基于划分方法的聚类分析

合集下载

常用的聚类算法及聚类算法评价指标

常用的聚类算法及聚类算法评价指标

常⽤的聚类算法及聚类算法评价指标1. 典型聚类算法1.1 基于划分的⽅法代表:kmeans算法·指定k个聚类中⼼·(计算数据点与初始聚类中⼼的距离)·(对于数据点,找到最近的{i}ci(聚类中⼼),将分配到{i}ci中)·(更新聚类中⼼点,是新类别数值的均值点)·(计算每⼀类的偏差)·返回返回第⼆步1.2 基于层次的⽅法代表:CURE算法·每个样本作为单独的⼀个类别··合并,为·遍历完本次样本,合并成新的类别后,若存在多个类别,则返回第⼆步·遍历完本次样本,合并成新的类别后,若所有样本为同⼀类别,跳出循环,输出每层类别1.3 基于⽹格的⽅法代表:STING算法·将数据集合X划分多层⽹格结构,从某⼀层开始计算·查询该层⽹格间的属性值,计算属性值与阈值的关系,判定⽹格间的相关情况,不相关的⽹格不作考虑·如果⽹格相关,则进⼊下⼀层的相关区域继续第⼆步,直到下⼀层为最底层·返回相关⽹格结果1.4 基于密度的⽅法代表:DBSCAN算法·输⼊数据集合X,随机选取⼀点,并找出这个点的所有⾼密度可达点·遍历此点的所有邻域内的点,并寻找这些密度可达点,判定某点邻域内的点,并寻找这些点密度可达点,判定某点的邻域内的点数是否超过阈值点数,超过则构成核⼼点·扫描数据集,寻找没有被聚类的数据点,重复第⼆步·输出划分的类,并输出异常值点(不和其他密度相连)1.5 神经⽹络的⽅法代表:SOM算法·数据集合,权重向量为,,归⼀化处理·寻找获胜的神经元,找到最⼩距离,对于每⼀个输⼊数据,找到与之最相匹配的节点令为为的距离,更新权重:·更新临近节点,,其中代表学习率1.6 基于图的聚类⽅法代表:谱聚类算法·计算邻接矩阵,度矩阵,·计算拉普拉及矩阵·计算归⼀化拉普拉斯矩阵·计算的特征值和特征向量·对Q矩阵进⾏聚类,得到聚类结果2. 聚类算法的评价指标⼀个好的聚类⽅法可以产⽣⾼品质簇,是的簇内相似度⾼,簇间相似度低。

4 第四章 聚类分析 -数据挖掘算法与应用(Python实现)-孙家泽-清华大学出版社

4 第四章 聚类分析 -数据挖掘算法与应用(Python实现)-孙家泽-清华大学出版社

西安邮电大学
18
K-means算法概述
K-means算法对初始聚类中心较敏感,相似度 计算方式会影响聚类的划分。 常见的相似度计算方法有:
欧式距离 曼哈顿距离 闵可夫斯基距离
19
多选题 1分 对象i和对象j距离 d(i,j)满足性质( )
基于密度的聚类
➢常见的基于密度的方法:
➢ DBSCAN(具有噪声的基于密度的聚类方法) ➢ OPTICS(通过点排序识别聚类结构)
➢基于网格的方法把对象空间量化为有限个单元,形 成一个网络结构。所有的聚类操作都在这个网络结 构(即量化空间)上进行。这种方法主要优点是处 理速度很快,其处理时间通常独立于数据对象的个 数,而依赖于量化空间中每一维的单元数。
模式
聚类分析的目标
聚类分析的目标就是形成多个数据簇,并且数据 簇需要满足下面两个条件:
同一个簇内的数据尽量相似(high intra-class similarity);
不同簇的数据尽量不相似(low inter-class similarity)。
聚类分析常用算法介绍
常见的聚类分析算法有:
层次聚类算法
无论使用凝聚方法还是分裂方法,一个核心的问题是度量两 个簇间的距离,其中每个簇一般是一个对象集.
西安邮电大学
11
➢ 基于距离的聚类方法的缺点:只能发现球状的簇,难以发现任意形状的 簇。
➢ 基于密度的聚类:只要临近区域的密度(对象或数据点的数目)超过某 个临界值,就继续聚类。
优点:可以过滤掉“噪声”和“离群点”,发现任意形状的簇
第四章聚类分析
西安邮电大学
1
聚类分析
1. 聚类分析 2.基于划分的聚类方法 3.基于层次的聚类方法 4.基于密度的聚类方法 5.基于概率的聚类方法 6.聚类图数据

聚类分析的类型与选择

聚类分析的类型与选择

聚类分析的类型与选择聚类分析是一种常用的数据挖掘技术,可以将数据按照某种相似性进行分组。

通过聚类分析,我们可以发现数据中的潜在规律和结构,帮助我们更好地理解数据,并做出相应的决策。

本文将介绍聚类分析的常见类型,并讨论如何选择适合的聚类方法。

1.聚类分析的类型聚类分析有多种类型,常见的包括层次聚类分析和k均值聚类分析。

下面将分别介绍这两种聚类方法。

1.1层次聚类分析层次聚类分析是一种自下而上的聚类方法,它通过计算数据之间的相似度或距离,将相似的数据逐步合并成簇。

这种方法对数据的层次结构有较好的表示,能够发现不同层次的聚类结构。

层次聚类分析的优点之一是不需要预先指定聚类的个数,但计算复杂度较高,对大规模数据处理存在困难。

另外,它对异常值敏感,若存在异常值可能影响聚类结果。

1.2k均值聚类分析k均值聚类分析是一种基于划分的聚类方法,它将数据划分成k个互不重叠的簇,使得簇内的数据相似度较高,簇间的数据相似度较低。

该方法通过迭代计算簇的中心和重新分配数据来实现聚类。

k均值聚类分析的优点在于计算简单、效果较好,适用于大规模数据集。

但该方法对初始簇中心的选择较为敏感,容易收敛于局部最优解。

2.选择合适的聚类方法在选择聚类方法时,应根据数据的特点和目标进行判断。

下面列举几个常见的选择因素,供参考:2.1数据特点需要考虑数据的特点,如数据的维度、规模、密度等。

对于高维度数据,层次聚类分析可能更适用;而对于大规模数据,k均值聚类分析常常更为合适。

2.2聚类目标需要考虑聚类的目标。

如果希望发现层次结构、发现数据的内在关联性,层次聚类分析是一个不错的选择。

而如果目标是将数据划分成互不重叠的簇,并且希望聚类结果能较好地解释数据的差异性,k均值聚类分析更为合适。

2.3数据质量数据质量也是选择聚类方法的重要因素。

层次聚类分析对异常值比较敏感,如果数据中存在异常值,使用k均值聚类分析可能更好。

选择合适的聚类方法需要综合考虑数据特点、聚类目标和数据质量等因素。

完整版数据挖掘中的聚类分析方法

完整版数据挖掘中的聚类分析方法

完整版数据挖掘中的聚类分析方法聚类分析方法是数据挖掘领域中常用的一种数据分析方法,它通过将数据样本分组成具有相似特征的子集,并将相似的样本归为一类,从而揭示数据中隐藏的模式和结构信息。

下面将从聚类分析的基本原理、常用算法以及应用领域等方面进行详细介绍。

聚类分析的基本原理聚类分析的基本原理是将数据样本分为多个类别或群组,使得同一类别内的样本具有相似的特征,而不同类别之间的样本具有较大的差异性。

基本原理可以总结为以下三个步骤:1.相似性度量:通过定义距离度量或相似性度量来计算数据样本之间的距离或相似度。

2.类别划分:根据相似性度量,将样本分组成不同的类别,使得同一类别内的样本之间的距离较小,不同类别之间的距离较大。

3.聚类评估:评估聚类结果的好坏,常用的评估指标包括紧密度、分离度和一致性等。

常用的聚类算法聚类算法有很多种,下面将介绍常用的几种聚类算法:1. K-means算法:是一种基于划分的聚类算法,首先通过用户指定的k值确定聚类的类别数,然后随机选择k个样本作为初始聚类中心,通过迭代计算样本到各个聚类中心的距离,然后将样本划分到距离最近的聚类中心对应的类别中,最后更新聚类中心,直至达到收敛条件。

2.层次聚类算法:是一种基于树状结构的聚类算法,将样本逐步合并到一个大的类别中,直至所有样本都属于同一个类别。

层次聚类算法可分为凝聚式(自底向上)和分裂式(自顶向下)两种。

凝聚式算法首先将每个样本作为一个初始的类别,然后通过计算样本之间的距离来逐步合并最近的两个类别,直至达到停止准则。

分裂式算法则是从一个包含所有样本的初始类别开始,然后逐步将类别分裂成更小的子类别,直至达到停止准则。

3. 密度聚类算法:是一种基于样本密度的聚类算法,通过在数据空间中寻找具有足够高密度的区域,并将其作为一个聚类。

DBSCAN (Density-Based Spatial Clustering of Applications with Noise)算法是密度聚类算法的代表,它通过定义距离和邻域半径来确定样本的核心点、边界点和噪声点,并通过将核心点连接起来形成聚类。

