高中数学必修二必修2各章节幻灯片ppt课件

合集下载

高中数学必修二课件:圆的一般方程(42张PPT)

高中数学必修二课件:圆的一般方程(42张PPT)

此方程表示以(1,-2)为圆心,2为半径长的圆.
问题2:方程x2+y2+2x-2y+2=0表示什么图形?
提示:对方程x2+y2+2x-2y+2=0配方得
(x+1)2+(y-1)2=0,即x=-1且y=1. 此方程表示一个点(-1,1). 问题3:方程x2+y2-2x-4y+6=0表示什么图形? 提示:对方程x2+y2-2x-4y+6=0配方得 (x-1)2+(y-2)2=-1. 由于不存在点的坐标(x,y)满足这个方程,所以这 个方程不表示任何图形.
3.若方程x2+y2+2mx-2y+m2+5m=0表示圆,求 (1)实数m的取值范围; (2)圆心坐标和半径.
解:(1)根据题意知D2+E2-4F=(2m)2+(-2)2- 1 4(m +5m)>0,即4m +4-4m -20m>0,解得m<5,
2 2 2
1 故m的取值范围为(-∞,5).
(2)将方程x2+y2+2mx-2y+m2+5m=0写成标准 方程为(x+m)2+(y-1)2=1-5m, 故圆心坐标为(-m,1),半径r= 1-5m.
第 二 章 解 析 几 何 初 步
§2 圆 与 圆 的 方 程
2.2
圆 的 一 般 方 程
理解教材新知
把 握 热 点 考 向
考点一 考点二 考点三
应用创新演练
把圆的标准方程(x-a)2+(y-b)2=r2展开得,x2+y2 -2ax-2by+a2+b2-r2=0,这是一个二元二次方程的形 式,那么,是否一个二元二次方程都表示一个圆呢? 问题1:方程x2+y2-2x+4y+1=0表示什么图形? 提示:对x2+y2-2x+4y+1=0配方得 (x-1)2+(y+2)2=4.
1.若x2+y2-x+y-m=0表示一个圆的方程,则m的取值 范围是 1 A.m>-2 1 C.m<-2 1 B.m≥-2 D.m>-2 ( )

【人教版】高中数学必修二:全册配套ppt课件

【人教版】高中数学必修二:全册配套ppt课件

H E
D A
点击 旋转长方体
G F
C B
(2).与棱 A B 所在直线异面的棱共有 4 条?
分别是 :CG、HD、GF、HE
课后思考: 这个长方体的棱中共有多少对异面直线?
BACK
NEXT
例2 如图,正方体ABCD-EFGH中,O为侧面ADHE的中心,求
(1)BE与CG所成的角? (2)FO与BD所成的角?
∠ADC与∠A1B1C1两边分别对应平行,这两组角的大小
关系如何?
D1
C1
答:从图中可看出, ∠ADC=∠A1D1C1, ∠ADC +∠A1B1C1=180 O
A1 D
B1 C
A
B
定理(等角定理):空间中,如果两个角的两边分别对应平行,
那么这两个角相等或互补.
BACK
NEXT
3.异面直线所成的角
(1)复习回顾
在平面内,两条直线相交成四 个角, 其中不大于90度的角称为它 们的夹角, 用以刻画两直线的错开 程度, 如图.
(2)问题提出
在空间,如图所示, 正方体
ABCD-EFGH中, 异面直线AB
与HF的错开程度可以怎样来刻
画呢?
BACK
NEXT
O
H E
D A
G F
C B
(3)解决问题
思想方法 : 平移转化成相交直线所成的角,即化空间图形问题为平面图形问题 异面直线所成角的定义: 如图,已知两条异面直线 a , b , 经过空间任一点O作
D1 A1
D A
C1 B1
C B
异面直线: 不同在任何一个平面内的两条直线。 (即既不平行也不相交)
异面直线的画法: b

