新人教版七年级数学下册第五章导学案及参考答案

合集下载

七年级数学下册第五章相交线与平行线512垂线第2课时垂线段导学案新人教版

七年级数学下册第五章相交线与平行线512垂线第2课时垂线段导学案新人教版

5.1.2垂线第二课时垂线段有一个角中是 ____ 时,就说这两条直线互相垂直, 其中一条直线叫做另一条直线的,他们的交点叫做 _______2,过一点有且只有 ________ 直线与已知直线垂直。

) ----------------------------------------------直线L 上有点,A, AA,A 3,A 4,O,点P 在直线外, 连接直线外一点 P 到直线上各点,比较线段PA,P A i, PA 2,PA 3,PA 4,PO,的长短,哪一条线段—一 最短?最短 _____ 。

注意:我们称线段PA 为点P 到直线L 的垂线段。

从直线外一点引一条直线的垂线,这点和垂足之间的线段叫做垂线段1.提出问题:在灌溉时候,要把河流 AB 中的水引导农田 P 处,如何挖河渠使渠道最短? 不知道吧。

学完下面的 知识,一 、2.探究再回来解决他吧什十么发现。

1,当两条直线相交所成的四个角中, 3,结论:连接直线外一点与直线上各点的所有直线中,垂线段最短。

简而言之:垂线段最短。

3. 现在能完成1的问题了吧?动手画起来。

4. 直线外一点到这条直线的垂线段的距离的长度,叫做点到直线的距离。

上图中,线段PA注意:垂线,垂线段和点到直线的距离是三个不同的概念,不能混淆。

垂线是直线,垂线段是线段,点到直线的距离是一个数量。

的长度就是点P到直线L的距离。

5. 垂线段的画法(师生共同完成)。

已知:如图,三角形ABC / BAC是钝角。

(1)画出点C到AB的距离。

(2)过点A画BC的垂线。

(3)量出点B到AC的距离。

三.试一试。

1. 课本6页练习。

2. 如图。

BCL AC,CB=8cm.AC=6cm,AB=10cm,那么点B到AC的距离是.点A到BC的距离是___________ .A,B两点之间的距离是________ .1. 如图所示。

一辆汽车在直线形的公路AB上由A向B行驶,M,N分别是位于公路两侧的村庄。

2019七年级数学下册5.1.2垂线习题新版新人教版教案导学案练习含答案

2019七年级数学下册5.1.2垂线习题新版新人教版教案导学案练习含答案

5.1.2 垂线基础题知识点1 认识垂直1.(贺州中考)如图,OA⊥OB,若∠1=55°,则∠2的度数是(A)A.35°B.40°C.45°D.60°2.如图,直线AB,CD相交于点O,若∠AOC=90°,则AB与CD的位置关系是垂直;若已知AB⊥CD,则∠AOC=∠COB=∠BOD=∠AOD=90°.3.如图,已知直线AB,CD,EF相交于点O,AB⊥CD,∠DOE=127°,求∠AOF的大小.解:因为AB⊥CD,所以∠DOB=90°.又因为∠DOE=127°,所以∠BOE=∠DOE-∠DOB=127°-90°=37°.所以∠AOF=∠BOE=37°.知识点2 画垂线4.(和平区期中)画一条线段的垂线,垂足在(D)A.线段上B.线段的端点C.线段的延长线上D.以上都有可能5.(邢台期中)下列各图中,过直线l外点P画l的垂线CD,三角板操作正确的是(D)知识点3 垂线的性质6.下列说法正确的有(C)①在平面内,过直线上一点有且只有一条直线垂直于已知直线;②在平面内,过直线外一点有且只有一条直线垂直于已知直线;③在平面内,可以过任意一点画一条直线垂直于已知直线;④在平面内,有且只有一条直线垂直于已知直线.A.1个B.2个C.3个D.4个7.下面可以得到在如图所示的直角三角形中斜边最长的原理是(D)A.两点确定一条直线B.两点之间线段最短C.过一点有且只有一条直线和已知直线垂直D.垂线段最短8.某中学创建绿色和谐校园活动中要在一块三角形花园里种植两种不同的花草,同时拟从点A修建一条花间小径到边BC.若要使修建小路所使用的材料最少,请在图中画出小路AD,你这样画的理由是垂线段最短.知识点4 点到直线的距离9.点到直线的距离是指这点到这条直线的(D)A.垂线段B.垂线C.垂线的长度D.垂线段的长度10.(枝江市期中)如图所示,在灌溉农田时,要把河(直线l表示一条河)中的水引到农田P处,设计了四条路线PA,PB,PC,PD(其中PB⊥l),你选择哪条路线挖渠才能使渠道最短(B)A.PA B.PB C.PC D.PD11.如图所示,AB⊥AC,AD⊥BC,垂足分别为A,D,AB=6 cm,AD=5 cm,则点B到直线AC的距离是6_cm,点A 到直线BC的距离是5_cm.中档题12.在数学课上,同学们在练习过点B作线段AC所在直线的垂线段时,有一部分同学画出下列四种图形,请你数一数,错误的个数有(D)A.1个B.2个C.3个D.4个13.(淄博中考)如图,AB⊥AC,AD⊥BC,垂足分别为A,D,则图中能表示点到直线距离的线段共有(D) A.2条B.3条C.4条D.5条14.如图,△ABC中,∠C=90°,AC=3,点P是边BC上的动点,则AP的长不可能是(A) A.2.5 B.3C.4 D.515.(济源期末)点P为直线l外一点,点A,B,C为直线上三点,PA=2 cm,PB=3 cm,PC=4 cm,则点P到直线l的距离为(D)A.等于2 cm B.小于2 cmC.大于2 cm D.不大于2 cm16.如图,田径运动会上,七年级二班的小亮同学从C点起跳,假若落地点是D.当AB与CD垂直时,他跳得最远.17.如图,当∠1与∠2满足条件∠1+∠2=90°时,OA⊥OB.18.(河南中考改编)如图,直线AB,CD相交于点O,射线OM平分∠AOC,ON⊥OM,若∠AOM=35°,则∠CON的度数为55°.19.如图,已知DO⊥CO,∠1=36°,∠3=36°.(1)求∠2的度数;(2)AO与BO垂直吗?说明理由.解:(1)因为DO⊥CO,所以∠DOC=90°.因为∠1=36°,所以∠2=90°-36°=54°.(2)AO⊥BO.理由如下:因为∠3=36°,∠2=54°,所以∠3+∠2=90°.所以AO⊥BO.20.如图,两直线AB,CD相交于点O,OE平分∠BOD,如果∠AOC∶∠AOD=7∶11.(1)求∠COE;(2)若OF⊥OE,求∠COF.解:(1)因为∠AOC ∶∠AOD =7∶11,∠AOC +∠AOD =180°, 所以∠AOC =70°,∠AOD =110°. 所以∠BOD =∠AOC =70°, ∠BOC =∠AOD =110°. 又因为OE 平分∠BOD ,所以∠BOE =∠DOE =12∠BOD =35°.所以∠COE =∠BOC +∠BOE =110°+35°=145°. (2)因为OF ⊥OE ,所以∠FOE =90°.所以∠FOD =∠FOE -∠DOE =90°-35°=55°. 所以∠COF =180°-∠FOD =180°-55°=125°. 综合题21.如图所示,一辆汽车在直线形的公路AB 上由A 向B 行驶,C ,D 分别是位于公路AB 两侧的村庄.(1)该汽车行驶到公路AB 上的某一位置C ′时距离村庄C 最近,行驶到D ′位置时,距离村庄D 最近,请在公路AB 上作出C ′,D ′的位置(保留作图痕迹);(2)当汽车从A 出发向B 行驶时,在哪一段路上距离村庄C 越来越远,而离村庄D 越来越近?(只叙述结论,不必说明理由)解:(1)过点C 作AB 的垂线,垂足为C ′,过点D 作AB 的垂线,垂足为D ′. (2)在C ′D ′上距离村庄C 越来越远,而离村庄D 越来越近.。

人教版七年级数学下册第五章5.3.2《命题、定理、证明》教案

人教版七年级数学下册第五章5.3.2《命题、定理、证明》教案
-理解并运用定理证明过程中,如何从已知条件出发,逐步推理到结论。
-在实际问题中识别和应用所学的命题、定理和证明方法。
举例:针对命题真假判断的难点,设计一些具有迷惑性的命题,让学生分析讨论,如“如果一个角的补角是直角,那么这个角是锐角”这一命题的真假。对于证明方法,通过具体例题展示反证法的步骤,解释反设的意义,并指导学生如何寻找矛盾点。在应用难点方面,给出一些综合性的问题,如“证明一个四边形是平行四边形”,引导学生结合所学定理和证明方法,逐步解决问题。
3.重点难点解析:在讲授过程中,我会特别强调命题的判断和定理的证明这两个重点。对于难点部分,如反证法,我会通过举例和步骤分解来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与命题、定理相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作,如通过折叠纸片来验证平行线的性质。
此外,课堂上的实践活动和小组讨论环节,学生们表现得非常积极,这说明他们对于参与到课堂活动中有着很高的热情。但在这一过程中,我也注意到有些学生过于依赖同伴,自己思考得不够深入。因此,我需要在活动中更好地引导他们独立思考,培养他们自主解决问题的能力。
还有一个值得注意的问题是,在新课讲授过程中,我是否把重点和难点讲解得足够清晰。从学生的反馈来看,有些地方还需要我进一步讲解和强调。在今后的教学中,我会更加关注学生的接受程度,及时调整教学方法和节奏,确保他们能够更好地掌握核心知识。
3.成果分享:每个小组将选择一名代表来分享他都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了命题的基本概念、定理的重要性以及证明的方法。同时,我们也通过实践活动和小组讨论加深了对这些知识点的理解。我希望大家能够掌握这些知识点,并在解决数学问题时灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。

【人教版】七年级下册数学全册导学案附同步练习及单元测试卷(含答案)

【人教版】七年级下册数学全册导学案附同步练习及单元测试卷(含答案)
∠1=70°,求∠2的度数
3、如图AB∥DF, DE∥BC,且∠1=65°,
求∠2∠3 ∠4的度数
五、反馈检测
1、如图∠1=70°,若m∥n,则∠2=
2、如图AD∥BC,点E在BD的延长线上,
若∠ADE=155°,则∠DBC=
3、如图a∥b,∠1=20°,∠2=65°
则∠3=
七年级下册数学第五章相交线与平行线
四、拓展提高
1、如图,试用两种不同的添线方法画出 B和 C的同位角
2、如图, B和 D是同旁内角吗?为什么?你能用直尺画出 B的同旁内角吗?
七年级下册数学第五章相交线与平行线
导学5 5.2.1平行线
一、学习目标
(2)理解平行线的概念,平行公理,平行公理的推论。
(2)学会过直线外一点画这条直线的平行线
且∠GEF=20°,
则∠1=
3)课本21页练习
三、合作学习、
例1、如图∠1与∠2互余,∠2与∠3互补,
已知∠3=130°,求∠4
例2、如图∠5与∠4互补,∠3=∠D,
那么∠1与∠2相等吗?为什么?
四、拓展提高
例3 如图∠1+∠2=180°,∠3=∠B,试判段∠AED与∠ACB的关系。
五、反馈检测
1、如图∠1=∠2,∠3=110°,则∠7=
七年级下册数学第五章相交线与平行线
导学6 5.(1)掌握平行线判定的方法1,2,3
(2)学会利用平行线判定方法进行推理
二、自主学习
阅读教材,理解平行线判定方法1,2,3
一、填空
给下面的说理过程,填上理论依据和各种量
如果,直线AB、CD被EF所截,点H为CD与EF的交点, 1= , 2= ,GH CD于H,说明AB//CD

(完整)新人教版七年级数学(下册)第五章导学案及参考答案

(完整)新人教版七年级数学(下册)第五章导学案及参考答案

新人教版七年级数学(下册)第五章导学案及参考答案第五章 相交线与平行线课题:5.1.1 相交线【学习目标】: 在具体情境中了解邻补角、对顶角, 能找出图形中的一个角的邻补角和对顶角,理解对顶角相等,并能运用它解决一些问题。

