第2章 随机变量及其分布习题答案

合集下载

概率论与数理统计浙大四版习题答案第二章汇编

概率论与数理统计浙大四版习题答案第二章汇编

第二章 随机变量及其分布1.[一] 一袋中有5只乒乓球,编号为1、2、3、4、5,在其中同时取三只,以X 表示取出的三只球中的最大号码,写出随机变量X 的分布律解:X 可以取值3,4,5,分布律为1061)4,3,2,1,5()5(1031)3,2,1,4()4(1011)2,1,3()3(352435233522=⨯====⨯====⨯===C C P X P C C P X P C C P X P 中任取两球再在号一球为中任取两球再在号一球为号两球为号一球为也可列为下表 X : 3, 4,5 P :106,103,101 3.[三] 设在15只同类型零件中有2只是次品,在其中取三次,每次任取一只,作不放回抽样,以X 表示取出次品的只数,(1)求X 的分布律,(2)画出分布律的图形。

解:任取三只,其中新含次品个数X 可能为0,1,2个。

3522)0(315313===C C X P 3512)1(31521312=⨯==C C C X P 351)2(31511322=⨯==C C C X P 再列为下表X : 0, 1, 2 P :351,3512,3522 4.[四] 进行重复独立实验,设每次成功的概率为p ,失败的概率为q =1-p (0<p <1) (1)将实验进行到出现一次成功为止,以X 表示所需的试验次数,求X 的分布律。

(此时称X 服从以p 为参数的几何分布。

)(2)将实验进行到出现r 次成功为止,以Y 表示所需的试验次数,求Y 的分布律。

(此时称Y 服从以r, p 为参数的巴斯卡分布。

)(3)一篮球运动员的投篮命中率为45%,以X 表示他首次投中时累计已投篮的次数,写出X 的分布律,并计算X 取偶数的概率。

解:(1)P (X=k )=q k -1pk=1,2,……(2)Y=r+n={最后一次实验前r+n -1次有n 次失败,且最后一次成功},,2,1,0,)(111 ===+=-+--+n p q C p p q C n r Y P r n n n r r n n n r 其中 q=1-p ,或记r+n=k ,则 P {Y=k }= ,1,,)1(11+=----r r k p p C rk r r k (3)P (X=k ) = (0.55)k -10.45k=1,2…P (X 取偶数)=311145.0)55.0()2(1121===∑∑∞=-∞=k k k k X P 6.[六] 一大楼装有5个同类型的供水设备,调查表明在任一时刻t 每个设备使用的概率为0.1,问在同一时刻(1)恰有2个设备被使用的概率是多少?0729.0)9.0()1.0()2(322525225=⨯⨯===-C q p C X P(2)至少有3个设备被使用的概率是多少?00856.0)1.0()9.0()1.0()9.0()1.0()3(5554452335=⨯+⨯⨯+⨯⨯=≥C C C X P(3)至多有3个设备被使用的概率是多少?3225415505)9.0()1.0()9.0(1.0)9.0()3(⨯⨯+⨯⨯+=≤C C C X P99954.0)9.0()1.0(2335=⨯⨯+C(4)至少有一个设备被使用的概率是多少?40951.059049.01)0(1)1(=-==-=≥X P X P[五] 一房间有3扇同样大小的窗子,其中只有一扇是打开的。