基于划分的聚类算法

基于划分的聚类算法

基于划分的聚类算法1.初始化:随机选择K个质心作为初始聚类中心。

2.分配:对于每个样本,计算其与K个聚类中心的距离,将其分配给距离最近的聚类。

3.更新:计算每个聚类中所有样本的平均值,更新聚类中心。

4.重复步骤2和3,直到聚类中心不再变化或达到预定的迭代次数。

K-means算法的优点是简单、高效,并且在大规模数据集上也能得到较好的结果。

然而,K-means算法也有一些缺点。

首先,算法对初始聚类中心的选择非常敏感,不同的初始聚类中心可能导致不同的聚类结果。

其次,K-means算法假设每个聚类的形状是球形的,对于非球形聚类效果不佳。

此外,K-means算法需要预先指定聚类的个数K,而对于未知聚类个数的情况下,很难确定合适的K值。

为了解决K-means算法的缺点,一些改进的基于划分的聚类算法被提出。

例如,K-medoids算法使用实际样本作为聚类中心,而不是计算样本的平均值。

这种方法更适用于非球形聚类。

另一个改进是谱聚类算法,它通过图论的方法将数据集转化为一个图,然后使用图划分的方法进行聚类。

除了K-means算法之外,还有一些其他的基于划分的聚类算法。

例如,二分K-means算法将数据集划分为两个聚类,然后逐步将每个聚类划分为更小的聚类,直到满足停止条件。

此外,基于密度的聚类算法(如DBSCAN)也是一种基于划分的聚类方法,它将数据集划分为不规则形状的聚类。

总之,基于划分的聚类算法是一种将数据集划分为不相交的子集的算法。

K-means算法是其中最常见的一种,但也存在一些缺点。

为了解决这些缺点,一些改进的基于划分的聚类算法被提出。

这些算法在不同的数据集和应用中都有广泛的应用。

基于层次划分的最佳聚类数确定方法

基于层次划分的最佳聚类数确定方法

ISSN 1000-9825, CODEN RUXUEW E-mail: jos@Journal of Software, Vol.19, No.1, January 2008, pp.62−72 DOI: 10.3724/SP.J.1001.2008.00062 Tel/Fax: +86-10-62562563© 2008 by Journal of Software. All rights reserved.∗基于层次划分的最佳聚类数确定方法陈黎飞1, 姜青山2+, 王声瑞31(厦门大学计算机科学系,福建厦门 361005)2(厦门大学软件学院,福建厦门 361005)3(Department of Computer Science, University of Sherbooke, J1K 2R1, Canada)A Hierarchical Method for Determining the Number of ClustersCHEN Li-Fei1, JIANG Qing-Shan2+, WANG Sheng-Rui31(Department of Computer Science, Xiamen University, Xiamen 361005, China)2(School of Software, Xiamen University, Xiamen 361005, China)3(Department of Computer Science, University of Sherbooke, J1K 2R1, Canada)+ Corresponding author: Phn: +86-592-2186707, E-mail: qjiang@, /View/shizi/jqs.htmChen LF, Jiang QS, Wang SR. A hierarchical method for determining the number of clusters. Journal ofSoftware, 2008,19(1):62−72. /1000-9825/19/62.htmAbstract: A fundamental and difficult problem in cluster analysis is the determination of the “true” number ofclusters in a dataset. The common trail-and-error method generally depends on certain clustering algorithms and isinefficient when processing large datasets. In this paper, a hierarchical method is proposed to get rid of repeatedlyclustering on large datasets. The method firstly obtains the CF (clustering feature) via scanning the dataset andagglomerative generates the hierarchical partitions of dataset, then a curve of the clustering quality w.r.t the varyingpartitions is incrementally constructed. The partitions corresponding to the extremum of the curve is used toestimate the number of clusters finally. A new validity index is also presented to quantify the clustering quality,which is independent of clustering algorithm and emphasis on the geometric features of clusters, handlingefficiently the noisy data and arbitrary shaped clusters. Experimental results on both real world and synthesisdatasets demonstrate that the new method outperforms the recently published approaches, while the efficiency issignificantly improved.Key words: clustering; clustering validity index; statistics; number of cluster; hierarchically clustering摘要: 确定数据集的聚类数目是聚类分析中一项基础性的难题.常用的trail-and-error方法通常依赖于特定的聚类算法,且在大型数据集上计算效率欠佳.提出一种基于层次思想的计算方法,不需要对数据集进行反复聚类,它首先扫描数据集获得CF(clustering feature,聚类特征)统计值,然后自底向上地生成不同层次的数据集划分,增量地构建一条关于不同层次划分的聚类质量曲线;曲线极值点所对应的划分用于估计最佳的聚类数目.另外,还提出一种新的∗ Supported by the National Natural Science Foundation of China under Grant No.10771176 (国家自然科学基金); the National 985Project of China under Grant No.0000-X07204 (985工程二期平台基金); the Scientific Research Foundation of Xiamen University ofChina under Grant No.0630-X01117 (厦门大学科研基金)Received 2007-04-01; Accepted 2007-10-09陈黎飞等:基于层次划分的最佳聚类数确定方法63聚类有效性指标用于衡量不同划分的聚类质量.该指标着重于簇的几何结构且独立于具体的聚类算法,能够识别噪声和复杂形状的簇.在实际数据和合成数据上的实验结果表明,新方法的性能优于新近提出的其他指标,同时大幅度提高了计算效率.关键词: 聚类;聚类有效性指标;统计指标;聚类数;层次聚类中图法分类号: TP18文献标识码: A聚类是数据挖掘研究中重要的分析手段.迄今,研究者已提出了多种聚类算法[1],在商务智能、Web挖掘等领域中得到了广泛的应用.然而,许多聚类算法需要用户给定聚类数,在实际应用中,这通常需要用户根据经验或具备相关领域的背景知识.确定数据集的聚类数问题目前仍是聚类分析研究中的一项基础性难题[2−4].现有的研究[2−13]是通过以下过程(一种迭代的trial-and-error过程[9])来确定数据集最佳聚类数的,如图1所示.在给定的数据集或通过随机抽样得到的数据子集上,使用不同的参数(通常是聚类数k)运行特定的聚类算法对数据集进行不同的划分,计算每种划分的统计指标值,最后比较分析各个指标值的大小或变化情况,符合预定条件的指标值所对应的算法参数k被认为是最佳的聚类数k*.k*Fig.1 A typical process for determining the number of clusters in a dataset图1 典型的确定数据集最佳聚类数的计算过程各种类型的统计指标从不同角度出发衡量数据集划分的聚类质量.聚类有效性指标(cluster validity index,简称CVI)是一类常见的指标,在为数众多的CVI[6−13]中,基于数据集几何结构的指标函数具有代表意义,它们考虑了聚类的基本特征,即一个“好”的聚类结果应使得k个簇的簇内数据点是“紧凑”的,而不同簇的点之间是尽可能“分离”的,指标量化聚类的簇内紧凑度和簇间分离度并组合二者[6,7],代表性的指标包括Xie-Beni指标[8]V xie 和S.Wang-H.Sun-Q.Jiang指标[9]V wsj等.对应于最大或最小指标值的k被认为是最佳聚类数k*.其他类型的统计指标包括Gap statistic[2]、信息熵[3]和IGP(in-group proportion)[4]等,其中,IGP是一种新近提出的指标,它使用簇内数据点的in-group比例来衡量聚类结果的质量,取得了优于现有其他指标的性能[4].然而,现有的工作[2−13]多集中在对统计指标的改进上,而忽略了对计算过程的研究.图1所示的计算过程存在两个问题:首先,由于需要多次地对整个数据集进行聚类,其效率显然与所选用聚类算法本身的效率密切相关,且将随着数据集的增大而显著下降.尽管可以通过减少聚类次数来提高效率,然而估计准确的k min和k max也是不容易的[14];其次,指标被特定的聚类算法联系在一起.例如,实际中许多CVI[6−12]是与FCM(fuzzy C-mean)算法(或融合GA(genetic algorithm)算法[13])结合在一起的,上述的其他指标出于计算的需要总要选择以聚类数k 为参数的算法,如k-means或层次型聚类算法[2−4].这导致了指标性能依赖于聚类算法的问题.例如,FCM和k-means算法存在不能有效识别噪声和只能发现凸形簇的局限性,使得这些指标自然地存在同样的缺陷.本文提出的新方法COPS(clusters optimization on preprocessing stage)采用与图1完全不同的两阶段计算方案,首先通过扫描一遍数据集一次性地构造出数据集所有合理的划分组合,进而生成一条关于不同划分的聚类质量曲线;在第2阶段抽取出对应曲线极小值点的划分来估计数据集的最佳聚类数目,从而避免了对大型数据集的反复聚类,且不依赖于特定的聚类算法,能够有效识别数据集中可能包含的噪声和复杂形状的簇.在实际数据和合成数据上的测试结果表明,COPS的性能优于IGP,同时大幅度提高了计算效率.本文第1节给出COPS方法.第2节提出和分析COPS使用的聚类有效性新指标.第3节进行实验验证和分析.最后在第4节作出总结.64Journal of Software 软件学报 V ol.19, No.1, January 20081 COPS 方法给定d 维数据集DB ={X 1,X 2,…,X n },X ={x 1,x 2,…,x d }为一个数据点,n 为数据点数目.一个硬划分聚类算法[1]将DB 划分为k (k >1)个子集的集合C k ={C 1,C 2,…,C k },且∀j ≠l ,1≤j ,l ≤k ,C j ∩C l =Φ,C j 称为DB 的簇.