【学习重点】:邻补角、对顶角的概念,对顶角性质与应用。

【学习难点】:理解对顶角相等的性质的探索。

【导学指导】 一、知识链接 1.读一读,看一看学生欣赏图片,阅读其中的文字.师生共同总结:我们生活的世界中,蕴涵着大量的相交线和平行线. 本章要研究相交线所成的角和它的特征,相交线的一种特殊形式即垂直,垂线的性质, 研究平行线的性质和平行的判定以及图形的平移问题.2.观察剪刀剪布的过程,引入两条相交直线所成的角教师出示一块布片和一把剪刀,表演剪刀剪布过程,提出问题:剪布时,用力握紧把手,引发了什么变化?进而使什么也发生了变化?学生观察、思考、回答,得出结论: 二、自主探究1.学生画直线AB 、CD 相交于点O,并说出图中4个角,两两相配共能组成几对角? 各对角的位置关系如何?根据不同的位置怎么将它们分类?学生思考并在小组内交流,全班交流.教师再提问:如果改变∠AOC 的大小, 会改变它与其它角的位置关系和数量关系吗?(1)O DCB A3.邻补角、对顶角概念 邻补角的定义是: 对顶角角的定义是: 5.对顶角性质.(1)学生说一说在学习对顶角概念后,结果实际操作获得直观体验发现了什么?并说明理由。

对顶角性质:( 2)学生自学例题例:如图,直线a, b 相交,∠1=40°,求∠2,∠3,∠4的度数.【课堂练习】: 1.课本P3练习2. 课本P8习题1【要点归纳】:邻补角、对顶角的概念及性质:【拓展训练】1. 如图1,直线AB 、CD 、EF 相交于点O,∠BOE 的对顶角是_______,∠COF 的邻补角是________; 若∠AOC:∠AOE=2:3,∠EOD=130°,则∠BOC=_________.(1) (2)2.如图2,直线AB 、CD 相交于点O,∠COE=90°,∠AOC=30°,∠FOB=90°, 则∠EOF=________。

七年级数学下册全册导学案(新版人教版)

七年级数学下册全册导学案(新版人教版)

七年级数学下册全册导学案(新版人教版)本资料为woRD文档,请点击下载地址下载全文下载地址:统计调查(二)【学习目标】了解总体、个体、样本及样本容的概念以及抽样调查的意义,明确在什么情况下采用抽样调查或全面调查,进一步熟悉对数据的收集、整理、描述和分析.【学习重点】对概念的理解及对数据收集整理【学习难点】总体概念的理解和随机抽样的合理性一、【自主学习】、学前准备:自学课本153—155页,写出你的困惑:二、【合作探究】如果要对某校XX名学生对新闻、体育、动画、娱乐、戏曲五类电视节目的喜爱情况,怎样进行调查?.抽样调查的意义在上述问题中,由于学生人数比较多,全面调查花费的时间长,消耗的人力、物力大,因此需要寻求既省时又省力又能解决问题的方法,这就是抽样调查抽样调查:抽取一部分对象进行调查的方法,叫抽样调查.2.总体、个体、样本、样本容量的意义总体:所要考察对象的全体.个体:总体的每一个考察对象叫个体.样本:抽取的部分个体叫做一个样本.样本容量:样本中个体的数目.3.抽样的注意事项:①抽样调查要具有广泛性和代表性,即样本容量要恰当.样本容量过少,那么不能很好地反映总体的情况,比如要调查XX名学生对电视节目的喜爱情况,若抽取的样本容量为几名学生就不能反映XX名学生的喜爱情况;如果抽取的学生人数过多,必然花费大量的时间、精力,达不到省时省力的目的.再如要调查60岁以上的老人的生病情况,在医院去抽取一些60岁以上的住院病人,它又不具有代表性,则应从60岁以上的老人册中任意抽取部分老人的生病情况来反映总体的60岁老人的生病情况,才能达到目的.②抽取的样本要有随机性.为了使样本能较好地反映总体的情况,除了有合适的样本容量外,抽取时还要尽量使每一个个体都有相等的机会被抽到,所谓随机就是机会相等.例如在XX名学生的注册学号中,随意抽取100个学号,调查这些学号对应的100名学生.当然还可以在上学或放学时,在学校门口随机进行调查;或则每隔10个人调查一个,直到调查满确定的样本容量.总体说来抽样调查最大的优点就是在抽样过程中避免了人为的干扰和偏差,因此随机抽样是最科学、应用最广泛的抽样方法,一般情况下,样本容量越大,估计精确度就越高.4.抽样调查100名学生最喜爱节目情况如下:节目类型划记人数百分比A新闻8B体育20c动画30D娱乐36E戏曲6合计00请你填充上表,并指出最好选择什么统计图来描述较好.三【达标测试】(A)、1、调查夏季市场销售的凉鞋质量情况适合采用_______________调查.2、了解一个班级学生的数学成绩是否有提高适合采用___________调查.3、数据处理的一般过程是_______________________________________.4、抽查我校一月份5天的用电量,结果如下:(单位:度)120,160,150,140,150,根据以上数据估计我校1月份用电总量为__________度.5、庆元宵校园歌手大奖赛,8位评委给6号选手的评分如下:9.8,9.9,9.5,9.7,9.4,9.7,9.6,9.6在去掉一个最高分和一个最低分后,6号选手最后平均分是__________________________.(B)、1、下列调查方式中,合适的是()A.要了解约90万顶救灾帐蓬的质量,采用普查的方式B.要了解外地游客对旅游景点“x疆民街”的满意程度,采用抽样调查的方式c.要保证“神舟七号”飞船成功发射,对主要零部件的检查采用抽样调查的方式D.要了解全疆初中学生的业余爱好,采用普查的方式2、为了了解某校七年级500名学生的身高情况,从中抽取了100名学生进行测量,这100名学生的身高是()A总体的一个样本B个体c总体D样本容量(即样本中个体的数量)4、下列适合抽样调查而不适合全面调查的是()A了解一批灯泡的使用寿命B了解截止XX年底中国的总人口C了解全市中学生电脑打字速度D了解全市七年级数学期末考试成绩5、甲、乙、丙三种糖果的售价分别为每千克6元、7元、8元.若将甲种糖果8千克,乙种糖果10千克,丙种糖果3千克混合,则售价应定为每千克()元,才能与三种糖果分开卖时卖一样多的钱(保留一位小数)A6.7B6.8c7.5D8.66、下列调查中,样本最具有代表性的是()A在重点中学调查全市高一学生的数学水平。

人教版七年级数学下册 第五章 5.1.2 垂线 导学案

人教版七年级数学下册 第五章 5.1.2 垂线  导学案

5.1相交线5.1.2垂线第1课时垂线一、新课导入1.导入课题:观察周围的景物:墙与地面、桌腿与地面、公路两边的电线杆与地面的位置关系都给我们垂直的印象,导出课题——垂线.2.学习目标:(1)能说出垂线、垂线段的意义、会用三角尺或量角器过一点画已知直线的垂线.(2)记住垂线的性质并会利用所学知识进行简单的推理.3.学习重、难点:重点:正确理解垂线、垂线段的概念.难点:能利用垂线的性质进行简单的推理.二、分层学习1.自学指导:(1)自学内容:课本P3至P4“探究”之前的内容.(2)自学时间:5分钟.(3)自学要求:认真阅读教材,对重、难点内容做好标记.不清楚,不懂的地方可以小组讨论.(4)自学参考提纲:①垂线的定义:结合相交线模型和图5.1-4体会当∠α=90°时,a和b互相垂直,这说明:当两条直线相交成的四个角中,有一个角是90°时,就说这两条直线是互相垂直的,其中一条直线叫做另一条直线的垂线,它们的交点叫做垂足.②垂线的定义推理过程(如图1):因为AB⊥CD(已知),所以∠AOC=∠AOD=∠BOC=∠BOD=90°(垂直定义).反之因为∠AOC=90°(已知),所以AB⊥CD(垂直定义).③如图2,直线a ⊥b,∠1 = 35°,则∠2 =55°.④当两条直线相交所成的四个角相等时,这两条直线有什么位置关系?为什么?互相垂直.2.自学:同学们可结合自学指导进行自学.3.助学:(1)师助生:①明了学情:教师在学生自学时巡视课堂,关注学生的学习进度和学习中存在的问题.②差异指导:对在自学中遇到疑难或认识有偏差的学生进行点拨引导.(2)生助生:学生通过小组交流探讨各自遇到的问题.4.强化:(1)垂线、垂线段的概念.(2)举例说明生活中的垂直现象.1.自学指导:(1)自学内容:课本P5练习之前的内容.(2)自学时间:3分钟.(3)自学要求:根据探究提纲动手操作画图;在动手过程中互助交流作图方法.(4)探究提纲:①如图,用三角尺或量角器画已知直线l的垂线,这样的垂线能画几条?小组内交流,明确直线l的垂线有无数条,即垂线存在,但位置有不确定性.②如图1,在直线l上取一点A,过点A画直线l的垂线,能画几条?如图2,经过直线l外一点B画直线l的垂线,这样的垂线能画几条?③从②中你能得出什么结论?在同一平面内,过一点有且只有一条直线与已知直线垂直.2.自学:学生可结合自学指导进行自学.3.助学:(1)师助生:①明了学情:了解学生是否会列表,是否理解表中的数据的意义以及画图中存在的问题.②差异指导:根据学情分类指导.(2)生助生:同桌之间、小组内交流、研讨.4.强化:(1)用三角尺过已知点画已知直线的垂线的方法:①一边靠线;②移动找点;③画垂线.(2)垂线的存在性和唯一性:在同一平面上,过一点有且只有一条直线与已知直线垂直.(3)练习:画一条线段或射线的垂线,就是画它们所在直线的垂线,如图,请你过点P画出射线AB或线段AB的垂线.三、评价1.学生学习的自我评价:各小组长谈学习收获和存在的困惑.2.教师对学生的评价:(1)表现性评价:对学生在学习中表现出的态度、情感、方法和成效进行点评.(2)纸笔评价:课堂评价检测.3.教师的自我评价(教学反思):在这堂课中,学生的主体地位突出了,真正亲历了知识形成的全过程.在自主学习、同桌合作交流的活动中升华了对知识的理解.教学实践也证明,在自由探索与合作交流的学习方式中,学生认识活动的强度和力度要比单纯接受知识大得多.在本节课实施中的每一个学习活动,都以学生个性思维、自我感悟为前提多次设计了让学生自主探索、合作交流的时间与空间.通过学生和谐有效地互动,强化了学生的自主学习意识.(时间:12分钟满分:100分)一、基础巩固(70分)1.(10分)如图所示,若AB⊥CD于点O,则∠AOD=90°;若∠BOD=90°,则AB⊥CD.2.(10分)如图所示,已知AO⊥BC于点O,那么∠1与∠2的关系是∠1+∠2=90°.第1题图第2题图第3题图第4题图3.(10分)如图,OA⊥OB,OC是一条射线,若∠AOC=120°,则∠BOC=30°.4.(10分)如图所示,直线AB⊥CD于点O,直线EF经过点O,若∠1=26°,则∠2的度数是(B)A.26°B.64°C.54°D.以上答案都不对5.(15分)如图,直线AB、CD相交于点O,EO⊥AB,垂足为O,∠EOC =35°,求∠AOD和∠BOD的度数.解:因为EO⊥AB,所以∠EOB=∠EOA=90°,所以∠COB=∠COE+∠EOB=125°.又因为∠AOD=∠BOC(对顶角相等),所以∠AOD=125°.因为∠AOC=∠AOE-∠COE=55°,所以∠BOD=∠AOC=55°(对顶角相等).二、综合应用(20分)6.如图,AB⊥l,BC⊥l,B为垂足,那么A、B、C三点在同一直线上吗?为什么?解:A、B、C三点在同一直线上.∵AB⊥l,BC⊥l.且交点都为B.∴A、B、C三点在同一直线上(在同一平面内,过一点有且只有一条直线与已知直线垂直).三、拓展延伸(20分)7.如图,直线AB,CD相交于O点,OM⊥AB于O.(1)若∠1=∠2,求∠NOD;(2)若∠BOC=4∠1,求∠AOC与∠MOD.解:(1)因为OM⊥AB,所以∠1+∠AOC=90°.又∠1=∠2,所以∠2+∠AOC=90°,所以∠NOD=180°-(∠2+∠AOC)=180°-90°=90°.(2)由已知条件∠BOC=4∠1,即90°+∠1=4∠1,可得∠1=30°,所以∠AOC=90°-30°=60°,所以由对顶角相等可得∠BOD=60°,所以∠MOD=90°+∠BOD=150°.5.1.2垂线第2课时垂线段一、新课导入1.导入课题:如图所示,在铁路旁边有一个村庄A,现要建一个火车站,为了使此村庄的人乘火车最方便(即距离最近),应怎样选择火车站的位置呢?学完这节课,相信你就会明白!2.学习目标:(1)能说出垂线段的意义和点到直线的距离的含义.(2)记住垂线段的性质,并能利用它进行简单的推理.3.学习重、难点:重点:正确理解垂线段的概念和点到直线的距离.难点:利用垂线段的性质进行简单的推理.4.自学指导(1)自学内容:课本P5的练习以下的内容.(2)自学时间:5分钟.(3)自学要求:认真阅读教材,联系生活实际体会并测量.(4)自学参考提纲:①什么叫垂线段?②在课本P5“探究”中,先通过目测估计最短的线段是PO,再通过度量或叠合法比较验证你的结论.③由②可得到:连接直线外一点与直线上各点的所有线段中,垂线段最短.简称:垂线段最短.④点到直线的距离:直线外一点到这条直线的垂线段的长度,叫做点到直线的距离.如右图,PO的长度叫做点P到直线l的距离.PO、PA、PB、PC中最短的线段是PO.⑤在课本P5“思考”图中画出水渠开挖的路线,若图中比例尺为1∶100000,水渠大约要挖多长?二、自学同学们可结合自学指导进行自学.三、助学1.师助生:(1)明了学情:教师参与到学生自学过程中,了解学生的认知情况.(2)差异指导:对个别学习有困难和认识有偏差的学生进行点拨和指导.2.生助生:小组内相互交流、探讨.四、强化1.垂线段最短.2.点到直线的距离.3.练习:如右图,三角形ABC中,∠C=90°.(1)分别指出点A到直线BC,点B到直线AC的距离是哪些线段?ACBC (2)三条边AB、AC、BC中哪条边最长?为什么?AB五、评价1.学生学习的自我评价:各学习小组长谈本组学习方式和收效及存在的困惑.2.教师对学生的评价:(1)表现性评价:对学生在学习中的态度、方法、成效以及存在的不足进行点评.(2)纸笔评价:课堂评价检测.3.教师的自我评价(教学反思):在这堂课中,我们从学生熟悉的生活实例入手,探讨了有关垂线段的意义和点到直线的距离问题,让学生真正经历了知识形成的全过程.同时课堂强调了学生的动手操作,让学生经历大胆猜测,合作交流等学习过程,为后面的学习打下坚实的基础.(时间:12分钟满分:100分)一、基础巩固(60分)1.(10分)体育课上,老师测量跳远成绩的依据是(C)A.垂直的定义B.两点之间,线段最短C.垂线段最短D.两点确定一条直线2.(10分)点到直线的距离是指(D)A.直线外一点到这条直线上一点之间的距离B.直线外或直线上一点到直线的垂线段的长度C.直线外一点到这条直线的垂线的长度D.直线外一点到这条直线的垂线段的长度3.(10分)P是直线AB外一点,过点P作PO⊥AB,垂足为O,若C为直线AB上任意一点,则线段PC与线段PO的大小关系是(C)A.PC>POB.PC<POC.PC≥POD.PC≤PO4.(10分)如图,三角形ABC中,∠C=90°,AC=3,点P是BC边上一动点,则AP的长不可能是(B)A.3B.2.8C.3.5D.45.(20分)如图所示,直线AB,CD相交于点O,P是CD上一点.(1)过点P画AB的垂线段PE;(2)过点P画直线CD的垂线,与AB相交于F点;(3)线段PE,PO,PF三者中最短的是PE,依据是垂线段最短.二、综合应用(20分)6.一辆汽车在直线形的公路AB上由A向B行驶,C、D是分别位于公路AB两侧的加油站.(1)设汽车行驶到公路AB上点M的位置时,距离加油站C最近;行驶到点N的位置时,距离加油站D最近,请在图中分别画出点M、N的位置;(2)当汽车从A出发向B行驶时,在公路AB的哪一段路上距离C、D两加油站都越来越近?在哪一段路上距离加油站D越来越近,而离加油站C却越来越远?解:(1)如图.(2)在公路AB的AM段距离C、D两加油站都越来越近,在MN段距离加油站D越来越近,而加油站C却越来越远.三、拓展延伸(20分)7.如图,平原上有A,B,C,D四个村庄,为解决当地缺水问题,政府准备修建一个蓄水池.(1)不考虑其他因素,请你画图确定蓄水池H点的位置,使它到四个村庄距离之和最小;(2)计划把河水引入蓄水池H中,怎样开渠最短并说明根据.解:(1)∵两点之间线段最短,∴连接AD,BC交于H,则H为蓄水池位置,它到四个村庄距离之和最小.(2)过H作HG⊥EF,垂足为G.“过直线外一点与直线各点的连线中,垂线段最短”是把河水引入蓄水池H 中开渠最短的根据.。