高中数学必修二第二章第一节课件

高中数学必修二第二章第一节课件
如图2 1 21,已知两点Px1, y1 , Qx2, y2 ,如果 x1 x2,那么直线PQ 的斜率 slope为
k y2 y1 x1 x2 .
x2 x1
如果x1 x2,那么直线PQ的斜率不
存在(图2 1 22).
图2 1 2
y
l
第 2章 平面解析几何初步
如 果 代 数 与 几 何 各 自 分开 发 展, 那 它 的 进 步 将 十 分 缓 慢,而 且 应 用 范 围 也 很 有 限.但 若 两 者 互 相 结 合 而 共同 发 展, 则 就 会 互 相加 强, 并 以 快速 的 步 伐 向 着 完 美 化 的 方 向 猛 进.
点的集合是一条曲线.
我 们 知 道, 直 线 和 圆 是 基 本 的 几 何图 形.那 么 如何建立它们的方程? 如何通过方程来研究它们的性质?
2.1 直线与方程
高二(19)
直 线 是 最 常 见 的 图 形, 过 一 点 沿 着 确 定 的 方 向 就 可 以 画 出 一 条 直 线.
为 什 么?
在直角坐标系中, 对于一条与x 轴相交的直线,把 x 轴所在 的 直 线 绕 着 交 点 按 逆 时针 方 向 旋 转 到 和 直 线 重合 时 所 转
过的最小正角称为这条直线的倾 斜 角(inclination),并规定:
y B
A
O

N
图2 1 51
与 x 轴 平 行 或 重 合 的 直 线 的倾 斜 角 为00 . 由定义可知,直线的倾斜角 的取值范 围是00 1800 . 当 直 线 的 斜 率 为 正 时, 直 线 的 倾 斜 角
x 为锐角图2 1 51,此时,
k y BN tan .

数学必修二全套课件ppt课件ppt

数学必修二全套课件ppt课件ppt

习题解答三:拓展题
总结词
拓展题是难度较高的题目,旨在培养学生的创新思维和探究 能力。
详细描述
拓展题主要包括难题、探究题和开放性问题等,涉及的知识 点更加广泛和深入,如数列的性质、组合数学等。这些题目 旨在培养学生的创新思维和探究能力,提高学生的数学素观看
数学必修二全套课件 ppt课件
contents
目录
• 平面几何 • 立体几何 • 解析几何初步 • 函数与方程思想 • 数形结合思想 • 数学必修二习题解答
01
平面几何
直线与圆
相切
当直线与圆只有一个公共点时, 称为相切。
相交
当直线与圆有两个公共点时,称 为相交。
直线与圆
• 相离:当直线与圆没有公共点时,称为相离。
外接圆的圆心是所有顶点与对边中点的中点连线段的交点,称为外心。
多边形与圆
多边形的内切圆 内切圆是与多边形各边都相切的圆。
内切圆的半径等于多边形周长与边长的比值的一半。
多边形与圆
多边形与圆的面积关系 外接圆的面积大于或等于多边形的面积。 内切圆的面积小于或等于多边形的面积。
角与三角形
角的性质
1
2
通过圆心$(h, k)$和半径$r$,表示圆 参数方程为$x = h + rcostheta, y = k + rsintheta$。
圆的一般方程
通过三个不共线的点$(x_1, y_1)$, $(x_2, y_2)$, $(x_3, y_3)$,表示圆方 程为$x^2 + y^2 + Dx + Ey + F = 0$。
02
立体几何
空间点、直线、平面的位置关系
详细描述
点、直线和平面之间的位置关系 ,包括共面、平行和相交等。

必修2数学全套ppt课件ppt课件ppt

必修2数学全套ppt课件ppt课件ppt
抛物线的标准方程为 $y^2 = 2px$ 或 $x^2 = 2py$,其中
$p$ 是抛物线的焦距。
03
抛物线的焦点
抛物线的焦点位于顶点处,且到 抛物线上任意一点的距离等于该
点到准线的距离。
02
抛物线的性质
抛物线具有对称性,即关于x轴或 y轴都是对称的。此外,抛物线还
有离心率等性质。
04
抛物线的周长
必修2数学全套ppt课件
• 空间几何体 • 点、直线、平面的位置关系 • 直线与方程 • 圆与方程 • 圆锥曲线
01
空间几何体
空间几何体的结构
柱体
锥体

