2014年中考数学模拟试卷及答案(word解析版)

合集下载

2014年中考数学模拟试卷及答案

2014年中考数学模拟试卷及答案

第1页 共10页 2014年中考数学模拟试卷及答案(满分120分,考试用时120分钟)一、选择题:(本大题共10小题,每小题3分,满分30分,请选出各题中一个符合题意的正确选项,不选、多选、错选,均不不给分)1.-3的倒数是( )A .13B .— 13C .3D .—3 2.如图中几何体的主视图是 ( )A .B .C .D .3.下列运算正确..的是 ( ) A . B . C . D .4.预计A 站将发送旅客342.78万人,用科学记数法表示342.78万正确的是( )A .3.4278×107B .3.4278×106C .3.4278×105D .3.4278×1045.已知两圆的半径分别为3和4,圆心距为1,则两圆的位置关系是 ( )A .相交B .内切C .外切D .内含6. 如图,函数11-=x y 和函数xy 22=的图像相交于点M (2,m ),N (-1,n ),若21y y >,则x 的取值范围是 A. 1-<x 或20<<x B. 1-<x 或2>xC. 01<<-x 或20<<xD. 01<<-x 或2>x7.九年级一班5名女生进行体育测试,她们的成绩分别为70,80,85,75,85(单位:分),这次测试成绩的众数和中位数分别是( )A .79,85B .80,79C .85,80D .85,858. 如图是一个正六棱柱的主视图和左视图,则图中的=a A. 32 B. 3 C. 2 D. 19.如图,直线l 1//l 2,则α为( ) A .150° B .140° C .130° D .120°l 1 l 2 50°70°α。

2014中考数学模拟试题含答案(精选5套)

2014中考数学模拟试题含答案(精选5套)

2014年中考数学模拟试卷(一)数 学(全卷满分120分,考试时间120分钟)注意事项:1. 本试卷分选择题和非选择题两部分. 在本试题卷上作答无效..........;2. 答题前,请认真阅读答题.......卷.上的注意事项......;3. 考试结束后,将本试卷和答题.......卷一并交回..... 一、选择题(本大题满分36分,每小题3分. 在下列各题的四个备选答案中,只有一个是正确的,请在答题卷上把你认为正确的答案的字母代号按要求用2B 铅笔涂黑) 1. 2 sin 60°的值等于 A. 1B.23C. 2D. 32. 下列的几何图形中,一定是轴对称图形的有A. 5个B. 4个C. 3个D. 2个3. 据2013年1月24日《桂林日报》报道,临桂县2012年财政收入突破18亿元,在广西各县中排名第二. 将18亿用科学记数法表示为A. 1.8×10B. 1.8×108C. 1.8×109D. 1.8×10104. 估计8-1的值在A. 0到1之间B. 1到2之间C. 2到3之间D. 3至4之间 5. 将下列图形绕其对角线的交点顺时针旋转90°,所得图形一定与原图形重合的是 A. 平行四边形 B. 矩形 C. 正方形 D. 菱形 6. 如图,由5个完全相同的小正方体组合成一个立体图形,它的左视图是7. 为调查某校1500名学生对新闻、体育、动画、娱乐、戏曲五类电视节目的喜爱情况,随机抽取部分学生进行调查,并结 合调查数据作出如图所示的扇形统计图. 根据统计图提供的 信息,可估算出该校喜爱体育节目的学生共有 A. 1200名 B. 450名C. 400名D. 300名8. 用配方法解一元二次方程x 2+ 4x – 5 = 0,此方程可变形为 A. (x + 2)2= 9 B. (x - 2)2 = 9C. (x + 2)2 = 1D. (x - 2)2=1圆弧 角 扇形 菱形 等腰梯形A. B. C. D.(第9题图)(第7题图)9. 如图,在△ABC 中,AD ,BE 是两条中线,则S △EDC ∶S △ABC = A. 1∶2B. 1∶4C. 1∶3D. 2∶310. 下列各因式分解正确的是A. x 2 + 2x-1=(x - 1)2B. - x 2+(-2)2=(x - 2)(x + 2) C. x 3- 4x = x (x + 2)(x - 2)D. (x + 1)2= x 2 + 2x + 111. 如图,AB 是⊙O 的直径,点E 为BC 的中点,AB = 4, ∠BED = 120°,则图中阴影部分的面积之和为 A. 3 B. 23 C.23 D. 112. 如图,△ABC 中,∠C = 90°,M 是AB 的中点,动点P 从点A出发,沿AC 方向匀速运动到终点C ,动点Q 从点C 出发,沿 CB 方向匀速运动到终点B. 已知P ,Q 两点同时出发,并同时 到达终点,连接MP ,MQ ,PQ . 在整个运动过程中,△MPQ 的面积大小变化情况是 A. 一直增大B. 一直减小C. 先减小后增大D. 先增大后减小二、填空题(本大题满分18分,每小题3分,请将答案填在答题卷上,在试卷上答题无效) 13. 计算:│-31│= . 14. 已知一次函数y = kx + 3的图象经过第一、二、四象限,则k 的取值范围是 . 15. 在10个外观相同的产品中,有2个不合格产品,现从中任意抽取1个进行检测,抽到合格产品的概率是 .16. 在临桂新区建设中,需要修一段全长2400m 的道路,为了尽量减少施工对县城交通所造成的影响,实际工作效率比原计划提高了20%,结果提前8天完成任务,求原计划每天修路的长度. 若设原计划每天修路x m ,则根据题意可得方程 . 17. 在平面直角坐标系中,规定把一个三角形先沿着x 轴翻折,再向右平移2个单位称为1次变换. 如图,已知等边三角形 ABC 的顶点B ,C 的坐标分别是(-1,-1),(-3,-1),把 △ABC 经过连续9次这样的变换得到△A ′B ′C ′,则点A 的对 应点A ′ 的坐标是 .18. 如图,已知等腰Rt △ABC 的直角边长为1,以Rt △ABC 的斜边AC 为直角边,画第二个等腰Rt △ACD ,再以Rt △ACD 的 斜边AD 为直角边,画第三个等腰Rt △ADE ……依此类推直 到第五个等腰Rt △AFG ,则由这五个等腰直角三角形所构成 的图形的面积为 . 三、解答题(本大题8题,共66分,解答需写出必要的步骤和过程. 请将答案写在答题卷上,在试卷上答题无效)(第11题图)(第12题图) (第17题图)(第18题图)19. (本小题满分8分,每题4分)(1)计算:4 cos45°-8+(π-3) +(-1)3;(2)化简:(1 - n m n+)÷22n m m -.20. (本小题满分6分)21. (本小题满分6分)如图,在△ABC 中,AB = AC ,∠ABC = 72°. (1)用直尺和圆规作∠ABC 的平分线BD 交AC 于点D (保留作图痕迹,不要求写作法);(2)在(1)中作出∠ABC 的平分线BD 后,求∠BDC 的度数.22. (本小题满分8分)在开展“学雷锋社会实践”活动中,某校为了解全校1200名学生参加活动的情况,随机调查了50名学生每人参加活动的次数,并根据数据绘成条形统计图如下:(1)求这50个样本数据的平均数、众数和中位数;(2)根据样本数据,估算该校1200名学生共参加了多少次活动. 23. (本小题满分8分)如图,山坡上有一棵树AB ,树底部B 点到山脚C 点的距离BC 为63米,山坡的坡角 为30°. 小宁在山脚的平地F 处测量这棵树的高,点 C 到测角仪EF 的水平距离CF = 1米,从E 处测得树 顶部A 的仰角为45°,树底部B 的仰角为20°,求树 AB 的高度.(参考数值:sin20°≈0.34,cos20°≈0.94,tan20°≈0.36)24. (本小题满分8分)如图,PA ,PB 分别与⊙O 相切于点A ,B ,点M 在PB 上,且OM ∥AP ,MN ⊥AP ,垂足为N. (1)求证:OM = AN ;(2)若⊙O 的半径R = 3,PA = 9,求OM 的长.3121--+x x ≤1, ……① 解不等式组:3(x - 1)<2 x + 1. ……②(第21题图)(第23题图)(第24题图)°25. (本小题满分10分)某中学计划购买A 型和B 型课桌凳共200套. 经招标,购买一套A 型课桌凳比购买一套B 型课桌凳少用40元,且购买4套A 型和5套B 型课桌凳共需1820元. (1)求购买一套A 型课桌凳和一套B 型课桌凳各需多少元?(2)学校根据实际情况,要求购买这两种课桌凳总费用不能超过40880元,并且购买A 型课桌凳的数量不能超过B 型课桌凳数量的32,求该校本次购买A 型和B 型课桌凳共有几种方案?哪种方案的总费用最低?26. (本小题满分12分)在平面直角坐标系中,现将一块等腰直角三角板ABC 放在第二象限,斜靠在两坐标轴上,点C 为(-1,0). 如图所示,B 点在抛物线y =21x 2 -21x – 2图象上,过点B 作BD ⊥x 轴,垂足为D ,且B 点横坐标为-3. (1)求证:△BDC ≌ △COA ;(2)求BC 所在直线的函数关系式;(3)抛物线的对称轴上是否存在点P ,使△ACP 是以AC 为直角边的直角三角形?若存在,求出 所有点P 的坐标;若不存在,请说明理由.2013年初三适应性检测参考答案与评分意见一、选择题题号 1 2 3 4 5 6 7 8 9 10 11 12 答案DACBCBDABCAC说明:第12题是一道几何开放题,学生可从几个特殊的点着手,计算几个特殊三角形面积从而降低难度,得出答案. 当点P ,Q 分别位于A 、C 两点时,S △MPQ =21S △ABC ;当点P 、Q 分别运动到AC ,BC 的中点时,此时,S △MPQ =21×21AC. 21BC =41S △ABC ;当点P 、Q 继续运动到点C ,B 时,S △MPQ =21S△ABC,故在整个运动变化中,△MPQ 的面积是先减小后增大,应选C.二、填空题 13.31; 14. k <0; 15. 54(若为108扣1分); 16. x2400-x %)201(2400 = 8;(第26题图)17. (16,1+3); 18. 15.5(或231). 三、解答题19. (1)解:原式 = 4×22-22+1-1……2分(每错1个扣1分,错2个以上不给分) = 0 …………………………………4分(2)解:原式 =(n m nm ++-nm n +)·m n m 22- …………2分= nm m +·m n m n m ))((-+ …………3分= m – n …………4分 20. 解:由①得3(1 + x )- 2(x -1)≤6, …………1分 化简得x ≤1. …………3分 由②得3x – 3 < 2x + 1, …………4分 化简得x <4. …………5分 ∴原不等式组的解是x ≤1. …………6分21. 解(1)如图所示(作图正确得3分)(2)∵BD 平分∠ABC ,∠ABC = 72°, ∴∠ABD =21∠ABC = 36°, …………4分 ∵AB = AC ,∴∠C =∠ABC = 72°, …………5分 ∴∠A= 36°,∴∠BDC =∠A+∠ABD = 36° + 36° = 72°. …………6分 22. 解:(1)观察条形统计图,可知这组样本数据的平均数是 _x =50551841737231⨯+⨯+⨯+⨯+⨯ =3.3, …………1分∴这组样本数据的平均数是3.3. …………2分∵在这组样本数据中,4出现了18次,出现的次数最多, ∴这组数据的众数是4. …………4分∵将这组样本数据按从小到大的顺序排列,其中处在中间的两个数都是3,有233+ = 3. ∴这组数据的中位数是3. ………………6分(2)∵这组数据的平均数是3.3,∴估计全校1200人参加活动次数的总体平均数是3.3,有3.3×1200 = 3900. ∴该校学生共参加活动约3960次. ………………8分23. 解:在Rt △BDC 中,∠BDC = 90°,BC = 63米,∠BCD = 30°, ∴DC = BC ·cos30° ……………………1分 = 63×23= 9, ……………………2分 ∴DF = DC + CF = 9 + 1 = 10,…………………3分 ∴GE = DF = 10. …………………4分 在Rt △BGE 中,∠BEG = 20°, ∴BG = CG ·tan20° …………………5分 =10×0.36=3.6, …………………6分 在Rt △AGE 中,∠AEG = 45°,∴AG = GE = 10, ……………………7分 ∴AB = AG – BG = 10 - 3.6 = 6.4.答:树AB 的高度约为6.4米. ……………8分24. 解(1)如图,连接OA ,则OA ⊥AP. ………………1分∵MN ⊥AP ,∴MN ∥OA. ………………2分 ∵OM ∥AP ,∴四边形ANMO 是矩形.∴OM = AN. ………………3分(2)连接OB ,则OB ⊥AP ,∵OA = MN ,OA = OB ,OM ∥BP , ∴OB = MN ,∠OMB =∠NPM.∴Rt △OBM ≌Rt △MNP. ………………5分 ∴OM = MP.设OM = x ,则NP = 9- x . ………………6分在Rt △MNP 中,有x 2 = 32+(9- x )2.∴x = 5. 即OM = 5 …………… 8分25. 解:(1)设A 型每套x 元,则B 型每套(x + 40)元. …………… 1分 ∴4x + 5(x + 40)=1820. ……………………………………… 2分∴x = 180,x + 40 = 220.即购买一套A 型课桌凳和一套B 型课桌凳各需180元、220元. ……………3分(2)设购买A 型课桌凳a 套,则购买B 型课桌凳(200 - a )套.a ≤32(200 - a ), ∴ …………… 4分 180 a + 220(200- a )≤40880.解得78≤a ≤80. …………… 5分∵a为整数,∴a = 78,79,80∴共有3种方案. ………………6分设购买课桌凳总费用为y元,则y = 180a + 220(200 - a)=-40a + 44000. …………… 7分∵-40<0,y随a的增大而减小,∴当a = 80时,总费用最低,此时200- a =120. …………9分即总费用最低的方案是:购买A型80套,购买B型120套. ………………10分2014年中考数学模拟试题(二)一、选择题1、数2-中最大的数是()A 、1- BC 、0D 、2 2、9的立方根是()A 、3±B 、3 C、 D3、已知一元二次方程2430x x -+=的两根1x 、2x ,则12x x +=()A 、4B 、3C 、-4D 、-3 4、如图是某几何题的三视图,下列判断正确的是() A 、几何体是圆柱体,高为2 B 、几何体是圆锥体,高为2 C 、几何体是圆柱体,半径为2 D 、几何体是圆柱体,半径为2 5、若a b >,则下列式子一定成立的是()A 、0a b +>B 、0a b ->C 、0ab >D 、0a b> 6、如图AB ∥DE ,∠ABC=20°,∠BCD=80°,则∠CDE=() A 、20° B 、80° C 、60° D 、100°7、已知AB 、CD 是⊙O 的直径,则四边形ACBD 是() A 、正方形 B 、矩形 C 、菱形 D 、等腰梯形 8、不等式组302x x +>⎧⎨-≥-⎩的整数解有()A 、0个B 、5个C 、6个D 、无数个 9、已知点1122(,),(,)A x y B x y 是反比例函数2y x=图像上的点,若120x x >>则一定成立的是()A 、120y y >>B 、120y y >>C 、120y y >>D 、210y y >>10、如图,⊙O 和⊙O ′相交于A 、B 两点,且OO ’=5,OA=3, O ’B =4,则AB=( ) A 、5 B 、2.4 C 、2.5 D 、4.8 二、填空题11、正五边形的外角和为 12、计算:3m m -÷=13、分解因式:2233x y -=14、如图,某飞机于空中A 处探测到目标C ,此时飞行高度AC=1200米,从飞机上看地面控制点B的俯角20α=︒,则飞机A 到控制点B 的距离约为 。

2014年陕西中考数学模拟题 答案+详解

2014年陕西中考数学模拟题 答案+详解

一、选择题(本题共 32 分,每小题 4 分) 下面各题均有四个选项,其中只有一个 是符合题意的. .. 1. 3 的倒数是 A.
1 3
B.
1 3
C. 3
D.3
2.据 2013 年 4 月 1 日《CCTV—10 讲述》栏目报道,2012 年 7 月 11 日,一位 26 岁的北京小伙樊 蒙,推着坐在轮椅上的母亲,开始从北京到西双版纳的徒步旅行,圆了母亲的旅游梦,历时 93 天,行程 3 359 公里.请把 3 359 用科学记数法表示应为
15.已知:如图, CA 平分 BCD , 点 E 在 AC 上, BC EC , AC DC . D 求证: A D .
A E B C
16.已知 a 3a 2 0 ,求代数式 (
2
3 1 a2 ) 的值. a2 9 a 3 a 3
17.如图,已知 A(2, 2) , B(n, 4) 是一次函数 y kx b 的图象和反比例函数 y 个交点. (1)求反比例函数和一次函数的解析式; (2)求 AOB 的面积.
A.
B.
C.
D.
二、填空题(本题共 16 分,每小题 4 分) 9.分解因式: 3ab2 12ab 12a = .
10.袋子中装有 3 个红球和 4 个黄球,这些球除颜色外均相同.在看不到球的条件下,随机从袋中 摸出一个球,则摸出红球 的概率是_____________. 11.如图,扇形的半径为 6,圆心角 为 120 ,用这个扇形围 成一个圆锥的侧面,所得圆锥的底面半径为 .
=
a a 3 2 (a 3)(a 3) a
„„„„„ „„„„„„„„„„„ 3 分
=
1 a ( a 3)