新人教版七年级下册数学第五章相交线与平行线导学案

新人教版七年级下册数学第五章相交线与平行线导学案

第五章 相交线与平行线 第一课时:§5.1.1 相交线班级: 姓名: 学号: 小组: [学习目标]1. 了解邻补角、对顶角,2. 能找出图形中的一个角的邻补角和对顶角3. ,理解对顶角相等,并能运用它解决一些问题.一、自主学习阅读P1-3课文,回答以下问题:1.探索一:完成课本P2页的探究,填在课本上. 2.你能归纳出“邻补角”的定义吗? . 3.“对顶角”的呢? . 二、合作探究 练习一:1.如图1所示,直线AB 和CD 相交于点O ,OE 是一条射线. (1)写出∠AOC 的邻补角:____ _ ___ __; (2)写出∠COE 的邻补角: __; (3)写出∠BOC 的邻补角:____ _ ___ __; (4)写出∠BOD 的对顶角:____ _.2.如图所示,∠1与∠2是对顶角的是( )探索二:任意画一对对顶角,量一量,算一算,它们相等吗?如果相等,请说明理由. 请归纳“对顶角的质”: . 练习二:1.如图,直线a ,b 相交,∠1=40°,则∠2=_______∠3=_______∠4=_______2.如图直线AB 、CD 、EF 相交于点O ,∠BOE 的对顶角是______,∠COF 的邻补角是____,若∠AOE=30°,那么∠BOE=_______,∠BOF=_______3.如图,直线AB 、CD 相交于点O ,∠COE=90°,∠AOC=30°,∠FOB=90°, 则∠EOF=_____.三、课堂小结 1.“对顶角的性质”: . 四、当堂检测1.若两个角互为邻补角,则它们的角平分线所夹的角为 度. 2.如图所示,直线a ,b ,c 两两相交,∠1=60°,∠2=23∠4,•求∠3、∠5的度数. b a 4321第1题 F EO D C B A第2题 F E OD C BA第3题图13.如图所示,有一个破损的扇形零件,•利用图中的量角器可以量出这个扇形零件的圆心角的度数,你能说出所量的角是多少度吗?你的根据是什么?4.探索规律:(1)两条直线交于一点,有对对顶角;(2)三条直线交于一点,有对对顶角;(3)四条直线交于一点,有对对顶角;(4)n条直线交于一点,有对对顶角.五、学后反思(本节课你有哪些收获?)第五章相交线与平行线第二课时:5.1.2 垂线班级:姓名:学号:小组:[学习目标]1.了解垂线、点到直线的距离的意义,理解垂线和垂线段的性质;2.会用三角板过一点画已知直线的垂线,并会度量点到直线的距离.一、自主学习阅读P 课文,回答以下问题:探索一:请你认真画一画,看看有什么收获.⑴如图1,利用三角尺或量角器画已知直线l的垂线,这样的垂线能画__________条;⑵如图2,经过直线l上一点A画l的垂线,这样的垂线能画_____条;⑶如图3,经过直线l 外一点B 画l 的垂线,这样的垂线能画_____条;(图1) (图2) (图3a ) (图3b )经过探索,我们可以发现:在同一平面内,过一点有且只有_____条直线与已知直线垂直. 二、合作探究 练习一:1.如图所示,OA ⊥OB ,OC 是一条射线,若∠AOC=120°, 求∠BOC 度数2.如图所示,直线AB ⊥CD 于点O ,直线EF 经过点O , 若∠1=26°,求∠2的度数.3.如图所示,直线AB ,CD 相交于点O ,P 是CD 上一点. (1)过点P 画AB 的垂线PE ,垂足为E .(2)过点P 画CD 的垂线,与AB 相交于F 点. (3)比较线段PE ,PF ,PO 三者的大小关系探索二:仔细观察测量比较上题中点P 分别到直线AB 上三点E 、F 、O 的距离,你还有什么收获?请将你的收获记录下来:_______________________________________________ 简单说成: .还有,直线外一点到这条直线的垂线段的 叫做点到直线的距离.注意:垂线是 ,垂线段是一条 ,点到直线的距离是一个数量,不能说“垂线段”是距离. 三、课堂小结1.在同一平面内,过一点有且只有_____条直线与已知直线垂直. 2. 点到直线的距离 四、当堂检测1.在下列语句中,正确的是( ).A .在同一平面内,一条直线只有一条垂线B .在同一平面内,过直线上一点的直线只有一条C .在同一平面内,过直线上一点且垂直于这条直线的直线有且只有一条D .在同一平面内,垂线段就是点到直线的距离 2.如图所示,AC ⊥BC ,CD ⊥AB 于D ,AC=5cm ,BC=12cm ,AB=13cm ,则点B 到AC 的距离是________,点A 到BC 的距离是_______,点C 到AB•的距离是_______,•AC>CD•的依据是_________. 4.如图所示AB ,CD 相交于点O ,EO ⊥AB 于O ,FO ⊥CD 于O ,∠EODl A l B lB与∠FOB 的大小关系是( )A .∠EOD 比∠FOB 大 B .∠EOD 比∠FOB 小C .∠EOD 与∠FOB 相等 D .∠EOD 与∠FOB 大小关系不确定5.如图,一辆汽车在直线形的公路AB 上由A 向B 行驶,C ,D 是分别位于公路AB 两侧的加油站.设汽车行驶到公路AB 上点M 的位置时,距离加油站C 最近;行驶到点N 的位置时,距离加油站D 最近,请在图中的公路上分别画出点M ,N 的位置并说明理由.6.如图,AOB 为直线,∠AOD :∠DOB=3:1,OD 平分∠COB . (1)求∠AOC 的度数;(2)判断AB 与OC 的位置关系.五、学后反思(本节课你有哪些收获?)第五章 相交线与平行线第三课时:5.1.3 同位角、内错角、同旁内角班级: 姓名: 学号: 小组:[学习目标]1.使学生理解三线八角的意义,并能从复杂图形中识别它们; 2.通过三线八角的特点的分析,培养学生抽象概括问题的能力. 一、自主学习阅读P 课文,回答以下问题:探索:如图,直线c 分别与直线a 、b 相交(也可以说两条直线a 、b 被第三条直线c 所截), 得到8个角,通常称为“三线八角”, 那么这8个角之间有哪些关系呢?a b c二、合作探究1.如图1所示,∠1与∠2是__ _角,∠2与∠4是_ 角,∠2与∠3是__ _角.(图1) (图2) (图3)2.如图2所示,∠1与∠2是___ _角,是直线______和直线_______•被直线_______所截而形成的,∠1与∠3是___ __角,是直线________和直线______•被直线________所截而形成的.3.如图3所示,∠B同旁内角有哪些?三、课堂小结1.同位角、内错角、同旁内角2.如何在各种变式的图形中找出这三类角.四、当堂检测1.如图,(1)直线AD、BC被直线AC所截,找出图中由AD、BC被直线AC所截而成的内错角是_________和__________(2)∠3和∠4是直线_________和_________被_________所截,构成内错角.2.已知∠1与∠2是同旁内角,且∠1=60°,则∠2为()A. 60°B. 120°C. 60°或120°D.无法确定3.如图,判断正误①∠1和∠4是同位角;()②∠1和∠5是同位角;()③∠2和∠7是内错角;()④∠1和∠4是同旁内角;()4.如图,直线DE、BC被直线AB所截.⑴∠1与∠2、∠1与∠3、∠1与∠4各是什么角?Q P DCBA ⑵如果∠1=∠4,那么∠1和∠2相等吗?∠1和∠3互补吗?为什么?五、学后反思(本节课你有哪些收获?)第五章 相交线与平行线§5.2.1平行线班级: 姓名: 学号: 小组:[学习目标]1.同一平面内两条直线有几种位置关系?什么是平行线?2. 会经过已知直线外 一点,能画出几条直线与已知直线平行;3.用符号语言表示“平行于同一条直线的两条直线平行”。