常用的trail-and- error 方法为产生C k (k =k min ,…,k max )需要对数据集进行k max −k min +1次聚类,这影响了算法效率,尤其当数据量较大时;另一方面,不恰当的k min 和k max 设置也会影响计算结果的准确性.因此,若能根据数据集的几何结构一次性地生成所有合理的划分,同时评估它们的聚类质量,就可以在很大程度上提高计算效率和结果的准确性.COPS 借鉴层次聚类的思想来达到这个目的.其原理是,首先将每个数据点看作单独的簇,然后在自底向上层次式的簇合并过程中生成所有合理的划分,同时计算它们的聚类质量,保存具有最优聚类质量的划分为C *,最后根据C *的有关统计信息来估计聚类数k *.这里使用新的聚类有效指标性指标函数Q (C )来评估划分C 的聚类质量,其最小值对应最优的质量.COPS 计算过程的形式化表示如下:12***{,,...,}arg min (), ()k n k C C C C C Q C k C θ∈==.COPS 的处理对象是可能包含噪声和复杂形状(非凸形)簇的数据集,这样的数据在实际应用中是常见的,如空间数据和一些高维度的数据.过程θ剔除噪声的影响,识别C *中有意义的簇的数目.1.1 算法原理下面,首先结合距离和维度投票(dimension voting)[15]思想提出数据点间相似度的定义,以此为基础给出确定DB 最优划分C *的计算过程.定义1(点的相似维度[15]). 给定一个阈值t j ≥0,1≤j ≤d ,若|x j −y j |≤t j ,则称点X 和Y 是关于t j 第j 维相似的. 根据定义1,可以定义相似的数据点.定义2(相似点). 给定一个阈值向量T ={t 1,t 2,…,t d },若点X 和Y 在所有数据维度上都是关于t j (j =1,2,…,d )相似的,则称数据点X 和Y 是关于T 相似的.彼此相似的数据点组成DB 的簇.若T 的各分量相等,则||T ||相当于基于密度聚类算法[16]中点的邻域半径.这里,我们允许T 的各分量不相等,它反映了数据集各维度属性值分布的差异.显然,T 的取值“大小”决定了簇结构.鉴于T 是一个向量,定义3用于比较不同T 之间的相对关系.定义3(T 的比较). 给定两个阈值向量12{,,...,}a a a a d T t t t =和12{,,...,}b b b b d T t t t =,称T a >T b 若满足:(1) ,ab j j t t ≥j =1,2,…,d ;(2) 至少存在一个j ∈[1,d ],使得ab j j t t >.给定数据集DB ,根据定义2和定义3,一个很小的T 令大多数数据点不相似,极端情形是每个数据点(设DB 中没有相同的数据点)都构成单独的“簇”,此时,DB 的划分数目达到最大值,k =n ;记这样的T 为T 0.相反地,一个足够大的T 将使得所有数据点彼此相似而组成一个大簇,此时,k 达到最小值,k =1;用T m 表示使得k =1的最小的T .至此,可以把确定数据集DB 最优划分C *的问题转换为求解最优阈值向量T *(T 0<T *<T m )的问题,T *是使得Q 在T 从T 0开始增大到T m 过程中取得最小值的阈值向量.由此可以给出COPS 的计算过程,如图2所示.Fig.2 Flowchar of the COPS图2 COPS 的计算流程图计算从T =T 0(每个分量值为0)开始,每个步骤T 增大一个量Δ(Δ={Δ1,Δ2,…,Δd }),根据定义2,此时将有部分原本属于不同子集的点变得相似,这些子集被合并,生成了新的划分;对每个划分计算其Q 的值,直到T 增长到所有陈黎飞 等:基于层次划分的最佳聚类数确定方法 65点被划分到同一个集合为止.这里子集的合并,也就是簇的合并,以类似single link 的方式[1]进行.图3给出一个例子,说明图2的计算过程如何自底向上地进行簇的合并.图3给出了COPS 在一个2维数据集上若干步骤的结果,该数据集包含2个簇和1个噪声点,其中一个簇是非凸形的.如初始状态图3(a)所示,所有的数据点均构成独立的簇;随T 的增大数据点被逐渐合并,假设在某个步骤形成了图3(b)所示的椭圆形区域所代表的若干个小簇;当T 进一步增大使得两个分属于不同簇的点(如图3(b)中分属于簇A 和B 的两个标志为‘x ’的点)变得相似时,两个原本为凸形的簇被合并.基于这样的策略可以生成任意形状的簇,如图3(c)所示,最终合并成了一个banana 型的非凸形簇.图3中,3个阶段的簇结构组成聚类树的3个层次(实际的聚类树可能不止这3个层次,作为一个例子,这里只给出其中的3层).对于每个层次上的簇集合,分别计算它们的Q 值,抽取出其中使得Q取值最小的层次,识别其中的噪声点.考虑图3(c)所示的簇集合,位于下方只包含一个数据点的“簇”被识别为噪声,这样就得到了该数据集的最佳聚类数目为2.以上簇的合并方法与single link [1]的区别是,传统的single link 方式以全空间的欧氏距离为基础,而COPS 依据定义2来衡量簇间的相似度.Single link 已被证明可以识别数据集中非凸形的簇结构[1],我们在此基础上增加考虑了数据集各维度属性值分布的差异因素,这种差异在具有较高维度的实际应用数据中是常见的[17].Δ的选取以及随T 的变化如何快速地生成新的划分和计算Q 值是影响算法性能的重要环节,以下章节将分别阐述.(a) (b) (c)Fig.3 An example of the working flow of the COPS图3 COPS 计算过程示例1.2 算法过程和参数设置COPS 的计算过程类似于凝聚型层次聚类算法中层次聚类树[17]的构建过程.然而,一个典型的层次聚类算法具有O (n 2)的计算复杂度[1].性能的瓶颈在于为每个数据点X 查找与其相似点的集合Neighbors (X ),这是range queries 问题[18],通常这需要遍历整个数据集,一些改进方法可参见文献[18].基于定义2可以简化查找相似点的过程.首先将数据点按照每个维度的属性值大小进行排序(每个维度j 有一个排序的序列A j );根据定义1,通过顺序扫描A j 可以得到所有与点X 第j 维相似的点Y ,扫描范围局限在符合|x j −y j |≤t j 条件的有限区间内.当t j 增加Δj 时,只需在原有范围的基础上扩展扫描区间t j <|x j −y j |≤ t j +Δj 即可.基于此优化方法的COPS 伪代码如图4所示.其中MergePartitions 的功能是在C k +1的基础上合并两个相似点X 和Y 所在的子集生成新的划分C k ;UpdateQ 在Q (C k +1)的基础上根据X 和Y 所在子集的统计信息计算得到新的值Q (C k ).第2节将阐述基于CF 的子集合并和Q (C )的计算方法.算法参数Δ的选取与T 的一个隐含性质有关.考察定义2,T 可以看作是聚类数据集的分辨率(clustering resolution)[19],而分辨率可以被想象为一个看待数据点是否构成簇的“望远镜”.由此可知,T 的各分量间应成一定的比例关系,这个比例与数据点投影到各维度上时点的分布密度有关.同理,Δ的各分量间也应具有这个性质.定义4通过度量维度的稀疏度来量化这种比例关系.定义4(维度稀疏度). 数据集DB 在第j 维的分布稀疏度为λj ,j λ其中,ij x ′是数据点X i 第j 维属性的[0,1]规范化值,μj 表示第j 维的中心,即66Journal of Software 软件学报 V ol.19, No.1, January 20081,...,11,...,1,...,min {}1, max{}min {}n ij lj l nij j ij i lj lj l n l n x x x x x x n μ====−′′==−∑.λj 实际上是数据集第j 维规范化的标准偏差.在高维数据的投影聚类[20]中,正是以标准偏差为基础度量维度与簇之间的相关程度.λj 值越大,表明第j 维属性值分布得越稀疏,与其相关的簇也可能就越多.COPS 利用这些维度上属性值的变化来揭示数据集潜在的簇结构,因此可用以下公式来确定算法的参数Δ:12max{,,...,}d j jλλλΔελ=×, 其中,ε(ε>0)是给定的一个具有很小的数值的算法参数,用于控制计算Q 序列的精度.显然,ε越小,COPS 在每个维度上的搜索步数(即每个维度被分割成的用于计算的区间数)就越多,因而也就扩大了算法搜索数据集最优划分的搜索空间,其结果也就越有可能是最优的结果.另一方面,ε越小,将使得算法的时间开销越大,因而需要在这两者之间取一个平衡点.经过实验环节的反复验证,我们设定ε=0.01.1.3 确定k *的值|C *|是候选的聚类数k *,但由于噪声的影响,k *=|C *|并不完全成立.在COPS 中,噪声数据点也是C *的组成部份,其特点是这些子集所包含的数据点数目较少[19].设|C *|>2,过程θ采用基于MDL(minimal description length)的剪枝方法[21]识别出C *中“有意义”的子集.MDL 的基本思想是,对输入的数据进行编码,进而选择具有最短编码长度的编码方案.在COPS 中,其输入的数据是各个子集包含的数据点数目,簇的重要性由其包含数据点的数目来决定.令****12{,,...,}k C C C C =,*||i C 为*i C 包含的数据点数目.首先按照*||i C 从大到小排序生成一个新的序列C 1,C 2,…,C k ;然后将这个序列以C p (1<p <k )为界分为两个部分:S L (p )={C 1,C 2,…,C p }和S R (p )={C p +1,C p +2,…,C k },求得数据的编码长度CL (p ).CL (p )的定义[21]为2()2()2()2()11()log ()log (||||)log ()log (||||)L L R R S p j S p S p j S p j p p j k CL p C C μμμμ≤≤+≤≤=+−++−∑∑,其中,()()11||, ||)L R S p j S p j j p p j k C p C k p μμ≤≤+≤≤⎡⎤⎡⎤==−⎢⎥⎢⎥∑∑.上式的第1项和第3项分别表示以p 为界的两个Algorithm . COPS (DB ,Δ). begin k =n ,T =T 0,C n ={{X 1},{X 2},…,{X n }},Q n =Q (C n )For each dimension j ∈[1,d ] doA j =Points sorted on the values of j th-attributes {1. Generating Q -sequence} Repeat For each dimension j ∈[1,d ] do For each point X ∈Aj do For each point Y ∈Neighbors (X ,A j ,t j ,t j +Δj )begin Flag X and Y are j th-similar If X and Y are full-dimensional similar begink =k −1 C k =MergePartitions (C k +1,X ,Y ) Q k =UpdateQ (Q k +1,X ,Y )end; end; {for Y ∈Neighbors ()} T =T +Δ Until k =1 {2. Computing k *} C *=Partitions having the minimum of Q -sequence Return k *=θ(C *) end; Fig.4 The pseudocodes of the COPS 图4 COPS 的伪代码陈黎飞 等:基于层次划分的最佳聚类数确定方法 67 序列的平均编码长度;其余两项衡量|C j |与平均数据点数之间的差异.实际计算中若出现()||L j S p C μ=或()||R j S p C μ=而使得log 函数没有定义,则直接忽略该子集,即设定此时的差异为0 bit.最短的编码长度CL (p )对应的分割位置p 被看作数据序列的最优分割点,根据MDL(minimal description length)剪枝方法的思想,此时S L (p )所包含的数据点可以认为代表了对DB 的覆盖[21].在COPS 中,S R (p )所包含的数据点就识别为噪声.至此,我们得到了数据集的最佳聚类数,k *=p .1.4 算法复杂度最坏情况下,COPS 的空间复杂度为O (n 2),实际中采用以下策略降低算法的空间使用量:对任意两个不相似的数据点X i 和X j ,若X i 和X j 至少在一个维度上是相似的,则通过一个hash 函数映射到一个线性表中的单元HASH (i ,j ),HASH (i ,j )记录X i 和X j 的维度相似情况.