河北省2014年中考数学模拟试卷及答案

河北省2014年中考数学模拟试卷及答案

2014年河北省初中学业考试模拟试题注意事项:1.本试题分第Ⅰ卷和第Ⅱ卷两部分.第Ⅰ卷为选择题,30分;第Ⅱ卷为非选择题,90分;全卷共6页,满分120分.考试时间为120分钟.2.答卷前,考生务必将自己的姓名、准考证号、考试科目和试卷类型涂写在答题纸密封线内的项目填写清楚.3.第Ⅰ卷、第Ⅱ卷每小题做出答案后,必须用黑色(或蓝色)笔填写在答题纸...的指定位置,否则不计分.一、选择题:(本题12小题,1-6每小题2分,7-12每小题3分,共30分)在每小题给出的四个选项中,只有一项是符合题目要求的.1、﹣6的绝对值是()A、﹣6B、6C、D、2、2011年4月28日,国家统计局发布2010年第六次全国人口普查主要数据公报,数据显示,大陆31个省、自治区、直辖市和现役军人的人口共1339724852人,大陆总人口这个数据用科学记数法表示(保留3个有效数字)为()A、1.33×109人B、1.34×109人C、13.4×108人D、1.34×1010人3、在九年级体育中考中,某校某班参加仰卧起坐测试的一组女生(每组8人)测试成绩如下(单位:次/分):44,45,42,48,46,43,47,45.则这组数据的极差为()A、2B、4C、6D、84、如图是六个棱长为1的立方块组成的一个几何体,其俯视图的面积是()A、5B、4C、3D、25、分解因式2x2—4x+2的最终结果是( )A.2x(x-2) B.2(x2-2x+1) C.2(x-1)2 D.(2x-2)26、一名同学想用正方形和圆设计一个图案,要求整个图案关于正方形的某条对角线对称,那么下列图案中不符合...要求的是( )7、小玲每天骑自行车或步行上学,她上学的路程为2 800米,骑自行车的平均速度是步行平均速度的4倍,骑自行车比步行上学早到30分钟.设步行的平均速度为x米/分.根据题意,下面列出的方程正确的是(A)30428002800=-xx.(B)30280042800=-xx.(C)30528002800=-xx.(D)30280052800=-xx8、如图,直线l1//l2,点A在直线l1上,以点A为圆心,适当长为半径画弧,分别交直线l1、l2于B、C两点,连结AC、BC.若∠ABC=54°,则∠1的大小为(A)36°.(B)54°.(C)72°.(D)73°.第8题第9题9、如图,西安路与南京路平行,并且与八一街垂直,曙光路与环城路垂直.如果小明站在南京路与八一街的交叉口,准备去书店,按图中的街道行走,最近的路程约为()A、600mB、500mC、400mD、300m10、小亮同学骑车上学,路上要经过平路、下坡、上坡和平路(如图),若小亮上坡、平路、下坡的速度分别为v1,v2,v3,v1<v2<v3,则小亮同学骑车上学时,离家的路程s与所用时间t的函数关系图象可能是()A、B、C、D、11、如图,点A、B、C、D、O都在方格纸的格点上,若△COD是由△AOB绕点O按逆时针方向旋转而得,则旋转的角度为()A、30°B、45°C、90°D、135°12、如图,①②③④⑤五个平行四边形拼成一个含30°内角的菱形EFGH(不重叠无缝隙).若①②③④四个平行四边形面积的和为14cm2,四边形ABCD面积是11cm2,则①②③④四个平行四边形周长的总和为()A、48cmB、36cmC、24cmD、18cm二、填空题(本大题共6个小题,每小题3分,共18分,把答案写在很横线上)13、当x时,分式有意义14、如图,直尺一边AB与量角器的零刻度线CD平行,若量角器的一条刻度线OF的读数为70°,OF与AB交于点E,那么∠AEF=.第14题第15题15、如图,在平面直角坐标系中,过格点A,B,C作一圆弧,点B与下列格点的连线中,能够与该圆弧相切的是.16、如果方程x2+2x+a=0有两个相等的实数根,则实数a的值为.17、如图,在▱ABCD中,AB=3,AD=4,∠ABC=60°,过BC的中点E作EF⊥AB,垂足为点F,与DC的延长线相交于点H,则△DEF的面积是.第17题第18题18、在直角坐标系中,有如图所示的Rt△ABO,AB⊥x轴于点B,斜边AO=10,sin∠AOB=,反比例函数的图象经过AO的中点C,且与AB交于点D,则点D的坐标为.三、解答题(本大题共8个小题,共72分,解答要写出详细的过程)19、(本小题满分8分)(1)计算:|﹣2|﹣(3﹣π)0+2cos45°;(2)化简:.20、(本小题满分8分)某校课外兴趣小组从我市七年级学生中抽取2 000人做了如下问卷调查,将统计结果绘制了如下两幅统计图.根据上述信息解答下列问题:(1)求条形统计图中n的值.(2)如果每瓶饮料平均3元钱,“少2瓶以上”按少喝3瓶计算.①求这2000名学生一个月少喝饮料能节省多少钱捐给希望工程?②按上述统计结果估计,我市七年级6万学生一个月少喝饮料大约能节省多少钱捐给希望工程?21、(本小题满分8分)张经理到老王的果园里一次性采购一种水果,他俩商定:张经理的采购价y(元/吨)与采购量x(吨)之间函数关系的图象如图中的折线段ABC 所示(不包含端点A ,但包含端点C). (1)求y 与x 之间的函数关系式;(2)已知老王种植水果的成本是2 800元/吨,那么张经理的采购量为多少时,老王在这次买卖中所获的利润w 最大?最大利润是多少?22、(本小题满分8分)如图①,在□ABCD 的形外分别作等腰直角△ABF 和等腰直角△ADE ,∠F AB=∠EAD =90°,连结AC 、EF .在图中找一个与△F AE 全等的三角形,并加以证明.(5分) 应用以□ABCD 的四条边为边,在其形外分别作正方形,如图②,连结EF 、GH 、IJ 、KL .若□ABCD 的面积为5,则图中阴影部分四个三角形的面积和为 .(2分)O4000800023、(本小题满分9分)为建设节约型、环境友好型社会,克服因干旱而造成的电力紧张困难,切实做好节能减排工作.某地决定对居民家庭用电实际“阶梯电价”,电力公司规定:居民家庭每月用电量在80千瓦时以下(含80千瓦时,1千瓦时俗称1度)时,实际“基本电价”;当居民家庭月用电量超过80千瓦时时,超过部分实行“提高电价”.(1)小张家2011年4月份用电100千瓦时,上缴电费68元;5月份用电120千瓦时,上缴电费88元.求“基本电价”和“提高电价”分别为多少元/千瓦时?(2)若6月份小张家预计用电130千瓦时,请预算小张家6月份应上缴的电费.24、(本小题满分9分)如图,等腰梯形MNPQ的上底长为2,腰长为3,一个底角为60°.正方形ABCD的边长为1,它的一边AD在MN上,且顶点A与M重合.现将正方形ABCD 在梯形的外面沿边MN、NP、PQ进行翻滚,翻滚到有一个顶点与Q重合即停止滚动.(1)请在所给的图中,用尺规画出点A在正方形整个翻滚过程中所经过的路线图;(2)求正方形在整个翻滚过程中点A所经过的路线与梯形MNPQ的三边MN、NP、PQ所围成图形的面积S.Q以四边形ABCD的边AB、BC、CD、DA为斜边分别向外侧作等腰直角三角形,直角顶点分别为E、F、G、H,顺次连接这四个点,得四边形EFGH.(1)如图1,当四边形ABCD为正方形时,我们发现四边形EFGH是正方形;如图2,当四边形ABCD为矩形时,请判断:四边形EFGH的形状(不要求证明);(2)如图3,当四边形ABCD为一般平行四边形时,设∠ADC=α(0°<α<90°),①试用含α的代数式表示∠HAE;②求证:HE=HG;③四边形EFGH是什么四边形?并说明理由.在平面直角坐标系中,如图1,将n个边长为1的正方形并排组成矩形OABC,相邻两边OA和OC分别落在x轴和y轴的正半轴上,设抛物线y=ax2+bx+c(a<0)过矩形顶点B、C.(1)当n=1时,如果a=﹣1,试求b的值;(2)当n=2时,如图2,在矩形OABC上方作一边长为1的正方形EFMN,使EF在线段CB上,如果M,N两点也在抛物线上,求出此时抛物线的解析式;(3)将矩形OABC绕点O顺时针旋转,使得点B落到x轴的正半轴上,如果该抛物线同时经过原点O.①试求当n=3时a的值;②直接写出a关于n的关系式.参考答案一、选择题:B BC A CD A C B C C A 二、填空题13、≠3 14、70° 15、(5,1) 16、1 17、.18、(8,)三、解答题19、解:(1)原式==;(2)原式===2.20、解:(1)200060%(445470185)100⨯-++=.所以,条形统计图中100n =.(2)①47011852100333420⨯+⨯+⨯⨯=(). 所以,这2 000名学生一个月少喝饮料能节省3 420元钱捐给希望工程.②6000034201026002000⨯=. 所以,我市七年级6万名学生一个月少喝饮料大约能节省102 600元钱捐给希望工程. 21、解:(1) 由图像知y =()()8000 020200120002040x x x <≤-+<≤(2)∵利润=收入-成本=采购价×采购量-成本,即2800w yx x =- ∴由(1) 有w =()()()28000 -2800520002020012000280020092002040x x x x x x x x x x =<≤-+-=-+<≤()5200020w x x =<≤是一次函数一段,最大值5200×20=10400022009200w x x =-+()2040x <≤ 是二次函数一段,当920023400x =-=-时,w 有 最大值220023920023105800w =-⨯+⨯=。

2014年安徽省中考数学模拟试卷(含详细解析及答案)

2014年安徽省中考数学模拟试卷(含详细解析及答案)

2014年安徽省中考数学模拟试卷一、选择题(本题共10题,每小题4分,共40分)1.抛物线y=3(x+4)2 -9的顶点坐标是( )A .(4,9)B .(4,-9)C .(-4,9)D .(-4,-9)2.二次函数y=2x 2+4x+1向左平移7个单位,再向下平移6个单位得到的解析式为( )A .y=2(x-6)2 -7B .y=2(x+8)2 -7C .y=2(x+8)2 +5D .y=2(x-6)2 +53.b 是a 、c 的比例中项,且a :b=7:3,则b :c=( )A .9:7B .7:3C .3:7D .7:94.已知α为锐角,sin (α-20°)=23 ,则α=( )A .20°B .40°C .60°D .80° 5.如图,已知D 、E 分别是△ABC 的AB ,AC 边上的点,DE ∥BC ,且S △ADE :S 四边形DBCE=1:8,那么AE :AC 等于( )A .1:9B .1:3C .1:8D .1:26.过圆内一点M 的最长弦为50,最短弦长为14,则圆心O 到M 的距离为( )A . 39B .24C .18D .297.如图所示,二次函数y=ax 2+bx+c (a≠0)的图象,且与x 轴交点的横坐标分别为x 1,x 2,其中-2<x1<-1,0<x2<1,下列结论:(1)b 2-4ac >0;(2)abc <0;(3)a-b+c >0;(4)2a-b >0;(5)5a-b+2c >0.正确的个数有( )A .1B .2C .3D .48.已知AB 、CD 是⊙O 的两条直径,∠ABC=30°,那么∠BAD=( )A .45°B .60°C .90°D .30°9.在平行四边形ABCD 中E 为CD 上一点,DE :EC=1:2,连接AE 、BE 、BD ,且AE 、BD 交于点F ,则S △DEF :S △EBF :S △ABF =( )A .1:3:9B .1:5:9C .2:3:5D .2:3:910.如图,AB 为⊙O 的直径,弦AC ,BD 交于点P ,若AB=3,CD=1,则sin ∠APD=( )A .31B .241C .22D .232二、填空题(本题共4题,每题5分,共20分)11.已知抛物线y=2x 2+mx-6的顶点坐标为(4,-38),则m 的值是 .12.如图,△ABC 内接于⊙O ,AC 是⊙O 的直径,∠ACB=50°,点D 是优弧BAC 上一点,∠D= .13.如图,在Rt △ABC 中,∠ACB=90°,CD ⊥AB ,AC=12m ,cosA =1312,则 tan ∠BCD= .第5题图第7题图 第8题图第10题图14.已知二次函数的图象经过原点及点(-2,-2),且图象与x 轴的另一个交点到原点的距离为4,那么该二次函数的解析式为 .三、(本题共4题,每题8分,共32分)15.︒-︒︒+︒︒-︒45tan 30cos 60sin 60tan ·45cos 30sin 216.已知一次函数y=2x-3的图象与反比例函数y =xk 3+的图象相交,其中有一个交点的纵坐标为-4,求k 的值及反比例函数的解析式.17.如图,△ABC 在方格纸中(1)请在方格纸上建立平面直角坐标系,使A (2,3),C (6,2),并求出B 点坐标;(2)以原点O 为位似中心,相似比为2,在第一象限内将△ABC 放大,画出放大后的图形△A′B′C′;(3)计算△A′B′C′的面积S .18.如图,某一水库大坝的横断面是梯形ABCD ,坝顶宽CD=8m ,坝高9m ,迎水坡BC 的坡度i 1=1:3,背水坡AD 的坡度i 2=1:1,求斜坡AD 的坡角∠A 及坝底宽AB .第17题图第18题图四、(本题共2题,每题10分,共20分)19.某宾馆为庆祝开业,在楼前悬挂了许多宣传条幅.如图所示,一条幅从楼顶A 处放下,在楼前点C 处拉直固定.小明为了测量此条幅的长度,他先在楼前D 处测得楼顶A 点的仰角为31°,再沿DB 方向前进16米到达E 处,测得点A 的仰角为45°.已知点C 到大厦的距离BC=7米,∠ABD=90°.请根据以上数据求条幅的长度(结果保留整数.参考数据:tan31°≈0.60,sin31°≈0.52,cos31°≈0.86).20.如图,已知⊙O 的半径为2,弦BC 的长为32,点A 为弦BC 所对优弧上任意一点(B ,C 两点除外).(1)求∠BAC 的度数;(2)求△ABC 面积的最大值.(参考数据:sin60°=23,cos30°= 23,tan30°=23.)五、(本题共2题,每题12分,共24分)21.某水果批发商场经销一种水果,如果每千克盈利10元,每天可售出400千克.经市场调查发现,在进货价不变的情况下,若每千克涨价1元,日销售量将减少20千克.(1)当每千克涨价为多少元时,每天的盈利最多?最多是多少?(2)若商场只要求保证每天的盈利为4420元,同时又可使顾客得到实惠,每千克应涨价为多少元?第19题图第20题图22.如图,在Rt △ABC 中,∠ACB=90°,D 是BC 边上一点,AD ⊥DE ,且DE 交AB 于点E ,CF ⊥AB 交AD 于点G ,F 为垂足,(1)求证:△ACG ∽△DBE ;(2)CD=BD ,BC=2AC 时,求AD DE .五、(本题共14分) 23.如图,抛物线42342--=x x y 与x 轴交于A 、B 两点,与y 轴交于C 点, (1)求点A ,B 的坐标;(2)判断△ABC 的形状,并证明你的结论;(3)点M (m ,0)是OB 上的一个动点,直线ME ⊥x 轴,交BC 于E ,交抛物线于点F ,求当EF 的值最大时m 的值.第22题图第23题图答案一、1.考点:二次函数的性质.分析:已知解析式为抛物线的顶点式,可直接写出顶点坐标.解答:解:∵y=3(x+4)2-9是抛物线解析式的顶点式,∴根据顶点式的坐标特点可知,顶点坐标为(-4,-9).故选D .点评:此题主要考查了求抛物线的顶点坐标的方法.利用解析式化为y=a (x-h )2+k ,顶点坐标是(h ,k ),对称轴是x=h 得出是解题关键.2.考点:二次函数图象与几何变换.分析:根据二次函数图象的平移规律(左加右减,上加下减)进行解答即可.解答:解:∵y=2x 2+4x+1=2(x+1)2-1,∴二次函数y=2x 2+4x+1向左平移7个单位,再向下平移6个单位得到的解析式为: y=2(x+8)2-7.故选:B .点评:此题主要考查了函数图象的平移,用平移规律“左加右减,上加下减”直接代入函数解析式求得平移后的函数解析式.3.考点:比例线段.分析:由b 是a 、c 的比例中项,根据比例中项的定义,即可求得a :b=b :c ,又由a :b=7:3,即可求得答案.