概率论与数理统计(理工类_第四版)吴赣昌主编课后习题答案第二章

概率论与数理统计(理工类_第四版)吴赣昌主编课后习题答案第二章

第二章随机变量及其分布2.1 随机变量习题1随机变量的特征是什么?解答:①随机变量是定义在样本空间上的一个实值函数.②随机变量的取值是随机的,事先或试验前不知道取哪个值.③随机变量取特定值的概率大小是确定的.习题2试述随机变量的分类.解答:①若随机变量X的所有可能取值能够一一列举出来,则称X为离散型随机变量;否则称为非离散型随机变量.②若X的可能值不能一一列出,但可在一段连续区间上取值,则称X为连续型随机变量.习题3盒中装有大小相同的球10个,编号为0,1,2,⋯,9,从中任取1个,观察号码是“小于5”,“等于5”,“大于5”的情况,试定义一个随机变量来表达上述随机试验结果,并写出该随机变量取每一个特定值的概率.解答:分别用ω1,ω2,ω3表示试验的三个结果“小于5”,“等于5”,“大于5”,则样本空间S={ω1,ω2,ω3},定义随机变量X如下:X=X(ω)={0,ω=ω11,ω=ω2,2,ω=ω3则X取每个值的概率为P{X=0}=P{取出球的号码小于5}=5/10,P{X=1}=P{取出球的号码等于5}=1/10,P{X=2}=P{取出球的号码大于5}=4/10.2.2 离散型随机变量及其概率分布习题1设随机变量X服从参数为λ的泊松分布,且P{X=1}=P{X=2},求λ.解答:由P{X=1}=P{X=2},得λe-λ=λ22e-λ,解得λ=2.习题2设随机变量X的分布律为P{X=k}=k15,k=1,2,3,4,5,试求(1)P{12<X<52;(2)P{1≤X≤3};(3)P{X>3}.解答:(1)P{12<X<52=P{X=1}+P{X=2}=115+215=15;(2)P{≤X≤3}=P{X=1}+P{X=2}+P{X=3}=115+215+315=25;(3)P{X>3}=P{X=4}+P{X=5}=415+515=35.习题3已知随机变量X只能取-1,0,1,2四个值,相应概率依次为12c,34c,58c,716c,试确定常数c,并计算P{X<1∣X≠0}.解答:依题意知,12c+34c+58c+716c=1,即3716c=1,解得c=3716=2.3125.由条件概率知P{X<1∣X≠0}=P{X<1,X≠0}P{X≠0}=P{X=-1}P{X≠0}=12c1-34c=24c-3=26.25=0.32.习题4一袋中装有5只球,编号为1,2,3,4,5.在袋中同时取3只,以X表示取出的3只球中的最大号码,写出随机变量X的分布律.解答:随机变量X的可能取值为3,4,5.P{X=3}=C22⋅1C53=110,P{X=4}=C32⋅1C53=310,P{X=5}=C42⋅1C53=35,所以X的分布律为(1)X的概率分布;(2)P{X≥5};(3)在两次调整之间能以0.6的概率保证生产的合格品数不少于多少?解答:(1)P{X=k}=(1-p)kp=(0.9)k×0.1,k=0,1,2,⋯;(2)P{X≥5}=∑k=5∞P{X=k}=∑k=5∞(0.9)k×0.1=(0.9)5;(3)设以0.6的概率保证在两次调整之间生产的合格品不少于m件,则m应满足P{X≥m}=0.6,即P{X≤m-1}=0.4. 由于P{X≤m-1}=∑k=0m-1(0.9)k(0.1)=1-(0.9)m,故上式化为1-0.9m=0.4,解上式得m≈4.85≈5,因此,以0.6的概率保证在两次调整之间的合格品数不少于5.习题7设某运动员投篮命中的概率为0.6,求他一次投篮时,投篮命中的概率分布.解答:此运动员一次投篮的投中次数是一个随机变量,设为X,它可能的值只有两个,即0和1. X=0表示未投中,其概率为p1=P{X=0}=1-0.6=0.4,X=1表示投中一次,其概率为p2=P{X=1}=0.6.则随机变量的分布律为由于每次取出的产品仍放回去,各次抽取相互独立,下次抽取时情况与前一次抽取时完全相同,所以X的可能取值是所有正整数1,2,⋯,k,⋯.设第k次才取到正品(前k-1次都取到次品),则随机变量X的分布律为P{X=k}=310×310×⋯×310×710=(310)k-1×710,k=1,2,⋯.习题10设随机变量X∼b(2,p),Y∼b(3,p),若P{X≥1}=59,求P{Y≥1}.解答:因为X∼b(2,p),P{X=0}=(1-p)2=1-P{X≥1}=1-5/9=4/9,所以p=1/3.