算法开始时,该表的所有单元为空(未被使用),随着T 的增大,一些点对变得相似时,其映射在线性表中的单元亦被释放,从而有效降低了算法的实际空间占有量.采用快速排序(quicksort)方法对数据点进行排序的时间复杂度为O (dn log n ).生成Q 序列部分算法的时间复 杂度为()O kdnN ,其中,k 为外层循环的执行次数,是一个与n 无关的量,在数值上,k <<n .这是因为随着T 的增 大,越来越多的点变得相似,k 在内层循环中将迅速减少,其数值只与数据点的分布和ε的取值有关;N 是数据点在Δ邻域内的平均相似点数目,在数值上N <<n ,它也只与数据点分布和ε有关.计算初始值Q (C n )的复杂度为 O (dn )(参见第2.3节分析),MDL 剪枝方法的复杂度为O (k 2).综上,COPS 的时间复杂度为O (dn log n ).2 COPS 的聚类有效性指标COPS 用有效性指标Q (C )评估DB 被划分为C 时的聚类质量.本节提出的指标Q (C )主要考虑数据集的几何结构,即通过衡量簇内数据点分布的紧凑度以及簇间的分离度,并保持二者之间的平衡.Q (C )不依赖于具体的聚类算法.2.1 新的有效性指标设||X −Y||表示点X 和Y 之间的欧氏距离,给定DB 的一个划分C k ={C 1,C 2,…,C k },Scat (C k )衡量C k 的簇内紧凑度, Sep (C k )对应C k 的簇间分离度.具体地,21,()||||i k k i X Y C Scat C X Y =∈=−∑∑ (1) 211,,1()||||||||i l k k k i l l i X C Y C i l Sep C X Y C C ==≠∈∈⎛⎞=−⎜⎟⎜⎟⋅⎝⎠∑∑∑ (2) 以上两式的定义原理如下:Scat 是簇内任意两个数据点之间距离的平方和;Sep 的原理是将每个簇看作是一个大“数据点”,大“数据点”间的“距离”通过簇间点对的平均距离来衡量.这样,Scat 和Sep 保持了度量上的一致性.另一方面,Scat 和Sep 基于“点对”的平均距离定义,可用于度量非凸形簇结构的聚类质量.传统的基于几何结构的聚类有效性指标(如V xie [8])通常基于簇质心(centroids)使用簇的平均半径和质心之间的距离来定义Scat 和Sep ,这样的指标往往只对球(超球)形的簇结构有效[7].代入欧氏距离公式再做简单的变换,Scat (C k )和Sep (C k )可分别表示为211()2(||)d kk i ij ij j i Scat C C SS LS ===−∑∑,2221111()2(1)||||||dk k k ij ij ij k j i i i i i i SS LS LS Sep C k C C C ====⎛⎞⎛⎞⎜⎟=−−+⎜⎟⎜⎟⎝⎠⎝⎠∑∑∑∑, 其中,2, i iij j ij j X C X C SS x LS x ∈∈==∑∑.直观上,Scat 的值越小,表明簇越紧凑;Sep 的值越大,表明簇间的分离性越 好.在下式中使用线性组合平衡二者,β(β>0)为组合参数,用于平衡Scat 和Sep 取值范围上的差异:Q 1(C )=Scat (C )+β⋅Sep (C ).68Journal of Software 软件学报 V ol.19, No.1, January 2008这里将数据集的划分C 看作一个变量,其定义域为{C 1,C 2,…,C n }.根据定理1可以推定β=1.定理1. 给定数据集DB ,Scat (C )和Sep (C )具有相同的值域范围.证明:在初始状态k =n ,C n ={{X 1},{X 2},…,{X n }},由公式(1)可知Scat (C n )=0;根据公式(2)有()()221()2)d n j j j X DB X DB Sep C n x x M =∈∈=⋅−=∑∑∑ (3)设在某个步骤C u 和C v (u ,v ∈[1,k ],u ≠v ,k >1)合并:22111122||||()()2(2)||||(||||)|||||||||| 2(||||)||||||d d k uj vj v uj u vj ij k k j j i u v v u u v i v uj u vj ij i v u u v i LS LS C SS C SS SS Sep C Sep C k C C C C C C C C LS C LS LS C C C C C −===⎛⎞+−=−−−+−⎜⎟⎜⎟+⎝⎠++∑∑∑11,,0d k j i u v ==≠⎛⎞<⎜⎟⎜⎟⎝⎠∑∑ (4)11()()2(||||2)0dk k u vj v uj uj vj j Scat C Scat C C SS C SS LS LS −=−=++>∑ (5)因此,Scat (C )是单调递增函数,而Sep (C )为单调递减函数.当k =1时,C 1={{X 1,X 2,…,X n }},容易求得Sep (C 1)=0和Scat (C 1)=M . □ 根据定理1,COPS 使用的聚类有效性指标函数Q (C )取以下形式: 1()(()())Q C Scat C Sep C M=+ (6) 2.2 指标分析最优的聚类质量对应于簇内紧凑度和簇间分离度的平衡点[9,10],在数值上反映为指标函数Q (C )取得最小值.定理2表明,对于大多数(一种特例除外,见定理条件)数据集Q (C )存在(0,1)区间的最小值.定理2. 给定数据集DB ={X 1,X 2,…,X n },若n >2且至少存在一个i ∈[2,n −1]使得||X i −1−X i ||≠||X i −X i +1||,则Q (C )存在小于1的极小值.证明:考虑在COPS 的初始状态k =n ,C n ={{X 1},{X 2},…,{X n }}.令t j =min l =1,2,…,n −1{x lj −x (l +1)j },j =1,2,…,d ,若满足定理条件,根据定义1,∃u ,v ∈[1,n ],u ≠v ,使得X u 和X v 是相似的,且(X i −1,X i )和(X i ,X i +1)中至少有1对是不相似的,后者确保对所有相似点做合并处理后k >1.考虑点X u 和X v 合并后Q 的变化,根据公式(3)~公式(6)有1111,,1,,21()1()()02d dn n n uj vj ij uj vj ij j j i i u v i i u v n Q C SS SS SS LS LS LS M M −===≠=≠⎛⎞⎛⎞−−=−+−++<⎜⎟⎜⎟⎜⎟⎝⎠⎝⎠∑∑∑∑. 定理1已经证明Q (C 1)=Q (C n )=1,这意味着若满足定理条件,则Q (C )存在小于1的极小值. □ 定理2给出了Q (C )无法取得(0,1)区间极小值的一种特殊结构的数据集,其直观情形是所有数据点均匀地分布在空间等分网格的节点上.对这样的数据集,COPS 将输出k *=n .这是合理的,因为此时,合理的k *取值为1或n ,而聚类算法通常要求k *>1.2.3 指标计算根据公式(3)~公式(6)可以进行Q (C k )的增量计算(UpdateQ 过程).为了得到Q (C k ),只需在Q (C k +1)的基础上使用公式(4)和公式(5)计算其增量即可.为此,在算法中为每个C i (i =1,2,…,k )保存一个结构: CF i =(|C i |,〈SS i 1,LS i 1〉,〈SS i 2,LS i 2〉,…,〈SS id ,LS id 〉). 这正是BIRCH 算法提出的聚类特征(clustering feature)[17].基于此,合并数据集划分的操作(MergePartitions 过程)可以转化成为相应的|C i |,SS ij 和LS ij 数值之间简单的加法运算.在计算初始值M 时,需获得每个数据点的CF 结构,再按照公式(3)计算,其时间复杂度为O (dn ).一条典型的Q (C )曲线例子如图5所示.图中,在最小值之后Q值出1.00.80.60.40.20.0 Fig.5 An example of a Q (C ) curve图5 Q (C )曲线的一个例子陈黎飞等:基于层次划分的最佳聚类数确定方法69现大幅跳变,这意味着若合并最优划分的一些子集将使得聚类质量急剧下降.利用这个特点,此时加大T的增量Δ可以进一步提高COPS的性能.具体地,当数据集较大时(比如n>1000),计算过程中若Q大于已出现的最小值,我们设定ε=ε×2.3 实验与分析实验验证包括算法有效性和算法效率两方面.在众多的聚类有效性指标[6−13]里,选用基于几何结构的V xie[8]和V wsj[9]这两种有代表意义的指标作为对比对象,其中,V xie是首个采用“紧凑度”和“分离度”概念的经典指标; V wsj改进了线性组合方法的稳定性,可以有效地处理包含有重叠的簇和噪声的数据集[9,12].两种指标都基于FCM 算法,实验设定FCM算法的模糊因子w=2.在其他类型方法中,选用Gap statistic[2]和IGP[4]作比较.Gap statistic 的特点是通过检测聚类质量的“突变(dramatic change)”确定最佳的k值;IGP是新近提出的一个指标,使用in- group比例衡量聚类的质量,其性能已被验证优于现有的其他统计指标[4].根据文献[2,4]的建议,使用k-means作为它们的基本算法,取参数R=5;IGP使用的Cutoff阈值设置为0.90.使用Greedy技术[9]选择FCM/k-means的初始簇中心点以提高算法的收敛速度.实验在CPU 2.6GHz,RAM 512MB的计算机上进行,操作系统为Microsoft Windows 2000.3.1 实验数据实验分别采用了真实数据和人工合成数据.以下报告6个有代表性的数据集上的实验结果,数据集的参数汇总见表1.为比较起见,选取的前2个数据集DS1和DS2是常被类似研究引用的真实数据X30和IRIS数据[3,7−9,12].DS3和DS4是两个具有较高维度的实际应用数据.DS3来源于Vowel Recognition(deterding data) (/~mlearn/databases/undocumented/connectionist-bench/vowel/),包含有10个说话人、11个英语元音的发音数据,用于语音识别研究;DS4来源于Wisconsin Breast Cancer Database(/ databases/breast-cancer-wisconsin/),是患者肺部FNA测试的临床数据,用于医疗诊断.Table 1Summarized parameters of datasets表1测试数据参数汇总表DB Description of the dataset Dimension (d)Size(n)True number of clustersDS1 X30 230 3150 3 DS2 IRIS 4DS3 Vowel recognition (deterding data)10 528 11DS4 Wisconsin breast cancer database9 699 2DS5 Synthetic dataset 3 4 000 660008DS6 t5.8k 2为测试各种方法处理大型数据集的性能,根据文献[17]提供的方法(在原方法基础上改进为随机簇中心)合成了含4 000个数据点的3维数据集DS5.DS5同时还包含少量的噪声,这些噪声模糊了簇的边界,其中两个簇存在明显的重叠.第6个数据集DS6包含有8 000个数据点,是命名为“t5.8k”的公用数据集,其特点是包含有大量的噪声和复杂形状的簇(其6个簇呈‘GEOAGE’字母形状).更为重要的是,我们通过实验发现,在适当的参数配置下,即指定了正确的聚类数,FCM和k-means算法可以很好地区分出这6个簇.以此验证基于FCM或k-means 算法的其他4种方法以及COPS识别复杂形状簇的性能.3.2 有效性实验COPS在6个数据集上都得到了正确的聚类数,实验结果如图6所示.对DS1和DS2,COPS检测出在聚类数从最优数目3变为2时聚类质量大幅度下降.DS2包含有两个重叠的簇[12],图6(b)表明,COPS能够有效区分重叠的簇.受噪声影响,DS5中有两个边界模糊的簇,图6(e)显示,对应于聚类数6和5的聚类质量只存在很小的差异,尽管如此,COPS还是完成了准确的区分,得到最优聚类数6,这说明COPS可以有效地识别噪声并区分簇间的密度差异.对DS3~DS6这4个较为复杂的数据,COPS没有检测到连续变化的k值,例如在图6(f)中,k从18跳变到最优数6.这是因为COPS采用了与其他方法不同的做法,它不是通过设定一个k的区间反复运行聚类算法来。