解答:解:∵b 是a 、c 的比例中项,∴b 2=ac ,∴a :b=b :c ,∵a :b=7:3,∴b :c=7:3.故选B .点评:此题考查了比例中项的定义,比较简单,解题的关键是熟记比例中项的定义及其变形. 考点:特殊角的三角函数值.分析:根据特殊角的三角函数值直接解答即可.4.解答:解:∵α为锐角,sin (α-20°)=23, ∴α-20°=60°,∴α=80°,故选D .点评:本题考查的是特殊角的三角函数值,属较简单题目.5.考点:相似三角形的判定与性质.分析:由题可知:△ADE ∽△ABC ,相似比为AE :AC ,由S △ADE :S 四边形DBCE =1:8, 得S △ADE :S △ABC =1:9,根据相似三角形面积的比等于相似比的平方.解答:解:∵DE ∥BC ,∴△ADE ∽△ABC ,∴S △ADE :S △ABC =AE 2:AC 2,∵S △ADE :S 四边形DBCE =1:8,∴S △ADE :S △ABC =1:9,故选B .点评:此题的关键是理解相似三角形面积的比等于相似比的平方.6.考点:垂径定理;勾股定理.专题:计算题.分析:根据题意画出图形,利用垂径定理和勾股定理进行解答.解答:解:根据题意画出图形连接OD ,∵AB 为最长的弦,CD 为最短的弦,∴AB ⊥CD ,∴MD=14×21=7,∵AB=50,∴OD=25,在Rt △OBD 中,OB=22BD -OD =22725-=24.故选B .点评:本题考查了垂径定理和勾股定理,构造直角三角形是解题的关键.7.考点:二次函数图象与系数的关系.分析:根据函数图象可知判别式△>0;根据抛抛物线开口向下,与y 轴的正半轴相交,对称轴在y 轴左侧可得a 、b 、c 的取值范围,从而得到abc 的取值范围;观察图形得到x=-1时,二次函数y 的值在x 轴上方,可得a-b+c 的取值范围;根据对称轴即可判断2a-b >0;由于当x=1时,y=a+b+c <0;当x=-2时,y=4a-2b+c <0;两式相减即可作出判断. 解答:解:∵抛物线和x 轴有2个交点,∴△>0,故(1)正确;∵抛抛物线开口向下,∴a <0,∵与y 轴的正半轴相交,∴c >0,∵对称轴在y 轴左侧,∴b <0,∴abc >0,故(2)不正确;当x=-1时,y=a-b+c >0,即a-b+c >0,故(3)正确;∵对称轴-1<x=ab 2-<0,∴2a-b <0,故(4)不正确; ∵当x=1时,y=a+b+c <0;当x=-2时,y=4a-2b+c <0;∴5a-b+2c <0,故(5)不正确. 故正确的有2个.故选B .点评:本题考查了抛物线和x 轴的交点问题,二次函数的图象与系数的关系,二次函数与x 轴有2个交点,则△>0.8.考点:圆周角定理.分析:利用同弧所对的圆周角相等得到∠B=∠D ,然后利用半径相等即可求得所求. 解答:解:∵∠D 与∠B 所对的弧相同,∴∠B=∠D=30°,∵OA=OD∴∠D=∠A=30°,故选D .点评:本题考查了圆周角定理,解题的关键是根据图形发现同弧所对的角并利用圆周角定理求解.9.考点:相似三角形的判定与性质;平行四边形的性质.分析:根据已知可得到相似三角形,从而可得到其相似比,再根据相似三角形的面积比等于相似比的平方就可得到答案.解答:解:由题意得△DFE ∽△BFA∴DE :AB=1:3,DF :FB=1:3∴S △DEF :S △EBF :S △ABF =1:3:9.故选A .点评:本题用到的知识点为:相似三角形的面积比等于相似比的平方,同高的三角形的面积之比等于底的比.10.考点:圆周角定理;勾股定理;相似三角形的判定与性质;特殊角的三角函数值.分析:连接BC .根据直径所对的圆周角是直角,得∠ACB=90°;根据两角对应相等,得△APB ∽△DPC ,则PC :PB=CD :AB=1:3;再根据勾股定理求得BC :PB 的值,即为sin ∠APD 的值.解答:解:连接BC .∵AB 为⊙O 的直径,∴∠ACB=90°.∵∠CAB=∠BDC ,∠APB=∠DPC ,∴△APB ∽△DPC .∴PC :PB=CD :AB=1:3,∴BC :PB=22:3.∴sin ∠APD=sin ∠BPC=232. 故选D .点评:此题综合运用了圆周角定理的推论、相似三角形的判定和性质、勾股定理以及锐角三角函数的概念.二、11.考点:二次函数的性质.分析:把顶点坐标代入函数解析式计算即可得解.解答:解:∵抛物线y=2x 2+mx-6的顶点坐标为(4,-38),∴2×42+4m-6=-38,解得m=-12.故答案为:-12.点评:本题考查了二次函数的性质,把顶点坐标代入函数解析式计算即可,比较简单.12.考点:圆周角定理.专题:压轴题.分析:欲求∠D 的度数,需先求出同弧所对的∠A 的度数;Rt △ABC 中,已知∠ACB 的度数,即可求得∠A ,由此得解.解答:解:∵AC 是⊙O 的直径,∴∠ABC=90°;∴∠A=180°-90°-50°=40°,∴∠D=∠A=40°.点评:此题主要考查圆周角定理的应用.13.考点:解直角三角形.分析:利用“同角的余角相等”推知∠BCD=∠A ,所以将所求的角的正切函数值转化为求∠A 的正切函数值.解答:解:∵在Rt △ABC 中,∠ACB=90°,AC=12m ,cosA =1312, ∴1312AC AD =,即131212AD =, ∴AD=13144. 又∵CD ⊥AB ,∴CD=13601314412AD AC 2222=-=-)(. ∵∠BCD=∠A , ∴tan ∠BCD=tan ∠A=3615131441360AD CD ==. 故答案是:3615. 点评:本题考查了解直角三角形中三角函数的应用,要熟练掌握好边角之间的关系.14.考点:待定系数法求二次函数解析式.专题:计算题.分析:根据与x 轴的另一交点到原点的距离为4,分这个交点坐标为(-4,0)、(4,0)两种情况,利用待定系数法求函数解析式解答即可.解答:解:∵图象与x 轴的另一个交点到原点的距离为4,∴这个交点坐标为(-4,0)、(4,0),设二次函数解析式为y=ax 2+bx+c ,①当这个交点坐标为(-4,0)时, ⎪⎩⎪⎨⎧=+-=+-=04160240c b a c b a c, 解得⎪⎪⎪⎩⎪⎪⎪⎨⎧===0221c b a , 所以二次函数解析式为x x y 2212+=, ②当这个交点坐标为(4,0)时,⎪⎩⎪⎨⎧=++=+-=04160240c b a c b a c ,解得 ⎪⎪⎪⎩⎪⎪⎪⎨⎧==-=03261c b a , 所以二次函数解析式为x x y 32612+-=, 综上所述,二次函数解析式为x x y 2212+=或x x y 32612+-=. 故答案为:x x y 2212+=或x x y 32612+-=. 点评:本题考查了待定系数法求二次函数解析式,注意另一个交点要分两种情况讨论求解,避免漏解而导致出错.15.考点:特殊角的三角函数值.专题:计算题.分析:代入特殊角的三角函数值进行计算即可.2641112641123233·22212-=-+-=-+-=)(解答:原式点评:本题考查了特殊角的三角函数值,解决此类题目的关键是熟记特殊角的三角函数值.16.考点:反比例函数与一次函数的交点问题.专题:计算题.分析:将交点的纵坐标代入一次函数解析式中求出横坐标,确定出交点坐标,代入反比例解析式中求出k 的值,即可确定出反比例解析式.解答:解:将y=-4代入y=2x-3中得:-4=2x-3,解得:21-=x , ∴两函数的交点坐标为(21-,-4), 将交点坐标代入反比例解析式得:2134-+=-k ,即k+3=2, 解得:k= -1.则反比例解析式为y=x1-. 点评:此题考查了反比例函数与一次函数的交点问题,求出交点坐标是解本题的关键.17.考点:作图-位似变换;三角形的面积.专题:压轴题.此建立直角坐标系,读出B 点坐标;(2)连接OA ,OB ,OC ,并延长到OA′,OB′,OC′,使OA′,OB′,OC′的长度是OA ,OB ,OC 的2倍.然后顺次连接三点;(3)从网格上可看出三角形的底和高,利用三角形的面积公式计算.解答:解:(1)画出原点O ,x 轴、y 轴.(1分)B (2,1)(2分)(2)画出图形△A′B′C′.(5分)(3)168421S =⨯⨯=.(7分) 点评:本题综合考查了直角坐标系,位似图形,三角形的面积.18.考点:解直角三角形的应用-坡度坡角问题.分析:首先过点E 作DE ⊥AB 于点E ,过点C 作CF ⊥AB 于点F ,可得四边形CDEF 是矩形,又由迎水坡BC 的坡度i 1=1:3,背水坡AD 的坡度i 2=1:1,根据坡度的定义,即可求得A 与BF 的长,又由tanA=i 2=1:1,则可求得坡角∠A 的度数.解答:解:过点E 作DE ⊥AB 于点E ,过点C 作CF ⊥AB 于点F ,∵CD ∥AB ,∴四边形CDEF 是矩形,∵坝顶宽CD=8m ,坝高9m ,∴EF=CD=8m ,DE=CF=9m ,∵迎水坡BC 的坡度i 1=1:3,背水坡AD 的坡度i 2=1:1,∴tan ∠A=DE :AE=1:1=1,CF :BF=1:3,∴∠A=45°,AE=DE=9(m ),BF=3CF=27(m ),∴AB=AE+EF+CF=9+8+27=44(m ).答:斜坡AD 的坡角∠A=45°,坝底宽AB 为44m .点评:此题考查了坡度坡角问题.此题难度适中,注意构造直角三角形,并借助于解直角三角形的知识求解是关键.19.考点:解直角三角形的应用-仰角俯角问题.分析:设AB=x 米.根据∠AEB=45°,∠ABE=90°得到BE=AB=x ,然后在Rt △ABD 中得到tan31°16+=x x .求得x=24.然后在Rt △ABC 中,利用勾股定理求得AC 即可. 解答:解:设AB=x 米.∵∠AEB=45°,∠ABE=90°,∴BE=AB=x 米在Rt △ABD 中,tan ∠D=BDAD , 即tan31°16+=x x . ∴246.016.01631tan 131tan 16=-⨯≈︒-︒=x . 即AB≈24米AC= B C2+AB22524722=+≈米.答:条幅的长度约为25米.点评:本题考查了解直角三角形的应用,解题的关键是从实际问题中整理出直角三角形并求解.20.考点:垂径定理;圆周角定理;解直角三角形.专题:几何综合题;压轴题.分析:(1)连接OB 、OC ,作OE ⊥BC 于点E ,由垂径定理可得出BE=EC=3,在Rt △OBE 中利用锐角三角函数的定义及特殊角的三角函数值可求出∠BOE 的度数,再由圆周角定理即可求解;(2)因为△ABC 的边BC 的长不变,所以当BC 边上的高最大时,△ABC 的面积最大,此时点A 应落在优弧BC 的中点处,过OE ⊥BC 于点E ,延长EO 交⊙O 于点A ,则A 为优弧BC 的中点,连接AB ,AC ,则AB=AC ,由圆周角定理可求出∠BAE 的度数,在Rt △ABE 中,利用锐角三角函数的定义及特殊角的三角函数值可求出AE 的长,由三角形的面积公式即可解答.解答:解:(1)解法一:连接OB ,OC ,过O 作OE ⊥BC 于点E .∵OE ⊥BC ,BC=32,∴BE =EC =3.(1分)在Rt △OBE 中,OB=2,∵sin ∠BOE =OB BE =23, ∴∠BOE=60°,∴∠BOC=120°,∴∠BAC =21∠BOC =60°.(4分) 解法二:连接BO 并延长,交⊙O 于点D ,连接CD .∵BD 是直径,∴BD=4,∠DCB=90°.在Rt △DBC 中,sin ∠BDC =BD BC =432=23, ∴∠BDC=60°,∴∠BAC=∠BDC=60°.(4分)(2)解:因为△ABC 的边BC 的长不变,所以当BC 边上的高最大时,△ABC 的面积最大,此时点A 落在优弧BC 的中点处.(5分)过O 作OE ⊥BC 于E ,延长EO 交⊙O 于点A ,则A 为优弧BC 的中点.连接AB ,AC ,则AB=AC ,∠BAE =21∠BAC =30°. 在Rt △ABE 中,∵BE =3,∠BAE =30°,∴AE =︒30tan BE =333=3. ∴S △ABC=3333221=⨯⨯. 答:△ABC 面积的最大值是33.(7分)点评:本题考查的是垂径定理、圆周角定理及解直角三角形,能根据题意作出辅助线是解答此题的关键.21.考点:一元二次方程的应用;二次函数的应用.分析:本题的关键是根据题意列出一元二次方程,再求其最值.解答:解(1)设涨价x 元时总利润为y ,则y=(10+x )(400-20x )=-20x 2+400x+4000=-20(x-5)2+4500当x=5时,y 取得最大值,最大值为4500.(2)设每千克应涨价x 元,则(10+x )(400-20x )=4420解得x=3或x=7,为了使顾客得到实惠,所以x=3.点评:本题考查了二次函数的应用及一元二次方程的应用,求二次函数的最大(小)值有三种方法,第一种可由图象直接得出,第二种是配方法,第三种是公式法,常用的是后两种方法,当二次系数a 的绝对值是较小的整数时,用配方法较好,如y=-x 2-2x+5,y=3x 2-6x+1等用配方法求解比较简单.22.考点:相似三角形的判定与性质.分析:(1)由在Rt △ABC 中,∠ACB=90°,AD ⊥DE ,CF ⊥AB ,根据等角的余角相等,易证得∠CAD=∠BDE ,∠ACF=∠B ,继而可证得△ACG ∽△DBE ;(2)首先过点E 作EH ⊥BC 于点H ,易证得△BEH ∽△BAC ,然后根据相似三角形的对应边成比例,可得EH :AC=BH :BC=DE :AD ,易证得△DEH 是等腰直角三角形,则可求得BH :BC=1:3,则可求得答案.解答:(1)证明:∵在Rt △ABC 中,∠ACB=90°,AD ⊥DE ,CF ⊥AB ,∴∠ACF+∠BCF=90°,∠B+∠BCF=90°,∠ADC+∠BDE=90°,∠CAD+∠ADC=90°, ∴∠CAD=∠BDE ,∠ACF=∠B ,∴△ACG ∽△DBE ;(2)解:过点E 作EH ⊥BC 于点H ,∵∠ACB=90°,∴EH ∥AC ,∴△BEH ∽△BAC ,∴EH :AC=BH :BC=DE :AD ,∴AC :BC=EH :BH ,∵CD=BD ,BC=2AC ,BC=CD+BD ,∴AC=CD=BD ,∴∠ADC=45°,∵AD ⊥DE ,∴∠EDH=45°,∴DH=EH ,∴EH :BH=AC :BC=1:2,∴EH=DH=21BH , ∴BH :BC=3162=, 即EH :AC=1:3, ∴31AD DE =. 点评:此题考查了相似三角形的判定与性质、等腰直角三角形的性质以及直角三角形的性质.此题难度适中,注意掌握辅助线的作法,注意数形结合思想的应用.23.考点:二次函数综合题.专题:代数几何综合题.分析:(1)令y=0,解关于x 的一元二次方程即可得到A 、B 的坐标;(2)根据抛物线解析式求出点C 的坐标,再根据勾股定理求出AC 、BC 的长,然后利用勾股定理逆定理解答;(3)利用待定系数法求出直线BC 的解析式,然后表示出EF 的长,再根据二次函数的最值问题解答.解答:解:(1)令y=0,则042342=--x x , 整理得,x 2-6x-16=0,解得x 1= -2,x 2=8,所以,点A (-2,0),B (8,0);(2)△ABC 是直角三角形.理由如下:x=0时,y=-4,所以,点C (0,-4),根据勾股定理,AC 2=OA 2+OC 2=22+42=20,BC 2=OB 2+OC 2=82+42=80,∴AC 2+BC 2=20+80=100,∵AB 2=(8+2)2=100,∴AB 2=AC 2+BC 2,∴∠ACB=90°,∴△ABC 是直角三角形;(3)设直线BC 的解析式为y=kx+b ,∵点B (8,0),C (0,-4),∴⎩⎨⎧-==+408b b k , 解得⎪⎩⎪⎨⎧-==421b k ,所以,直线BC 的解析式为421-=x y , ∵点M (m ,0), ∴EF=4)4(4124)4234(421222+--=+-=----m m m m m m , ∴当m=4时,EF 的值最大,为4.点评:本题是二次函数综合题型,主要考查了抛物线与x 轴的交点的求解,勾股定理以及勾股定理逆定理的应用,待定系数法求一次函数解析式,二次函数的最值问题,综合题,但难度不大,(3)用m 表示出EF 的长度是解题的关键.。