人教版七年级下册数学第五章平行线的性质与判定的证明-练习题及答

人教版七年级下册数学第五章平行线的性质与判定的证明-练习题及答
即∠B+∠D=96°.
∵∠B-∠D=24°,
∴∠B=60°,
即∠BEF=60°.
∵EG平分∠BEF,
∴∠GEF= ∠BEF=30°.
3.已知:如图2-10,AB∥EF,BC∥ED,AB,DE交于点G.
求证:∠B=∠E.
解析:标注AB∥EF,BC∥ED
答案:证明:∵AB∥EF,
∴∠E=∠AGD.
∵BC∥ED,
平行线的性质与判定的证明
练习题
温故而知新可以为师以:
重点1.平行线的性质
(1)两直线平行,同位角相等;
(2)两直线平行,内错角相等;
(3)两直线平行,同旁内角互补.
2.平行线的判定
(1)同位角相等,两直线平行;
(2)内错角相等,两直线平行;
(3)同旁内角互补,两直线平行互补.
例1已知如图2-2,AB∥CD∥EF,点M,N,P分别在AB,CD,EF上,NQ平分∠MNP.(1)若∠AMN=60°,∠EPN=80°,分别求∠MNP,∠DNQ的度数;
由平行线性质找到角的关系.(标注∠1=∠ABC,∠2=∠CDE)
答案:证明:如图,过点C作CF∥AB,
∵直线AB∥ED,
∴AB∥CF∥DE,
∴∠1=∠ABC,∠2=∠CDE.
∵∠BCD=∠1+∠2,
∴∠ABC+∠CDE=∠BCD;
(2)解析:动画过点C作CF∥AB,由平行线性质找到角的关系.
(标注∠ABC+∠1=180°,∠2+∠CDE=180°)
答案:∠ABC+∠BCD+∠CDE=360°.
证明:如图,过点C作CF∥AB,
∵直线AB∥ED,
∴AB∥CF∥DE,