基于划分的聚类算法

基于划分的聚类算法

基于划分的聚类算法基于划分的聚类算法(Partition-based Clustering Algorithm)是一种将数据集划分为不相交的子集的聚类算法。

这些子集被称为簇(clusters),每个簇对应于一个聚类。

本文将介绍三种基于划分的聚类算法:K-Means、K-Medoids和X-Means。

K-Means算法是最常用的基于划分的聚类算法之一、算法基于欧氏距离度量样本之间的相似性。

其步骤如下:1.随机选择k个初始聚类中心。

2.对于每个样本,计算其与每个聚类中心之间的距离,并将其分配给距离最近的聚类中心。

3.更新每个聚类的中心为该聚类中所有样本的平均值。

4.重复步骤2和3,直到聚类中心不再改变或达到最大迭代次数。

K-Medoids算法是K-Means的一个变种,其不使用样本的平均值作为聚类中心,而是使用样本本身作为中心点,称为Medoid。

其步骤如下:1.随机选择k个初始聚类中心。

2.对于每个样本,计算其与每个聚类中心之间的距离,并将其分配给距离最近的聚类中心。

3. 对于每个聚类,选择一个样本作为Medoid,该样本到该聚类其他样本的总距离最小。

4.重复步骤2和3,直到聚类中心不再改变或达到最大迭代次数。

X-Means算法是一种自动确定聚类数量的算法。

其基于K-Means算法,通过比较每个聚类的准则分数来决定是否拆分聚类。

其步骤如下:1.初始化一个聚类,将所有样本分配给该聚类。

2.对于每个聚类,计算其准则分数(如BIC或SSE)。

3.如果聚类的准则分数小于一些阈值,则不再拆分该聚类。

4. 如果聚类的准则分数大于阈值,则根据K-Means算法拆分聚类为两个子聚类。

5.重复步骤2至4,直到所有聚类都不再拆分或达到最大迭代次数。

基于划分的聚类算法具有易于理解和实现的优点,并且对大型数据集也具有可扩展性。

然而,它们对于初始聚类中心的选择较为敏感,可能会陷入局部最优解。

因此,对于不同的数据集,需要多次运行算法以获得较好的结果。

5聚类之层次聚类基于划分的聚类(k

5聚类之层次聚类基于划分的聚类(k

5 聚类之层次聚类基于划分的聚类(k、层次聚类1、层次聚类的原理及分类1)层次法(Hierarchicalmethods )先计算样本之间的距离。

每次将距离最近的点合并到同一个类。

然后,再计算类与类之间的距离,将距离最近的类合并为一个大类。

不停的合并,直到合成了一个类。

其中类与类的距离的计算方法有:最短距离法,最长距离法,中间距离法,类平均法等。

比如最短距离法,将类与类的距离定义为类与类之间样本的最短距离。

层次聚类算法根据层次分解的顺序分为:自下底向上和自上向下,即凝聚的层次聚类算法和分裂的层次聚类算法agglomerative 和divisive ),也可以理解为自下而上法bottom-up )和自上而下法(top-down )。

自下而上法就是开始每个个体(object )都是一个类,然后根据linkage 寻找同类,最后形成一个“类” 。

自上而下法就是反过来,开始所有个体都属于一个“类”,然后根据linkage 排除异己,劣之分,只是在实际应用的时候要根据数据特点以及你想要的“类”的个数,来考虑是自上而下更快还是自下而上更快。

最后每个个体都成为一个“类” 。

这两种路方法没有孰优孰至于根据Linkage 判断“类”的方法就是最短距离法、最长距离法、中间距离法、类平均法等等(其中类平均法往往被认为是最常用也最好用的方法,一方面因为其良好的单调性,另一方面因为其空间扩张/浓缩的程度适中)。