2014年中考数学模拟试卷含答案(精选3套)

2014年中考数学模拟试卷含答案(精选3套)

济南市2014年初三年级学业水平考试数学全真模拟试卷(时间:120分钟 满分:120分)第Ⅰ卷(选择题 共45分)一、选择题(本大题共15个小题,每小题3分,共45分.在每小题所给的四个选项中,只有一项是符合题目要求的.) 1.-2的绝对值是( )11A. B.2 C. D.222- -2.我国第一艘航母“辽宁舰”最大排水量为67 500吨,用科学记数法表示这个数字是( )A.6.75×103 吨B.67.5×103吨C.6.75×104 吨D.6.75×105吨 3.16的平方根是( )A.4B.±4C.8 D .±84.如图,直线l ∥m ,将含有45°角的三角板ABC 的直角顶点C 放在直线m 上,若∠1=25°,则∠2的度数为( )A.20°B.25°C.30°D.35° 5.下列等式成立的是( )A.a 2×a 5=a 10B.a b a b +=+C.(-a 3)6=a 18D.2a a =6.一个盒子里有完全相同的三个小球,球上分别标上数字-1、1、2.随机摸出一个小球(不放回)其数字记为p ,再随机摸出另一个小球其数字记为q ,则满足关于x 的方程x 2+px+q=0有实数根的概率是( )1125A. B. C. D.23367.分式方程12x 1x 1=-+的解是( ) A.1 B.-1 C.3 D.无解8.钟面上的分针的长为1,从9点到9点30分,分针在钟面上扫过的面积是( )111A. B. C. D.248π π π π9.如图,数轴上表示某不等式组的解集,则这个不等式组可能是( )x 10x 10A. B.2x 02x 0x 10x 10C. D.x 20x 20+≥+≤⎧⎧ ⎨⎨-≥-≥⎩⎩+≤+≥⎧⎧ ⎨⎨-≥-≥⎩⎩10.如图是一个正方体被截去一角后得到的几何体,它的俯视图是( )11.化简2(21)÷-的结果是( )A.221B.22C.12D. 22- - - +12.如图,在Rt △ABC 中,∠BAC=90°,D 、E 分别是AB 、BC 的中点,F 在CA 的延长线上,∠FDA=∠B ,AC=6,AB=8,则四边形AEDF 的周长为( )A.22B.20C.18D.1613.如图,过x 轴正半轴上的任意一点P ,作y 轴的平行线,分别与反比例函数64y y x x=-=和的图象交于A 、B 两点.若点C 是y 轴上任意一点,连接AC 、BC ,则△ABC的面积为( )A.3B.4C.5D.1014.如图,已知AB、CD是⊙O的两条直径,∠ABC=28°,那么∠BAD=( )A.28°B.42°C.56°D.84°15.如图,菱形ABCD的边长为2,∠B=30°.动点P从点B出发,沿B→C→D的路线向点D运动.设△ABP的面积为y(B、P两点重合时,△ABP的面积可以看做0),点P运动的路程为x,则y与x之间函数关系的图象大致为( )第Ⅱ卷(非选择题共75分)二、填空题(本大题共6个小题,每小题3分,共18分.把答案填在题中的横线上.)16.分解因式:(a+2)(a-2)+3a=________.17.已知点P(3,-1)关于y轴的对称点Q的坐标是(a+b,1-b),则ab的值为_________.18.如图,两建筑物的水平距离BC为18 m,从A点测得D点的俯角α为30°,测得C点的俯角β为60°.则建筑物CD的高度为________ m(结果不作近似计算).19.三棱柱的三视图如图所示,△EFG中,EF=8 cm,EG=12 cm,∠EGF=30°,则AB的长为______cm.20.如图,边长为1的菱形ABCD中,∠DAB=60°.连接对角线AC,以AC为边作第二个菱形ACC1D1,使∠D1AC=60°,连接AC1,再以AC1为边作第三个菱形AC1C2D2,使∠D2AC1=60°;…,按此规律所作的第n个菱形的边长为_______.21.如图,边长为1的小正方形网格中,⊙O的圆心在格点上,则∠AED的余弦值是________.三、解答题(本大题共7个小题,共57分.解答应写出文字说明、证明过程及演算步骤.)22.(本小题满分7分)(1)化简222x1x2x1. x1x x--+÷+-(2)解方程:15x2(x1)8x. 24++=+23.(本小题满分7分)(1)如图,AB=AE,∠1=∠2,∠C=∠D.求证:△ABC≌△AED.(2)如图所示,已知在平行四边形ABCD中,BE=DF.求证:AE=CF.24.(本小题满分8分)五一期间某校组织七、八年级的同学到某景点郊游,该景点的门票全票票价为15元/人,若为50~99人可以八折购票,100人以上则可六折购票.已知参加郊游的七年级同学少于50人、八年级同学少于100人.若七、八年级分别购票,两个年级共计应付门票费1 575元,若合在一起购买折扣票,总计应付门票费1 080元.(1)请你判断参加郊游的八年级同学是否也少于50人.(2)求参加郊游的七、八年级同学各为多少人?25.(本小题满分8分)某市某校对九年级学生进行“综合素质”评价,评价的结果为A(优)、B(良好)、C(合格)、D(不合格)四个等级,现从中抽取了若干名学生的“综合素质”等级作为样本进行数据处理,并作出如图所示的统计图,已知图中从左到右的四个长方形的高的比为:14∶9∶6∶1,评价结果为D等级的有2人,请你回答以下问题:(1)共抽取了多少人?(2)样本中B等级的频率是多少?C等级的频率是多少?(3)如果要绘制扇形统计图,A、D两个等级在扇形统计图中所占的圆心角分别是多少度?(4)该校九年级的毕业生共300人,假如“综合素质”等级为A或B的学生才能报考示范性高中,请你计算该校大约有多少名学生可以报考示范性高中?26.(本小题满分9分)如图,在△ABC中,以AB为直径的⊙O分别交AC、BC于点D、E,点F在AC的延长线上,且AC=CF,∠CBF=∠CFB.(1)求证:直线BF是⊙O的切线;(2)若点D,点E分别是弧AB的三等分点,当AD=5时,求BF的长;(3)填空:在(2)的条件下,如果以点C为圆心,r为半径的圆上总存在不同的两点到点O 的距离为5,则r的取值范围为_________.27.(本小题满分9分)已知,如图二次函数y=ax2+bx+c(a≠0)的图象与y轴交于点C(0,4)与x轴交于点A、B,点B(4,0),抛物线的对称轴为x=1.直线AD交抛物线于点D(2,m).(1)求二次函数的解析式并写出D点坐标;(2)点E是BD的中点,点Q是线段AB上一动点,当△QBE和△ABD相似时,求点Q的坐标;(3)抛物线与y轴交于点C,直线AD与y轴交于点F,点M为抛物线对称轴上的动点,点N在x轴上,当四边形CMNF周长取最小值时,求出满足条件的点M和点N的坐标.28.(本小题满分9分)如图,在⊙O中,直径AB⊥CD,垂足为E,点M在OC上,AM的延长线交⊙O于点G,交过C的直线于点F,∠1=∠2,连接CB与DG交于点N.(1)求证:CF 是⊙O 的切线; (2)求证:△ACM ∽△DCN ;(3)若点M 是CO 的中点,⊙O 的半径为4,cos ∠BOC=14,求BN 的长.参考答案1.D2.C3.B4.A5.C6.A7.C8.A9.A 10.A 11.D 12.D 13.C 14.A 15.C 16.(a-1)(a+4) 17.-10 18.123 19.6 20.n 13-()21.25522.(1)解:原式=()()()2x 1x 1x x 1x.x 1x 1+--=+- () (2)解:原方程可化为3x+2=8+x,合并同类项得:2x=6, 解得:x=3.23.(1)证明:∵∠1=∠2, ∴∠1+∠EAC=∠2+∠EAC, 即∠BAC=∠EAD.∵在△ABC 中和△AED 中,D C,BAC EAD,AB AE,∠=∠⎧⎪∠=∠⎨⎪=⎩∴△ABC ≌△AED(AAS) (2)证明:∵BE=DF,∴BE-EF=DE-EF,∴DE=BF.∵四边形ABCD 是平行四边形, ∴AD=BC,AD ∥BC, ∴∠ADE=∠CBF,在△ADE 和△CBF 中,DE BF,ADE CBF,AD BC,=⎧⎪∠=∠⎨⎪=⎩∴△ADE ≌△CBF(SAS), ∴AE=CF. 24.解:(1)全票为15元,则八折票价为12元,六折票价为9元. ∵100×15=1 500<1 575,∴参加郊游的七、八年级同学的总人数必定超过100人,∴由此可判断参加郊游的八年同学不少于50人.(2)设七、八年级参加郊游的同学分别有x 人、y 人. 由(1)及已知可得,x<50,50<y<100,x+y>100. 依题意可得:()15x 12y 1 575,9x y 1 080,+=⎧⎨+=⎩ 解得:x 45,y 75.=⎧⎨=⎩答:参加郊游的七、八年级同学分别为45人和75人. 25.解:(1)D 等级所占比例为:111496130=+++,则共抽取的人数为:1260().30÷=人 (2)样本中B 等级的频率为:9100%30%;14961⨯=+++C 等级的频率为:6100%20%.14961⨯=+++ (3)样本中A 等级在扇形统计图中所占圆心角度数为:1430×360=168(度); D 等级在扇形统计图中所占圆心角度数为:130×360=12(度). (4)可报考示范性高中的总人数: 300×149()3030+=230(名). 26.(1)证明:∵∠CBF=∠CFB , ∴BC=CF. ∵AC=CF , ∴AC=BC ,∴∠ABC=∠BAC.在△ABF 中,∠ABC+∠CBF+∠BAF+∠F=180°, 即2(∠ABC+∠CBF)=180°, ∴∠ABC+∠CBF=90°, ∴BF 是⊙O 的切线;(2)解:连接BD.∵点D ,点E 是弧AB 的三等分点,AB 为直径, ∴∠ABD=30°,∠ADB=90°,∠A=60°. ∵AD=5,∴AB=10,()BFtan603ABBF 103;3535r 53 5.∴︒==∴=-<<+,27.解:(1)设二次函数的解析式为:y=ax 2+bx+c.221a c 4216a 4b c 0b 1b c 4,12a 1y x x 4.21D(2m)m 224 4.2⎧⎧=-⎪⎪=⎪⎪++==⎨⎨⎪⎪=⎪⎪-=⎩⎩=-++=-⨯++= ,,由题意有:,解得:,,所以,二次函数的解析式为:点,在抛物线上,即∴点D 的坐标为(2,4);(2)作DG 垂直于x 轴,垂足为G ,因为D (2,4),B (4,0), 由勾股定理得:BD=25,∵E 是BD 的中点, ∴BE=5.BE BQ 1QBE ABD BD BA 2AB 2BQ Q 10BQ BE 5QBE DBA BD BA 6557BQ 25OQ 6337Q 0.3==∴=∴==∴=⨯==∴ 当≌时,,,点的坐标为(,);当≌时,,,则,点的坐标(,) (3)如图,由A(-2,0),D(2,4),可求得直线AD 的解析式为:y=x+2,则点F 的坐标为:F(0,2).过点F作关于x轴的对称点F′,即F′(0,-2),连接CD,再连接DF′交对称轴于M′,交x轴于N′.由条件可知,点C,D关于对称轴x=1对称,∴DF′=210,F′N′=FN′,DM′=CM′,∴CF+FN′+M′N′+M′C=CF+DF′=2210+,∴四边形CFNM的周长=CF+FN+NM+MC≥CF+FN′+M′N′+M′C=2210+,即四边形CFNM的最短周长为:2210+,此时直线DF′的解析式为:y=3x-2,所以存在点N的坐标为2(,0)3,点M的坐标为(1,1)使四边形CMNF周长取最小值.28.(1)证明:∵△BCO中,BO=CO,∴∠B=∠BCO,在Rt△BCE中,∠2+∠B=90°,又∵∠1=∠2,∴∠1+∠BCO=90°,即∠FCO=90°,∴CF是⊙O的切线;(2)证明:∵AB是⊙O直径,∴∠ACB=∠FCO=90°,∴∠ACB-∠BCO=∠FCO-∠BCO,即∠ACO=∠1,∴∠ACO=∠2,∵∠CAM=∠D,∴△ACM∽△DCN;(3)解:∵⊙O的半径为4,即AO=CO=BO=4,在Rt△COE中,cos∠BOC=1 4,∴OE=CO ·cos ∠BOC=4×14=1, 由此可得:BE=3,AE=5,由勾股定理可得:222222222222CE CO OE 4115AC CE AE (15)5210,BC CE BE (15)326,=-=-==+=+==+=+= ∵AB 是⊙O 直径,AB ⊥CD , ∴由垂径定理得:CD=2CE=215,∵△ACM ∽△DCN ,∴CM AC,CN CD= ∵点M 是CO 的中点,11CMOA 42,22==⨯= CM CD 2215CN 6,AC 210BN BC CN 266 6.⨯∴===∴=-=-=济南市2014年初三年级学业水平考试数学全真模拟试卷2第Ⅰ卷(选择题共45分)一、选择题(本大题共15个小题,每小题3分,共45分.在每小题所给的四个选项中,只有一项是符合题目要求的).1.如果+30 m表示向东走30 m,那么向西走40 m表示为( )A.+40 mB.-40 mC.+30 mD.-30 m2.若实数a、b满足a+b=5,a2b+ab2=-10,则ab的值是( )A.-2B.2C.-50D.503.图中几何体的主视图是( )4.英国曼彻斯特大学的两位科学家因为成功地从石墨中分离出石墨烯,荣获了诺贝尔物理学奖.石墨烯目前是世上最薄却也是最坚硬的纳米材料,同时还是导电性最好的材料,其理论厚度仅0.000 000 000 34米,将这个数用科学记数法表示为( )A.0.34×10-9B.3.4×10-9C.3.4×10-10D.3.4×10-115.已知圆锥的底面半径为6 cm,高为8 cm,则这个圆锥的母线长为( )A.12 cmB.10 cmC.8 cmD.6 cm6.如图所示,在平行四边形纸片上作随机扎针实验,针头扎在阴影区域内的概率为( )1111A. B. C. D.34567.假期到了,17名女教师去外地培训,住宿时有2人间和3人间可供租住,每个房间都要住满,她们有几种租住方案( )A.5种B.4种C.3种D.2种8.某景点门票价格:成人票每张70元,儿童票每张35元.小明买20张门票共花了1 225元,设其中有x张成人票,y张儿童票.根据题意,下列方程组正确的是( )9.如图,△ABC中,AB=AC,∠A=36°,BD是AC边上的高,则∠DBC的度数是( )A.18°B.24°C.30°D.36°10.如图,已知等腰梯形ABCD的底角∠B=45°,高AE=1,上底AD=1,则其面积为( )A.4B. 22C.1D.211.如图,数轴上a,b两点表示的数分别为3和-1,点a关于点b的对称点为c,则点c所表示的数为( )A.23B.13C.23D.13-- -- -+ +12.如图,A、B、C是反比例函数kyx=(x<0)图象上三点,作直线l,使A、B、C到直线l的距离之比为3∶1∶1,则满足条件的直线l共有( )A.4条B.3条C.2条D.1条13.在一次“爱心互助”捐款活动中,某班第一小组8名同学捐款的金额(单位:元)如下表所示:这8名同学捐款的平均金额为( )A.3.5元B.6元C.6.5元D.7元14.已知关于x 的不等式组()4x 123x,6x ax 1,7⎧-+⎪⎨+-⎪⎩><有且只有三个整数解,则a 的取值范围是( )A.-2≤a-1B.-2≤a <-1C.-2<a ≤-1D.-2<a <-1 15.如图,直线l :y=-x-2与坐标轴交于A 、C 两点,过A 、O 、C 三点作⊙O 1,点E 为劣弧 AO上一点,连接EC 、EA 、EO ,当点E 在劣弧上运动时(不与A 、O 两点重合),EC EA EO-的值是( )A.2 B.3 C.2 D.变化的第Ⅱ卷(非选择题 共75分)二、填空题(本大题共6个小题,每小题3分,共18分.把答案填在题中的横线上.)16.分解因式:a 3-ab 2=________. 17.计算124183-⨯=_________. 18.如图,在Rt △ABC 中,∠C=90°,∠B=60°,点D 是BC 边上的点,CD=1,将△ABC 沿直线AD 翻折,使点C 落在AB 边上的点E 处,若点P 是直线AD 上的动点,则△PEB 的周长的最小值是______.19.如图,在边长相同的小正方形组成的网格中,点A 、B 、C 、D 都在这些小正方形的顶点上,AB 、CD 相交于点P ,则tan ∠APD 的值是______.20.某校报名参加甲、乙、丙、丁四个兴趣小组的学生人数如图所示,那么报名参加甲组和丙组的人数之和占所有报名人数的百分比为_____________.21.若x 是不等于1的实数,我们把11x -称为x 的差倒数,如2的差倒数是112-=-1,-1的差倒数为()11112=--,现已知121x x 3=-,是x 1的差倒数,x 3是x 2的差倒数,x 4是x 3的差倒数,…,依次类推,则x 2 013=____________.三、解答题(本大题共7个小题,共57分.解答应写出文字说明、证明过程及演算步骤.) 22.(本小题满分7分)(1)解方程组2x 3y 3x 2y 2.-=⎧⎨+=-⎩,(2)化简:1a a ().22a 2a 1-÷++23.(本小题满分7分)(1)如图,在四边形ABCD 中,AB=BC ,∠ABC=∠CDA=90°,BE ⊥AD ,垂足为E. 求证:BE=DE.(2)如图,AB 是⊙O 的直径,DF ⊥AB 于点D ,交弦AC 于点E ,FC=FE. 求证:FC 是⊙O 的切线.24.(本小题满分8分)小明的妈妈在菜市场买回3斤萝卜、2斤排骨,准备做萝卜排骨汤.妈妈:“今天买这两样菜共花了45元,上月买同重量的这两样菜只要36元”;爸爸:“报纸上说了萝卜的单价上涨50%,排骨单价上涨20%”;小明:“爸爸、妈妈,我想知道今天买的萝卜和排骨的单价分别是多少?”请你通过列方程(组)求解这天萝卜、排骨的单价(单位:元/斤).25.(本小题满分8分)某校为了开设武术、舞蹈、剪纸等三项活动课程以提升学生的体艺素养,随机抽取了部分学生对这三项活动的兴趣情况进行了调查(每人从中只能选一项),并将调查结果绘制成如图两幅统计图,请你结合图中信息解答问题.(1)将条形统计图补充完整;(2)本次抽样调查的样本容量是____________;(3)已知该校有1 200名学生,请你根据样本估计全校学生中喜欢剪纸的人数.26.(本小题满分9分)如图,O是菱形ABCD对角线AC与BD的交点,CD=5 cm,OD=3 cm;过点C作CE∥DB,过点B作BE∥AC,CE与BE相交于点E.(1)求OC的长;(2)求证:四边形OBEC为矩形;(3)求矩形OBEC的面积.27.(本小题满分9分)如图,直线1yx 4=与双曲线ky x =相交于A 、B 两点,BC ⊥x 轴于点C (-4,0).(1)求A 、B 两点的坐标及双曲线的解析式;(2)若经过点A 的直线与x 轴的正半轴交于点D ,与y 轴的正半轴交于点E ,且△AOE 的面积为10,求CD 的长.28.(本小题满分9分) 如图,抛物线21y x 1=-交x 轴的正半轴于点A ,交y 轴于点B ,将此抛物线向右平移4个单位得抛物线y 2,两条抛物线相交于点 C.(1)请直接写出抛物线y 2的解析式;(2)若点 P 是x 轴上一动点,且满足∠CPA=∠OBA ,求出所有满足条件的P 点坐标; (3)在第四象限内抛物线y 2上,是否存在点Q ,使得△QOC 中OC 边上的高h 有最大值,若存在,请求出点Q 的坐标及h 的最大值;若不存在,请说明理由.参考答案1.B2.A3.D4.C5.B6.B7.C8.B9.A10.D 11.A 12.A 13.C 14.C 15.A19.2 20.40% 21.416.a(a+b)(a-b) 17.618.1323.(1)证明:作CF⊥BE,垂足为F.∵BE⊥AD,∴∠AEB=90°,∴∠FED=∠D=∠CFE=90°,∠CBE+∠ABE=90°,∠BAE+∠ABE=90°,∴∠BAE=∠CBF,∵四边形EFCD为矩形,∴DE=CF.在△BAE和△CBF中,有∠CBE=∠BAE,∠BFC=∠BEA=90°,AB=BC,∴△BAE≌△CBF,∴BE=CF=DE,即BE=DE.(2)证明:连接OC.∵FC=FE,∴∠FCE=∠FEC.又∵∠AED=∠FEC,∴∠FCE=∠AED.∵OC=OA,∴∠OCA=∠OAC,∴∠FCO=∠FCE+∠OCA=∠AED+∠OAC=180°-∠ADE.∵DF⊥AB,∴∠ADE=90°,∴∠FCO=90°,即OC⊥FC.又∵点C在⊙O上,∴FC是⊙O的切线;24.解法一:解:设上月萝卜的单价是x 元/斤,排骨的单价是y 元/斤,根据题意得:()()3x 2y 363150%x 2120%y 45x 2:y 15.+=⎧⎨+++=⎩=⎧⎨=⎩,,,解得这天萝卜的单价是(1+50%)x=(1+50%)×2=3(元/斤), 这天排骨的单价是(1+20%)y=(1+20%)×15=18(元/斤). 答:这天萝卜的单价是3元/斤,排骨的单价是18/斤. 解法二:解:设这天萝卜的单价是x 元/斤,排骨的单价是y 元/斤,根据题意得:32x y 36150%120%3x 2y 45x 3:y 18.⎧+=⎪++⎨⎪+=⎩=⎧⎨=⎩,,,解得 答:这天萝卜的单价是3元/斤,排骨的单价18元/斤. 25.解:(1)∵根据扇形统计图可得出女生喜欢武术的占20%, 利用条形图中喜欢武术的女生有10人, ∴女生总人数为:10÷20%=50(人),∴女生中喜欢舞蹈的人数为:50-10-16=24(人). 补充条形统计图,如图所示:(2)100(3)∵样本中喜欢剪纸的人数为30人,样本容量为100, ∴估计全校学生中喜欢剪纸的人数:1 200×30100=360人. 答:全校学生中喜欢剪纸的有360人. 26.解:(1)∵四边形ABCD 是菱形, ∴AC ⊥BD ,∴直角△OCD 中,2222OC CD OD 53 4 cm =-=-=;(2)∵CE ∥DB ,BE ∥AC , ∴四边形OBEC 为平行四边形, 又∵AC ⊥BD ,即∠COB=90°, ∴平行四边形OBEC 为矩形; (3)∵OB=OD ,∴S 矩形OBEC =OB ·OC=4×3=12(cm 2). 27.解:(1)∵BC ⊥x 轴,C (-4,0),∴B 的横坐标是-4,代入y=14x 得:y=-1,∴B 的坐标是(-4,-1). ∵把B 的坐标代入ky k 4x==得:, ∴反比例函数的解析式是4y .x=∵解方程组12121y x x 4x 444y 1y 1y x⎧=⎪==-⎧⎧⎪⎨⎨⎨==-⎩⎩⎪=⎪⎩,,,得:,,,∴A 的坐标为(4,1),B 的坐标为(-4,-1);(2)设OE=a ,OD=b ,则△AOE 面积S △AOE =S △EOD -S △AO D,AOE 1110ab b 1,221S a 410,2=- == 即:①并且,②由①,②可解得:a=5,b=5,即OD=5. ∵OC=|-4|=4,∴CD 的长为:4+5=9.28.解:(1)y=x 2-8x+15;(2)当 y 1= y 2,即x 2-1 =x 2-8x+15, ∴x=2,y=3, ∴C (2,3).由题可知, A ( 1 , 0 ) , B ( 0 ,-1), ∴OA =OB= 1 ,∴∠OBA= 45°. 过点 C 作CD ⊥x 轴于点D, ∴D(2,0),∴CD=3.当∠CPA=∠OBA=45°时,∴PD=CD=3 ,∴满足条件的点P有2个,分别为P1 (5,0),P2(-1,0);(3)存在.过点C作CE⊥y轴于点E,过点Q作QF⊥y轴于点F,连接OC、QC、 OQ. 设Q (x0,y0) ,∵Q在y2上,∴y0=x02-8x0+15,∴CE=2,QF=x0,EF=3-y0,OE=3,OF=-y0.∵在△QOC中,OC边长为定值,∴当S△QOC取最大值时,OC边上的高h也取最大值.2014届中考数学模拟测试卷(本试卷满分150分,考试时间120分钟)一、选择题(本题有8小题,每小题3分,共24分) 1.12-的倒数为【 】 A .12B .2C .2-D .1-2.下列图形中,既是轴对称图形,又是中心对称图形的是【 】 A .平行四边形 B .等边三角形 C .等腰梯形 D .正方形3.已知地球距离月球表面约为383900千米,那么这个距离用科学记数法表示为(保留三个有效数字)【 】A .3.84×104千米B .3.84×105千米C .3.84×106千米D .38.4×104千米 4.已知⊙O 1与⊙O 2的半径分别为5cm 和3cm ,圆心距0102=7cm ,则两圆的位置关系为【 】 A .外离 B .外切 C .相交 D .内切5.如图是由七个相同的小正方体堆成的几何体,这个几何体的俯视图是【 】6.某校在开展“爱心捐助”的活动中,初三(一)班六名同学捐款的数额分别为:8,10,10,4,8,10(单位:元),这组数据的众数是【 】A .10B .9C .8D .4 7.如图7,AB 是⊙O 的直径,点D 在AB 的延长线上, DC 切⊙O 于点C ,若∠A=25°,则∠D 等于【 】 A .20°B .30°C .40° D.50°8.已知二次函数2(0)y ax bx c a =++≠的图象如右图8所示,下列结论①abc >0 ②b<a+c③2a-b=0 ④4a+2b+c >0 ⑤2c<3b⑥a+b >m(am+b)(m 为任意实数), 其中正确的结论有【 】 A . 1个 B .2个 C . 3个D .4个二、填空题(本大题共10小题,每小题3分,共30分)9.扬州市某天的最高气温是6℃,最低气温是-3℃,那么当天的日温差是 ▲ .10.函数12-+=x x y 中自变量x 的取值范围是 ▲ . 11.如图11,四边形ABCD 中,AB//CD ,要使四边形ABCD 为平行四边形,则可添加的条件为 ▲ .(填一个即可).12.因式分解:m 3n -9mn= ▲ .13.已知25-是一元二次方程240x x c -+=的一个根,则方程的另一个根是▲ .14.在平面直角坐标系中,如果抛物线y=3x 2不动,而把x 轴、y 轴分别向上、向右平移3个单位,那么在新坐标系中此抛物线的解析式是 ▲ . 15.已知关于x 的不等式组0521x a x -⎧⎨->⎩≥,只有四个整数解,则实数a 的取值范围是 ▲ .16.已知一个圆锥的母线长为10cm ,将侧面展开后所得扇形的圆心角是144°,则这个圆锥的底面圆的半径是 ▲ cm .17.如图,线段AB 的长为2,C 为AB 上一个动点,分别以AC 、BC 为斜边在AB 的同侧作两个等腰直角三角形△ACD 和△BCE ,那么DE 长的最小值是 ▲ . 18.观察分析下列方程:①,②,③;请利用它们所蕴含的规律,求关于x 的方程(n 为正整数)的根,你的答案是: ▲ .(用n 的代数式 )三、解答题(本大题共有10小题,共96分) 19.(本题8分)(1) (4分)解方程组 ⎩⎨⎧=-=-;1383,32y x y x(2) (4分)821)14.3(45sin 2)31(02+-+︒--π 20.(本题8分)先化简:22a 1a 11a a +2a---÷,再选取一个合适的 a 值代入计算.21.(本题8分)如图,在△ABC 中,∠ACB=90°,AC=BC ,BE ⊥CE 于点E ,AD ⊥CE 于点D 。