2021年春人教版七年级数学下册全册导学案

2021年春人教版七年级数学下册全册导学案

第五章相交线与平行线5.1相交线5.1.1相交线一、导学1.导入课题:(1)观察课本图5.1-1,并阅读有关内容,体会说明:图中“剪刀”可以看作:两条相交线,画出示意图为: .(2)那么,这样的两条直线的位置关系和形成的角就是我们本节课所要研究的内容.2.学习目标:(1)能说出相交线、邻补角、对顶角的意义以及对顶角的性质.(2)能够灵活运用这几个意义和性质解决相关问题.3.学习重、难点:重点:邻补角、对顶角的概念,对顶角的性质.难点:推出“对顶角相等”的性质.二、分层学习4.自学指导:(1)自学内容:P2至P3练习前的内容.(2)自学时间:5分钟.(3)自学要求:①仔细阅读课文内容,图文比照.②动手比划,联系实际作图.(4)自学参考提纲:①如图1,直线AB、CD相交于O点,形成四个角,∠1和∠2有怎样的位置关系?a.∠1和∠2有一条公共边OA,它们的另一边互为反向延长线,具有这种关系的两个角,互为邻补角.b.图1中,互为邻补角的还有∠2和∠3,∠3和∠4,∠4和∠1.c.图2的各图中,∠1和∠2是邻补角吗?为什么?答案:A.不是,没有公共边.B.不是,另一边不是互为反向延长线.C.是,有公共边,且另一边互为反向延长线.②图1中,∠1和∠3有怎样的位置关系?a.∠1和∠3有一个公共顶点O,并且∠1的两边分别是∠3的两边的反向延长线.具有这种位置关系的两个角,互为对顶角,图中互为对顶角的还有∠2和∠4.b.图3的各图中,∠1和∠2是对顶角吗?为什么?答案:B、E所对应图中的∠1和∠2是对顶角.c.请分别画出图4中∠1的对顶角和∠2的邻补角.d.如图5,三条直线AB、CD、EF相交于点O,∠AOE的对顶角是∠BOF,∠EOD的邻补角是∠FOD和∠COE.③a.在图1中,∠1与∠3有怎样的数量关系?答案:∠1=∠3b.在图1中,∠2与∠3有怎样的数量关系?你是怎样得到的?能用几何语言推理吗?答案:∠2+∠3=180°④在例1中,a.若把条件“∠1=40°”改成“∠1+∠3=80°”,你能求出各个角的度数吗?b.若把条件“∠1=40°”改成“∠1∶∠2=2∶7”,你能求出各个角的度数吗?二、自学同学们可结合自学指导进行自学.三、助学1.师助生:(1)明了学情:深入学生自学过程之中,了解他们的学习情况:①是否知道邻补角、对顶角的位置关系,从而能从图形中准确予以识别.②能否用推理的形式说明“对顶角相等”.(2)差异指导:对在自学中有认识偏差和有疑难问题的同学进行点拨引导.2.生助生:在小组中相互交流指导,运用“兵教兵”.四、强化1.邻补角、对顶角的定义以及对顶角的性质.2.练习:(1)下列说法对不对?①邻补角可以看成是平角被过它顶点的一条射线分成的两个角.(√)②邻补角是互补的两个角,互补的两个角是邻补角.(×)③因为对顶角相等,所以相等的两个角是对顶角.(×)(2)课本P3“练习”.五、评价1.学生学习的自我评价:各小组代表总结学习收获和存在的问题与疑点.2.教师对学生的评价:(1)表现性评价:对学生在学习过程中的态度、方法、成效和存在的不足进行点评.(2)纸笔评价:课堂评价检测.3.教师的自我评价(教学反思):本节课通过画图量角,让学生有对对顶角相等、邻补角互补知识的感性认识.学生对概念的理解及简单的一些推理说明基本能掌握.对于课堂上个别学生在解题过程中出现乱、繁的现象,课后应及时补差补缺.争取让每个孩子掌握这些概念及推理说明方法.(时间:12分钟满分:100分)一、基础巩固(70分)1.(20分)如图,直线c分别与直线a、b相交形成8个角,写出图中满足下列条件的角.(1)∠1的邻补角有∠2,∠4;(2)∠3的邻补角有∠2,∠4;(3)∠5的邻补角有∠6,∠8;(4)∠7的邻补角有∠6,∠8;(5)对顶角有∠1和∠3,∠2和∠4,∠5和∠7,∠6和∠8.第1题图第2题图2.(15分)如图所示:(1)邻补角有∠5和∠6,∠1和∠2,∠2和∠3,∠3和∠4,∠4和∠1;(2)对顶角有∠1和∠3,∠2和∠4.3.(15分)如图,直线AB、CD相交于点O,∠BOC的对顶角是∠AOD,邻补角是∠AOC和∠BOD.若∠AOC=80°,∠1=30°,则∠2的度数是50°.第3题图第4题图4.(20分)如图,直线AB、CD相交于点O,∠AOE=90°,如果∠1=20°,那么∠2=20°,∠3=70°,∠4=160°.二、综合运用(20分)5.如图,直线AB,CD,EF相交于点O.(1)写出∠AOC,∠BOE的邻补角;(2)写出∠DOA,∠EOC的对顶角;(3)如果∠AOC=50°,求∠BOD,∠COB的度数.解:(1)∠AOC的邻补角:∠BOC,∠AOD;∠BOE的邻补角:∠AOE,∠BOF;(2)∠DOA的对顶角是∠BOC;∠EOC的对顶角是∠DOF;(3)因为∠BOD是∠AOC的对顶角,所以∠BOD=∠AOC=50°; 因为∠COB是∠AOC的邻补角,所以∠COB=180°-∠AOC=130°.三、拓展延伸(10分)6.如图,直线AB,CD相交于点O,OA平分∠EOC.(1)若∠EOC=70°,求∠BOD的度数;(2)若∠EOC∶∠EOD=2∶3,求∠BOD的度数.解:(1)因为OA平分∠EOC,所以∠AOC=12∠EOC=35°,又因为∠BOD是∠AOC的对顶角,所以∠BOD=∠AOC=35°; (2)因为∠EOC是∠EOD的邻补角,且∠EOC∶∠EOD=2∶3,所以∠EOC=72°,所以∠AOC=12∠EOC=36°,所以∠BOD=∠AOC=36°.5.1相交线5.1.2垂线第1课时垂线一、新课导入1.导入课题:观察周围的景物:墙与地面、桌腿与地面、公路两边的电线杆与地面的位置关系都给我们垂直的印象,导出课题——垂线.2.学习目标:(1)能说出垂线、垂线段的意义、会用三角尺或量角器过一点画已知直线的垂线.(2)记住垂线的性质并会利用所学知识进行简单的推理.3.学习重、难点:重点:正确理解垂线、垂线段的概念.难点:能利用垂线的性质进行简单的推理.二、分层学习1.自学指导:(1)自学内容:课本P3至P4“探究”之前的内容.(2)自学时间:5分钟.(3)自学要求:认真阅读教材,对重、难点内容做好标记.不清楚,不懂的地方可以小组讨论.(4)自学参考提纲:①垂线的定义:结合相交线模型和图5.1-4体会当∠α=90°时,a和b互相垂直,这说明:当两条直线相交成的四个角中,有一个角是90°时,就说这两条直线是互相垂直的,其中一条直线叫做另一条直线的垂线,它们的交点叫做垂足.②垂线的定义推理过程(如图1):因为AB⊥CD(已知),所以∠AOC=∠AOD=∠BOC=∠BOD=90°(垂直定义).反之因为∠AOC=90°(已知),所以AB⊥CD(垂直定义).③如图2,直线a ⊥b,∠1 = 35°,则∠2 =55°.④当两条直线相交所成的四个角相等时,这两条直线有什么位置关系?为什么?互相垂直.2.自学:同学们可结合自学指导进行自学.3.助学:(1)师助生:①明了学情:教师在学生自学时巡视课堂,关注学生的学习进度和学习中存在的问题.②差异指导:对在自学中遇到疑难或认识有偏差的学生进行点拨引导.(2)生助生:学生通过小组交流探讨各自遇到的问题.4.强化:(1)垂线、垂线段的概念.(2)举例说明生活中的垂直现象.1.自学指导:(1)自学内容:课本P5练习之前的内容.(2)自学时间:3分钟.(3)自学要求:根据探究提纲动手操作画图;在动手过程中互助交流作图方法.(4)探究提纲:①如图,用三角尺或量角器画已知直线l的垂线,这样的垂线能画几条?小组内交流,明确直线l的垂线有无数条,即垂线存在,但位置有不确定性.②如图1,在直线l上取一点A,过点A画直线l的垂线,能画几条?如图2,经过直线l外一点B画直线l的垂线,这样的垂线能画几条?③从②中你能得出什么结论?在同一平面内,过一点有且只有一条直线与已知直线垂直.2.自学:学生可结合自学指导进行自学.3.助学:(1)师助生:①明了学情:了解学生是否会列表,是否理解表中的数据的意义以及画图中存在的问题.②差异指导:根据学情分类指导.(2)生助生:同桌之间、小组内交流、研讨.4.强化:(1)用三角尺过已知点画已知直线的垂线的方法:①一边靠线;②移动找点;③画垂线.(2)垂线的存在性和唯一性:在同一平面上,过一点有且只有一条直线与已知直线垂直.(3)练习:画一条线段或射线的垂线,就是画它们所在直线的垂线,如图,请你过点P画出射线AB或线段AB的垂线.三、评价1.学生学习的自我评价:各小组长谈学习收获和存在的困惑.2.教师对学生的评价:(1)表现性评价:对学生在学习中表现出的态度、情感、方法和成效进行点评.(2)纸笔评价:课堂评价检测.3.教师的自我评价(教学反思):在这堂课中,学生的主体地位突出了,真正亲历了知识形成的全过程.在自主学习、同桌合作交流的活动中升华了对知识的理解.教学实践也证明,在自由探索与合作交流的学习方式中,学生认识活动的强度和力度要比单纯接受知识大得多.在本节课实施中的每一个学习活动,都以学生个性思维、自我感悟为前提多次设计了让学生自主探索、合作交流的时间与空间.通过学生和谐有效地互动,强化了学生的自主学习意识.(时间:12分钟满分:100分)一、基础巩固(70分)1.(10分)如图所示,若AB⊥CD于点O,则∠AOD=90°;若∠BOD=90°,则AB⊥CD.2.(10分)如图所示,已知AO⊥BC于点O,那么∠1与∠2的关系是∠1+∠2=90°.第1题图第2题图第3题图第4题图3.(10分)如图,OA⊥OB,OC是一条射线,若∠AOC=120°,则∠BOC=30°.4.(10分)如图所示,直线AB⊥CD于点O,直线EF经过点O,若∠1=26°,则∠2的度数是(B)A.26°B.64°C.54°D.以上答案都不对5.(15分)如图,直线AB、CD相交于点O,EO⊥AB,垂足为O,∠EOC =35°,求∠AOD和∠BOD的度数.解:因为EO⊥AB,所以∠EOB=∠EOA=90°,所以∠COB=∠COE+∠EOB=125°.又因为∠AOD=∠BOC(对顶角相等),所以∠AOD=125°.因为∠AOC=∠AOE-∠COE=55°,所以∠BOD=∠AOC=55°(对顶角相等).二、综合应用(20分)6.如图,AB⊥l,BC⊥l,B为垂足,那么A、B、C三点在同一直线上吗?为什么?解:A、B、C三点在同一直线上.∵AB⊥l,BC⊥l.且交点都为B.∴A、B、C三点在同一直线上(在同一平面内,过一点有且只有一条直线与已知直线垂直).三、拓展延伸(20分)7.如图,直线AB,CD相交于O点,OM⊥AB于O.(1)若∠1=∠2,求∠NOD;(2)若∠BOC=4∠1,求∠AOC与∠MOD.解:(1)因为OM⊥AB,所以∠1+∠AOC=90°.又∠1=∠2,所以∠2+∠AOC=90°,所以∠NOD=180°-(∠2+∠AOC)=180°-90°=90°.(2)由已知条件∠BOC=4∠1,即90°+∠1=4∠1,可得∠1=30°,所以∠AOC=90°-30°=60°,所以由对顶角相等可得∠BOD=60°,所以∠MOD=90°+∠BOD=150°.5.1.2垂线第2课时垂线段一、新课导入1.导入课题:如图所示,在铁路旁边有一个村庄A,现要建一个火车站,为了使此村庄的人乘火车最方便(即距离最近),应怎样选择火车站的位置呢?学完这节课,相信你就会明白!2.学习目标:(1)能说出垂线段的意义和点到直线的距离的含义.(2)记住垂线段的性质,并能利用它进行简单的推理.3.学习重、难点:重点:正确理解垂线段的概念和点到直线的距离.难点:利用垂线段的性质进行简单的推理.4.自学指导(1)自学内容:课本P5的练习以下的内容.(2)自学时间:5分钟.(3)自学要求:认真阅读教材,联系生活实际体会并测量.(4)自学参考提纲:①什么叫垂线段?②在课本P5“探究”中,先通过目测估计最短的线段是PO,再通过度量或叠合法比较验证你的结论.③由②可得到:连接直线外一点与直线上各点的所有线段中,垂线段最短.简称:垂线段最短.④点到直线的距离:直线外一点到这条直线的垂线段的长度,叫做点到直线的距离.如右图,PO的长度叫做点P到直线l的距离.PO、PA、PB、PC中最短的线段是PO.⑤在课本P5“思考”图中画出水渠开挖的路线,若图中比例尺为1∶100000,水渠大约要挖多长?二、自学同学们可结合自学指导进行自学.三、助学1.师助生:(1)明了学情:教师参与到学生自学过程中,了解学生的认知情况.(2)差异指导:对个别学习有困难和认识有偏差的学生进行点拨和指导.2.生助生:小组内相互交流、探讨.四、强化1.垂线段最短.2.点到直线的距离.3.练习:如右图,三角形ABC中,∠C=90°.(1)分别指出点A到直线BC,点B到直线AC的距离是哪些线段?ACBC (2)三条边AB、AC、BC中哪条边最长?为什么?AB五、评价1.学生学习的自我评价:各学习小组长谈本组学习方式和收效及存在的困惑.2.教师对学生的评价:(1)表现性评价:对学生在学习中的态度、方法、成效以及存在的不足进行点评.(2)纸笔评价:课堂评价检测.3.教师的自我评价(教学反思):在这堂课中,我们从学生熟悉的生活实例入手,探讨了有关垂线段的意义和点到直线的距离问题,让学生真正经历了知识形成的全过程.同时课堂强调了学生的动手操作,让学生经历大胆猜测,合作交流等学习过程,为后面的学习打下坚实的基础.(时间:12分钟满分:100分)一、基础巩固(60分)1.(10分)体育课上,老师测量跳远成绩的依据是(C)A.垂直的定义B.两点之间,线段最短C.垂线段最短D.两点确定一条直线2.(10分)点到直线的距离是指(D)A.直线外一点到这条直线上一点之间的距离B.直线外或直线上一点到直线的垂线段的长度C.直线外一点到这条直线的垂线的长度D.直线外一点到这条直线的垂线段的长度3.(10分)P是直线AB外一点,过点P作PO⊥AB,垂足为O,若C为直线AB上任意一点,则线段PC与线段PO的大小关系是(C)A.PC>POB.PC<POC.PC≥POD.PC≤PO4.(10分)如图,三角形ABC中,∠C=90°,AC=3,点P是BC边上一动点,则AP的长不可能是(B)A.3B.2.8C.3.5D.45.(20分)如图所示,直线AB,CD相交于点O,P是CD上一点.(1)过点P画AB的垂线段PE;(2)过点P画直线CD的垂线,与AB相交于F点;(3)线段PE,PO,PF三者中最短的是PE,依据是垂线段最短.二、综合应用(20分)6.一辆汽车在直线形的公路AB上由A向B行驶,C、D是分别位于公路AB两侧的加油站.(1)设汽车行驶到公路AB上点M的位置时,距离加油站C最近;行驶到点N的位置时,距离加油站D最近,请在图中分别画出点M、N的位置;(2)当汽车从A出发向B行驶时,在公路AB的哪一段路上距离C、D两加油站都越来越近?在哪一段路上距离加油站D越来越近,而离加油站C却越来越远?解:(1)如图.(2)在公路AB的AM段距离C、D两加油站都越来越近,在MN段距离加油站D越来越近,而加油站C却越来越远.三、拓展延伸(20分)7.如图,平原上有A,B,C,D四个村庄,为解决当地缺水问题,政府准备修建一个蓄水池.(1)不考虑其他因素,请你画图确定蓄水池H点的位置,使它到四个村庄距离之和最小;(2)计划把河水引入蓄水池H中,怎样开渠最短并说明根据.解:(1)∵两点之间线段最短,∴连接AD,BC交于H,则H为蓄水池位置,它到四个村庄距离之和最小.(2)过H作HG⊥EF,垂足为G.“过直线外一点与直线各点的连线中,垂线段最短”是把河水引入蓄水池H 中开渠最短的根据.5.1相交线5.1.3同位角、内错角、同旁内角一、导学1.导入课题:(1)如图1,直线AB与CD相交于点O,在∠1,∠2,∠3,∠4中,找出所有的对顶角和邻补角.(2)如图2,若直线AB、CD都和EF相交(即直线AB、CD被直线EF 所截),共有8个小于平角的角(即三线八角),这节课,我们来研究没有公共顶点的两个角的关系(板书课题).2.学习目标(1)能说出同位角、内错角、同旁内角的概念.(2)能结合图形正确找出同位角、内错角、同旁内角.3.学习重、难点:重点:同位角、内错角、同旁内角的认识.难点:在复杂图形中识别同位角、内错角、同旁内角,正确分辨是由哪两条直线被哪条直线所截而形成的.4.自学指导:(1)自学内容:课本P6~P7例题.(2)自学时间:10分钟.(3)自学要求:认真阅读教材,找出各种位置关系的两个角的特征,不懂的地方可通过组内讨论解决.(4)自学参考提纲:①图2中∠1与∠5,这两个角分别在直线AB、CD的上方,并且都在直线EF的右侧,具有这种位置关系的一对角叫做同位角,像这样的角还有∠2和∠6,∠3和∠7,∠4和∠8.②图2中∠3与∠5,这两个角都在直线AB、CD之间,并且分别在直线EF 两侧,具有这种位置关系的一对角叫做内错角,像这样的角还有∠4和∠6.③图2中∠3与∠6,这两个角都在直线AB、CD之间,且它们在直线EF 的同侧,具有这种位置关系的一对角叫做同旁内角,像这样的角还有∠4和∠5.④分别指出下图中的同位角、内错角和同旁内角.答案:同位角:∠2与∠6,∠4与∠8,∠3与∠7,∠1与∠5内错角:∠3与∠6,∠4与∠5同旁内角:∠3与∠5,∠4与∠6答案:同位角:∠1与∠3,,∠2与∠4,同旁内角:∠2与∠3⑤如图,∠B与哪个角是内错角,与哪个角是同旁内角?它们分别是哪两条直线被哪一条直线所截形成的?对∠C进行同样的讨论.解:∠B与∠DAB是内错角,与∠BAE是同旁内角,它们都是由DE与BC被AB所截形成的,还与∠BAC是同旁内角,它们是由AC、BC被BA所截形成的.∠C与∠EAC是内错角,与∠DAC是同旁内角,它们都是由DE与BC被AC所截形成的.还与∠BAC是同旁内角,它们是由AB、BC被AC所截形成的.二、自学同学们可结合自学指导进行自学.三、助学1.师助生:(1)明了学情:深入到学生自学过程中,了解学习进度,关注学生对具有这三类关系的两个角的位置特征的判断情况.(2)差异指导:对个别两个角的位置特征把握不清的学生进行点拨引导.2.生助生:小组相互交流、纠正.四、强化1.同位角、内错角、同旁内角的概念.2.归纳例题的解题要领.3.练习:(1)如图①,∠2与∠3是邻补角,∠2和∠4是内错角,∠2与∠5是同位角,∠2与∠8是同位角,∠2与∠6是同旁内角.图①图②(2)如图②:①∠DAE的同位角是∠B,它们是直线AD和直线BC被直线AB所截形成的.②∠CAD的内错角是∠C,它们是直线AD和直线BC被直线AC所截形成的.③∠B的同旁内角有∠DAB,∠CAB,∠C.五、评价1.学生学习的自我评价:各学习小组长谈本组学习方式和收效及存在的困惑.2.教师对学生的评价:(1)表现性评价:对学生在学习中的态度、方法、成效以及存在的不足进行点评.(2)纸笔评价:课堂评价检测.3.教师的自我评价(教学反思):本节课学生对简单图形的同位角、内错角和同旁内角的判定较正确,但一些略复杂图形的同位角、内错角、同旁内角的判定就不够全面.针对课堂反馈的信息应及时对学生补差补缺,对角的理解的问题应及时纠正,让所有学生都有收获,激发他们的学习兴趣.(时间:12分钟满分:100分)一、基础巩固(70分)1.(10分)如图,直线a、b被直线c所截,∠1和∠2是同位角,∠3和∠4是同旁内角,∠2和∠3是内错角.第1题图第2题图第3题图2.(20分)如图,∠1和∠2是直线EF和直线CD被直线AB所截形成的同位角.3.(10分)如图,已知∠1和∠2是内错角,则下列表述正确的是(B)A.∠1和∠2是由直线AD、AC被CE所截形成的B.∠1和∠2是由直线AD、AC被BD所截形成的C.∠1和∠2是由直线DA、DB被CE所截形成的D.∠1和∠2是由直线DA、DB被AC所截形成的4.(10分)如图,∠1和∠2是同位角的是(B)A.(1)(2)B.(2)(3)C.(1)(3)D.(2)(4)5.(20分)如图,已知∠4的同旁内角等于117°28′,求∠1、∠2、∠3的度数.解:由图可得:∠3和∠4是同旁内角.所以∠3=117°28′.又因为∠2=∠3,∠1+∠3=180°,所以∠2=∠3=117°28′,∠1=180°-∠3=62°32′.二、综合应用(20分)6.如图,∠1和∠2,∠3和∠4是由哪两条直线被一条直线所截形成的?它们各是什么位置关系的角?(1)(2)解:(1)∠1和∠2是由直线DC、AB被BD所截形成的内错角,∠3和∠4是由直线AD、BC被BD所截形成的内错角.(2)∠1和∠2是由直线AB、CD被BC所截形成的同旁内角.∠3和∠4是由直线AD、BC被AE所截形成的同位角.三、拓展延伸(10分)7.直线AB,CD相交于点O.(1)OE、OF分别是∠AOC、∠BOD的平分线,画出这个图形;(2)射线OE、OF在同一条直线上吗?(3)画出∠AOD的平分线OG,OE与OG有怎样的位置关系?为什么?解:(1)如图:(2)射线OE、OF在同一条直线上.(3)OE⊥OG.因为OE平分∠AOC,所以∠AOE=12∠AOC.同理:∠AOG=12∠AOD.所以∠AOE+∠AOG=12(∠AOC+∠AOD)=12×180°=90°.所以OE⊥OG.5.2平行线及其判定5.2.1平行线一、导学1.导入课题:如图,直线a、b是铁路上的两条铁轨,它们会相交吗?今天我们就来研究这样的两条直线——平行线.2.学习目标:(1)了解平行线的概念,知道同一平面内不重合的两条直线的两种位置关系, 能叙述平行公理以及平行公理的推论.(2)会用符号语言表示平行公理及其推论, 会用三角尺和直尺过已知直线外一点画这条直线的平行线.3.学习重、难点:重点:平行公理及其推论.难点:文字语言、图形语言、符号语言的相互转换.4.自学指导:(1)自学内容:课本P11至P12“练习”之前的内容.(2)自学时间:10分钟.(3)自学要求:认真阅读教材,重点部分做好圈点;动手操作画图,并观察图形总结规律.(4)自学参考提纲:①定义:同一平面内,直线a与b不相交,这时直线a与b互相平行.换言之,同一平面内不相交的两条直线叫做平行线.②直线a与b是平行线,记作a∥b.③同一平面内,两条直线的位置关系有两种,分别是相交和平行.④联系实际生活,列举平行线的实例.a.如右图,已知直线a及直线a外两点B、C.b.用直尺和三角尺分别过点B、C作直线a的平行线,分别记作直线b和直线c.c.结合画图过程,观察所画图形,思考:过点B(或C)画直线a的平行线,能画几条?直线b和直线c有何位置关系?答案:1条;b∥c.d.归纳总结:平行线的画法(用三角尺为例):一“落”:把三角尺一边落在已知直线上;二“靠”,用直尺紧靠三角尺的另一边;三“推”,沿直尺推动三角尺,使三角尺与已知直线重合的边过已知点;四“点”,沿三角尺过已知点的边画直线,所画直线即为所要画的线.平行公理:经过直线外一点,有且只有一条直线与这条直线平行.(与垂线的性质1相比较,注意它们的相同点和不同点)推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行.用符号语言表述为:如果b∥a,c∥a,那么b∥c.二、自学同学们可结合自学指导进行自学.三、助学1.师助生:(1)明了学情:教师巡视课堂,了解学生的自学情况:①“过直线外一点画该直线的平行线”的作图是否会操作.②平行公理与垂线性质1的相同点与不同点是否清楚.(2)差异指导:对个别学生进行指导,帮助理解画图的依据.2.生助生:各小组相互交流、纠正认知误区.四、强化1.平行线的概念及画法.2.平行公理及推论.3.练习:读下列语句,并画出图形.(1)点P是直线AB外一点,直线CD经过点P,且与直线AB平行.(2)直线AB与CD相交,点P是直线AB、CD外一点,直线EF经过点P 且与直线AB平行,与直线CD相交于点E.五、评价1.学生学习的自我评价:各小组组长汇报本组的学习情况,总结经验、收获和不足.2.教师对学生的评价:(1)表现性评价:对学生在学习中的态度、方法和收效进行点评.(2)纸笔评价:课堂评价检测.3.教师的自我评价(教学反思):本节课的重点是平行线的概念和平行公理及其推论.在本课中学生动手、动脑,独立思考,完全参与到知识的探索之中,是知识的探索者,教师也不再是满堂灌式的教学,而是学习的引导者,符合新的课堂理念.(时间:12分钟满分:100分)一、基础巩固(70分)1.(10分)在同一平面内,两条直线的位置关系有:平行和相交.2.(10分)在同一平面内,两条相交直线不可能都与第三条直线平行,这是因为如果两条直线与第三条直线平行,那么这两条直线也互相平行.3.(10分)两条直线相交,交点的个数是1,两条直线平行,交点的个数是0.4.(20分)判断:(1)不相交的两条直线叫做平行线.(×)(2)如果一条直线与两条平行线中的一条平行, 那么它与另一条直线也互相平行.(√)(3)过一点有且只有一条直线平行于已知直线.(×)5.(20分)画图并解答.(1)画∠AOB,并用量角器画∠AOB的平分线OC,在OC上任取一点P,比较点P到OA、OB的距离的大小.(2)画∠AOB,在∠AOB的内部任取一点P,过点P作直线PC∥OA交OB 于点C,再过点P作直线PD∥OB交OA于点D,比较∠AOB与∠CPD的大小.解:(1)如图:PM、PN即为点P到OA、OB的距离,PM=PN.(2)如图:∠AOB=∠CPD二、综合运用(20分)6.在同一平面内,有三条直线,它们的交点个数可能是(D)A.0B.1C.2D.0,1,2,37.如图,若AB∥CD,经过点E可画EF∥AB,则EF与CD的位置关系是EF∥CD,理由是如果两条直线都与第三条直线平行,那么这两条直线也互相平行.第7题图第8题图三、拓展延伸(10分)8.如图,MN⊥AB,垂足为M,MN交CD于点N,过M点作MG⊥CD,垂足为G,EF过点N,且EF∥AB,交MG于点H,其中线段GM的长度是点M到CD的距离, 线段MN的长度是点N到AB的距离,又是两平行线AB与EF之间的距离,点N 到直线MG的距离是NG.5.2 平行线及其判定5.2.2 平行线的判定一、新课导入1.导入课题:上节课我们学习了平行线的概念和画法,这节课我们来研究如何判定两条直线是不是平行线(板书课题).2.学习目标:(1)学会并记住平行线的判定方法1、2、3.(2)能运用平行线的判定方法进行简单的推理论证.3.学习重、难点:重点:平行线的判定方法1、2、3.难点:运用平行线的判定方法进行简单的推理论证.二、分层学习1.自学指导:(1)自学内容:课本P12至P13的内容.(2)自学时间:10分钟.(3)自学要求:阅读教材,重点处做好圈点,遇到疑难相互研讨.(4)自学参考提纲:①a.观察P12“思考”中用直尺和三角尺画平行线示意图,可以发现,在画平行线时,三角尺在移动时紧靠直尺,并且三角尺的角的大小不变,又在移动前、后,三角尺的角恰好是直线AB、CD被EF所截形成的一对同位角,这说明:如果∠DEF=∠BGF,那么AB∥CD.b.这一事实揭示的就是平行线的判定方法1:两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行,简称为同位角相等,两直线平行.用符号语言表述是:如图1,若∠1=∠2,则a∥b.c.在课本图5.2-7中,你能说出木工用图中的角尺画平行线的道理吗?。