因为Y∼b(3,p),所以P{Y≥1}=1-P{Y=0}=1-(2/3)3=19/27.习题11纺织厂女工照顾800个纺绽,每一纺锭在某一段时间τ内断头的概率为0.005,在τ这段时间内断头次数不大于2的概率.解答:以X记纺锭断头数,n=800,p=0.005,np=4,应用泊松定理,所求概率为:P{0≤X≤2}=P{⋃0≤xi≤2{X=xi}=∑k=02b(k;800,0.005)≈∑k=02P(k;4)=e-4(1+41!+422!)≈0.2381.习题12设书籍上每页的印刷错误的个数X服从泊松分布,经统计发现在某本书上,有一个印刷错误与有两个印刷错误的页数相同,求任意检验4页,每页上都没有印刷错误的概率.解答:\becauseP{X=1}=P{X=2},即λ11!e-λ=λ22!e-λ⇒λ=2,∴P{X=0}=e-2,∴p=(e-2)4=e-8.2.3 随机变量的分布函数习题1F(X)={0,x<-20.4,-2≤x<01,x≥0,是随机变量X的分布函数,则X是___________型的随机变量. 解答:离散.由于F(x)是一个阶梯函数,故知X是一个离散型随机变量.习题2设F(x)={0x<0x20≤1,1x≥1问F(x)是否为某随机变量的分布函数.解答:首先,因为0≤F(x)≤1,∀x∈(-∞,+∞).其次,F(x)单调不减且右连续,即F(0+0)=F(0)=0,F(1+0)=F(1)=1,且F(-∞)=0,F(+∞)=1,所以F(x)是随机变量的分布函数.习题3已知离散型随机变量X的概率分布为P{X=1}=0.3,P{X=3}=0.5,P{X=5}=0.2,试写出X的分布函数F(x),并画出图形.解答:由题意知X的分布律为:试求:(1)系数A与B;(2)X落在(-1,1]内的概率.解答:(1)由于F(-∞)=0,F(+∞)=1,可知{A+B(-π2)A+B(π2)=1=0⇒A=12,B=1π,于是F(x)=12+1πarctanx,-∞<x<+∞;(2)P{-1<X≤1}=F(1)-F(-1)=(12+1πarctan1)-[12+1πarctanx(-1)]=12+1π⋅π4-12-1π(-π4)=12.习题7在区间[0,a]上任意投掷一个质点,以X表示这个质点的坐标.设这个质点落在[0,a]中任意小区间内的概率与这个小区间的长度成正比例,试求X的分布函数.解答:F(x)=P{X≤x}={0,x<0xa,0≤x<a.1,x≥a2.4 连续型随机变量及其概率密度习题1设随机变量X的概率密度为f(x)=12πe-(x+3)24(-∞<x<+∞),则Y=¯∼N(0,1).解答:应填3+X2.由正态分布的概率密度知μ=-3,σ=2由Y=X-μσ∼N(0,1),所以Y=3+X2∼N(0,1).习题2已知X∼f(x)={2x,0<x<10,其它,求P{X≤0.5};P{X=0.5};F(x).解答:P{X≤0.5}=∫-∞0.5f(x)dx=∫-∞00dx+∫00.52xdx=x2∣00.5=0.25,P{X=0.5}=P{X≤0.5}-P{X<0.5}=∫-∞0.5f(x)dx-∫-∞0.5f(x)dx=0.当X≤0时,F(x)=0;当0<x<1时,F(x)=∫-∞xf(t)dt=∫-∞00dt+∫0x2tdt=t2∣0x=x2;当X≥1时,F(x)=∫-∞xf(t)dt=∫-∞00dt+∫0x2tdt+∫1x0dt=t2∣01=1,故F(x)={0,x≤0x2,0<x<1.1,x≥1习题3设连续型随机变量X的分布函数为F(x)={A+Be-2x,x>00,x≤0,试求:(1)A,B的值;(2)P{-1<X<1};(3)概率密度函数F(x).解答:(1)\becauseF(+∞)=limx→+∞(A+Be-2x)=1,∴A=1;又\becauselimx→0+(A+Be-2x)=F(0)=0,∴B=-1.(2)P{-1<X<1}=F(1)-F(-1)=1-e-2.(3)f(x)=F′(x)={2e-x,x>00,x≤0.习题4服从拉普拉斯分布的随机变量X的概率密度f(x)=Ae-∣x∣,求系数A及分布函数F(x).解答:由概率密度函数的性质知,∫-∞+∞f(x)dx=1,即∫-∞+∞Ae-∣x∣dx=1,而∫-∞+∞Ae-∣x∣dx=∫-∞0Aexdx+∫0+∞Ae-xdx=Aex∣-∞0+(-Ae-x∣0+∞)=A+A=2A或∫-∞+∞Ae-xdx=2∫0+∞Ae-xdx=-2Ae-x∣0+∞=2A,所以2A=1,即A=1/2.