2014年中考数学模拟考试题 参考答案及解析

2014年中考数学模拟考试题 参考答案及解析

2014年中考数学模拟考试题 参考答案及解析一、选择题:1、C2、D3、B4、A5、C6、B7、C8、C9、C 10、C 二、填空题:11、x=3; 12、k>-2; 13、25; 14、25 三、解答题15、(1)233+ (2) 原式211x x +== 16、解:由题意得:232a a +≥- ∴2a ≤17、解:由题意得:∠PBH=60°,∠APB=45°. ∵山坡的坡度i (即tan ∠ABC )为1:3 ∴tan ∠ABC=13,∠ABC=30° , ∴∠APB=90°. 在Rt △PHB 中,PB=PBHPH∠sin =203,在Rt △PBA 中,AB=PB=203≈34.6. 答:A 、B 两点间的距离约34.6米.18、(1)把C (1,3)代入y = kx得k =3 设斜边AB 上的高为CD ,则sin ∠BAC =CD AC =35∵C (1,3) ∴CD=3,∴AC=5(2)分两种情况,①当点B 在点A 右侧时,如图1有: AD=52-32=4,AO=4-1=3 ∵△ACD ∽ABC ∴AC 2=AD·AB ∴AB=AC 2AD =254∴OB=AB -AO=254-3=134O xyB A CD 图1此时B 点坐标为(134,0)②当点B 在点A 左侧时,如图2 此时AO=4+1=5 OB= AB -AO=254-5=54此时B 点坐标为(- 54,0)所以点B 的坐标为(134,0)或(- 54,0).19、解:(1) 坐标1232131 1 (1, 2)( 1, 3) (1,21) ( 1 ,31) 2 (2, 1) ( 2, 3)( 2 ,21)( 2 ,31)3(3, 1) ( 3, 2 ) ( 3 ,21)( 3 ,31)21(21,1) (21,2) (21,3) (21 ,31) 31 (31,1) (31,2) (31,3) (31 ,21)(2)当1=x 时2=y ,∴点(1,21),(1,31)在△AOB 内部, 当2=x 时1=y ,∴点(2,21),(2,31)在△AOB 内部,当3=x 时0=y ,∴则上述点都不在△AOB 内部,当21=x 时25=y ,则点(21,1)(21,2),(21,31)在△AOB 内部, 当31=x 时,38=y 则点(31,1)(31,2), (31,21)在△AOB 内点, ∴点P 在△AOB 的内部概率()101=202P =内部xyB ACDO图220、解:(1)过A 作DC 的垂线AM 交DC 于M , 则AM =BC =2. 又tan ∠ADC =2,所以212DM ==.因为MC =AB =1,所以DC =DM+MC =2,即DC =BC . (2)等腰直角三角形.证明:∵DE =DF ,∠EDC =∠FBC ,DC =BC . ∴△DEC ≌△BFC (5分)∴CE =CF ,∠ECD =∠BCF . ∴∠ECF =∠BCF+∠BCE =∠ECD+∠BCE =∠BCD =90° 即△ECF 是等腰直角三角形.(3)设BE =k ,则CE =CF =2k , ∴22EF k =. ∵∠BEC =135°,又∠CEF =45°,∴∠BEF =90°. ∴22(22)3BF k k k =+= ∴1sin 33BFE k k ∠==. B 卷21、8 ; 22、a+b ; 23、 124,1x x =-=-; 24、31nn + ; 25、1或4 26、解:(1)由P =-1100(x -60)2+41知,每年只需从100万元中拿出60万元投资,即可获得最大利润41万元,则不进行开发的5年的最大利润P 1=41×5=205(万元) (2)若实施规划,在前2年中,当x=50时,每年最大利润为: P= 1100-(50-60)2+41=40万元,前2年的利润为:40×2=80万元,扣除修路后的纯利润为:80-50×2=-20万元.设在公路通车后的3年中,每年用x 万元投资本地销售,而用剩下的(100-x )万元投资外地销售,则其总利润W=[-1100(x -60)2+41+(- x 2+x +160]×3=-3(x-30)2+3195当x=30时,W 的最大值为3195万元, ∴5年的最大利润为3195-20=3175(万元)(3)规划后5年总利润为3175万元,不实施规划方案仅为205万元,故具有很大的实施价值.27、解:(1)60,60;(2)∵CM ∥BP ,∴∠BPM+∠M=180°,∠PCM=∠BPC=60. ∴∠M=180°-∠BPM=180-(∠APC+∠BPC )=180°-120°=60°. ∴∠M=∠BPC=60°.(3)∵△ACM ≌△BCP ,∴CM=CP ,AM=BP . 又∠M=60°,∴△PCM 为等边三角形. ∴CM=CP=PM=1+2=3. 作PH ⊥CM 于H.在Rt △PMH 中,∠MPH=30°.∴PH=332. ∴S 梯形PBCM =11315()(23)332224PB CM PH +⨯=+⨯=. 28、解:(1)∵抛物线y=ax 2+bx+3(a≠0)经过A (3,0),B (4,1)两点,∴933016431a b a b ++=⎧⎨++=⎩解得:1252a b ==-∴y=21x 2﹣25x+3; ∴点C 的坐标为:(0,3);(2)①当△PAB 是以AB 为直角边的直角三角形,且∠PAB=90°,直线PA 与y 轴交于点D 过B 作BM ⊥x 轴交x 轴于点M ,如图(1-1)∵A (3,0),B (4,1), ∴AM=BM=1, ∴∠BAM=45°, ∴∠DAO=45°,∴AO=DO , ∵A 点坐标为(3,0), ∴D 点的坐标为:(0,3), ∴直线AD 解析式为:y=kx+b ,将A ,D 分别代入得: ∴0=3k+b ,b=3, ∴k=﹣1, ∴y=﹣x+3, ∴y=21x 2﹣25x+3=﹣x+3, ∴x 2﹣3x=0, 解得:x=0或3, ∴y=3或0(0不合题意舍去), ∴P 点坐标为(0,3),②当△PAB 是以AB 为直角边的直角三角形,且∠PBA=90°,直线PB 与y 轴交于点D , 过B 分别作BE ⊥x 轴,BF ⊥y 轴,分别交x 轴、y 轴于点E 、F ,如图(1-2) 由(1)得,FB=4,∠FBA=45°, ∴∠DBF=45°,∴DF=4, ∴D 点坐标为:(0,5),B 点坐标为:(4,1),∴直线BD 解析式为:y=kx+b ,将B ,D 分别代入得: ∴1=4k+b ,b=5, ∴k=﹣1, ∴y=﹣x+5, ∴y=21x 2﹣25x+3=﹣x+5, ∴x 2﹣3x ﹣4=0, 解得:x 1=﹣1,x 2=4, ∴y 1=6,y 2=1, ∴P 点坐标为(﹣1,6),其中(4,1)不合题意,舍去。

2014年吉林省长春市朝阳区中考数学一模试卷含答案解析(word版)

2014年吉林省长春市朝阳区中考数学一模试卷含答案解析(word版)

2014年吉林省长春市朝阳区中考数学一模试卷参考答案与试题解析一、选择题(每小题3分,共24分)1.(3分)在0.1,﹣3,和这四个实数中,无理数是()A.0.1 B.﹣3 C. D.分析:无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.解答:解:在0.1,﹣3,和这四个实数中,无理数有:.故选C.点评:此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.2.(3分)2014年3月21日上午,我国新型导弹驱逐舰昆明舰举行入列仪式,正式加入人民海军战斗序列.昆明舰采用柴燃交替动力,配备2台QC208燃气轮机,单台功率37500马力.数据37500用科学记数表示为()A. 3.75×104B.37.5×103C.0.375×105D.3.75×103考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:37500=3.75×104,故选:A.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.(3分)有一组数据:2,4,3,4,5,3,4,则这组数据的众数是()A. 5 B. 4 C. 3 D. 2考点:众数.分析:根据众数的定义找出出现次数最多的数即可.解答:解:∵2,4,3,4,5,3,4中4出现了3次,出现的次数最多,∴这组数据的众数是4,故选:B.点评:本题考查了众数,一组数据中出现次数做多的数叫做众数,它反映了一组数据的多数水平,一组数据的众数可能不是唯一的.4.(3分)将“中国梦我的梦”六个字分别写在一个正方体的六个面上,这个正方体的展开图如图,那么在这个正方体中,和“我”字相对的字是()A.中B.国C.的D.梦考点:专题:正方体相对两个面上的文字.分析:正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.解答:解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“中”与“梦”是相对面,“国”与“我”是相对面,“梦”与“的”是相对面.故选B.点评:本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.5.(3分)不等式组的解集是()A.﹣1<x≤1 B.﹣1<x<1 C.x>﹣1 D. x≤1考点:解一元一次不等式组.分析:分别求出不等式的解集,再找到其公共部分即可.解答:解:,由①得,x>﹣1,由②得,x≤1,故不等式组的解集为﹣1<x≤1,故选A.点评:本题考查了解一元一次不等式组,求不等式的公共解,要遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.6.(3分)如图,直线l1∥l2,且分别与△ABC的两边AB、AC相交,若∠A=50°,∠1=35°,则∠2的度数为()A.35° B.65° C.85°D.95°考点:平行线的性质;三角形内角和定理.分析:先根据平行线性质求出∠3,再根据三角形内角和定理求出∠4,即可求出答案.解答:解:∵直线l1∥l2,且∠1=35°,∴∠3=∠1=35°,∵在△AEF中,∠A=50°,∴∠4=180°﹣∠3﹣∠A=95°,∴∠2=∠4=95°,故选D.点评:本题考查了平行线的性质和三角形内角和定理,对顶角相等的应用,注意:①两直线平行,同位角相等,②两直线平行,内错角相等,③两直线平行,同旁内角互补.7.(3分)如图,⊙O是△ABC的外接圆,连结OA、OB,且点C、O在弦AB的同侧,若∠ABO=50°,则∠ACB的度数为()A.50° B.45° C.30°D.40°考点:圆周角定理.分析:利用等边对等角求得∠BAO的度数,然后根据三角形内角和定理求得∠AOB的度数,最后根据圆周角定理即可求解.解答:解:∵OA=OB,∴∠BAO=∠ABO=50°,∴∠AOB=180°﹣50°﹣50°=80°.∴∠ACB=∠AOB=40°.故选D.点评:本题考查了等腰三角形的性质定理以及圆周角定理,正确理解定理,求得∠AOB的度数是关键.8.(3分)如图,在平面直角坐标系中,菱形ABCD的顶点C的坐标为(﹣1,0),点B的坐标为(0,2),点A在第二象限.直线y=﹣x+5与x轴、y轴分别交于点N、M.将菱形ABCD沿x轴向右平移m个单位,当点D落在△MON的内部时(不包括三角形的边),则m的值可能是()A. 1 B. 2 C. 4 D.8考点:一次函数综合题.分析:根据菱形的对角线互相垂直平分表示出点D的坐标,再根据直线解析式求出点D 移动到MN上时的x的值,从而得到m的取值范围,再根据各选项数据选择即可.解答:解:∵菱形ABCD的顶点C(﹣1,0),点B(0,2),∴点D的坐标为(﹣2,2),当y=2时,﹣x+5=2,解得x=6,∴点D向右移动2+6=8时,点D在MN上,∵点D落在△MON的内部时(不包括三角形的边),∴2<m<8,∵1、2、4、8中只有4在此范围内,∴m的值可能是4.故选C.点评:本题是一次函数综合题型,主要利用了一次函数图象上点的坐标特征,菱形的性质,比较简单,求出m的取值范围是解题的关键.二、填空题(每小题3分,共18分)9.(3分)计算:﹣2=1.考点:实数的运算.专题:计算题.分析:原式第一项利用平方根定义化简,计算即可得到结果.解答:解:原式=3﹣2=1.故答案为:1.点评:此题考查了实数的运算,熟练掌握运算法则是解本题的关键.10.(3分)某饭店在2014年春节年夜饭的预定工作中,第一天预定了a桌,第二天预定的桌数比第一天多了4桌,则这两天该饭店一共预定了2a+4桌年夜饭(用含a的代数式表示).考点:列代数式.分析:首先求出第二天预定的桌数为(a+4),再进一步与第一天的合并即可.解答:解:a+a+4=2a+4(桌).这两天该饭店一共预定了(2a+4)桌年夜饭.故答案为:2a+4.点评:此题考查列代数式,理清思路,根据题意列出代数式解决问题.11.(3分)一个正方形与一个正六边形如图放置,正方形的一条边与正六边形的一条边完全重合,则∠1的度数为30度.考点:多边形内角与外角.分析:求得正六边形的内角和正方形的内角后相减即可确定答案.解答:解:∵360°÷6=60°,∴正六边形的外角为60°,∴正六边形的内角为120°,∵正方形的内角为90°,∴∠1=120°﹣90°=30°,故答案为:30.点评:本题考查了多边形的内角与外角,解题的关键是确定正六边形的内角的度数.12.(3分)如图,MN是⊙O的直径,矩形ABCD的顶点A、D在MN上,顶点B、C在⊙O 上,若⊙O的半径为5,AB=4,则AD边的长为6.考点:垂径定理;勾股定理;矩形的性质.分析:连接OB,根据矩形性质得出AB=CD=4,∠BAO=∠CDO=90°,根据勾股定理求出AO、DO,即可得出答案.解答:解:连接OB,∵四边形ABCD是矩形,∴AB=CD=4,∠BAO=∠CDO=90°,∵OB=5,∴AO==3,同理DO=3,∴AD=3+3=6,故答案为:6.点评:本题考查了矩形性质,勾股定理的应用,解此题的关键是求出AO和DO的长,题目比较典型,难度不大.13.(3分)如图,已知抛物线y=﹣x2+bx+c的对称轴为直线x=1,且与x轴的一个交点为(3,0),那么它对应的函数解析式是y=﹣x2+2x+3.考点:待定系数法求二次函数解析式.专题:常规题型.分析:首先根据对称轴为1,求得b,然后根据与x轴的一个交点为(3,0)解得c.解答:解:∵抛物线y=﹣x2+bx+c的对称轴为直线x=1,∴=1,解得b=2,∵与x轴的一个交点为(3,0),∴0=﹣9+6+c,解得c=3,故函数解析式为y=﹣x2+2x+3.故答案为:y=﹣x2+2x+3.点评:本题主要考查待定系数求二次函数的解析式的知识点,熟练掌握二次函数的性质,此题难度一般.14.(3分)如图,点A在反比例函数y=(x>0)的图象上,过点A作AD⊥y轴于点D,延长AD至点C,使AD=DC,过点A作AB⊥x轴于点B,连结BC交y轴于点E.若△ABC 的面积为4,则k的值为4.考点:反比例函数系数k的几何意义.专题:计算题.分析:连结BD,利用三角形面积公式得到S△ADB=S△BAC=2,则S矩形OBAD=2S△ADB=4,于是可根据反比例函数的比例系数k的几何意义得到k的值.解答:解:连结BD,如图,∵AD=DC,∴S△ADB=S△BDC=S△BAC=×4=2,∵AD⊥y轴于点D,AB⊥x轴,∴四边形OBAD为矩形,∴S矩形OBAD=2S△ADB=2×2=4,∴k=4.故答案为4.点评:本题考查了反比例函数的比例系数k的几何意义:在反比例函数y=图象中任取一点,过这一个点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|.三、解答题(本大题10小题,共78分)15.(5分)化简:÷.考点:分式的乘除法.专题:计算题.分析:原式利用除法法则变形,约分即可得到结果.解答:解:原式=•=.点评:此题考查了分式的乘除法,熟练掌握运算法则是解本题的关键.16.(6分)在一个不透明的盒子中放有三张卡片,分别标记为A、B、C,每张卡片除了标记不同外,其余均相同.某同学第一次从盒子中随机抽取一张卡片,卡片放回,第二次又随机抽取一张卡片.请用画树状图(或列表)的方法,求两次抽取的都是A的概率.考点:列表法与树状图法.分析:首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两次抽取的都是A的情况,再利用概率公式即可求得答案.解答:解:画树状图得:∵共有9种等可能的结果,两次抽取的都是A的有1种情况,∴两次抽取的都是A的概率为:.点评:本题考查的是用列表法或画树状图法求概率.注意列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.17.(6分)某车间接到加工200个零件的任务,在加工完40个后,由于改进了技术,每天加工的零件数量是原来的2.5倍,整个加工过程共用了13天完成.求原来每天加工零件的数量.考点:分式方程的应用.分析:设原来每天加工零件的数量是x个,根据整个加工过程共用了13天完成,列出方程,再进行检验即可.解答:解:设原来每天加工零件的数量是x个,根据题意得:+=13,解得:x=8将检验x=8是原方程的解,答:原来每天加工零件的数量是8个.点评:本题考查分式方程的应用,分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.涉及到的公式:工作时间=工作总量÷工作效率.18.(7分)如图,在矩形ABCD中,以点D为圆心,DA长为半径画弧,交CD于点E,以点A为圆心,AE长为半径画弧,恰好经过点B,连结BE、AE.求∠EBC的度数.考点:矩形的性质;等腰直角三角形.分析:根据题意可得AD=DE,AE=AB,再根据矩形的性质可得∠D=∠ABC=∠DAB=90°,然后根据等腰三角形的性质分别算出∠DAE和∠EAB,再根据叫的和差关系可得答案.解答:解:由题意得:AD=DE,AE=AB,∵四边形ABCD是矩形,∴∠D=∠ABC=∠DAB=90°,∵AD=DE,∴∠DAE=45°,∴∠EAB=45°,∵AE=AB,∴∠EBA=∠AEB==67.5°,∴∠EBC=90°﹣67.5°=22.5°.点评:此题主要考查了矩形的性质,以及等腰三角形的性质,关键是掌握矩形的四个角都是直角.19.(7分)周末,小强在文化广场放风筝.如图,小强为了计算风筝离地面的高度,他测得风筝的仰角为58°,已知风筝线BC的长为10米,小强的身高AB为1.55米.请你帮小强画出测量示意图,并计算出风筝离地面的高度(结果精确到0.1米).(参考数据:sin58°=0.85,cos58°=0.53,tan58°=1.60)考点:解直角三角形的应用-仰角俯角问题.分析:根据题意画出图形,根据sin58°=可求出CE的长,再根据CD=CE+ED即可得出答案.解答:解:如图,过点C作地面的垂线CD,垂足为D,过点B作BE⊥CD于E.在Rt△CEB中,∵sin∠CBE=,∴CE=BC•sin58°=10×0.85≈8.5m,∴CD=CE+ED=8.5+1.55=10.05≈10.1m,答:风筝离地面的高度约为10.1m.点评:本题考查的是解直角三角形的应用﹣仰角俯角问题,根据题意作出辅助线,构造出直角三角形是解答此题的关键.20.(8分)为了了解某市初中学生上学的交通方式,从中随机调查了a名学生的上学交通方式,统计结果如图.(1)求a的值;(2)补全条形统计图并求出乘坐公共汽车上学占上学交通方式百分比的扇形圆心角的度数;(3)该市共有初中学生15000名,请估计其中坐校车上学的人数.考点:条形统计图;用样本估计总体;扇形统计图.分析:(1)用乘坐私家车的人数除以其所占的百分比即可确定a值;(2)总数减去其他交通方式出行的人数即可确定乘坐校车的人数,从而补全统计图;(3)用学生总数乘以乘坐校车的所占的百分比即可.解答:解:(1)观察两种统计图知:乘坐私家车上学的有600人,占20%,∴a=600÷20%=3000人;(2)乘坐校车的有3000﹣600﹣600﹣300﹣300=1200人,统计图为:乘坐公共汽车上学占上学交通方式百分比的扇形圆心角的度数为×360°=120°;(3)初中学生15000名中,坐校车上学的人数有15000×=6000人.点评:本题考查了条形统计图及扇形统计题的知识,解题的关键是从两种统计图中整理出进一步解题的有关信息,难度适中.21.(8分)一辆轿车从甲地驶往乙地,到达乙地后返回甲地,速度是原来的1.5倍,共用t 小时;一辆货车同时从甲地驶往乙地,到达乙地后停止.两车同时出发,匀速行驶.设轿车行驶的时间为x(h),两车到甲地的距离为y(km),两车行驶过程中y与x之间的函数图象如图.(1)求轿车从乙地返回甲地时的速度和t的值;(2)求轿车从乙地返回甲地时y与x之间的函数关系式,并写出自变量x的取值范围;(3)直接写出轿车从乙地返回甲地时与货车相遇的时间.考点:一次函数的应用.分析:(1)利用行驶的速度变化进而得出时间变化,进而得出t的值;(2)利用待定系数法求一次函数解析式进而利用图象得出自变量x的取值范围;(3)利用函数图象交点求法得出其交点横坐标,进而得出答案.解答:解:(1)∵一辆轿车从甲地驶往乙地,到达乙地后返回甲地,速度是原来的1.5倍,∴行驶的时间分别为:=3小时,则=2小时,∴t=3+2=5;∴轿车从乙地返回甲地时的速度是:=120(km/h);(2)∵t=5,∴此点坐标为:(5,0),设轿车从乙地返回甲地时y与x之间的函数关系式为:y=kx+b,∴,解得:,∴轿车从乙地返回甲地时y与x之间的函数关系式为:y=﹣120x+600(3≤x≤5);(3)设货车行驶图象解析式为:y=ax,则240=4a,解得:a=60,∴货车行驶图象解析式为:y=60x,∴当两图象相交则:60x=﹣120x+600,解得:x=,故﹣3=(小时),∴轿车从乙地返回甲地时与货车相遇的时间小时.点评:此题主要考查了一次函数的应用以及待定系数法求一次函数解析式等知识,利用数形结合得出函数解析式是解题关键.22.(9分)如图,在四边形ABCD中,∠ABC=30°,∠ADC=60°,AD=DC,连接AC、BD.在四边形ABCD的外部以BC为一边作等边三角形BCE,连接AE.(1)求证:BD=AE;(2)若AB=2,BC=3,求BD的长.考点:全等三角形的判定与性质;等边三角形的判定与性质.分析:(1)由∠ADC=60°,AD=DC,易得△ADC是等边三角形,又由△BCE是等边三角形,可证得△BDC≌△EAC(SAS),即可得BD=AE;(2)由△BCE是等边三角形,∠ABC=30°,易得∠ABE=90°,然后由勾股定理求得AE的长,即可求得BD的长.解答:(1)证明:∵在△ADC中,AD=DC,∠ADC=60°,∴△ADC是等边三角形,∴DC=AC,∠DCA=60°;又∵△BCE是等边三角形,∴CB=CE,∠BCE=60°,∴∠DCA+∠ACB=∠ECB+∠ACB,即∠DCB=∠ACE,在△BDC和△EAC中,,∴△BDC≌△EAC(SAS),∴BD=AE;(2)解:∵△BCE是等边三角形,∴BE=BC=3,∠CBE=60°.∵∠ABC=30°,∴∠ABE=∠ABC+∠CBE=90°.在Rt△ABE中,AE===,∴BD=AE=.点评:此题考查了全等三角形的判定与性质、等边三角形的判定与性质以及勾股定理.此题难度适中,注意掌握数形结合思想的应用.23.(10分)如图①,在平面直角坐标系中,点A是抛物线y=x2在第一象限上的一个点,连结OA,过点A作AB⊥OA,交y轴于点B,设点A的横坐标为n.【探究】:(1)当n=1时,点B的纵坐标是2;(2)当n=2时,点B的纵坐标是5;(3)点B的纵坐标是n2+1(用含n的代数式表示).【应用】:如图②,将△OAB绕着斜边OB的中点顺时针旋转180°,得到△BCO.(1)求点C的坐标(用含n的代数式表示);(2)当点A在抛物线上运动时,点C也随之运动.当1≤n≤5时,线段OC扫过的图形的面积是2.考点:二次函数综合题.分析:探究;依据直角三角形的射影定理即可求得B点的坐标.应用:(1)依据全等三角形的性质即可求得C点的坐标,(2)通过(1)可求得C1、C2的坐标,从而得出矩形面积和三角形的面积,最后求得当1≤n≤5时,线段OC扫过的图形的面积.解答:解:探究(3)如图1所示:设点A的横坐标为n,点A是抛物线y=x2在第一象限上的一个点;∴A(n,n2);∴AD=n,OD=n2;在Rt△ACB中,AD2=OD•BD;设B点的纵坐标为y1,则n2=n2•(y1﹣n2),解得:y1=n2+1,∴点B的纵坐标是n2+1.应用:(1)点B的纵坐标是n2+1,A点的纵坐标是n2,∴BD=1,根据旋转的定义可知CE=AD=n,OE=BD=1;∴C点的坐标为:(﹣n,1);(2)当n=1时C点的坐标为C1(﹣1,1),当n=5时C点的坐标为C2(﹣5,1),如上图所示;S=S﹣S=×1×5﹣×1×1=2.∴当1≤n≤5时,线段OC扫过的图形的面积是2.点评:本题考查了直角三角形的射影定理的应用,全等三角形的性质,直角坐标系中面积求法是本题的关键.24.(12分)如图,在Rt△ABC中,∠ACB=90°,AC=8cm,AB=10cm.点P从点A出发,以5cm/s的速度从点A运动到终点B;同时,点Q从点C出发,以3cm/s的速度从点C运动到终点B,连结PQ;过点P作PD⊥AC交AC于点D,将△APD沿PD翻折得到△A′PD,以A′P和PB为邻边作▱A′PBE,A′E交射线BC于点F,交射线PQ于点G.设▱A′PBE与四边形PDCQ重叠部分图形的面积为Scm2,点P的运动时间为ts.(1)当t为何值时,点A′与点C重合;(2)用含t的代数式表示QF的长;(3)求S与t的函数关系式;(4)请直接写出当射线PQ将▱A′PBE分成的两部分图形的面积之比是1:3时t的值.考点:相似形综合题;解一元一次不等式组;等腰三角形的判定与性质;勾股定理;平行四边形的性质;相似三角形的判定与性质.专题:压轴题.分析:(1)易证△ADP∽△ACB,从而可得AD=4t,由折叠可得AA′=2AD=8t,由点A′与点C重合可得8t=8,从而可以求出t的值.(2)根据点F的位置不同,可分点F在BQ上(不包括点B)、在CQ上(不包括点Q)、在BC的延长线上三种情况进行讨论,就可解决问题.(3)根据点F的位置不同,可分点F在BQ上(不包括点B)、在CQ上(不包括点Q)、在BC的延长线上三种情况进行讨论,就可解决问题.(4)可分①S△A′PG:S四边形PBEG=1:3,如图7,②S△BPN:S四边形PNEA′=1:3,如图8,两种情况进行讨论,就可解决问题.解答:解:(1)如图1,由题可得:PA′=PA=5t,CQ=3t,AD=A′D.∵∠ACB=90°,AC=8,AB=10,∴BC=6.∵∠ADP=∠ACB=90°,∴PD∥BC.∴△ADP∽△ACB.∴==.∴==.∴AD=4t,PD=3t.∴AA′=2AD=8t.当点A′与点C重合时,AA′=AC.∴8t=8.∴t=1.(2)①当点F在线段BQ上(不包括点B)时,如图1,则有CQ≤CF<CB.∵四边形A′PBE是平行四边形,∴A′E∥BP.∴△CA′F∽△CAB.∴=.∴=.∴CF=6﹣6t.∴3t≤6﹣6t<6.∴0<t≤.此时QF=CF﹣CQ=6﹣6t﹣3t=6﹣9t.②当点F在线段CQ上(不包括点Q)时,如图2,则有0≤CF<CQ.∵CF=6﹣6t,CQ=3t,∴0≤6﹣6t<3t.∴<t≤1.此时QF=CQ﹣CF=3t﹣(6﹣6t)=9t﹣6.③当点F在线段BC的延长线上时,如图3,则有AA′>AC,且AP<AB.∴8t>8,且5t<10.∴1<t<2.同理可得:CF=6t﹣6.此时QF=QC+CF=3t+6t﹣6=9t﹣6.综上所述:当0<t≤时,QF=6﹣9t;当<t<2时,QF=9t﹣6.(3)①当0<t≤时,过点A′作A′M⊥PG,垂足为M,如图4,则有A′M=CQ=3t.∵==,==,∴=,∵∠PBQ=∠ABC,∴△BPQ∽△BAC.∴∠BQP=∠BCA.∴PQ∥AC.∵AP∥A′G.∴四边形APGA′是平行四边形.∴PG=AA′=8t.∴S=S△A′PG=PG•A′M=×8t×3t=12t2.②当<t≤1时,过点A′作A′M⊥PG,垂足为M,如图5,则有A′M=QC=3t,PQ=DC=8﹣4t,PG=AA′=8t,QG=PG﹣PQ=12t﹣8,QF=9t﹣6..∴S=S△A′PG﹣S△GQF=PG•A′M﹣QG•QF=×8t×3t﹣×(12t﹣8)×(9t﹣6)=﹣42t2+72t﹣24.③当1<t<2时,如图6,∵PQ∥AC,PA=PA′∴∠BPQ=∠PAA′,∠QPA′=∠PA′A,∠PAA′=∠PA′A.∴∠BPQ=∠QPA′.∵∠PQB=∠PQS=90°,∴∠PBQ=∠PSQ.∴PB=PS.∴BQ=SQ.∴SQ=6﹣3t.∴S=S△PQS=PQ•QS=×(8﹣4t)×(6﹣3t)=6t2﹣24t+24.综上所述:当0<t≤时,S=12t2;当<t≤1时,S=﹣42t2+72t﹣24:当1<t<2时,S=6t2﹣24t+24.(4)①若S△A′PG:S四边形PBEG=1:3,过点A′作A′M⊥PG,垂足为M,过点A′作A′T⊥PB,垂足为T,如图7,则有A′M=PD=QC=3t,PG=AA′=8t.∴S△A′PG=×8t×3t=12t2.∵S△APA′=AP•A′T=AA′•PD,∴A′T===t.∴S▱PBEA′=PB•A′T=(10﹣5t)×t=24t(2﹣t).∵S△A′PG:S四边形PBEG=1:3,∴S△A′PG=×S▱PBEA′.∴12t2=×24t(2﹣t).∵t>0,∴t=.②若S△BPN:S四边形PNEA′=1:3,如图8,同理可得:∠BPQ=∠A′PQ,BQ=6﹣3t,PQ=8﹣4t,S▱PBEA′=24t(2﹣t).∵四边形PBEA′是平行四边形,∴BE∥PA′.∴∠BNP=∠NPA′.∴∠BPN=∠BNP.∴BP=BN.∵∠BQP=∠BQN=90°,∴PQ=NQ.∴S△BPN=PN•BQ=PQ•BQ=(8﹣4t)×(6﹣3t).∵S△BPN:S四边形PNEA′=1:3,∴S△BPN=×S▱PBEA′.∴(8﹣4t)×(6﹣3t)=×24t(2﹣t).∵t<2,∴t=.综上所述:当射线PQ将▱A′PBE分成的两部分图形的面积之比是1:3时,t的值为秒或秒.点评:本题考查了相似三角形的判定与性质、等腰三角形的判定与性质、平行四边形的性质、解一元一次不等式组、勾股定理等知识,还考查了分类讨论的思想,有一定的综合性.。