七年级(下册)数学导学案参考答案

七年级(下册)数学导学案参考答案

七年级(下学期)数学导学案参考答案第五章相交线与平行线P2.拓展训练1.∠COF,∠AOC和∠BO D,160°;2. 150°;3. 90°;P4拓展训练1.145°; 2、60°; 3. 垂直;4. 垂直P6拓展训练1. (1)错;(2)错;(3)错;2. (略)P8拓展训练1.C2.∠4;∠5;∠4、∠5;3. (1)BC;EF;DE;同位角(2)AB;DE;BC;内错角P10拓展训练1. (略)2.D; 3 .C; 4.(略) 5. 0、1、2、3;P12拓展训练1.(1)AB∥CD ;(2)∠DCB;(3)∠3=∠2;(4)∠5=∠2;2.AD∥BE; AE∥CD ;AD∥BC;P14拓展训练1. BC(内错角相等,两直线平行) ;BC(两直线平行,同旁内角互补)2. B;3. ∠BED=∠B+∠DP18拓展训练1. B ;2. B; 3 . 9米;P20基础训练1.A2.D3.C4.B5.D6.不相交的两条直线;7. CD∥EF;8. 1; 0; 9. 0、1、2、3;10.共线;11. (略) 12. (略)P22拓展训练P241.A2.3.4. (略)第五章相交线与平行线检测试题一、 1. C 2 .A 3.B 4.D 5.C 6. D 7. C 8. B二、9. a ∥c; 10. 0、1、2、3;11. 120° 12. 115;65;13.145° 14. 102°三、(略)第六章平面直角坐标系P28拓展训练1.6 2. c 3.(-5,3);向西走2米,再向南走6 米; 4. 140P30拓展训练1、4 ;3;2. x轴 3. (4,3) (4,-3) (-4,3) (-4,-3);4. (2,-2)、(1,1)5. (-1,6) (-1,-2);6. (-3,2) (-3,-2);7. 6P32拓展训练1. B;2、B; 3. 4或-4 ; 4. B; 5. c 6. B; 7. cP34拓展训练(略)P36拓展训练1. 5 ;2. (2,-1) ;3. (1,2)P38拓展训练1.(略); 2. (略);P39基础训练1.B;2. D3. B;4.四5.一、三;二;6. 5、3;7.(1,2)、(1,-2)、(-1,2) 、(-1,-2);8. (3,-2) 9. (0,-3) 10. x轴上或y轴上11. (-1,3); (1,3)拓展训练1. (-4,0) ;2. -1;3. 4;4. 9或5\3;5. (1,3) (-5,1) (-1,-1) (-2,1); (-2,5) (1,1) (4,3) (1,5) 画图(略);第六章《平面直角坐标系》检测试卷P41、42一、1. B 2 .B 3.A 4.D 5.D 6. C 7. B 8. B 9.B 10.D二、11. (8,6); 3排4号; 12. 6或-2; 13. (1,2) ; (-1,-2) ; (1,-2); 14. 四15. 平行;3;16. 3 17. (-1,4) 或(-1,0) 18. 4或-4三、(略)第七章三角形P44拓展训练1. B2. DP46拓展训练1.5 ;2. 110°3、 2.4P48拓展训练1;1;1;2. 80°;50°;3.直角;4. 1\2∠BAC; 95°P50拓展训练1. 116°2. 70°3. 180 °P52拓展训练(略)P54拓展训练1.180 °2. 12;3. 104. 36°、72°、108°、144°;5. 150°6. A【课堂练习】1. 2;2. 19或23;3. 直角;4.12;1800°5. 9 ;6.稳定性;7. =8.钝角9. 10 ; 10. 30°;11. 100°; 12、 12;1800°;13、77°P60拓展训练1. 120° ;2. 36 °3. 18 °第七章 三角形 测试卷P61、62一、1. C 2 .D 3.C 4.C 5.C 6. C 7. B 8. C二、9. 19 10. 直角 11. 70°或55° 12. 4、6、8、12;13. 12;1800°;14. 70°三、15. 6; 16. 100°; 17. 30° ;18. 30 ;60\13; 19. 90°第八章 二元一次方程组P64拓展训练1. -1;2.a ≠-2;b ≠1;3. a=-2;4. m=1、n=1;P66拓展训练1. 3;-2 ;2. 3;-2 ;3. -4;4;4. 6\7;6\7; -6;6P68拓展训练1. (1) ⎩⎨⎧==23y x (2) ⎩⎨⎧==12y x 2. (略)3. -4\3,-2\3;4.a=19\8,b=17\8拓展训练1.⎩⎨⎧-==12y x2. ⎩⎨⎧==01b aP72拓展训练1. ⎩⎨⎧==23y x2. ⎩⎨⎧==17\6017\6y x3. 9;4. a=1\7,b=4\21P74拓展训练1.设: A 、B 两种型号的服装每件需要x, y 元,列方程组得,⎩⎨⎧=+=+18808121810109y x y x 解(略) 2. 设:这所学校现在的初中在校生为x 人和高中在校生人数y 人,列方程组得,⎩⎨⎧⨯=+=+%104200%11%84200y x y x 解(略) P82拓展训练1. a =2, b=32. ⎩⎨⎧==32y x ⎩⎨⎧-==2\52\13y x3. 设:这批货物x 有吨,原计划每天运输y 吨,列方程组得,⎩⎨⎧+⨯-=+=)5()220(1020y x y x 解得⎩⎨⎧==40800y x ,答(略) 4. 他以每小时60千米的速度行驶可准时到达。

