b 2+3的值”,马小虎做题时把a =2错抄成a =-2,王小真没抄错题,但他们做出的结果却都一样,你知道这是怎么回事吗?说明理由.二、课堂小结1.已知一个多项式与的和等于,则这个多项式是( ) A .B .C .D .2.长方形的一边长等于3a+2b,相邻边比它大a-b,那么这个长方形的周长是( )A.14a+6bB.7a+3bC.10a+10bD.12a+8b3.若A 是一个二次二项式,B 是一个五次五项式,则B -A 一定是( ) A.二次多项式 B.三次多项式 C.五次三项式 D. 五次多项式4.多项式32281x x x -+-与多项式323253x mx x +-+的和不含二次项,则m 为( )A.2B.-2C.4D.-4 5.已知,,则=_______________________.6.若mn=m+3,则2mn+3m-5mn+10=__________.7.计算:8.某公司计划砌一个形状如下图(1)的喷水池,后有人建议改为如下图(2)的形状,且外圆直径不变,只是担心原来备好的材料不够,请你比较两种方案,哪一种需用的材料多(即比较两个图形的周长)?若将三个小圆改为n 个小圆,又会得到什么结论?1232+-=a a A 2352+-=a a B BA 32-思路:设大圆半径为R,小圆半径依次为r1,r2,r3,分别表示两个图形的周长,再结合r1+r2+r3=R,化简式子比较大小.参考答案自主学习一、知识链接1.字母字母的指数系数字母的指数2.正数相同负数相反分配律二、新知预习做一做:(1)(10a+5b)(6a+4b+2c)(16a+9b+2c)(2)(4a+b-2c)想一想:有括号先去括号,然后再合并同类项.【自主归纳】去括号合并同类项整式三、自学自测1.和为x²y.2.差为-x²-7xy+8.课堂探究一、要点探究合作探究:10a+b 10b+a 10a+b 10b+a 11a+11b= 11(a + b) 结论:这些和都是 11 的倍数.议一议:整式的加减运算,去括号、合并同类项解: (1)原式=7a+b. (2)原式=4a-2b.2 解:4-5x2+3x +(-2x+7x2-3)=4-5x2+3x-2x+7x2-3=(-5x2+7x2)+(3x-2x)+(4-3)=2x2+x+1.练一练:-5x2+3x -(-2x+7x2-3)=4-5x2+3x+2x-7x2+3=(-5x2-7x2)+(3x+2x)+(4+3)= -12x2+5x+7.3 解:小红买笔记本和圆珠笔共花费 (3x + 2y) 元,小明买笔记本和圆珠笔共花费 (4x + 3y) 元.小红和小明一共花费(单位:元)(3x + 2y)+ (4x + 3y) = 7x+5y,则小红与小明一共花费(7x+5y)元.另解:小红和小明买笔记本共花费 (3x + 4x) 元,买圆珠笔共花费 (2y + 3y) 元.小红和小明一共花费(单位:元)(3x + 4x) + (2y + 3y) = 7x + 5y.4 解:小纸盒的表面积是 ( 2ab+2bc+2ac ) cm²;大纸盒的表面积是( 6ab+ 8bc+ 6ca ) cm²(1)做这两个纸盒共用料(单位:cm2)(2ab+2bc+2ac)+(6ab+ 8bc+ 6ca )=8ab+10bc+8ac.(2)做大纸盒比做小纸盒多用料(单位:cm2)(6ab+8bc+6ca)-(2ab+2bc+2ca)=4ab+6bc+4ac.【能力提升】解:将原多项式化简后,得-b2+b+3. 因为这个式子的值与a的取值无关,所以即使把a抄错,最后的结果都会一样.当堂检测1.A2.A3.D4.C5. -9a2+5a-46. 18. 设大圆半径为R,小圆半径依次为r1,r2,r3,则图(1)的周长为4πR,图(2)的周长为2πR+2πr1+2πr2+2π r3=2πR+2π(r1+ r2+ r3),因为2 r1+2 r2+2 r3=2R,所以r1+ r2+ r3=R,因此图(2)的周长为2πR+2πR=4πR.这两种方案,用材料一样多.将三个小圆改为n个小圆,用料还是一样多.第11页共11页。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
)会利用合并同类项将整式化简求值; (2)会运用整式的加减解决简单的实际问题; (3)初步尝试利用整体代入的思想解决问题.
学习重点: 利用合并同类项将整式化简求值.
• 问题1:有A、B、C三个图形,其中A与B是 边长分别为x,2x的正方形,C是长和宽分别 为2x 、 x 的长方形。
例3(2)某商店原有5袋大米,每袋大米为x千克. 上午卖出3袋,下午又购进同样包装的大米4袋. 进货后这个商店有大米多少千克? 解: 把进货的数量记为正,售出的数量记为负. 进货后这个商店共有大米5x-3x+4x=6x(千克) 答:进货后这个商店有大米6x千克.
课堂小结: 1.化简求值 2.把实际问题抽象为数学模型 3.挖掘已知条件,构造所求整式
• (1)三个图形的周长一共是多少?面积一共 是多少?
• (2)当x=3时,三个图形的周长一共是多少? 面积是多少?
• (3)当x=4时,三个图形的周长一共是多少? 面积是多少
例1 (1)求多项式 2x2-5x+x2+4x-3x2-2 的值,
其中 x= 1 ; 2
(2)求多项式3a+abc- 1 c2-3a+ 1 c2 的值,
3
3
其中 a -1 , b 2 ,c -3
6
例2 (1)水库中水位第一天连续下降了a 小时,每小时平均 下降2cm;第二天连续上升了a 小时,每小时平均上升 0.5cm,这两天水位总的变化情况如何? 解: 把下降的水位变化量记为负, 把上升的水位变化量记为正. 第一天水位的变化量为-2acm, 第二天水位的变化量为0.5acm. 两天水位的总变化量为-2a+0.5a=-1.5a(cm). 答:这两天水位总的变化情况为下降了1.5acm.
义务教育教科书 数学 七年级 上册
2.2 整式的加减 (第2课时)
课件说明
本节课学习的主要内容是:会利用合并同类项 将整式化简求值,运用整式的加法解决简单的实际 问题.本节课设计了大量的实际问题,可以让学生 感受由实际问题抽象出数学问题的过程,尤其是分 析实际问题中的数量关系,并用整式表示出来,用 合并同类项法则计算准确,为下一章学习一元一次 方程,在列方程方面做必要的准备.
相关文档
最新文档