球体
多面体
包括圆柱和棱柱,其结 构由底面和侧面组成。
包括圆锥和棱锥,其结 构由底面和侧面组成。
其结构由一个曲面组成 。
由多个平面多边形围成 的立体。
圆的参数方程推导
通过极坐标与直角坐标的转换关 系,可以推导出圆的参数方程。
圆的参数方程应用
在解决与圆相关的实际问题时, 可以根据圆的参数方程计算出圆
心和半径。
05
圆锥曲线
椭圆
椭圆的标准方程
椭圆的性质
椭圆的标准方程为 $frac{x^2}{a^2} + frac{y^2}{b^2} = 1$,其中 $a$ 和 $b$ 是椭圆的半长轴和半短轴。
圆的一般方程应用
在解决与圆相关的实际问题时,可以 根据圆的一般方程计算出圆心和半径 。
通过圆上三点确定一个圆的定理,可 以推导出圆的一般方程。
圆的参数方程
圆的参数方程
$x = acostheta + bsintheta$ ,$y = ccostheta +
dsintheta$,其中$(a, b, c, d)$ 是常数,$theta$是参数。

人教版高中数学必修二全册PPT课件

人教版高中数学必修二全册PPT课件
【提升总结】
圆柱、圆锥可以看作是由矩形或三角形绕其一边所在直线旋转而成,圆台是否也可看成是某图形绕轴旋转而成?
探究点3 圆台的结构特征
圆台:用平行于圆锥底面的平面去截圆锥,底面与截面之间的部分叫做圆台.如图:

下底面
上底面
侧面
母线
表示方法:用表示它的轴的字母表示,如圆台O′O.
O′
B
【变式练习】
轴:旋转轴叫做圆柱的轴;
底面:垂直于轴的边旋转而成的圆面叫做圆柱的底面;
侧面:平行于轴的边旋转而成的曲面叫做圆柱的侧面;
母线:无论旋转到什么位置,不垂直于轴的边都叫做圆柱侧面的母线.

底面
底面
侧面
母线
表示方法:圆柱用表示它的轴的字母表示,如圆柱O′O.
A
B
探究点2 圆锥的结构特征
圆锥:以直角三角形的一条直角边所在直线为旋转轴,其余两边旋转形成的面所围成的旋转体叫做圆锥.如图:
练习
练习
1. 对几何体三视图,下列说法正确的是:( )
A . 正视图反映物体的长和宽
B . 俯视图反映物体的长和高
C . 侧视图反映物体的高和宽
D . 正视图反映物体的高和宽
C
2 . 若某几何体任何一种视图都为圆,那么这个几何体是 ___________
球体
5、正棱锥的直观图的画法
研一研·问题探究、课堂更高效
画板演示
研一研·问题探究、课堂更高效
研一研·问题探究、课堂更高效
研一研·问题探究、课堂更高效
研一研·问题探究、课堂更高效
研一研·问题探究、课堂更高效
练一练·当堂检测、目标达成落实处
A
练一练·当堂检测、目标达成落实处

人教A版数学必修二高中全册课堂教学用精品PPT模版

人教A版数学必修二高中全册课堂教学用精品PPT模版
• 提示:(1)圆台可以看做是直角梯形以垂直于 底边的腰所在的直线为旋转轴,其他三边旋转 一周而成的曲面所围成的旋转体;(2)圆台也 可以看作是等腰梯形以其底边的中线所在的直 线为轴,各边旋转半周形成的曲面所围成的几 何体.
• 2.根据“球”的定义,我们用的篮球、排球 、铅球都是球吗?
• 提示:球是球体的简称.球体包括球面及所围 成的空间部分.从集合观点看,球可看做是空 间中与一个定点的距离小于或等于定长的点的 集合,这个定点就是球心,定长就是球的半径 .通常我们用的篮球、排球是指球面,而铅球 才是球体.
平行于棱锥 底面
棱 台 的平面去截 棱锥,底面 与截面之间 的部分叫做 棱台
图形及表示
如图可记作: 棱台 ABCD-
A′B′C′D′
相关概念
上底面:原棱锥的 截面 ;下底面: 原棱锥的 底面 ; 侧面:其余各面; 侧棱:相邻侧面的 公共边; 顶点:侧面与上(下 )底面的公共顶点
• 多面体最少有几个面,几个顶点,几条棱? • 提示:多面体最少有4个面、4个顶点和6条棱.
→ 回答有关问题
• 【规范解答】截面BCFE右侧部分是棱柱,因 为它满足棱柱的定义. 2分
• 它是三棱柱BEB′-CFC′,其中△BEB′和 △CFC′是底面.4分
• EF,B′C′,BC是侧棱.
6分
• 截面BCFE左侧部分也是棱柱. 8分
• 它是四棱柱ABEA′-DCFD′,其中四边形 ABEA′和四边形DCFD′是底面.
• 【题后总结】棱柱的定义中有两个面互相平行 ,指的是两底面互相平行,但棱柱的放置方式 不同,两底面的位置也不同.但无论怎样放置 ,都应满足棱柱的定义.
• 2.本例中平面BCFE左侧的几何体A′EFD′- ABCD是棱台吗?简述理由.