人教版七年级数学下册 第五章 相交线与平行线 全章知识点归纳及典型题目练习(含答案)

人教版七年级数学下册 第五章 相交线与平行线 全章知识点归纳及典型题目练习(含答案)

相交线与平行线全章知识点归纳及典型题目练习1.两直线相交所成的四个角中,有一条公共边,它们的另一边互为反向延长线,具有这种关系的两个角,互为_____________.2.两直线相交所成的四个角中,有一个公共顶点,并且一个角的两边分别是另一个角两边的反向延长线,具有这种关系的两个角,互为__________.对顶角的性质:______ _________.3.两直线相交所成的四个角中,如果有一个角是直角,那么就称这两条直线相互_______.垂线的性质:⑴过一点______________一条直线与已知直线垂直.⑵连接直线外一点与直线上各点的所在线段中,_______________.4.直线外一点到这条直线的垂线段的长度,叫做________________________.5.两条直线被第三条直线所截,构成八个角,在那些没有公共顶点的角中,⑴如果两个角分别在两条直线的同一方,并且都在第三条直线的同侧,具有这种关系的一对角叫做___________ ;⑵如果两个角都在两直线之间,并且分别在第三条直线的两侧,具有这种关系的一对角叫做____________ ;⑶如果两个角都在两直线之间,但它们在第三条直线的同一旁,具有这种关系的一对角叫做_______________.6.在同一平面内,不相交的两条直线互相___________.同一平面内的两条直线的位置关系只有________与_________两种.7.平行公理:经过直线外一点,有且只有一条直线与这条直线______.推论:如果两条直线都与第三条直线平行,那么_____________________.8.平行线的判定:⑴两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行.简单说成:_____________________________________.⑵两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行.简单说成:___________________________.⑶两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行.简单说成:________________________________________.9.在同一平面内,如果两条直线都垂直于同一条直线,那么这两条直线_______ .10.平行线的性质:⑴两条平行直线被第三条直线所截,同位角相等.简单说成:_________________.⑵两条平行直线被第三条直线所截,内错角相等.简单说成:__________________________________.⑶两条平行直线被第三条直线所截,同旁内角互补.简单说成:____________________________________ .11. 判断一件事情的语句,叫做_______.命题由________和_________两部分组成.题设是已知事项,结论是______________________.命题常可以写成“如果……那么……”的形式,这时“如果”后接的部分是_____,“那么”后接的部分是_________.如果题设成立,那么结论一定成立.像这样的命题叫做___________.如果题设成立时,不能保证结论一定成立,像这样的命题叫做___________.定理都是真命题.12. 把一个图形整体沿某一方向移动,会得到一个新图形,图形的这种移动,叫做平移变换,简称_______.图形平移的方向不一定是水平的.平移的性质:⑴把一个图形整体平移得到的新图形与原图形的形状与大小完全______. ⑵新图形中的每一点,都是由原图形中的某一点移动后得到的,这两个点是对应点.连接各组对应点的线段_________________.熟悉以下各题:13. 如图,,8,6,10,BC AC CB cm AC cm AB cm ⊥===那么点A 到BC 的距离是_____,点B 到AC 的距离是_______,点A 、B 两点的距离是_____,点C 到AB 的距离是________.14. 设a 、b 、c 为平面上三条不同直线,a) 若//,//a b b c ,则a 与c 的位置关系是_________;b) 若,a b b c ⊥⊥,则a 与c 的位置关系是_________;c) 若//a b ,b c ⊥,则a 与c 的位置关系是________.15. 如图,已知AB 、CD 、EF 相交于点O ,AB ⊥CD ,OG 平分∠AOE ,∠FOD =28°,求∠CO E 、∠AOE 、∠AOG 的度数.16. 如图,AOC ∠与BOC ∠是邻补角,OD 、OE 分别是AOC ∠与BOC ∠的平分线,试判断OD 与OE 的位置关系,并说明理由.17. 如图,AB ∥DE ,试问∠B 、∠E 、∠BCE 有什么关系.解:∠B +∠E =∠BCE过点C 作CF ∥AB ,则B ∠=∠____( )又∵AB ∥DE ,AB ∥CF ,∴____________( )∴∠E =∠____( )∴∠B +∠E =∠1+∠2即∠B +∠E =∠BCE .18. ⑴如图,已知∠1=∠2 求证:a ∥b .⑵直线//a b ,求证:12∠=∠.19. 阅读理解并在括号内填注理由:如图,已知AB ∥CD ,∠1=∠2,试说明EP ∥FQ .证明:∵AB ∥CD ,∴∠MEB =∠MFD ( )又∵∠1=∠2,∴∠MEB -∠1=∠MFD -∠2,即 ∠MEP =∠______∴EP ∥_____.( )20. 已知DB ∥FG ∥EC ,A 是FG 上一点,∠ABD =60°,∠ACE =36°,AP 平分∠BAC ,求:⑴∠BAC 的大小;⑵∠P AG 的大小.21. 如图,已知ABC ∆,AD BC ⊥于D ,E 为AB 上一点,EF BC ⊥于F ,//DG BA∠=∠.交CA于G.求证1222.已知:如图∠1=∠2,∠C=∠D,问∠A与∠F相等吗?试说明理由.参考答案1.邻补角2. 对顶角,对顶角相等3.垂直 有且只有 垂线段最短4.点到直线的距离5.同位角 内错角 同旁内角6.平行 相交 平行7.平行 这两直线互相平行8.同位角相等 两直线平行; 内错角相等 两直线平行; 同旁内角互补 两直线平行.9.平行 10.两直线平行 同位角相等;两直线平行 内错角相等;两直线平行 同旁内角互补.11.命题 题设 结论 由已知事项推出的事项 题设 结论 真命题 假命题 12.平移 相同 平行且相等 13.6cm 8cm 10cm 4.8cm. 14.平行 平行 垂直 15. 28° 118° 59° 16. OD ⊥OE 理由略 17. 1(两直线平行,内错角相等)DE ∥CF (平行于同一直线的两条直线平行) 2 (两直线平行,内错角相等). 18.⑴∵∠1=∠2 ,又∵∠2=∠3(对顶角相等),∴∠1=∠3∴a ∥b (同位角相等 两直线平行) ⑵∵a ∥b ∴∠1=∠3(两直线平行,同位角相等)又∵∠2=∠3(对顶角相等) ∴∠1=∠2. 19. 两直线平行,同位角相等 MFQ FQ 同位角相等两直线平行 20. 96°,12°.21.,AD BC FE BC ⊥⊥90EFB ADB ∴∠=∠= //EF AD ∴23∴∠=∠ //,31DG BA ∴∠=∠ 1 2.∴∠=∠ 22. ∠A =∠F .∵∠1=∠DGF (对顶角相等)又∠1=∠2 ∴∠DGF =∠2 ∴DB ∥EC (同位角相等,两直线平行) ∴∠DBA =∠C (两直线平行,同位角相等) 又∵∠C =∠D ∴∠DBA =∠D ∴DF ∥AC (内错角相等,两直线平行)∴∠A =∠F (两直线平行,内错角相等).。

人教版七年级数学下册 5.1.2 垂线 导学案

人教版七年级数学下册 5.1.2 垂线 导学案

第五章 相交线与平行线5.1.2 垂 线.. .. 当两条直线相交所成的四个角中有一个角为 时,这两条直线互相垂直,其中一条直线叫做另一条直线的 ,它们的交点叫做 . O ,用字母表示为 .相交于点O ,若∠AOC=90°,则AB 与CD 的位置关系是 ;AOC= . O ,图中∠1与∠2的关系是( ) ∠1+∠2=90° 无法确定一、要点探究探究点1:垂线的概念问题1:问题2:你能借助下图写出问题1例1.(1)如图1,若直线m 、n (2)若直线AB 、CD 相交于点 (3)如图2,BO ⊥AO ,∠∠BOC 的补角为______.例2 如图,直线BC 与MN 求∠AOM 和∠NOC 的度数.探究点2问题3:(1)画已知直线l (2)过直线l 上的一点A 画l (3)过直线l 外的一点B 画l垂线的性质:在同一平面内,过一点有且只有一条直线与已知直线垂直.探究点3:点到直线的距离问题4:如图,从A 点向已知直线 l 画一条垂直的线段和几条不垂直的线段. (1)线段AB, AC, AD , AE 谁最短? (2)你能用一句话表示这个结论吗?知识要点:(1)连接直线外一点与直线上各点的所有线段中垂线段最短.简单说成:垂线段最短.(2)线段AD 的长度叫做点A 到直线l 的距离. 【做一做】在灌溉时,要把河中的水引到农田P 处,如何挖掘能使渠道最短?请画出图来,并说明理由.1.下图中过点P向线段AB 所在直线引垂线,正确的是( )2.如图,下列说法正确的是( ) A.线段AB 叫做点B 到直线AC 的距离B.线段AB 的长度叫作点A 到直线AC 的距离C.线段BD 的长度叫作点D 到直线BC 的距离D.线段BD 的长度叫作点B 到直线AC 的距离第2题图 第4题图 第5题图3.两条直线相交所成的四个角中,下列条件中能判定两条直线垂直的是( ) A. 有两个角相等 B.有两对角相等 C. 有三个角相等 D.有四对邻补角4.如图, AC ⊥BC, ∠C=90° ,线段AC 、BC 、CD 中最短的是 ( ) A. AC B. BC C. CD D. 不能确定5.如图,直线AB 、CD 相交于点E ,EF ⊥AB 于E ,若∠CEF=58°,则∠BED 的度数为 .6.如图,AO ⊥FD ,OD 为∠BOC 的平分线,OE 为射线OB 的反向延长线,若∠AOB =40°,求∠EOF 、∠COE 的度数.。

七年级下册数学第五章相交线与平行线导学案[1]

七年级下册数学第五章相交线与平行线导学案[1]

七年级下册数学第五章相交线与平行线导学案[1]第五章相交线与平行线导学案课题:5.1.1相交线月日班级:姓名:一、教材分析:(一)学习目标:1.通过动手、操作、推断、交流等活动,进一步发展空间观念,培养识图能力,推理能力和有条理表达能力2.在具体情境中了解邻补角、对顶角,能找出图形中的一个角的邻补角和对顶角,理解对顶角相等,并能运用它解决一些简单问题(二)学习重点和难点:重点:邻补角与对顶角的概念.对顶角性质与应用难点:理解对顶角相等的性质的探索二、问题导读单:阅读P1—3页回答下列问题:1.图5.1-1观察并阅读有关内容体会说明:图中“剪刀”可以看作:_______________线,画出示图为:__________________2.阅读“探究”中有关内容回答相应问题并填写下表。