2014年中考数学全真模拟试题含答案(精选2套)

2014年中考数学全真模拟试题含答案(精选2套)

2014年中考数学模拟试题(一)(本试卷分A卷(100分)、B卷(60分),满分160分,考试时间120分钟)A卷(共100分)一、选择题(本大题共12小题,每小题3分,共36分)1.下列四个实数中,绝对值最小的数是【】A.-5 B.2-C.1 D.42.一个几何体的三视图如图所示,那么这个几何体是【】A.B.C.D.3.某公司开发一个新的项目,总投入约11500000000元,11500000000元用科学记数法表示为【】A.1.15×1010B.0.115×1011C.1.15×1011D.1.15×1094.把不等式组x>1x23-⎧⎨+≤⎩的解集表示在数轴上,下列选项正确的是【】A.B.C.D.5.今年我市有近4万名考生参加中考,为了解这些考生的数学成绩,从中抽取1000名考生的数学成绩进行统计分析,以下说法正确的是【】A.这1000名考生是总体的一个样本B.近4万名考生是总体C.每位考生的数学成绩是个体D.1000名学生是样本容量6.把一块直尺与一块三角板如图放置,若∠1=40°,则∠2的度数为【】A .125°B .120°C .140°D .130°7.成渝路内江至成都段全长170千米,一辆小汽车和一辆客车同时从内江、成都两地相向开出,经过1小时10分钟相遇,小汽车比客车多行驶20千米.设小汽车和客车的平均速度为x 千米/小时和y 千米/小时,则下列方程组正确的是【 】A .x y 2077x y 17066+=⎧⎪⎨+=⎪⎩B .x y 2077x y 17066-=⎧⎪⎨+=⎪⎩C .x y 2077x y 17066+=⎧⎪⎨-=⎪⎩ D .77x y 1706677x y 2066⎧+=⎪⎪⎨⎪-=⎪⎩ 8.如图,在 ABCD 中,E 为CD 上一点,连接AE 、BD ,且AE 、BD 交于点F ,DEF ABF S S 425∆∆=::,则DE :EC=【 】A .2:5B .2:3C .3:5D .3:29.若抛物线2y x 2x c =-+与y 轴的交点为(0,﹣3),则下列说法不正确的是【 】 A .抛物线开口向上 B .抛物线的对称轴是x=1C .当x=1时,y 的最大值为﹣4D .抛物线与x 轴的交点为(-1,0),(3,0)10.同时抛掷A 、B 两个均匀的小立方体(每个面上分别标有数字1,2,3,4,5,6),设两立方体朝上的数字分别为x 、y ,并以此确定点P (x ,y ),那么点P 落在抛物线2y x 3x =-+上的概率为【 】A .118 B .112 C .19 D .1611.如图,反比例函数ky x=(x >0)的图象经过矩形OABC 对角线的交点M ,分别于AB 、BC 交于点D 、E ,若四边形ODBE 的面积为9,则k 的值为【 】A.1 B.2 C.3 D.412.如图,半圆O的直径AB=10cm,弦AC=6cm,AD平分∠BAC,则AD的长为【】A.45cm B.35cm C.55cm D.4cm二、填空题(每小题5分,共20分)13、分解因式:ab3﹣4ab=_________。

2014年中考数学全真模拟试题含答案

2014年中考数学全真模拟试题含答案

2014年中考数学模拟试题(本试卷分A 卷(100分)、B 卷(60分),满分160分,考试时间120分钟)A 卷(共100分)一、选择题(每小题3分,36分) 1、﹣6的相反数为( ) A :6 B :61C :-61D :-62、下列计算正确的是( )A :a 2+a 4=a 6B : 2a+3b=5abC :(a 2)3=a6D :a 6÷a 3=a 23、已知反比例函数的图象经过点(1,﹣2),则k 的值为( )A :2B : -21 C :1D :-2 4、下列图形中,既是轴对称图形又是中心对称图形的有( )A :4个B :3个C :2个D :1个 5、如图,a ∥b ,∠1=65°,∠2=140°,则∠3=( )A :100°B :105°C :110°D :115°6、一组数据4,3,6,9,6,5的中位数和众数分别是( )A :5和5.5B :5.5和6C :5和6D :6和67、函数的图象在( )A :第一象限B :第一、三象限C :第二象限D :第二、四象限 8、如图,AB 是⊙O 的直径,弦CD ⊥AB ,∠CDB=30°,CD=,则阴影部分图形的面积为( )A :4πB :2πC :πD :32π 9、甲车行驶30千米与乙车行驶40千米所用时间相同,已知乙车每小时比甲车多行驶15千 米,设甲车的速度为x 千米/小时,依据题意列方程正确的是( ) A :x 30=1540-x B :x 40=1530-x C :x30=1540+x D :x 40=1530+x 10、如图,在矩形ABCD 中,AB=10,BC=5,点E 、F 分别在AB 、CD 上,将矩形ABCD 沿EF 折叠,使点A 、D 分别落在矩形ABCD 外部的点A 1、D 1处,则阴影部分图形的周长为( )A :15B :20C :25D :3011、如图所示,△ABC 的顶点是正方形网格的格点,则sinA 的值为( ) A :21B :55C :1010D :55212、如图,正△ABC 的边长为3cm ,动点P 从点A 出发,以每秒1cm 的速度,沿A →B →C的方向运动,到达点C 时停止,设运动时间为x (秒),y=PC 2,则y 关于x 的函数的图象大致为( )A :B :C :D :二、填空题(本大题共4小题,每小题5分,共20分) 13.若m 2-n 2=6,且m -n=2,则m +n= ▲ . 14.函数2x 1y x 1+=-中自变量x 的取值范围是 ▲ . 15.一组数据3,4,6,8,x 的中位数是x ,且x 是满足不等式组x 305x>0-≥⎧⎨-⎩的整数,则这组数据的平均数是 ▲ .16.已知菱形ABCD 的两条对角线分别为6和8,M 、N 分别是边BC 、CD 的中点,P 是对角线BD 上一点,则PM+PN 的最小值= ▲ .三、解答题(本大题共5小题,共44分) 17.计算:()()1201302sin 60534015131π-⎛⎫+---+-+ ⎪-⎝⎭.18.已知,如图,△ABC 和△ECD 都是等腰直角三角形,∠ACD=∠DCE=90°,D 为AB 边上一点.求证:BD=AE .19.随着车辆的增加,交通违规的现象越来越严重,交警对某雷达测速区检测到的一组汽车的时速数据进行整理,得到其频数及频率如表(未完成):数据段 频数 频率 30~40 10 0.05 40~50 36 50~60 0.39 60~70 70~80 20 0.10 总计2001注:30~40为时速大于等于30千米而小于40千米,其他类同 (1)请你把表中的数据填写完整; (2)补全频数分布直方图;(3)如果汽车时速不低于60千米即为违章,则违章车辆共有多少辆?20.如图,某校综合实践活动小组的同学欲测量公园内一棵树DE 的高度,他们在这棵树的正前方一座楼亭前的台阶上A 点处测得树顶端D 的仰角为30°,朝着这棵树的方向走到台阶下的点C 处,测得树顶端D 的仰角为60°.已知A 点的高度AB 为3米,台阶AC 的坡度为13:(即AB :BC=13:),且B 、C 、E 三点在同一条直线上.请根据以上条件求出树DE 的高度(侧倾器的高度忽略不计).21.某地区为了进一步缓解交通拥堵问题,决定修建一条长为6千米的公路.如果平均每天的修建费y(万元)与修建天数x(天)之间在30≤x≤120,具有一次函数的关系,如下表所示.x 50 60 90 120y 40 38 32 26(1)求y关于x的函数解析式;(2)后来在修建的过程中计划发生改变,政府决定多修2千米,因此在没有增减建设力量的情况下,修完这条路比计划晚了15天,求原计划每天的修建费.B卷(共60分)四、填空题(本大题共4小题,每小题6分,共24分)22.在△ABC中,已知∠C=90°,7sinA sinB5+=,则sinA sinB-=▲.23.如图,正六边形硬纸片ABCDEF在桌面上由图1的起始位置沿直线l不滑行地翻滚一周后到图2位置,若正六边形的边长为2cm,则正六边形的中心O运动的路程为▲cm.24.如图,已知直线l:y3x=,过点M(2,0)作x轴的垂线交直线l于点N,过点N 作直线l的垂线交x轴于点M1;过点M1作x轴的垂线交直线l于N1,过点N1作直线l的垂线交x轴于点M2,…;按此作法继续下去,则点M10的坐标为▲.25.在平面直角坐标系xOy 中,以原点O 为圆心的圆过点A (13,0),直线y kx 3k 4=-+与⊙O 交于B 、C 两点,则弦BC 的长的最小值为 ▲ . 五、解答题(本大题共3小题,每小题12分,共36分)26.如图,AB 是半圆O 的直径,点P 在BA 的延长线上,PD 切⊙O 于点C ,BD ⊥PD ,垂足为D ,连接BC .(1)求证:BC 平分∠PDB ; (2)求证:BC 2=AB•BD ;(3)若PA=6,PC=62,求BD 的长.27.如图,在等边△ABC 中,AB=3,D 、E 分别是AB 、AC 上的点,且DE ∥BC ,将△ADE 沿DE 翻折,与梯形BCED 重叠的部分记作图形L . (1)求△ABC 的面积;(2)设AD=x ,图形L 的面积为y ,求y 关于x 的函数解析式;(3)已知图形L 的顶点均在⊙O 上,当图形L 的面积最大时,求⊙O 的面积.28.已知二次函数2y ax bx c =++(a >0)的图象与x 轴交于A (x 1,0)、B (x 2,0)(x 1<x 2)两点,与y 轴交于点C ,x 1,x 2是方程2x 4x 50+-=的两根.(1)若抛物线的顶点为D,求S△ABC:S△ACD的值;(2)若∠ADC=90°,求二次函数的解析式.2014年中考数学模拟试题答案一、A CDCBB ADCDBC13. 314.1x2≥-且x≠115. 516. 517. 解:原式=3317 5311222-+-⨯-+=。