《高中数学必修二课件+PPT》

《高中数学必修二课件+PPT》
探讨常见函数的分类,如多项式函数、指数函数和对数函数等。
不等式与绝对值
不等式的解法
介绍不等式的解法和应用。
绝对值
讲解绝对值的定义、性质以及 在不等式中的应用。
不等式在实际中的应用
分享一些不等式在实际问题中 的应用。
三角形内角和定理及其应用
1
三角形内角和定理
介绍三角形内角和定理的证明和应用。
三角形的相似性
极限与导数
1
极限的定义
介绍极限的定义、性质和常用计算方法。
2
导数的定义
讲解导数的定义和解释其在几何上的意义。
3
导数的计算与应用
探讨导数的计算方法和在实际问题中的应用。
函数的基本性质与分类
1 函数的定义
介绍函数的定义、定义域和 值域。
2 函数的性质
讲解函数的奇偶性、周期性 和单调性等性质。
3 函数的分类
二阶线性微分方程
探讨二阶线性微分方程的 解法,包括特征方程和待 定系数法。
随机事件与概率
随机事件
讲解随机事件的定义、分类和 运算法则。
概率计算
讲解计算概率的方法,包括古 典概型和频率法则。
概率在实际中的应用
分享一些概率在实际问题中的 应用场景。
假设检验
什么是假设检验 假设检验的应用 类型I和类型II错误
2
讲解三角形的相似性及其应用。
3
三角形的面积
探讨三角形的面积计算公式和相关应 用。
解析几何
1
直线的方程
介绍直线的一般式、斜截式和点斜式,
圆的方程
2
以及它们的相互转化。
讲解圆的标准方程和一般方程,并解
决涉及圆的实际问题。
3

人教版高中数学必修二全册课件ppt

人教版高中数学必修二全册课件ppt

探究点1 多面体和旋转体 观察下面的图片,这些图片中的物体具有怎
样的形状?日常生活中,我们把这些物体的形状 叫做什么?我们如何描述它们的形状?
其中(2),(5),(7),(9),(13),(14), (15),(16)具有相同的特点:组成几何体的每个 面都是平面图形,并且都是平面多边形.
多面体:一般地,我们把由若干个平面多边形围成 的几何体叫做多面体. 围成多面体的各个多边形叫做多面体的面. 相邻两个面的公共边叫做多面体的棱. 棱与棱的公共点叫做多面体的顶点.
半径是指什么?如何用字母表示球?
本 答 以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的旋
课 时
转体叫做球体,简称球.半圆的圆心叫做球的球心,半圆的半径
栏 叫做球的半径,半圆的直径叫做球的直径.球常用表示球心的字

开 母 O 表示,如球 O.

研一研·问题探究、课堂更高效
例 2 判断下列各命题是否正确:
柱是怎样形成的呢?与圆柱有关的几个概念是
如何定义的?
答 圆柱的定义:以矩形的一边所在直线为旋转轴,其余三边旋转
本 课
形成的面所围成的旋转体叫做圆柱,旋转轴叫做圆柱的轴;垂直于
时 轴的边旋转而成的圆面叫做圆柱的底面;平行于轴的边旋转而成的

目 曲面叫做圆柱的侧面;无论旋转到什么位置,不垂直于轴的边都叫

课 时
垂直于轴的边旋转而成的圆面叫做圆柱的 底面 ;平行于
栏 目
轴的边旋转而成的曲面叫做圆柱的 侧面 ;无论旋转到
开 关
什么位置,不垂直于轴的边叫做圆柱侧面的 母线 .
2.以直角三角形的一条直角边所在直线为旋转轴,其余两
边旋转形成的面所围成的旋转体叫做 圆锥 .

人教版高中数学必修二全册PPT课件

人教版高中数学必修二全册PPT课件

第1课时
问题 3 类比棱柱的分类,棱锥如何根据底面多边形的边数进行分 类?如何用棱锥各顶点的字母表示问题 1 中的三个棱锥?
答 底面是三角形、四边形、五边形……的棱锥分别叫做三棱锥、
四棱锥、五棱锥……其中三棱锥又叫四面体.三个棱锥从左到右

课 可分别表示为 S-ABC,S-ABCD,P-ABCDE.