从而f(x)=12e-∣x∣,-∞<x<+∞,又因为F(x)=∫-∞xf(t)dt,所以当x<0时,F(x)=∫-∞x12e-∣t∣dt=12∫-∞xetdt=12et∣-∞x=12ex;当x≥0时,F(x)=∫-∞x12e-∣x∣dt=∫-∞012etdt+∫0x12e-tdt=12et∣-∞0-12e-t∣0x=12-12e-x+12=1-12e-x,从而F(x)={12ex,x<01-12e-x,x≥0.习题5某型号电子管,其寿命(以小时计)为一随机变量,概率密度f(x)={100x2,x≥1000,其它,某一电子管的使用寿命为X,则三个电子管使用150小时都不需要更换的概率.解答:设电子管的使用寿命为X,则电子管使用150小时以上的概率为P{X>150}=∫150+∞f(x)dx=∫150+∞100x2dx=-100x∣150+∞=100150=23,从而三个电子管在使用150小时以上不需要更换的概率为p=(2/3)3=8/27.习题6设一个汽车站上,某路公共汽车每5分钟有一辆车到达,设乘客在5分钟内任一时间到达是等可能的,试计算在车站候车的10位乘客中只有1位等待时间超过4分钟的概率.解答:设X为每位乘客的候车时间,则X服从[0,5]上的均匀分布. 设Y表示车站上10位乘客中等待时间超过4分钟的人数. 由于每人到达时间是相互独立的.这是10重伯努力概型. Y服从二项分布,其参数n=10,p=P{X≥4}=15=0.2,所以P{Y=1}=C101×0.2×0.89≈0.268.习题7设X∼N(3,22).(1)确定C,使得P{X>c}=P{X≤c};(2)设d满足P{X>d}≥0.9,问d至多为多少?解答:因为X∼N(3,22),所以X-32=Z∼N(0,1).(1)欲使P{X>c}=P{X≤c},必有1-P{X≤c}=P{X≤c},即P{X≤c}=1/2,亦即Φ(c-32)=12,所以c-3=0,故c=3.(2)由P{X>d}≥0.9可得1-P{X≤d}≥0.9,即P{X≤d}≤0.1.于是Φ(d-32)≤0.1,Φ(3-d2)≥0.9.查表得3-d2≥1.282,所以d≤0.436.习题8设测量误差X∼N(0,102),先进行100次独立测量,求误差的绝对值超过19.6的次数不小于3的概率.解答:先求任意误差的绝对值超过19.6的概率p,p=P{∣X∣>19.6}=1-P{∣X∣≤19.6}=1-P{∣X10∣≤1.96=1-[Φ(1.96)-Φ(-1.96)]=1-[2Φ(1.96)-1]=1-[2×0.975-1]=1-0.95=0.05.设Y为100次测量中误差绝对值超过19.6的次数,则Y∼b(100,0.05).因为n很大,p很小,可用泊松分布近似,np=5=λ,所以P{Y≥3}≈1-50e-50!-51e-51!-52e-52!=1-3722-5≈0.87.习题9某玩具厂装配车间准备实行计件超产奖,为此需对生产定额作出规定. 根据以往记录,各工人每月装配产品数服从正态分布N(4000,3600).假定车间主任希望10%的工人获得超产奖,求:工人每月需完成多少件产品才能获奖?解答:用X表示工人每月需装配的产品数,则X∼N(4000,3600).设工人每月需完成x件产品才能获奖,依题意得P{X≥x}=0.1,即1-P{X<x}=0.1,所以1-F(x)=0.1,即1-Φ(x-400060)=0.1,所以Φ(x-400060)=0.9.查标准正态人分布表得Φ(1.28)=0.8997,因此x-400060≈1.28,即x=4077件,就是说,想获超产奖的工人,每月必须装配4077件以上.习题10某地区18岁女青年的血压(收缩压,以mm-HG计)服从N(110,122).在该地区任选一18岁女青年,测量她的血压X.(1)求P{X≤105},P{100<X≤120};(2)确定最小的x,使P{X>x}≤0.005.解答:已知血压X∼N(110,122).(1)P{X≤105}=P{X-11012≤-512≈1-Φ(0.42)=0.3372,P{100<X≤120}=Φ(120-11012)-Φ(100-11012)=Φ(0.833)-Φ(-0.833)=2Φ(0.833)-1≈0.595.(2)使P{X>x}≤0.05,求x,即1-P{X≤x}≤0.05,亦即Φ(x-11012)≥0.95,查表得x-10012≥1.645,从而x≥129.74.习题11设某城市男子身高X∼N(170,36),问应如何选择公共汽车车门的高度使男子与车门碰头的机会小于0.01.