2014中考数学模拟试卷(附详细答案)(3份)

2014中考数学模拟试卷(附详细答案)(3份)

2014年中考数学模拟试卷三(时间120分钟,满分120分)一、选择题(每小题3分,共36分)1.从不同方向看一只茶壶,你认为是俯视图的是()2.下列等式一定成立的是( )A .a 2+a 3=a 5B .(a +b )2=a 2+b 2C .(2ab 2)3=6a 3b 6D .(x -a )(x -b )=x 2-(a +b )x +ab 3.下列图形中,既是轴对称图形,又是中心对称图形的是()4.如果不等式组⎩⎪⎨⎪⎧ x +9<5x -1,x >m +1①②的解集是x >2,则m 的取值范围是( ) A .m <1 B .m ≥1 C .m ≤1 D .m >15.已知三角形的两边长是方程x 2-5x +6=0的两个根,则该三角形的周长L 的取值范围是( )A .1<L <5B .2<L <6C .5<L <9D .6<L <106.反比例函数y =2x的两个点为(x 1,y 1),(x 2,y 2),且x 1>x 2,则下式关系成立的是( )A .y 1>y 2B .y 1<y 2C .y 1=y 2D .不能确定7.在△ABC 中,AB >AC ,点D ,E 分别是边AB ,AC 的中点,点F 在BC 边上,连接DE ,DF ,EF .则添加下列哪一个条件后,仍无法判定△BFD 与△EDF 全等的是( )A .EF ∥AB B .BF =CFC .∠A =∠DFED .∠B =∠DEF8.经过某十字路口的汽车,它可能继续直行,也可能向左或向右转.若这三种可能性大小相同,则两辆汽车经过该十字路口全部继续直行的概率为( )A .13B .23C .19D .129.函数y =ax +1与y =ax 2+bx +1(a ≠0)的图象可能是()10.某剧场为希望工程义演的文艺表演有60元和100元两种票价,某团体需购买140张,其中票价为100元的票数不少于票价为60元的票数的两倍,则购买这两种票最少共需要( )A .12 120元B .12 140元C .12 160元D .12 200元11.如图,直角三角板ABC 的斜边AB =12 cm ,∠A =30°,将三角板ABC 绕C 顺时针旋转90°至三角板A ′B ′C ′的位置后,再沿CB 方向向左平移,使点B ′落在原三角板ABC 的斜边AB 上,则三角板A ′B ′C ′平移的距离为( )A.6 cm B.4 cmC.(6-23)cm D.(43-6)cm12.如图,△ABC中,∠ACB=90°,AC>BC,分别以△ABC的边AB,BC,CA为一边向△ABC外作正方形ABDE,BCMN,CAFG,连接EF,GM,ND,设△AEF,△BND,△CGM的面积分别为S1,S2,S3,则下列结论正确的是( )A.S1=S2=S3 B.S1=S2<S3C.S1=S3<S2 D.S2=S3<S1二、填空题(每小题4分,共20分)13.因式分解:x3-9x=__________.14.如图,AB为⊙O的直径,点C,D在⊙O上.若∠AOD=30°,则∠BCD的度数是__________.(第14题图)15.甲、乙两盏路灯底部间的距离是30米,一天晚上,当小华走到距路灯乙底部5米处时,发现自己的身影顶部正好接触路灯乙的底部.已知小华的身高为1.5米,那么路灯甲的高为__________米(如图).(第15题图)16.如图,在△ABC中,AB=BC,将△ABC绕点B顺时针旋转α度,得到△A1BC1,A1B 交AC于点E,A1C1分别交AC,BC于点D,F,下列结论:①∠CDF=α,②A1E=CF,③DF=FC,④AD=CE,⑤A1F=CE.(第16题图)其中正确的是__________(写出正确结论的序号). 17.如图①,将一个量角器与一张等腰直角三角形(△ABC )纸片放置成轴对称图形,∠ACB =90°,CD ⊥AB ,垂足为D ,半圆(量角器)的圆心与点D 重合,测得CE =5 cm ,将量角器沿DC 方向平移 2 cm ,半圆(量角器)恰与△ABC 的边AC ,BC 相切,如图②,则AB 的长为__________cm.(精确到0.1 cm)图① 图②三、解答题(共64分)18.(6分)计算:12-⎝ ⎛⎭⎪⎫-12-1-tan 60°+3-8+|3-2|.19.(7分)如下数表是由从1开始的连续自然数组成,观察规律并完成各题的解答.(1)表中第8行的最后一个数是__________,它是自然数__________的平方,第8行共有__________个数;(2)用含n 的代数式表示:第n 行的第一个数是__________,最后一个数是__________,第n 行共有__________个数;(3)求第n 行各数之和.20.(7分)为了鼓励城区居民节约用水,某市规定用水收费标准如下:每户每月的用水量不超过20度时(1度=1米3),水费为a元/度;超过20度时,不超过部分仍为a元/度,超过部分为b元/度.已知某用户4月份用水15度,交水费22.5元,5月份用水30度,交水费50元.(1)求a,b的值;(2)若估计该用户6月份的水费支出不少于60元,但不超过90元,求该用户6月份的用水量x的取值范围.21.(7分)据媒体报道:某市4月份空气质量优良,高居全国榜首,青春中学九年级课外兴趣小组据此提出了“今年究竟能有多少天空气质量达到优良”的问题,他们根据国家环保总局所公布的空气质量级别表(见表1)以及市环保监测站提供的资料,从中随机抽取了今年1~4月份中30天空气综合污染指数,统计数据如下:空气污染指数0~50 51~100101~150151~200201~250251~300大于300空气质量级别Ⅰ级(优)Ⅱ级(良)Ⅲ1(轻微污染)Ⅲ2(轻度污染)Ⅳ1(中度污染)Ⅳ2(中度重污染)Ⅴ(重度污染)30,32,40,42,45,45,77,83,85,87,90,113,127,153,167,38,45,48,53,57,64,66,77,92,98,130,184,201,235,243.请根据空气质量级别表和抽查的空气综合污染指数,解答以下问题:(1)30(2)(3)请根据抽样数据,估计该市今年(按360天计算)空气质量是优良(包括Ⅰ、Ⅱ级)的天数.22.(8分)如图,在△ABC 中,AB =AC ,以AB 为直径的⊙O 分别交AC ,BC 于点D ,E ,点F 在AC 的延长线上,且∠CBF =12∠CA B .(1)求证:直线BF 是⊙O 的切线;(2)若AB =5,sin∠CBF =55,求BC 和BF 的长.23.(9分)如图1,小红家的阳台上放置了一个晒衣架.如图2是晒衣架的侧面示意图,立杆AB ,CD 相交于点O ,B ,D 两点立于地面,经测量:AB =CD =136 cm ,OA =OC =51 cm ,OE =OF =34 cm ,现将晒衣架完全稳固张开,此时扣链EF 成一条线段,EF =32 cm.图1 图2(1)求证:AC ∥BD ;(2)求扣链EF 与立杆AB 的夹角∠OEF 的度数(精确到0.1°,可使用科学计算器); (3)小红的连衣裙穿在衣架后的总长度达到122 cm ,问挂在晒衣架后是否会拖落到地面?请通过计算说明理由.24.(10分)如图,在平面直角坐标系中,已知A,B,C三点的坐标分别为A(-2,0),B(6,0),C(0,3).(1)求经过A,B,C三点的抛物线的解析式;(2)过C点作CD平行于x轴交抛物线于点D,写出D点的坐标,并求AD,BC的交点E 的坐标;(3)若抛物线的顶点为P,连接PC,PD,判断四边形CEDP的形状,并说明理由.25.(10分)已知:在如图1所示的锐角△ABC中,CH⊥AB于点H,点B关于直线CH的对称点为D,AC边上一点E满足∠EDA=∠A,直线DE交直线CH于点F.图1(1)求证:BF∥AC;(2)若AC边的中点为M,求证:DF=2EM;(3)当AB=BC时(如图2),在未添加辅助线和其他字母的条件下,找出图2中所有与BE 相等的线段,并证明你的结论.图2参考答案一、1.A 俯视图是从上面看到的平面图形,也是在水平投影面上的正投影.易判断选A.2.D 3.B4.C 由①得x >2,由②得x >m +1. ∵其解集是x >2,∴m +1≤2,∴m ≤1. 5.D 6.D7.C DE 是△ABC 的中位线,DE ∥BC ,所以∠EDF =∠BFD .又DF =FD ,所以两三角形已具备了一边一角对应相等的条件.添加A 中条件EF ∥AB ,可利用ASA 证全等;添加B 中条件BF =CF ,可利用SAS 证全等;添加C 中条件,不能证明全等;添加D 中条件∠B =∠DEF ,可利用AAS 证明全等.8.C9.C 当a >0时,直线从左向右是上升的,抛物线开口向上,B ,D 是错的;函数y =ax +1与y =ax 2+bx +1(a ≠0)的图象必过(0,1),A 是错的,所以C 是正确的,故选C.10.C11.C 如图,三角板A ′B ′C ′平移的距离为B ′B ″.∵AB =12 cm ,∠A =30°,∴BC =B ″C ″=6 cm ,利用三角函数可求出BC ″=2 3 cm ,所以B ′B ″=(6-23)cm.12.A 如下图,由全等可证EQ =BC =BN =CM ,AC =DG =FA =CG ,∴S 1=12FA ·EQ ,S 2=12BN ·DG ,S 3=12MC ·CG ,∴S 1=S 2=S 3.二、13.x (x -3)(x +3) x 3-9x =x (x 2-9)=x (x -3)(x +3).14.105° ∵∠AOD =30°,∴DAB 的度数为210°,∠BCD =105°.15.9 设路灯高为x 米,由相似得1.5x =530,解得x =9,所以路灯甲的高为9米.16.①②⑤ 17.24.5三、18.解:原式=23+2-3-2+2-3=2.19.解:(1)64 8 15 (2)(n -1)2+1 n 22n -1(3)方法一:第2行各数之和等于3×3;第3行各数之和等于5×7;第4行各数之和等于7×13;类似地,第n 行各数之和等于(2n -1)(n 2-n +1)=2n 3-3n 2+3n -1.方法二:第n 行各数分别为(n -1)2+1,(n -1)2+2,(n -1)2+3,…,(n -1)2+2n -1,共有2n -1个数,它们的和等于(2n -1)(n 2-n +1)=2n 3-3n 2+3n -1. 20.解:(1)a =22.5÷15=1.5;b =(50-20×1.5)÷(30-20)=2;(2)根据题意,得60≤20×1.5+2(x -20)≤90,35≤x ≤50. 所以该用户6月份的用水量x 的取值范围是35≤x ≤50. 21.解:(1)30 (2)中位数是80(3)∵360×9+1230=252,∴空气质量优良(包括Ⅰ、Ⅱ级)的天数是252天. 22.(1)证明:如图,连接AE .∵AB 是⊙O 的直径,∴∠AEB =90°.∴∠1+∠2=90°.∵AB =AC ,∴∠1=12∠CAB .∵∠CBF =12∠CAB ,∴∠1=∠CBF .∴∠CBF +∠2=90°,即∠ABF =90°.∵AB 是⊙O 的直径,∴直线BF 是⊙O 的切线. (2)解:如图,过点C 作CG ⊥AB 于点G ,∵sin ∠CBF =55,∠1=∠CBF ,∴sin ∠1=55.∵∠AEB =90°,AB =5,∴BE =AB ·sin∠1= 5.∵AB =AC ,∠AEB =90°,∴BC =2BE =2 5.在Rt △ABE 中,由勾股定理得AE =AB 2-BE 2=25,∴sin ∠2=255,cos ∠2=55.在Rt △CBG 中,可求得GC =4,GB =2,∴AG =3. ∵GC ∥BF ,∴△AGC ∽△ABF . ∴GC BF =AG AB .∴BF =GC ·AB AG =203. 故BC 和BF 的长分别为25,203.23.(1)证法一:∵AB ,CD 相交于点O ,∴∠AOC =∠BOD .∵OA =OC ,∴∠OAC =∠OCA =12(180°-∠AOC ).同理可证:∠OBD =∠ODB =12(180°-∠BOD ),∴∠OAC =∠OBD ,∴AC ∥BD .证法二:∵AB =CD =136 cm ,OA =OC =51 cm ,∴OB =OD =85 cm ,∴OA OB =OC OD =35.又∵∠AOC =∠BOD ,∴△AOC ∽△BOD ,∴∠OAC =∠OBD .∴AC ∥BD .(2)解:在△OEF 中,OE =OF =34 cm ,EF =32 cm , 作OM ⊥EF 于点M ,则EM =16 cm ,∴cos ∠OEF =EM OE =1634=817≈0.471,用科学计算器求得∠OEF ≈61.9°.(3)解法一:小红的连衣裙会拖落到地面.在Rt △OEM 中,OM =OE 2-EM 2=342-162=30(cm); 过点A 作AH ⊥BD 于点H ,同(1)可证:EF ∥BD , ∴∠ABH =∠OEM ,则Rt △OEM ∽Rt △ABH , ∴OE AB =OM AH ,AH =OM ·AB OE =30×13634=120(cm). ∴小红的连衣裙挂在衣架后总长度122 cm >晒衣架高度AH =120 cm.解法二:小红的连衣裙会拖落到地面.同(1)可证:EF ∥BD ,∴∠ABD =∠OEF =61.9°.过点A 作AH ⊥BD 于点H ,在Rt △ABH 中,sin ∠ABD =AHAB,AH =AB ×sin∠ABD =136×sin 61.9°=136×0.882≈120.0 cm.∴小红的连衣裙挂在衣架后总长度122 cm >晒衣架高度AH =120 cm.24.解:(1)由于抛物线经过点C (0,3),可设抛物线的解析式为y =ax 2+bx +3(a ≠0),则⎩⎪⎨⎪⎧4a -2b +3=0,36a +6b +3=0.解得⎩⎪⎨⎪⎧a =-14,b =1,故抛物线的解析式为y =-14x 2+x +3.(2)点D 的坐标为(4,3),直线AD 的解析式为y =12x +1,直线BC 的解析式为y =-12x+3,由⎩⎪⎨⎪⎧y =12x +1,y =-12x +3,得交点E 的坐标为(2,2).(3)四边形CEDP 为菱形.理由:连接PE 交CD 于F ,如图.∵P 点的坐标为(2,4),又∵E (2,2),C (0,3),D (4,3),∴PC =DE =5,PD =CE = 5.∴PC =DE =PD =CE .故四边形CEDP 是菱形.25.(1)证明:如图1.图1∵点B 关于直线CH 的对称点为D ,CH ⊥AB 于点H ,直线DE 交直线CH 于点F ,∴BF =DF ,DH =BH .∴∠1=∠2.又∵∠EDA =∠A ,∠EDA =∠1,∴∠A =∠2.∴BF ∥AC .(2)证明:取FD 的中点N ,连接HM ,HN .图2∵H 是BD 的中点,N 是FD 的中点,∴HN ∥BF .由(1)得BF ∥AC ,∴HN ∥AC ,即HN ∥EM .∵在Rt △ACH 中,∠AHC =90°,AC 边的中点为M ,∴HM =12AC =AM .∴∠A =∠3.∴∠EDA =∠3.∴NE ∥HM . ∴四边形ENHM 是平行四边形.∴HN =EM .∵在Rt △DFH 中,∠DHF =90°,DF 的中点为N ,∴HN =12DF ,即DF =2HN .∴DF =2EM . (3)解:当AB =BC 时,在未添加辅助线和其他字母的条件下,原题图2中所有与BE 相等的线段是EF 和CE .图3证明:连接CD.(如图3)∵点B关于直线CH的对称点为D,CH⊥AB于点H,∴BC=CD,∠ABC=∠5.∵AB=BC,∴∠ABC=180°-2∠A,AB=CD.①∵∠EDA=∠A,∴∠6=180°-2∠A,AE=DE.②∴∠ABC=∠6=∠5.∵∠BDE是△ADE的外角,∴∠BDE=∠A+∠6.∵∠BDE=∠4+∠5,∴∠A=∠4.③由①,②,③得△ABE≌△DCE.∴BE=CE.由(1)中BF=DF得∠CFE=∠BFC.由(1)中所得BF∥AC可得∠BFC=∠ECF.∴∠CFE=∠ECF.∴EF=CE.∴BE=EF.∴BE=EF=CE.。

2014年数学中考模拟试卷含答案(解析) (1)

2014年数学中考模拟试卷含答案(解析) (1)