练一练·当堂检测、目标达成落实处
第1课时
1.下列说法中正确的是 A.棱柱的面中,至少有两个面互相平行
(A )

B.棱柱中两个互相平行的平面一定是棱柱的底面
课 时
C.棱柱中一条侧棱就是棱柱的高
栏 目
D.棱柱的侧面一定是平行四边形,但它的底面一定不是
开 关
平行四边形
解析 棱柱的两底面互相平行,故 A 正确;
置关系等角度紧扣定义进行判断.
研一研·问题探究、课堂更高效
第1课时
跟踪训练 1 根据下列关于空间几何体的描述,说出几何体名称:
(1)由 6 个平行四边形围成的几何体.
(2)由 7 个面围成,其中一个面是六边形,其余 6 个面是有一个公共
本 课
顶点的三角形.
时 栏
解 (1)这是一个上、下底面是平行四边形,四个侧面也是平行四边
棱柱的侧面也可能有平行的面(如正方体),故 B 错;
立在一起的一摞书可以看成一个四棱柱,当把这摞书推倾斜时,
它的侧棱就不是棱柱的高,故 C 错; 由棱柱的定义知,棱柱的侧面一定是平行四边形.但它的底面
可以是平行四边形,也可以是其他多边形,故 D 错.
练一练·当堂检测、目标达成落实处
第1课时
2.下列说法中,正确的是
(1)棱柱中互相平行的两个面叫做棱柱的底面;

人教版高中数学必修二全册课件PPT

人教版高中数学必修二全册课件PPT
A
2、过球面上的两点作球的大圆,可以作( )个。
1或无数多
3.下图中不可能围成正方体的是( )
B
4.在棱柱中………………..( )
A . 只有两个面平行
B . 所有的棱都相等
C . 所有的面都是平行四边形
D . 两底面平行,并且各侧棱也平行
侧视
改一改:某同学画的下图物体的三视图,对吗?若有错,请指出并改正.
正视图
侧视图
俯视图



俯视
【变式练习】
三视图的作图步骤
2.运用长对正、高平齐、宽相等的原则画出其三视图.
1. 位置正视图 侧视图 俯视图
【提升总结】
正视图
俯视图
侧视图
从前面正对着物体观察,画出正视图,正视图反映了物体的长和高及前后两个面的投影.
从上向下正对着物体观察,画出俯视图,布置在正视图的正下方,俯视图反映了物体的长和宽及上下两个面的投影.
三视图表达的意义
从左向右正对着物体观察,画出侧视图,布置在正视图的正右方,侧视图反映了物体的宽和高及左右两个面的投影.
例2 画出下面几何体的三视图.
正视图
俯视图
侧视图
画出下面正三棱锥的三视图.
棱柱
棱锥
圆柱
圆锥
圆台
棱台

结构特征
用一个平行于圆锥底面的平面去截圆锥,底面与截面之间的部分是圆台.
棱柱
棱锥
圆柱
圆锥
圆台
棱台

结构特征
O
半径
球心
以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的旋转体.
球的结构特征
球:以半圆的直径所在的直线为旋转轴,半圆面旋转一周形成的几何体叫做球体。

人教版高中数学必修二教学课件:第2章 (共838张PPT)

人教版高中数学必修二教学课件:第2章 (共838张PPT)