为弥补分解与合并的不足,层次合并经常要与其它聚类方法相结合,如循环定位。

2)Hierarchical methods 中比较新的算法有BIRCH( BalancedIterative Reducingand Clustering Using Hierarchies 利用层次方法的平衡迭代规约和聚类)主要是在数据量很大的时候使用,而且数据类型是numerical 。

首先利用树的结构对对象集进行划分,然后再利用其它聚类方法对这些聚类进行优化;ROCK ( AHierarchical ClusteringAlgorithm for Categorical Attributes )主要用在categorical 的数据类型上;Chameleon(A HierarchicalClustering AlgorithmUsing Dynamic Modeling )里用到的linkage 是kNN (k-nearest-neighbor)算法,并以此构建一个graph,Chameleon 的聚类效果被认为非常强大,比BIRCH 好用,但运算复杂度很高,0(22)。

基于聚类分析的建设方案类型划分和比较

基于聚类分析的建设方案类型划分和比较

基于聚类分析的建设方案类型划分和比较引言在建设项目中,制定合适的建设方案是确保项目成功的重要一环。

然而,由于项目的复杂性和多样性,选择最佳的建设方案并不容易。

本文将探讨基于聚类分析的建设方案类型划分和比较的方法,帮助项目团队更好地选择适合的方案。

一、聚类分析的基本原理聚类分析是一种常用的数据分析方法,通过将相似的对象归为一类,将不相似的对象分开,从而实现对数据的分类和分组。

聚类分析的基本原理是通过计算对象之间的相似性或距离,将相似的对象聚集在一起形成簇。

二、建设方案类型的划分在建设项目中,建设方案的类型可以根据不同的维度进行划分。

以下是几个常见的划分维度:1. 建设规模建设项目的规模是一个重要的划分维度。

可以根据项目的投资额、建筑面积、产能等指标将建设方案划分为小型、中型和大型。

2. 建设技术建设方案的技术特点也是一个重要的划分维度。

可以根据项目所采用的技术和工艺将建设方案划分为传统技术、先进技术和创新技术。

3. 建设周期建设项目的周期长短也是一个重要的划分维度。

可以根据项目的建设周期将建设方案划分为短期、中期和长期。

4. 建设成本建设方案的成本是一个重要的划分维度。

可以根据项目的投资额和运营成本将建设方案划分为低成本、中成本和高成本。

三、基于聚类分析的建设方案比较通过聚类分析,可以将建设方案划分为不同的类型。

接下来,我们将通过比较不同类型的建设方案,找出最佳的方案。

1. 建设规模比较首先,我们比较不同规模的建设方案。

小型建设方案通常具有投资少、周期短、风险低的特点,适合于资源有限的项目。

中型建设方案具有投资适中、周期适中、风险适中的特点,适合于中等规模的项目。

大型建设方案具有投资大、周期长、风险高的特点,适合于大型综合项目。

2. 建设技术比较其次,我们比较不同技术的建设方案。

传统技术建设方案通常成熟可靠,风险相对较低,适合于对技术要求不高的项目。

先进技术建设方案具有技术先进、效率高的特点,适合于对技术要求较高的项目。

基于划分的聚类方法

基于划分的聚类方法

基于划分的聚类方法基于划分的聚类是一种有效的聚类方法,旨在将数据样本划分为相关的子类,以便更有效地发现群组中的模式。

它的运行原理是通过有效地组织数据来实现,分析师将可能相关的数据样本分组归纳出不同类别。

划分法成功实现对密集数据,也可以有效处理多变量和多维度数据。

基于划分的聚类方法大致分为三种:层次聚类、K均值聚类和聚类中心(cores)聚类。

(1)层次聚类(Hierarchical Clustering)层次聚类方法,依靠距离度量将数据样本划分成许多子组,要求每组中的数据都是相似的。

层次聚类有两种方法:凝聚层次聚类和分裂层次聚类。

经常使用的距离度量是欧氏距离(Euclidean distance),也可以使用更现代的度量,例如余弦相似度(cosine similarity)。

K均值聚类是一种常用的基于划分的聚类方法。

它工作的原理是通过计算数据样本与一个或多个聚类中心(Cores)之间的距离来将样本将样本分配给正确的聚类。

与层次聚类不同之处在于,K均值聚类中的类别数量(K值)是从数据集中曲线拟合得出的,而不是手动设定的。

K均值聚类可以有效的处理大规模数据集。

(3)聚类中心(Cores)聚类聚类中心聚类和K均值聚类有些相似之处,但是目标不同。

K均值聚类注重在清楚已分配到每个聚类的样本,而聚类中心聚类首先找到最佳的聚类中心,然后再将样本细分到聚类中心中。

这种方法的一个重要的好处是它可以处理大规模的数据集。

2. 优点3. 缺点基于划分的聚类也有一些缺点,如果没有正确的参数,它的结果可能不准确。

它的聚类效果也依赖于聚类特征的质量,特征提取错误或选择不当,会对聚类有相应的影响。

最后,它的结果可能是不稳定的; 就是说,更改点参数或重新运行,得到的聚类结果有可能会发生变化。

聚类分析实验报告结论(3篇)

聚类分析实验报告结论(3篇)

第1篇本次聚类分析实验旨在深入理解和掌握聚类分析方法,包括基于划分、层次和密度的聚类技术,并运用SQL Server、Weka、SPSS等工具进行实际操作。

通过实验,我们不仅验证了不同聚类算法的有效性,而且对数据理解、特征选择与预处理、算法选择、结果解释和评估等方面有了更为全面的认知。

以下是对本次实验的结论总结:一、实验目的与意义1. 理解聚类分析的基本概念:实验使我们明确了聚类分析的定义、目的和应用场景,认识到其在数据挖掘、市场分析、图像处理等领域的重要性。

2. 掌握聚类分析方法:通过实验,我们学习了K-means聚类、层次聚类等常用聚类算法,并了解了它们的原理、步骤和特点。

3. 提高数据挖掘能力:实验过程中,我们学会了如何利用工具进行数据预处理、特征选择和聚类分析,为后续的数据挖掘工作打下了基础。

二、实验结果分析1. K-means聚类:- 实验效果:K-means聚类算法在本次实验中表现出较好的聚类效果,尤其在处理规模较小、结构较为清晰的数据时,能快速得到较为满意的聚类结果。

- 特点:K-means聚类算法具有简单、高效的特点,但需要事先指定聚类数目,且对噪声数据敏感。

2. 层次聚类:- 实验效果:层次聚类算法在处理规模较大、结构复杂的数据时,能较好地发现数据中的层次关系,但聚类结果受距离度量方法的影响较大。

- 特点:层次聚类算法具有自适应性和可解释性,但计算复杂度较高,且聚类结果不易预测。

3. 密度聚类:- 实验效果:密度聚类算法在处理噪声数据、非均匀分布数据时,能较好地发现聚类结构,但对参数选择较为敏感。

- 特点:密度聚类算法具有较好的鲁棒性和可解释性,但计算复杂度较高。

三、实验结论1. 聚类算法的选择:根据实验结果,K-means聚类算法在处理规模较小、结构较为清晰的数据时,具有较好的聚类效果;层次聚类算法在处理规模较大、结构复杂的数据时,能较好地发现数据中的层次关系;密度聚类算法在处理噪声数据、非均匀分布数据时,能较好地发现聚类结构。

基于划分的聚类方法

基于划分的聚类方法

基于划分的聚类方法基于划分的聚类方法是一种将数据集划分为不重叠的子集或簇的聚类方法。

与层次聚类和密度聚类方法不同,它不需要事先指定簇的数量,而是通过迭代的方式不断优化簇的质量,直到达到停止准则。

本文将详细介绍基于划分的聚类方法的原理、常用算法以及优缺点。

首先,基于划分的聚类方法将数据划分为不同的簇,其中每个簇由一个或多个样本组成。

最初,每个样本被视为一个簇,然后通过迭代的方式合并或划分簇,直到满足停止准则。

停止准则可以是指定的迭代次数、簇质量的阈值或者簇数量的稳定。

基于划分的聚类方法的核心是确定簇质量的评价准则。

常用的评价准则有紧密性和分离性。

紧密性衡量了簇内样本的相似度或者紧密度,而分离性衡量了不同簇之间的差异或者分离度。

常见的评价准则包括欧氏距离、曼哈顿距离和余弦相似度等。

基于划分的聚类方法有许多不同的算法。

其中,K-means是最常用和经典的基于划分的聚类算法之一、K-means算法首先随机选择K个样本作为初始质心,然后将每个样本分配到距离最近的质心所在的簇中。

接着,重新计算每个簇的质心,并重复分配和更新过程,直到达到停止准则。

K-means算法的时间复杂度较低,适用于大规模数据集。

除了K-means算法,还有一些其他的基于划分的聚类算法。

Bisecting K-means算法首先将整个数据集视为一个簇,然后逐步选择和划分最不紧密的簇,直到达到预设的簇数量。

CLARA算法是一种基于采样的算法,它通过对数据集进行随机采样并执行多次K-means算法,得到多个解,并选择最优解作为最终结果。

PAM算法(Partitioning AroundMedoids)是一种聚类算法,它以实际样本作为质心,而不是样本的平均值,更适用于处理离群点和噪声。

基于划分的聚类方法有一些优点和缺点。

首先,它们对大规模数据集和高维数据集的处理效果较好。

其次,它们不需要事先指定簇的数量,而是根据数据的特性自动确定簇的数量。

然而,基于划分的聚类方法对质心的初始选择很敏感,容易陷入局部最优解。

基于划分的K—means聚类算法

基于划分的K—means聚类算法

( 1 .亳州职业技术学院 信息工程系; 2 . 安徽电力 亳州供电公司 电力调度控制中心,安徽
亳州 2 3 6 8 0 0 )