中考数学模拟试卷一、选择题:本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的.请将选择题的答案填在答题纸相对应的位置上..2.(3分)(2011•烟台)如果△ABC中,sinA=cosB=,则下列最确切的结论是()2226.(3分)(2013•昭通)如图,A、B、C三点在正方形网格线的交点处,若将△ABC绕着点A逆时针旋转得到△AC′B′,则tanB′的值为().C D.22011•济宁)已知二次函数y=ax2+bx+c中,其函数y与自变量x之间的部分对应值如下表所示:9.(3分)在Rt△ABC中,∠C=90°,下列等式:(1)sin A=sin B;(2)a=c•sin B;(3)sin A=tan A•cos A;(4)sin2A+cos2A=1.其10.(3分)(2011•无锡)如图,抛物线y=x2+1与双曲线y=的交点A的横坐标是1,则关于x的不等式+x2+1<0的解集是()二、填空题:本大题共8小题,每小题3分,共24分,把答案直接填在答题纸相对应的位置上.11.(3分)cos30°=_________.12.(3分)二次函数y=﹣2(x﹣1)(x﹣3)的图象的对称轴是_________.13.(3分)已知x=1是方程x2+bx﹣2=0的一个根,则方程的另一个根是_________.14.(3分)关于x的一元二次方程x2+(m﹣2)x+m+1=0有两个相等的实数根,则m的值是_________.15.(3分)如图,在四边形ABCD中,E、F分别是AB、AD的中点,若EF=6,BC=13,CD=5,则tan C等于_________.16.(3分)若二次函数y=ax2+bx+c的部分图象如图所示,则当x=1时,y的值为_________.17.(3分)(2011•宿迁)如图,邻边不等的矩形花圃ABCD,它的一边AD利用已有的围墙,另外三边所围的栅栏的总长度是6m.若矩形的面积为4m2,则AB的长度是_________m(可利用的围墙长度超过6m).18.(3分)已知抛物线y=x2﹣x与直线y=x+1的两个交点的横坐标分别为a、b,则代数式(a﹣b)(a+b﹣2)+ab 的值等于_________.三、解答题:本大题共11小题,共76分.解答时应写出必要的计算过程、推演步骤或文字说明.19.(5分)解方程:(x+1)(x﹣2)=x+1.20.(5分)如图,已知在Rt△ABC中,∠C=90°,BC=1,AC=2,求tanA和sinB的值.21.(5分)写出二次函数y=﹣x2﹣4x﹣6的图象的顶点坐标和对称轴的位置,并求出它的最大值或最小值.22.(6分)已知(a﹣2)2+=0,求方程ax+=7的解.23.(6分)已知α是锐角,且sin(α+15°)=.(1)求α的值;(2)计算的值.24.(6分)已知二次函数y=x2+bx+c的图象经过点(﹣1,0),(1,﹣2).(1)求该二次函数的解析式;(2)当y随x的增大而增大时,求x的取值范围.25.(8分)(2011•日照)为落实国务院房地产调控政策,使“居者有其屋”,某市加快了廉租房的建设力度.2010年市政府共投资2亿元人民币建设了廉租房8万平方米,预计到2012年底三年共累计投资9.5亿元人民币建设廉租房,若在这两年内每年投资的增长率相同.(1)求每年市政府投资的增长率;(2)若这两年内的建设成本不变,求到2012年底共建设了多少万平方米廉租房.26.(8分)(2011•孝感)已知关于x的方程x2﹣2(k﹣1)x+k2=0有两个实数根x1,x2.(1)求k的取值范围;(2)若|x1+x2|=x1x2﹣1,求k的值.27.(9分)如图,在直角坐标系中,抛物线y=ax2+bx+c(a≠0)与x轴交于点A(﹣1,0)、B(3,0)两点,抛物线交y轴于点C(0,3),点D为抛物线的顶点.直线y=x﹣1交抛物线于点M、N两点,过线段MN上一点P作y 轴的平行线交抛物线于点Q.(1)求此抛物线的解析式及顶点D的坐标;(2)问点P在何处时,线段PQ最长,最长为多少;(3)设E为线段OC上的三等分点,连接EP,EQ,若EP=EQ,求点P的坐标.28.(8分)(2011•兰州)通过学习三角函数,我们知道在直角三角形中,一个锐角的大小与两条边长的比值相互唯一确定,因此边长与角的大小之间可以相互转化.类似的,可以在等腰三角形中建立边角之间的联系.我们定义:等腰三角形中底边与腰的比叫做顶角正对(sad),如图①,在△ABC中,AB=AC,顶角A的正对记作sadA,这时sadA=底边/腰=.容易知道一个角的大小与这个角的正对值也是相互唯一确定的.根据上述角的正对定义,解下列问题:(1)sad60°=_________.(2)对于0°<A<180°,∠A的正对值sadA的取值范围是_________.(3)如图②,已知sinA=,其中∠A为锐角,试求sadA的值.29.(10分)(2011•泰州)已知二次函数y=x2+bx﹣3的图象经过点P(﹣2,5)(1)求b的值并写出当1<x≤3时y的取值范围;(2)设P1(m,y1)、P2(m+1,y2)、P3(m+2,y3)在这个二次函数的图象上,①当m=4时,y1、y2、y3能否作为同一个三角形三边的长?请说明理由;②当m取不小于5的任意实数时,y1、y2、y3一定能作为同一个三角形三边的长,请说明理由.中考数学模拟试卷参考答案与试题解析一、选择题:本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的.请将选择题的答案填在答题纸相对应的位置上..2.(3分)(2011•烟台)如果△ABC中,sinA=cosB=,则下列最确切的结论是(),2226.(3分)(2013•昭通)如图,A、B、C三点在正方形网格线的交点处,若将△ABC绕着点A逆时针旋转得到△AC′B′,则tanB′的值为().C D.tanB=,.2=±,±±+2+22011•济宁)已知二次函数y=ax2+bx+c中,其函数y与自变量x之间的部分对应值如下表所示:9.(3分)在Rt△ABC中,∠C=90°,下列等式:(1)sin A=sin B;(2)a=c•sin B;(3)sin A=tan A•cos A;(4)sin2A+cos2A=1.其cos A=•,得到(sinA=,,cosA=,cosA=•=)),,cosA=,.10.(3分)(2011•无锡)如图,抛物线y=x2+1与双曲线y=的交点A的横坐标是1,则关于x的不等式+x2+1<0的解集是()y=与抛物线的不等式y=时,时,||∴的不等式+x二、填空题:本大题共8小题,每小题3分,共24分,把答案直接填在答题纸相对应的位置上.11.(3分)cos30°=..故答案为:12.(3分)二次函数y=﹣2(x﹣1)(x﹣3)的图象的对称轴是直线x=2.=213.(3分)已知x=1是方程x2+bx﹣2=0的一个根,则方程的另一个根是﹣2.=14.(3分)关于x的一元二次方程x2+(m﹣2)x+m+1=0有两个相等的实数根,则m的值是0或8.15.(3分)如图,在四边形ABCD中,E、F分别是AB、AD的中点,若EF=6,BC=13,CD=5,则tan C等于.,且等于,且等于BDtan C==故答案为:16.(3分)若二次函数y=ax2+bx+c的部分图象如图所示,则当x=1时,y的值为﹣4.,17.(3分)(2011•宿迁)如图,邻边不等的矩形花圃ABCD,它的一边AD利用已有的围墙,另外三边所围的栅栏的总长度是6m.若矩形的面积为4m2,则AB的长度是1m(可利用的围墙长度超过6m).18.(3分)已知抛物线y=x2﹣x与直线y=x+1的两个交点的横坐标分别为a、b,则代数式(a﹣b)(a+b﹣2)+ab 的值等于﹣1.三、解答题:本大题共11小题,共76分.解答时应写出必要的计算过程、推演步骤或文字说明.19.(5分)解方程:(x+1)(x﹣2)=x+1.20.(5分)如图,已知在Rt△ABC中,∠C=90°,BC=1,AC=2,求tanA和sinB的值.AB=tanA==,==.=.21.(5分)写出二次函数y=﹣x2﹣4x﹣6的图象的顶点坐标和对称轴的位置,并求出它的最大值或最小值.22.(6分)已知(a﹣2)2+=0,求方程ax+=7的解.=02x+=7,或23.(6分)已知α是锐角,且sin(α+15°)=.(1)求α的值;(2)计算的值.计算即可;,×224.(6分)已知二次函数y=x2+bx+c的图象经过点(﹣1,0),(1,﹣2).(1)求该二次函数的解析式;(2)当y随x的增大而增大时,求x的取值范围.,),,时,25.(8分)(2011•日照)为落实国务院房地产调控政策,使“居者有其屋”,某市加快了廉租房的建设力度.2010年市政府共投资2亿元人民币建设了廉租房8万平方米,预计到2012年底三年共累计投资9.5亿元人民币建设廉租房,若在这两年内每年投资的增长率相同.(1)求每年市政府投资的增长率;(2)若这两年内的建设成本不变,求到2012年底共建设了多少万平方米廉租房.,÷26.(8分)(2011•孝感)已知关于x的方程x2﹣2(k﹣1)x+k2=0有两个实数根x1,x2.(1)求k的取值范围;(2)若|x1+x2|=x1x2﹣1,求k的值.≤,≤27.(9分)如图,在直角坐标系中,抛物线y=ax2+bx+c(a≠0)与x轴交于点A(﹣1,0)、B(3,0)两点,抛物线交y轴于点C(0,3),点D为抛物线的顶点.直线y=x﹣1交抛物线于点M、N两点,过线段MN上一点P作y 轴的平行线交抛物线于点Q.(1)求此抛物线的解析式及顶点D的坐标;(2)问点P在何处时,线段PQ最长,最长为多少;(3)设E为线段OC上的三等分点,连接EP,EQ,若EP=EQ,求点P的坐标.),时,线段,则,﹣)=,小于等于==,小于等于=)或(,28.(8分)(2011•兰州)通过学习三角函数,我们知道在直角三角形中,一个锐角的大小与两条边长的比值相互唯一确定,因此边长与角的大小之间可以相互转化.类似的,可以在等腰三角形中建立边角之间的联系.我们定义:等腰三角形中底边与腰的比叫做顶角正对(sad),如图①,在△ABC中,AB=AC,顶角A的正对记作sadA,这时sadA=底边/腰=.容易知道一个角的大小与这个角的正对值也是相互唯一确定的.根据上述角的正对定义,解下列问题:(1)sad60°=1.(2)对于0°<A<180°,∠A的正对值sadA的取值范围是0<sadA<2.(3)如图②,已知sinA=,其中∠A为锐角,试求sadA的值.A=AD=AC=.DH=ADsinA=AH==kk CD==sadA=.29.(10分)(2011•泰州)已知二次函数y=x2+bx﹣3的图象经过点P(﹣2,5)(1)求b的值并写出当1<x≤3时y的取值范围;(2)设P1(m,y1)、P2(m+1,y2)、P3(m+2,y3)在这个二次函数的图象上,①当m=4时,y1、y2、y3能否作为同一个三角形三边的长?请说明理由;②当m取不小于5的任意实数时,y1、y2、y3一定能作为同一个三角形三边的长,请说明理由.。

2014中考数学模拟试卷(15)(附答案)

2014中考数学模拟试卷(15)(附答案)

2014年中考模拟试卷数学卷考生须知:※ 本试卷分试题卷和答题卷两部分.满分120分,考试时间100分钟. ※ 答题前,必须在答题卷的密封区内填写校名、姓名和准考证号.※ 所有答案都必须做在答题卷标定的位置上,务必注意试题序号和答题序号相对应. ※ 考试结束后,上交试题卷和答题卷.试 题 卷一. 仔细选一选 (本题有10个小题, 每小题3分, 共30分)下面每小题给出的四个选项中, 只有一个是正确的, 请把正确选项前的字母填在答题卷中相应的格子 内. 注意可以用多种不同的方法来选取正确答案. 1.下列计算正确的是( )A.030= B.33-=-- C.331-=- D.39±=2.下列图形中,既是轴对称图形又是中心对称图形的是 ( )A 、平行四边形B 、等腰三角形C 、双曲线D 、等腰梯形3.下列各式中计算结果等于62x 的是( )A .72x x ÷ B .32(2)xC .232x x ⋅D .33x x +4.如果mn -=1成立,那么直角坐标系中点P (m,n )的位置在( )A 、第一象限B 、第二象限C 、第三象限D 、第四象限5. 将如图的Rt △ABC 绕直角边AC 旋转一周,所得几何体的主视图是( )6、已知点(x 0,y 0)是二次函数y=ax 2+bx+c (a>0)的一个点,且x 0满足关于x 的方程2ax+b=0,则下列选项正确的是( )A 、对于任意实数x 都有y≥ y 0B 、对于任意实数x 都有y≤y 0C 、对于任意实数x 都有y>y 0D 、对于任意实数x 都有y<y 07、二次函数y =ax 2+bx 的图象如图,若一元二次方程ax 2+bx +m =0 有实数根,则m 的最大值为( )A .-3B .3C .-6D .9DC B AACB8、工地上有甲、乙二块铁板,铁板甲形状为等腰三角形,其顶角为450,腰长为12cm ;铁板乙形状为直角梯形,两底边长分别为4cm 、10cm,且有一内角为600.现在我们把它们任意翻转,分别试图从一 个直径为8.5cm 的圆洞中穿过,结果是( ).A 甲板能穿过,乙板不能穿过B 甲板不能穿过,乙板能穿过C 甲、乙两板都能穿过D 甲、乙两板都不能穿过9.在=y □22x □8x □8的“□”中,任意填上“+”或“-”,可组成若干个不同的二次函数, 其中其图象的顶点在x 轴上的概率为( ) A .41 B .31 C .21D .110.如图,在矩形ABCD 中,BC=8,AB=6,经过点B 和点D的两个动圆均与AC 相切,且与AB 、BC 、 AD 、DC 分别交于点G 、H 、E 、F ,则EF+GH 的最小值是( )A .6B .8C .9.6D .10二、认真填一填(本小题有6小题,每小题4分,共24分)要注意认真看清题目的条件和要填写的内容,尽量完整地填写答案.11.2013年杭州参加中考的实际人数是12799人,请将这个数据保留3个有效数字并用科学记数法表示为 ______________12.关于x 的方程12=-x m的解是非负数,则m 的取值范围是 . 13.已知3-、a 、4、b 、5这五个数据,其中a 、b 是方程x x 11432=-的两个根,这五个数据的平均数是 ,中位数是 .14.由于人民生活水平的不断提高,购买理财产品成为一个热门话题。

2014年中考数学模拟考试及参考答案(1-4)

2014年中考数学模拟考试及参考答案(1-4)

参考答案(一)一、选择题: 1.C 2.A 3.D 4.C 5.C二、填空题:6.2x ≥- 7.7.94×106 8.39.4- 10.6 11.3π 12. 3 13.9,37三、解答题: 14.4 15.x 1=31+-,x 2=31-- 16.化简为:2—x .当22-=x 时,原式=2. 17.P (小菲两次都能摸到白球)=164=4118.(1)小山的高为25米;(2)铁架高约43.3米. 19.(1)80 ,40%;(2)补全条形图(略);(3)380.20.解:(1)∵∠ABC =90°, ∴OB ⊥BC ..∵OB 是⊙O 的半径, ∴CB 为⊙O 的切线..又∵CD 切⊙O 于点D , ∴BC =CD ;.(2)由△ADE ∽△ABD ..∴AD AB =AE AD ..∴21BE +=12,∴BE =3,.∴所求⊙O 的直径长为3. 21.(1)2(21010)(5040)101102100y x x x x =-+-=-++(015x <≤且x 为整数) (2)当2200y =时,21011021002200x x -++=,解得:12110x x ==,.当1x =时,5051x +=,当10x =时,5060x +=.所以,当售价定为每件51或60元时,每个月的利润为2200元. ∴当售价不低于51元且不高于60元且为整数时,每个月的利润不低于2200元(或当售价分别为51,52,53,54,55,56,57,58,59,60元时,每个月的利润不低于2200元).22.①∵∠EAB+∠BAP=90°,∠PAD+∠BAP=90°,∴∠EAB=PAD ,又∵AE=AP ,AB=AD ,∴△APD ≌△AEB ;②∵△APD ≌△AEB ,∴∠APD=∠AEB ,又∵∠AEB=∠AEP+∠BEP ,∠APD=∠AEP+∠PAE , ∴∠BEP=∠PAE=90°,∴EB ⊥ED ;③∵EF=BF= ,AE=1,∴在Rt △ABF 中,AB 2=(AE+EF )2+BF 2=4+ ,∴S 正方形ABCD =4+ (下图)23.(1)解:设所求的抛物线解析式()20y ax bx c a =++≠∵点A B C 、、均在此抛物线上.∴42016404a b c a b c c -+=⎧⎪++=⎨⎪=-⎩ ∴1214a b c ⎧=⎪⎪=-⎨⎪=-⎪⎩∴所求的抛物线解析式为2142y x x =--, ∴顶点D 的坐标为912⎛⎫- ⎪⎝⎭, (2)EBC △的形状为等腰三角形。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2013年山东省东营市中考数学
一、选择题(本题共12个小题,每小题3分,在每小题给出的四个选项中,只有一项符合题目要求)

×=1
的倒数是
与﹣
的倒数是﹣.
3.(3分)(2012•鄂尔多斯)一个几何体的三视图如图所示,那么这个几何体是()
B.
4.(3分)(2010•安徽)如图,直线l1∥l2,∠1=55°,∠2=65°,则∠3为()
5.(3分)下列事件:
①在无水的干旱环境中,树木仍会生长;
②打开数学课本时刚好翻到第60页;
③367人中至少有两人的生日相同;
④今年14岁的小亮一定是初中学生.
6.(3分)如图,∠BDC=98°,∠C=38°,∠A=37°,∠B的度数是()
7.(3分)(2010•连云港)今年3月份某周,我市每天的最高气温(单位:℃):12,9,10,6,11,12,
8.(3分)(2010•天津)如图,⊙O中,弦AB、CD相交于点P,若∠A=30°,∠APD=70°,则∠B等于()
B.
根据二次根式的性质化简二次根式:
、不是同类二次根式,不能计算,故此选项错误;
=2
=
﹣+2+
10.(3分)(2010•青岛)如图,△ABC的顶点坐标分别为A(4,6)、B(5,2)、C(2,1),如果将△ABC 绕点C按逆时针方向旋转90°,得到△A′B′C,那么点A的对应点A′的坐标是()
11.(3分)如图是小莹设计用手电来测量某古城墙高度的示意图.在点P处放一水平的平面镜,光线从点A出发经平面镜反射后,刚好射到古城墙CD的顶端C处.已知AB⊥BD,CD⊥BD.且测得AB=1.4米,P=2.1米,PD=12米.那么该古城墙CD的高度是()
,得到代入数值求的
=
=
12.(3分)(2011•义乌)如图,△ABC和△ADE都是等腰直角三角形,∠BAC=∠DAE=90°,四边形ACDE 是平行四边形,连接CE交AD于点F,连接BD交CE于点G,连接BE.下列结论中:
①CE=BD;②△ADC是等腰直角三角形;
③∠ADB=∠AEB;④CD•AE=EF•CG;
一定正确的结论有()

二、填空题:本大题共5小题,共20分,只要求填写最后结果,每小题填对得4分.13.(4分)(2012•香坊区一模)因式分解:2mx2﹣4mxy+2my2=2m(x﹣y)2.
14.(4分)写出不等式组的解集为﹣1≤x<3.
15.(4分)(2009•温州)如图,将△OAB绕点O按逆时针方面旋转至△0A′B′,使点B恰好落在边A′B′上.已知AB=4cm,BB′=1cm,则A′B长是3cm.
16.(4分)一家医院某天出生了3个婴儿,假设生男生女的机会相同,那么这3个婴儿中,出现2个男婴、
1个女婴的概率是.
种,故答案为
17.(4分)古希腊著名的毕达哥拉斯学派把1、3、6、10 …这样的数称为“三角形数”,而把1、4、16┅这样的数称为“正方形数”.从图中可以发现,任何一个大于1的“正方形数”都可以看作两个相邻“三角形数”之和.
请再写出一个符合这一规律的等式:25=10+15(答案不唯一).
三、解答题:本大题共7小题,共64分.解答要写出必要的文字说明、证明过程或演算步骤.
18.(7分)(1)解方程:.
(2)先化简再求值:.其中a=7.
•﹣


19.(9分)如图,在▱ABCD中,EF∥BD,分别交BC,CD于点P,Q,交AB,AD的延长线于点E,F.已知BE=BP.
求证:(1)∠E=∠F;
(2)▱ABCD是菱形.
20.(9分)(2010•天津)我国是世界上严重缺水的国家之一为了倡导“节约用水从我做起”,小刚在他所在班的50名同学中,随机调查了10名同学家庭中一年的月均用水量单位:t,并将调查结果绘成了如下的条形统计图:
(1)求这10个样本数据的平均数、众数和中位数;
(2)根据样本数据,估计小刚所在班50名同学家庭中月均用水量不超过7t的约有多少户?
可知这组样本数据的平均数是:

×=35
21.(9分)(2011•盐城)如图,放置在水平桌面上的台灯的灯臂AB长为40cm,灯罩BC长为30cm,底座厚度为2cm,灯臂与底座构成的∠BAD=60°.使用发现,光线最佳时灯罩BC与水平线所成的角为30°,此时灯罩顶端C到桌面的高度CE是多少cm?
(结果精确到0.1cm,参考数据:≈1.732)
,,
=,

=,

CE=CM+MD+DE=CM+BF+ED=15+20
22.(9分)(2009•宁波)2009年4月7日,国务院公布了《医药卫生体制改革近期重点实施方案(2009~2011)》,某市政府决定2009年投入6000万元用于改善医疗卫生服务,比例2008年增加了1250万元.投入资金的服务对象包括“需方”(患者等)和“供方”(医疗卫生机构等),预计2009年投入“需方”的资金将比2008年提高30%,投入“供方”的资金将比2008年提高20%.
(1)该市政府2008年投入改善医疗卫生服务的资金是多少万元?
(2)该市政府2009年投入“需方”和“供方”的资金是多少万元?
(3)该市政府预计2011年将有7260万元投入改善医疗卫生服务,若从2009~2011年每年的资金投入按相同的增长率递增,求2009~2011年的年增长率.
由题意得,解得(
23.(10分)(2010•恩施州)如图,已知,在△ABC中,∠ABC=90°,BC为⊙O的直径,AC与⊙O交于点D,点E为AB的中点,PF⊥BC交BC于点G,交AC于点F.
(1)求证:ED是⊙O的切线;
(2)如果CF=1,CP=2,sinA=,求⊙O的直径BC.
=,即=,
24.(11分)(2010•河池)如图所示,在直角梯形OABC,CB,OA,∠OAB=90°,点O为坐标原点,点A在x半轴上,对角线OB,AC相交于点M,OA=AB=4,OA=2CB.
(1)线段OB的长为4,点C的坐标为(2,4);
(2)求△OCM的面积;
(3)求过O,A,C三点的抛物线的解析式;
(4)若点E在(3)的抛物线的对称轴上,点F为该抛物线上的点,且以A,O,F,E四点为顶点的四边形为平行四边形,求点F的坐标.

OB===4
CM=
S××4=所以。

相关文档
最新文档