两条直线相交所形成的角分类位置关系数量关系O3.如2题图中AB 交CD于点O形成四个角,∠1和∠2有一条公共边_____,它们的另一边互为_______________,具有这种关系的两个角,互为邻补角.互为邻补角的还有:___________________________________________________∠1和∠3有一个_____________,并且∠1的两边分别是∠3的两边的_______________.具有这种位置关系的两个角,互为对顶角.互为对顶角的还有_________________.4.写出对顶角的性质:___________________.写出性质的推理或说理形式._____________________________________________________________ ________________________________________________________________ _5.例题中求三个角的度数时,应用了哪些“原理”?分别是:____________________________________________________________ _________三、问题训练单:6.如图直线c分别交直线a、b形成如图中8个角,写出图中∠1的邻补角有:∠3的邻补角有:∠5的邻补角有:∠7的邻补角有:所有的对顶角有:________________________________________________________________ __________________7.下列说法对不对(1)邻补角可以看成是平角被过它顶点的一条射线分成的两个角(2)邻补角是互补的两个角,互补的两个角是邻补角(3)对顶角相等,相等的两个角是对顶角21438.如图,填空:(1)∠1与∠是邻补角,∠1又与∠是邻补角;(2)∠2与∠是邻补角,∠2又与∠是邻补角;(3)如果∠1=40°,那么∠2=°,∠4=°,∠3=°.9某.如图直线AB、CD、EF相交于点O.(1)写出图中所有对顶角:(2)写出:∠AOC的邻补角有:∠AOE的邻补角有:∠AOF的邻补角有:∠AOD的邻补角有:四、问题生成单:五、谈本节课收获和体会:课题:5.1.2(1)垂线月日班级:姓名:一、教材分析:(一)学习目标:1.理解垂线、垂线段的概念,会用三角尺或量角器过一点画已知直线的垂线。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

新人教版七年级数学(下册)第五章导学案及参考答案第五章 相交线与平行线课题:5、1、1 相交线【学习目标】: 在具体情境中了解邻补角、对顶角, 能找出图形中的一个角的邻补角与对顶角,理解对顶角相等,并能运用它解决一些问题。

【学习重点】:邻补角、对顶角的概念,对顶角性质与应用。

【学习难点】:理解对顶角相等的性质的探索。

【导学指导】 一、知识链接 1、读一读,瞧一瞧学生欣赏图片,阅读其中的文字、师生共同总结:我们生活的世界中,蕴涵着大量的相交线与平行线、 本章要研究相交线所成的角与它的特征,相交线的一种特殊形式即垂直,垂线的性质, 研究平行线的性质与平行的判定以及图形的平移问题、2.观察剪刀剪布的过程,引入两条相交直线所成的角教师出示一块布片与一把剪刀,表演剪刀剪布过程,提出问题:剪布时,用力握紧把手,引发了什么变化?进而使什么也发生了变化?学生观察、思考、回答,得出结论: 二、自主探究1、学生画直线AB 、CD 相交于点O,并说出图中4个角,两两相配共能组成几对角? 各对角的位置关系如何?根据不同的位置怎么将它们分类?(1)O DCB A学生思考并在小组内交流,全班交流、教师再提问:如果改变∠AOC 的大小, 会改变它与其它角的位置关系与数量关系不?3、邻补角、对顶角概念 邻补角的定义就是: 对顶角角的定义就是: 5、对顶角性质、(1)学生说一说在学习对顶角概念后,结果实际操作获得直观体验发现了什么?并说明理由。

对顶角性质:( 2)学生自学例题例:如图,直线a, b 相交,∠1=40°,求∠2,∠3,∠4的度数、ba4321【课堂练习】: 1、课本P3练习2、 课本P8习题1【要点归纳】:邻补角、对顶角的概念及性质: 【拓展训练】1. 如图1,直线AB 、CD 、EF 相交于点O,∠BOE 的对顶角就是_______,∠COF 的邻补角就是________; 若∠AOC:∠AOE=2:3,∠EOD=130°,则∠BOC=_________、FE OD CB A FEOD C B A(1) (2)2、如图2,直线AB 、CD 相交于点O,∠COE=90°,∠AOC=30°,∠FOB=90°, 则∠EOF=________。

3、两条直线相交,如果它们所成的一对对顶角互补, 那么它的所成的各角的度数就是多少? 【总结反思】:课题:5、1、2 垂线(1)【学习目标】:了解垂直概念,能说出垂线的性质, 会用三角尺或量角器过一点画一条直线的垂线、 【学习重点】:两条直线互相垂直的概念、性质与画法、 【学习难点】:推理能力与表达能力的培养 【导学指导】 一、温故知新1.如图∠1=60°,那么∠2、∠3、∠4的度数 2、 ∠1=90°,那么∠2、∠3、∠4的度数 3、学生观察教室里的课桌面、黑板面相邻的两条边, 方格纸的横线与竖线……,思考这些给大家什么印象? 二、自主探究(一)垂直定义1.出示相交线的模型,学生观察思考:固定木条a,转动木条, 当b 的位置变化时,a 、b 所成的角a 就是如何变化的?其中会有特殊情况出现不?当这种情况出现时,a 、b 所成的四个角有什么特殊关系?b b aE (3)OD CBA(2)O DCB A (1)O DCB AO DCB A 结论:当b 的位置变化时,角a 从锐角变为钝角,其中∠a 就是_____角就是特殊情况;其特殊之处还在于:当∠a 就是_____角时,它的邻补角,对顶角都就是_____角,即a 、b 所成的四个角都就是_____角,都_____。

2、垂直定义两条直线相交,所成四个角中有一个角就是_____角时,我们称这两条直线__________其中一条直线就是另一条的_____,她们的交点叫做_____。

3.表示方法:垂直用符号“_____”来表示,结合课本图5、1-5说明“直线AB 垂直于直线CD, 垂足为O”, 则记为__________________,并在图中任意一个角处作上直角记号,如图、 4、垂直应用:∵∠AOD=90°( ) ∴AB ⊥CD ( ) ∵ AB ⊥CD ( ) ∴ ∠AOD=90° ( )找一找:在您身边,您还能发现“垂直”不? 5.判断以下两条直线就是否垂直:①两条直线相交所成的四个角中有一个就是直角; ②两条直线相交所成的四个角相等; ③两条直线相交,有一组邻补角相等; ④两条直线相交,对顶角互补。

(二)垂线的性质1、学生用三角尺或量角器画已知直线L 的垂线、(1)已知直线L(教师在黑板上画一条直线L),画出直线L 的垂线、待学生上黑板画出L 的垂线后,教师追问学生:还能画出L 的垂线不?能画几条?L A L (2)在直线L 上取一点A,过点A 画L 的垂线,并且动手画出图形、学生的结论: ____________________________________________(3)经过直线L 外一点B 画直线L 的垂线,这样的垂线能画出几条?从中您又得出什么结论?B 、L 学生的结论: ____________________________________________ 学生通过画图操作所得两条结论合并成一条,并板书:垂线性质1: ____________________________________________ 【课堂练习】:1、课本P5练习2、课本P8习题1【要点归纳】:1、您有那些收获? 【拓展训练】:1、如图1,OA ⊥OB,OD ⊥OC,O 为垂足,若∠AOC=35°,则∠BOD=________;2、如图2,AO ⊥BO,O 为垂足,直线CD 过点O,且∠BOD=2∠AOC,则∠BOD=________;3、如图3,直线AB 、CD 相交于点O,若∠EOD=40°,∠BOC=130°,那么射线OE 与直线AB 的位置关系就是_________;4、已知:如图,直线AB,射线OC 交于点O,OD 平分∠BOC,OE 平分ED CBA∠AOC 、试判断OD 与OE 的位置关系。

【总结反思】:课题:5、1、2垂线(2)【学习目标】:了解垂线段的概念,了解垂线段最短的性质,体会点到直线的距离的意义, 并会度量点到直线的距离、【学习重点】:“垂线段最短”的性质,点到直线的距离的概念及其简单应用、 【学习难点】: 对点到直线的距离的概念的理解、 【导学指导】 一、温故知新 1、垂线的定义: 2、垂线性质1: 3、线段公理: 二、自主探究1、探究垂线段最短的垂线性质 观察课本图5、1-8,思考::要把河中的水引到农田P 处, 有多少引法?并画出图形,用适当的方法比较比较它们的长短,选出您认为最合理的一种方法。

观察课本图5、1-9, 结论:垂线的性质2: 2.点到直线的距离 1、忆一忆两点之间的距离: 2、点到直线的距离 定义:问题:课本中水渠该怎么挖最合理?在图上画出来、如果图中比例尺为1:100000, 水渠大约要挖多长? 【课堂练习】:1、课本P6练习、2、如图,AC ⊥BC,C 为垂足,CD ⊥AB,D 为垂足,BC=8,CD=4、8,BD=6、4,AD=3、6,AC= 6,那么点C 到AB 的距离就是_______,点A 到BC 的距离就是________,点B 到CD 的距离就是_____,A 、B 两点的距离就是_________、DCBAFE D C B A3、如图,在线段AB 、AC 、AD 、AE 、AF 中AD 最短、小明说垂线段最短, 因此线段AD 的长就是点A 到BF 的距离,对小明的说法,您认为_________________、 【要点归纳】:1、您有那些收获?2、您的学习疑难解决了不?【拓展训练】:1、 判断正误,如果正确,请说明理由,若错误,请订正。

(1)直线外一点与直线上的一点间的线段的长度就是这一点到这条直线的距离、E DC B A(2)如右图,线段AE 就是点A 到直线BC 的距离、 (3)如右图,线段CD 的长就是点C 到直线AB 的距离、 2、如下图,分别画出点A 、B 、C 到BC 、AC 、AB 的垂线段,再量出A 到BC 、点B 到AC 、 点C 到AB的距离。

CBA【总结反思】:课题:5、1、3同位角、内错角、同旁内角【学习目标】:1、知道三线八角的意义,并能从复杂图形中识别它们2、通过三线八角的特点的分析,培养学生抽象概括问题的能力【学习重点】:三线八角的意义,【学习难点】:能在各种变式的图形中找出这三类角 【导学指导】 一、知识链接阅读课本P6-7页,解决以下问题:1、截线与被截线就是如何划分的,举例说明!2、同位角、内错角、同旁内角都就是由它们的位置而命名的,它们各自有什么特征?请举例说明!二、自主学习 1、同位角、内错角、同旁内角的特征:(1)同位角的基本特征: 同旁同侧,即在两条直线的同旁,第三条直线(截线)的 同侧.如图1, 故两角的边所在直线构成任意旋转的“F ”字形 、(2)内错角的基本特征:内部两旁,即在两条直线的内部,第三条直线(截线)的两旁;如图1___________________________故两角的边所在直线构成任意旋转的“Z ”字形 、 (3)同旁内角的基本特征:内部同旁,即在两条直线的内部,第三条直线(截线)的同旁.如图1,_____________________________.故两角的边所在直线构成任意旋转的“U ”字形 、 由此可见,在截线的同旁,找 ;在截线的两旁,找 2、学生自学P7例题图112 34 567 8 abc3.注意图形的识别复杂图形的识别方法把复杂图形的识别转化为简单的基本图形的识别.例 如图2,指出图中所有的同位角、内错角与同旁内角.析解:把相关的两个角从图4中分离出来,得到如图5所示的简单图形,这样就容易判断出:图3∠1与∠4就是同位角(图3①);∠2与∠5就是内错角(图3②);∠3与∠4就是同旁内角(图3③),∠4与∠5就是同旁内角(图3④),∠3与∠5就是同旁内角(图3⑤)、 【课堂练习】:1. 课本P7练习、【要点归纳】:同位角的特征:内错角的特征: 同旁内角的特征:【拓展训练】:1、如图4所示,下列结论错误的就是( ) (A)∠1与∠B 就是同位角 (B)∠1与∠3就是同旁内角(C)∠2与∠C 就是内错角 (D)∠4与∠A 就是同位角2、如图5所示,∠1的同位角就是 ,∠2的内错角就是 ,∠3的同旁内角就是 、3、如图6,(1)∠2与∠4就是直线 与 被直线 所截而形成的 、(2)∠1与∠3就是直线 与 被直线 所截而形成的 、【总结反思】:课题 5、2、1 平行线【学习目标】:1、了解平行线的概念,知道平行公理以及平行公理的推论、 2、会用符号语方表示平行公理推论, 会用三角尺与直尺过已知直线外一点画这条直线的平行线、【学习重点】:探索与掌握平行公理及其推论、【学习难点】:对平行线本质属性的理解,用几何语言描述图形的性质、 【导学指导】 一、知识链接1、两条直线相交有几个交点?1 2 34 5(图2) 35 1 4 25 34 5 4 ① ② ③④ ⑤图5图6图4a 2、相交的两条直线有什么特殊的位置关系?3、在平面内,两条直线除了相交外,还有别的位置关系不? 二、自主学习平行线定义,表示法1、自学课本12页,回答下列问题:思考:木条a 、b 有没有不相交的位置?得出:在转动的过程中,存在一个直线a 与直线 的位置,这时直线a 与b 互相平行,记作 。

相关文档
最新文档