要:文 中首先介绍 了聚类分析 的涵义,然后分析 K— m e a n s 算法的基本思想以及划分聚
类 的三 个关键 点 ,最后 通过具 体的 实例 讲 解 了 K—m e a n s 算 法的 实现 。 关键 词 :聚类 分析 ;K—m e a n s 算 法 ;簇 中心
Ab s t r a c t :T h i s p a p e r f i r s l t y i n t r o d u c e s t h e d e i f n i t i o n o f c l u s t e r a n a l y s i s ,t he n a n a l y z e s he t g e n e r a l i d e a o f K— me a n s a l g o i r t h m a n d t h e hr t e e c r u c i a l p o i n t s o f t y p i f y i n g c l u s t e i r n g . F i n a l l y e x p l a i n s t h e r e a l i z a t i o n o f K —me a n s a l — g o r i t h m t h r o u g h a c o n c r e t e e x a mp l e . Ke y wo r d s :C l u s t e r An a l y s i s ; K —me a n s A l g o it r hm ; C l u s t e r C e n t e r

系统聚类法

系统聚类法

系统聚类法是一种聚类分析方法,它通过迭代不断调整类簇中心来将数据点聚类到相应的类簇中。

常见的系统聚类算法有基于划分的聚类方法(如K-Means)和基于层次的聚类方法(如层次聚类)。

这些算法的共同点是都通过迭代来改进聚类结果。

系统聚类法是一种基于计算机的数据分析方法,它可以将相似的数据点聚类到同一类簇中,从而发现数据的结构和模式。

系统聚类法通常用于无监督学习,即对于没有标记的数据进行聚类。

常见的系统聚类算法有基于划分的聚类方法(如K-Means)和基于层次的聚类方法(如层次聚类)。

基于划分的聚类方法,如K-Means,是一种迭代算法。

它首先随机选取K个数据点作为类簇中心,然后将其他的数据点分配到最近的类簇中。

接着,它会根据分配的数据点重新计算类簇中心,并再次重新分配数据点。

这个过程会不断重复直到满足某种停止条件。

基于层次的聚类方法,如层次聚类,是一种
分治算法。

它首先将所有数据点看作是单独的类簇,然后不断地将最相似的两个类簇合并。

每次合并都会形成一层新的类簇层次结构,直到所有数据点被合并为一个类簇。

系统聚类法还可以根据不同的度量标准来计算类簇相似度,常用的度量标准有欧几里得距离、曼哈顿距离、余弦相似度等。

系统聚类法在很多领域都有广泛的应用,如市场细分、文本分类、图像识别、生物信息学等。

不过,系统聚类法也有一些缺陷,如对异常值敏感、对初始聚类中心的选择敏感、对类簇数量的限制等。

因此,在使用系统聚类法时需要谨慎选择算法和参数,并结合其他方法进行验证。

简要说明基于划分的聚类方法的基本原理

简要说明基于划分的聚类方法的基本原理

简要说明基于划分的聚类方法的基本原理基于划分的聚类方法是一种常见的聚类算法,其基本原理是将数据集划分为若干个子集,每个子集代表一个簇,然后通过迭代的方式不断优化簇的质量,直到满足停止条件为止。

具体来说,基于划分的聚类方法通常包括以下步骤:
1. 初始化:随机选择k个数据点作为初始簇中心。

2. 分配:对于每个数据点,计算其与各个簇中心的距离,将其分配到距离最近的簇中。

3. 更新:对于每个簇,重新计算其簇中心。

4. 重复步骤2和3,直到簇的质量不再发生明显变化或达到预设的迭代次数。

基于划分的聚类方法的优点是简单易懂,计算效率高,适用于大规模数据集。

但是,由于其初始簇中心的随机选择可能导致结果不稳定,且对于不同形状、密度的簇效果不一定好,因此需要进行多次运行并选择最优结果。

基于划分的聚类方法还有一些改进算法,如k-means++算法、二分k-means算法等,可以进一步提高聚类效果和稳定性。

基于划分的聚类方法是一种常见的聚类算法,其基本原理是将数据
集划分为若干个子集,通过迭代的方式不断优化簇的质量,适用于大规模数据集。

但是需要注意其结果不稳定的问题,需要进行多次运行并选择最优结果。

聚类分析—K-means and K-medoids聚类要点

聚类分析—K-means and K-medoids聚类要点

2018/10/5
在图像分割上的简单应用(续)
分割后的效果
注:最大迭代次数为20次,需运行多次才有可能得到较好的效果。
2018/10/5
在图像分割上的简单应用(续)
例 2:
注:聚类中心个数为5,最大迭代次数为10。
2018/1Байду номын сангаас/5
k-平均聚类算法(续)

优点: 相对有效性: O(tkn),
其中 n 是对象数目, k 是簇数目, t 是迭代次数; 通常, k, t << n.
2018/10/5
PAM

PAM (Partitioning Around Medoids) (Kaufman and Rousseeuw, 1987)

是最早提出的k-中心点聚类算法 基本思想:

随机选择k个代表对象

反复地试图找出更好的代表对象: 分析所有可能的对象对,每个对 中的一个对象被看作是代表对象, 而另一个不是. 对可能的各种组合, 估算聚类结果的质量
2018/10/5
k-中心点聚类方法(续)

找聚类中的代表对象(中心点)
PAM (Partitioning Around Medoids, 1987)

首先为每个簇随意选择选择一个代表对象, 剩余的对象根 据其与代表对象的距离分配给最近的一个簇; 然后反复地 用非代表对象来替代代表对象,以改进聚类的质量 PAM 对于较小的数据集非常有效, 但不能很好地扩展到大 型数据集

k-平均值(MacQueen’67): 每个簇用该簇中对象的平均值来表示

k-中心点或 PAM (Partition around medoids) (Kaufman & Rousseeuw’87): 每个簇用接近聚类中心的一个对象来表示

聚类分析实验报告体会(3篇)

聚类分析实验报告体会(3篇)

第1篇随着大数据时代的到来,数据挖掘技术在各个领域得到了广泛应用。

聚类分析作为数据挖掘中的关键技术之一,对于发现数据中的潜在结构具有重要意义。

近期,我参与了一次聚类分析实验,通过实践操作,我对聚类分析有了更深入的理解和体会。

一、实验背景与目的本次实验旨在通过实际操作,掌握聚类分析的基本原理和方法,并运用SQL Server、Weka、SPSS等工具进行聚类分析。

实验过程中,我们构建了合规的数据集,并针对不同的数据特点,选择了合适的聚类算法进行分析。

二、实验过程与步骤1. 数据准备:首先,我们需要收集和整理实验所需的数据。

数据来源可以是公开数据集,也可以是自行收集的数据。

在数据准备过程中,我们需要对数据进行清洗和预处理,以确保数据的准确性和完整性。

2. 数据探索:对数据集进行初步探索,了解数据的分布特征、数据量、数据类型等。

这一步骤有助于我们选择合适的聚类算法和数据预处理方法。

3. 建立数据模型:根据实验目的和数据特点,选择合适的聚类算法。

常见的聚类算法有K-means、层次聚类、密度聚类等。

在本实验中,我们选择了K-means算法进行聚类分析。

4. 聚类分析:使用所选算法对数据集进行聚类分析。

在实验过程中,我们需要调整聚类参数,如K值(聚类数量)、距离度量方法等,以获得最佳的聚类效果。

5. 结果分析:对聚类结果进行分析,包括分类关系图、分类剖面图、分类特征和分类对比等。

通过分析结果,我们可以了解数据的潜在结构和规律。

6. 实验总结:对实验过程和结果进行总结,反思数据理解、特征选择与预处理、算法选择、结果解释和评估等方面的问题。

三、实验体会与反思1. 数据理解的重要性:在进行聚类分析之前,我们需要对数据有深入的理解。

只有了解数据的背景、分布特征和潜在结构,才能选择合适的聚类算法和参数。

2. 特征选择与预处理:特征选择和预处理是聚类分析的重要步骤。

通过选择合适的特征和预处理方法,可以提高聚类效果和模型的可靠性。

基于图划分的谱聚类方法的研究

基于图划分的谱聚类方法的研究
关 键词 : 聚 类; 图 划分; 谱 图理论 ;半监 督 聚类 ;机 器 学 习 谱 中图法分 类号 :P 0. T 3 1 6 文献 标识 码 : A 文 章 编 号 :0 072 2 1) 1 2 90 10 —04(0 1O — 8—4 0
Re e r h o c r l l t rn s d o r p a tto s a c fs pe ta use i g ba e n g a h p rii n c WANG i ig C N u - e Hu n , HE J nj q i
给 定 一 无 向加 权 图 G ( : , [ ] 为一对 称矩 阵,
的 谱 分 割 原 理 , 聚 类 首 先 以 待 聚 类 的 数 据 对 象 集 构 造 无 向 谱
加 权 图 , 后 通 过 分 析 与 图 相 关 的矩 阵 的特 征 向量 和 特 征 值 然 来得到 聚类结 果。 聚类 算法最 初用于 V S 设计 、 算机视 谱 LI 计 觉、 图像 分 割 等 领 域 , 逐 步 扩 展 到文 本 挖 掘 和 生物 信 息 挖 掘 并 等 领 域 中 。 国 内 外 学 者 对 谱 聚 类 做 了广 泛 的 研 究 , 在 实 践 并
计 算 机 工 程 与 设 计 C m u r ni e n d e g 2 1, o. , o o pt E g er g n D s n 0 1 V 1 2 N . e n i a i 3 1
29 8
基 于 图划分 的谱 聚类方法 的研 究
王 会 青 , 陈 俊 杰
( 太原 理 _ 大 学 计 算机 与 软件 学 院, 山 西 太原 0 0 2 ) T - 3 0 4
( stt o o p tr n ot ae T iunU i r t o cn l y T i a 3 04 C ia I tue f m ue adS f r, a a nv sy f eh oo , a u n0 02 , hn) ni C w y e i T g y
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