数学(RA-GZ) -必修2
预学 2:点、线、面之间的关系 (1)直线在平面内的概念 如果直线 l 上的所有点都在平面α内,那么就说直线 l 在平面α 内或者说平面α经过直线 l. (2)文字语言与数学符号的对应关系
数学(RA-GZ) -必修2
文字语言表示 数学符号表示 文字语言表示 数学符号表示 点 A 在直线 A∈l 点 A 在直线 l 外 A∉l l上 点 A 在平面 A∈α 点 A 在平面α外 A∉α α内 直线 l 在平面 l⊂α 直线 l 在平面α外 l⊄α α内 直线 l,m 相交 平面α,β相交 l∩m=A α∩β=l 于点 A 于直线 l 议一议:如何从集合角度理解点、线、面之间的关系?(指定 小组回答,其他组补充)
若 A∈l,B∈l,且 A 既能判定直线和点是否在 ∈α,B∈α,则 l⊂ 平面内,又能说明平面是 α 无限延展的 若 A,B,C 三点不共 一是确定平面;二是证明 线,则存在唯一的 点、线共面问题;三是判 平面α,使 A,B,C 断两个平面重合的依据 ∈α 若 P∈α,P∈β, 则α∩β=l,且 P ∈l,l 唯一 一是判断两个平面相交的 依据;二是可以证明多点 共线问题;三是证明三线 共点问题的依据
能力素养 培养学生的空间想象能力, 培养学生的直观想象素养 教育学生要勇于批判、敢 于创新 培养学生的逻辑推理素养
数学(RA-GZ) -必修2
重点:理解平面的特点和基本性质. 难点:平面基本性质的掌握与运用.
数学(RA-GZ) -必修2
数学(RA-GZ) -必修2
质检人员在检测地面砖是否铺得平整时,通常把木工尺平放在地 面砖铺的间隙间检测木工尺与地面砖是否存在间隙,若没有间隙,则 说明地面砖铺得很平整.请问上述检测方法的依据是什么?

高中人教版必修2数学课件第二章2.1.2精选ppt课件

高中人教版必修2数学课件第二章2.1.2精选ppt课件

() A.2 对
B.3 对
C.6 对
D.12 对
解析:选 C.如图所示,在长方体 AC1 中,与对角线 AC1 成异面 直线位置关系的是:A1D1、BC、BB1、DD1、A1B1、DC,所以 组成 6 对异面直线.
3.如图,点 G、H、M、N 分别是三棱柱的顶点或所在棱的中 点,则表示直线 GH,MN 是异面直线的图形是________.
(1)判断两直线平行仍是立体几何中的一个重要组成部分,除了 平面几何中常用的判断方法以外,公理 4 也是判断两直线平行的 重要依据. (2)证明角相等,利用空间等角定理是常用的思考方法;另外也 可以通过证明两个三角形全等或相似来证明两角相等.在应用等 角定理时,应注意说明这两个角同为锐角、直角或钝角.
(2)异面直线所成的角 两条异面直线所成的角是由两条相交直线所成的角扩充而成的, 由平移原理可知,当两条异面直线在空间的位置确定后,它们所 成的角的大小也就随之确定了.
1.分别在两个平面内的两条直线间的位置关系是( )
A.异面
B.平行
C.相交
D.以上均有可能
答案:D
2.长方体的一条体对角线与长方体的棱所组成的异面直线有
章 点、直线、面之间的位置关系
2.1.2 空间中直线与直线之间的位置关系
第二章 点、直线、平面之间的位置关系
1.会判断空间两直线的位置关系. 2.理解两异面直线的 定义,会求两异面直线所成的角. 3.能用公理 4 解决一些简单的相关问题.
1.空间直线的位置关系 (1)异面直线 ①定义:把不同在_任__何__一__个__平面内的两条直线叫做异面直线. ②画法:(通常用平面衬托)
A.6 C.5 答案:B
B.4 D.8
3.若正方体 ABCD-A1B1C1D1 中∠BAE=25°.

数学必修二全套课件ppt课件ppt课件ppt

数学必修二全套课件ppt课件ppt课件ppt

01
02
03
直观图的画法
通过斜二测画法、中心投 影等方式绘制空间几何体 的直观图。
直观图的特点
直观图应能真实反映空间 几何体的形状和大小,同 时要符合人的视觉习惯, 易于理解和认识。
直观图的应用
直观图在工程、建筑、机 械等领域有着广泛的应用 ,是设计和制造过程中必 不可少的工具。
02
点、直线、平面之间的位置关 系
平行关系
总结词
描述点、直线或平面在空间中的平行状态。
详细描述
平行关系是指两个或多个点、直线或平面在空间中保持相同的距离,并且方向 一致,不交叉、不重叠。平行关系是几何学中的基本关系之一,对于理解空间 结构和解决几何问题具有重要意义。
垂直关系
总结词
描述点、直线或平面在空间中的垂直状态。
详细描述
垂直关系是指两个或多个点、直线或平面在空间中互相垂直,即一个方向的法向 量与另一个方向的法向量垂直。垂直关系在几何学中具有特殊意义,许多几何定 理和性质都与垂直关系有关。
总结词
理解斜率与倾斜角的关系
详细描述
斜率等于直线倾斜角的正切值,即k=tan(θ),其中θ为直 线的倾斜角。当θ=π/4时,k=1;当θ=π/2时,k不存在 ;当θ=3π/4时,k=-1。
直线的点斜式方程
总结词
掌握点斜式方程的推导方法
详细描述
通过直线上的一点(x0,y0)和斜率k,可以推导出直线的点斜式方程为y-y0=k(x-x0)。该方程表示通过 点(x0,y0)且斜率为k的所有直线。
抛物线的性质
抛物线具有对称性,即关 于其对称轴对称。此外, 抛物线还有准线,即其上 的点都与准线平行。
抛物线的焦点
抛物线的焦点位于其对称 轴上,且到抛物线上任意 一点的距离等于该点到准 线的距离。

北师大版()高中数学必修第二册课件ppt(22份)

北师大版()高中数学必修第二册课件ppt(22份)
三等分点,点 N 是 OA 上靠近 A 的一个四等分点.若 OM 与 BN 相交
于点 P,求.
课堂篇探究学习
探究一
探究二
探究三
当堂检测
2
2
1
2
解 = + = + 3 = + 3 ( − )=3a+3b.
因为与共线,

2
3
3
故可设=t = a+ b.
课堂篇探究学习
探究一
探究二
探究三
当堂检测
延伸探究将本例中“M是AB上靠近B的一个三等分点”改为“M是AB
上靠近A的一个三等分点”,“点N是OA上靠近A的一个四分点”改为
“N为OA的中点”,求BP∶PN的值.
课堂篇探究学习
探究一
探究二
探究三
当堂检测
1
解 = − = a-b,
2
1
1
2
3
又 与 共线,可设=s , = +s = +s( −
4
3
)=4(1-s)a+sb,
3
所以
4
9

(1-) = ,
3
2
= 3 ,
3
3
解得
所以 = 10a+5b.
= 10 ,
3
= 5.
课堂篇探究学习
探究一
探究二
探究三
当堂检测
反思感悟 用一组基表示向量的注意事项
1
3
3
1
A.4a-4b
B.4a-4b
C. a+ b
D. a+ b
3
1
4
4
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2.棱柱
平行 一般地,有两个面互相__________ ,其余各面都是 四边形 ,并且每__________ 相邻 两个四边形的公共边 __________ 平行 多面体 都互相__________ ,由这些面所围成的__________ 叫做棱柱 棱柱中,两个互相______ 平行 的面叫做棱柱的底面,简称 公共边 有关 底;其余各面叫做棱柱的侧面;相邻侧面的________ 概念 叫做棱柱的侧棱;侧面与底面的__________ 公共顶点 叫做棱 柱的顶点
第一章
1.1
1.1.1
成才之路 ·高中新课程 ·学习指导 ·人教版 ·数学 ·必修2
●自主预习 1.空间几何体
名称
定义
在我们周围存在着各种各样的物体,它们都占据着空 形状 和_____ 大小 , 空间几 间的一部分.如果我们只考虑物体的_____ 何体 而不考虑其他因素,那么由这些物体抽象出来的空间 图形就叫做空间几何体 平面多边形 围成的几何体 一般地,我们把由若干个____________ 叫做多面体,围成多面体的各个多边形叫做多面体的 多面体 面 公共边 叫做多面体的棱; _____;相邻两个面的__________ 公共点 叫做多面体的顶点 棱与棱的__________ 直线 我们把由一个平面图形绕它所在平面内的一条定____ 封闭几何体 叫做旋转体,这条定直线 旋转体 旋转所形成的____________ 轴 叫做旋转体的_______
第一章 1.1 1.1.1
成才之路 ·高中新课程 ·学习指导 ·人教版 ·数学 ·必修2
(3)围成一个多面体至少要四个面.
(4)规定:在多面体中,不在同一面上的两个顶点的连线叫 做多面体的对角线,不在同一面上的两条侧棱称为多面体的不 相邻侧棱,侧棱和底面多边形的边统称为棱. (5)一个多面体是由几个面围成,那么这个多面体称为几何
体.
第一章 1.1 1.1.1
成才之路 ·高中新课程 ·学习指导 ·人教版 ·数学 ·必修2
3.棱锥 一般地,有一个面是______________ ,其余各面都是 多边形 有一个公共顶点 定义 __________________ 的三角形,由这些面所围成的多 面体叫做棱锥 多边形面叫做棱锥的底面或底;有____________ 公共顶点 的各 公共顶点 有关 个三角形面叫做棱锥的侧面;各侧面的____________ 概念 叫做棱锥的顶点;相邻侧面的__________ 公共边 叫做棱锥的 侧棱