南京信息工程大学滨江学院实验(实习)报告
实验(实习)名称基于划分方法的聚类分析实验(实习)日期 2011.6.10 指导教师闫雷鸣
专业软工(动画)年级 2008 班次(1)班姓名王圆媛学号 20082358002 得分
一、实验目的
(1)学习聚类分析的基本概念、各种数据类型、聚类方法的分类。

(2)学会典型的划分方法K均值和K中心点算法的基本原理、特点、优缺点。

(3)应用Weka软件,学会导入数据文件,并对数据文件进行预处理。

(4)学会并应用划分方法中K均值和K中心点算法对数据集进行聚类分析。

二、实验准备:
Bank-data
三、实验要求:
用划分方法中K均值和K中心点算法对数据集进行聚类分析
四、实验内容:
4.1 相关知识
聚类分析中的“类”(cluster)和前面分类的“类”(class)是不同的,对cluster更加准确的翻译应该是“簇”。

聚类的任务是把所有的实例分配到若干的簇,使得同一个簇的实例聚集在一个簇中心的周围,它们之间距离的比较近;而不同簇实例之间的距离比较远。

对于由数值型属性刻画的实例来说,这个距离通常指欧氏距离。

聚类分析中使用最常见的K均值(K-means)算法。

K均值聚类方法的步骤如下。

(1)K均值算法首先随机的指定K个簇中心。

(2)将每个实例分配到距它最近的簇中心,得到K个簇;
(3)计分别计算各簇中所有实例的均值,把它们作为各簇新的簇中心。

重复(2)和(3),直到K个簇中心的位置都固定,簇的分配也固定。

上述K均值算法只能处理数值型的属性,遇到分类型的属性时要把它变为若干个取值0和1的属性。

WEKA将自动实施这个分类型到数值型的变换,而且Weka会自动对数值型的数据作标准化。

Weka中列出了很多聚类算法。

对于EM实现,用户可指定需要产生多少聚类,否则所用的算法可通过交叉验证来决定,在这种情况下,折的数量固定为10(除非训练实例小于10个)。

用户可指定循环次数的最大值,并且为正常的密度计算设定可允许的最小标准差。

SimpleKMeans使用k均值来聚类数据;聚类的数量通过一个参数设定。

Cobweb实现了用于名词属性的Cobweb算法和用于数值性属性的Classit算法。

FarthestFirst实现Hochbaum 和Shmoys远端优先遍历算法。

MakeDensityBaseCluster是一个元聚类器,它包装一个聚类算法,使其返回一个概率分布和密度。

它为每个聚类拟合一个离散分布,或一个对称的正态
分布。

4.2 实验操作
(1)在开始程序(或者桌面图标)中找到WEKA3.6.2,单击即可启动WEKA,启动WEKA 时会发现首先出现的一个命令提示符。

接着将出现如下Weka GUI Chooser界面。

(2)选择GUI Chooser中的探索者(Explorer)用户界面。

点击预处理(Preprocess)功能按钮的,Open file,选择其中的“bank-data”数据作关联规则的分析。

打开“bank-data.csv”,可以看到“Current relation”、“Attributes”“Selected attribute”三个区域。

(3)对于原始数据“bank-data.csv”的预处,删去属性“id”,保存为ARFF格式后,修改属性“children”为分类型。

这样得到的数据文件为“bank.arff”,含600条实例。

(4)用“Explorer”打开刚才得到的“bank.arff”,并切换到“Cluster”选项卡。

点击“Choose”在随后打开的层级式菜单中的选择“SimpleKMeans”,这是WEKA中实现K均值的算法。

点击旁边的文本框,修改“numClusters”为6,说明我们希望把这600条实例聚成6类,即K=6。

下面的“seed”参数是要设置一个随机种子,依此产生一个随机数,用来得到K均值算法中第一次给出的K个簇中心的位置,先设定为10。

(7)选中“Cluster Mode”的“Use training set”,点击“Start”按钮,观察右边“Clusterer output”给出的聚类结果。

也可以在左下角“Result list”中这次产生的结果上点右键,“View in separate window”在新窗口中浏览结果。

(8)实验结果:
结果中有这么一行字样:
Within cluster sum of squared errors: 1604.7416683433223
这是评价聚类好坏的标准,数值越小说明同一簇实例之间的距离越小。

“seed”参数的变化,导致得到的这个数值也发生变化。

通过多尝试变化seed值,并取使得数值最小的seed 值。

接下来“Cluster centroids:”之后列出了各个簇中心的位置。

对于数值型的属性,簇中心就是它的均值(Mean);分类型的就是它的众数(Mode),也就是说这个属性上取值为众数值的实例最多。

对于数值型的属性,还给出了它在各个簇里的标准差(Std Devs)。

最后的“Clustered Instances”是各个簇中实例的数目及百分比。

为了观察可视化的聚类结果,在左下方“Result list”列出的结果上右击,点“Visualize cluster assignments”。

弹出的窗口给出了各实例的散点图。

最上方的两个框是选择横坐标和纵坐标,第二行的“color”是散点图着色的依据,默认是根据不同的簇“Cluster”给实例标上不同的颜色。

可以在这里点“Save”把聚类结果保存成ARFF文件。

在这个新的ARFF文件中,“instance_number”属性表示某实例的编号,“Cluster”属性表示聚类算法给出的该实例所在的簇。

4.3 扩展学习
(1)选择其他数据集来对其进行k-means聚类分析,并对其聚类结果进行分析研究。

(2)通过对其参数的修正完善加深理解k-means聚类分析算法。

五、实验总结
本次weka的运行实验进行的很顺利,通过它我学习了聚类分析的基本概念、各种数据类型、聚类方法的分类。

掌握了典型划分方法K均值和K中心点算法的基本原理、特点、优缺点。

学会并应用划分方法中K均值和K中心点算法对数据进行聚类分析。

爱人者,人恒爱之;敬人者,人恒敬之;宽以济猛,猛以济宽,政是以和。

将军额上能跑马,宰相肚里能撑船。

宽容就是忘却,人人都有痛苦,都有伤疤,动辄去揭,便添新创,旧痕新伤难愈合,忘记昨日的是非,忘记别人先前对自己的指责和谩骂,时间是良好的止痛剂,学会忘却,生活才有阳光,才有欢乐。

不要轻易放弃感情,谁都会心疼;不要冲动下做决定,会后悔一生。

也许只一句分手,就再也不见;也许只一次主动,就能挽回遗憾。

世界上没有不争吵的感情,只有不肯包容的心灵;生活中没有不会生气的人,只有不知原谅的心。

感情不是游戏,谁也伤不起;人心不是钢铁,谁也疼不起。

好缘分,凭的就是真心真意;真感情,要的就是不离不弃。

爱你的人,舍不得伤你;伤你的人,并不爱你。

你在别人心里重不重要,自己可以感觉到。

所谓华丽的转身,都有旁人看不懂的情深。

人在旅途,肯陪你一程的人很多,能陪你一生的人却很少。

谁在默默的等待,谁又从未走远,谁能为你一直都在?
这世上,别指望人人都对你好,对你好的人一辈子也不会遇到几个。

人心只有一颗,能放在心上的人毕竟不多;感情就那么一块,心里一直装着你其实是难得。

动了真情,情才会最难割;付出真心,心才会最难舍。

你在谁面前最蠢,就是最爱谁。

其实恋爱就这么简单,会让你智商下降,完全变了性格,越来越不果断。

所以啊,不管你有多聪明,多有手段,多富有攻击性,真的爱上人时,就一点也用不上。

这件事情告诉我们。

谁在你面前很聪明,很有手段,谁就真的不爱你呀。

遇到你之前,我以为爱是惊天动地,爱是轰轰烈烈抵死缠绵;我以为爱是荡气回肠,爱是热血沸腾幸福满满。

我以为爱是窒息疯狂,爱是炙热的火炭。

婚姻生活牵手走过酸甜苦辣温馨与艰难,我开始懂得爱是经得起平淡。

相关文档
最新文档