第一章
1.1
1.1.1
成才之路 ·高中新课程 ·学习指导 ·人教版 ·数学 ·必修2
图形
字母 表示,如上图中 表示 用表示顶点和底面各顶点的________ 法 的棱锥可记为棱锥__________ S-ABCD
按底面多边形的________ 边数 分为三棱锥、四棱锥、五棱 分类 锥„„,其中三棱锥又叫__________ 四面体
1
优 效 预 习
3
当 堂 检 测
2
高 效 课 堂
4
课后强化作业
第一章
1.1
1.1.1
成才之路 ·高中新课程 ·学习指导 ·人教版 ·数学 ·必修2
优效预习
第一章
1.1
1.1.1
成才之路 ·高中新课程 ·学习指导 ·人教版 ·数学 ·必修2
●知识衔接 1 .在初中,我们已经直观地认识了一些简单的几何体, 如正方体、长方体、圆锥、圆柱、球等,仔细观察这些几何体 的结构特征,通过总结,我们可以将正方体、长方体作为一类 几何体,它们都是由平面多边形围成的几何体,称为多面体;
圆锥、圆柱、球作为另一类几何体,它们是由平面图形旋转而
成的几何体,称为旋转体.
第一章
1.1
1.1.1
成才之路 ·高中新课程 ·学习指导 ·人教版 ·数学 ·必修2
2 .我们看到的各种各样的建筑物,大都是由我们熟悉的
几何体组成的.如国家游泳中心是2008年北京奥运会的标志性 建筑之一,它的外观是长方体形状;国家奥林匹克主体育场 “鸟巢”内部是半球形碗状坐席,如图.
定几何形状的物质构成的,把这些物体的其他特征忽略,只看
它们的形状和大小,这就是本章要研究的内容.
第一章
空间几何体
成才之路 ·高中新课程 ·学习指导 ·人教版 ·数学 ·必修2
第一章 1.1 空间几何体的结构
1.1.1 棱柱、棱锥、棱台的结构特征
第一章
空间几何体
成才之路 ·高中新课程 ·学习指导 ·人教版 ·数学 ·必修2
第一章 1.1 1.1.1
成才之路 ·高中新课程 ·学习指导 ·人教版 ·数学 ·必修2
[归纳总结] 对多面体概念的理解,注意以下几个方面: (1)多面体是由平面多边形围成的,不是由圆面或其它曲面
围成,也不是由空间多边形围成.
(2)本章所说的多边形,一般包括它内部的平面部分,故多 面体是一个“封闭”的几何体.
定义
第一章
1.1
1.1.1
成才之路 ·高中新课程 ·学习指导 ·人教版 ·数学 ·必修2
图形Βιβλιοθήκη 表示棱柱,如上图中 表示 用表示底面各顶点的__________ 字母 法 的棱柱可记为棱柱ABCDE-A′B′C′D′E′ 分类 按底面多边形的__________ 分为三棱柱、四棱柱、 边数
五棱柱„„
第一章 1.1 1.1.1
成才之路 ·数学
人教版 ·必修2
路漫漫其修远兮 吾将上下而求索
成才之路 ·高中新课程 ·学习指导 ·人教版 ·数学 ·必修2
第一章
空间几何体
第一章
空间几何体
成才之路 ·高中新课程 ·学习指导 ·人教版 ·数学 ·必修2
这是世界著名的七星级酒店——迪拜的帆船酒店,近距离观
察能发现很多几何元素,如圆柱、棱柱、球等,世界上许许多 多的建筑设计大师设计出了很多闻名于世的建筑,这些建筑风 格各异,它们都离不开这样的一些基本的几何元素. 事实上,纷繁复杂的物质世界都是由那些既有大小又有一
成才之路 ·高中新课程 ·学习指导 ·人教版 ·数学 ·必修2
[归纳总结] 棱柱的简单性质:
(1)侧棱互相平行且相等;侧面都是平行四边形. (2)两个底面与平行于底面的截面是全等的多边形,如图① 所示.
(3) 过不相邻的两条侧棱的截面是平行四边形,如图②所 示.
第一章 1.1 1.1.1
成才之路 ·高中新课程 ·学习指导 ·人教版 ·数学 ·必修2
相关文档
最新文档