解答:X∼N(170,36),则X-1706∼N(0,1).设公共汽车门的高度为xcm,由题意P{X>x}<0.01,而P{X>x}=1-P{X≤x}=1-Φ(x-1706)<0.01,即Φ(x-1706)>0.99,查标准正态表得x-1706>2.33,故x>183.98cm.因此,车门的高度超过183.98cm时,男子与车门碰头的机会小于0.01.习题12某人去火车站乘车,有两条路可以走. 第一条路程较短,但交通拥挤,所需时间(单位:分钟)服从正态分布N(40,102);第二条路程较长,但意外阻塞较少,所需时间服从正态分布N(50,42),求:(1)若动身时离开车时间只有60分钟,应走哪一条路线?(2)若动身时离开车时间只有45分钟,应走哪一条路线?解答:设X,Y分别为该人走第一、二条路到达火车站所用时间,则X∼N(40,102),Y∼N(50,42).哪一条路线在开车之前到达火车站的可能性大就走哪一条路线.(1)因为P{X<60}=Φ(60-4010)=Φ(2)=0.97725,P{Y<60}=Φ(60-504)=Φ(2.5)=0.99379,所以有60分钟时应走第二条路.(2)因为P{X<45}=Φ(45-4010)=Φ(0.5)=0.6915,P{X<45}=Φ(45-504)=Φ(-1.25)=1-Φ(1.25)=1-0.8925=0.1075所以只有45分钟应走第一条路.2.5 随机变量函数的分布习题1已知X的概率分布为Y-101P2*******习题3设随机变量X服从[a,b]上的均匀分布,令Y=cX+d(c≠0),试求随机变量Y的密度函数. 解答:fY(y)={fX(y-dc)⋅1∣c∣,a≤y-dc≤b0,其它,当c>0时,fY(y)={1c(b-a),ca+d≤y≤cb+d0,其它,当c<0时,fY(y)={-1c(b-a),cb+d≤y≤ca+d0,其它.习题4设随机变量X服从[0,1]上的均匀分布,求随机变量函数Y=eX的概率密度fY(y).解答:f(x)={1,0≤x≤10,其它,f=ex,x∈(0,1)是单调可导函数,y∈(1,e),其反函数为x=lny,可得f(x)={fX(lny)∣ln′y,1<y<e0,其它={1y,1<y<e0,其它.习题5设X∼N(0,1),求Y=2X2+1的概率密度.解答:因y=2x2+1是非单调函数,故用分布函数法先求FY(y).FY(y)=P{Y≤y}=P{2X2+1≤y}(当y>1时)=P{-y-12≤X≤y-12=∫-y-12y-1212πe-x2dx,所以fY(y)=F′Y(y)=22πe-12⋅y-12⋅122y-1,y>1,于是fY(y)={12π(y-1)e-y-14,y>10,y≤1.习题6设连续型随机变量X的概率密度为f(x),分布函数为F(x),求下列随机变量Y的概率密度:(1)Y=1X;(2)Y=∣X∣.解答:(1)FY(y)=P{Y≤y}=P{1/X≤y}.①当y>0时,FY(y)=P{1/X≤0}+P{0<1/X≤y}=P{X≤0}+P{X≥1/y}=F(0)+1-F(1/y),故这时fY(y)=[-F(1y)]′=1y2f(1y);;②当y<0时,FY(y)=P{1/y≤X<0}=F(0)-F(1/y),故这时fY(y)=1y2f(1y);③当y=0时,FY(y)=P{1/X≤0}=P{X<0}=F(0),故这时取fY(0)=0,综上所述fY(y)={1y2⋅f(1y),y≠00,y=0.(2)FY(y)=P{Y≤y}=P{∣X∣≤y}.①当y>0时,FY(y)=P{-y≤X≤y}=F(y)-F(-y)这时fY(y)=f(y)+f(-y);②当y<0时,FY(y)=P{∅}=0,这时fY(y)=0;③当y=0时,FY(y)=P{Y≤0}=P{∣X∣≤0}=P{X=0}=0,故这时取FY(y)=0,综上所述fY(y)={f(y)+f(-y),y>00,y≤0.习题7某物体的温度T(∘F)是一个随机变量, 且有T∼N(98.6,2),已知θ=5(T-32)/9,试求θ(∘F)的概率密度.解答:已知T∼N(98.6,2).θ=59(T-32),反函数为T=59θ+32,是单调函数,所以fθ(y)=fT(95y+32)⋅95=12π⋅2e-(95y+32-98.6)24⋅95=910πe-81100(y-37)2.习题8设随机变量X在任一区间[a,b]上的概率均大于0,其分布函数为FY(x),又Y在[0,1]上服从均匀分布,证明:Z=FX-1(Y)的分布函数与X的分布函数相同.解答:因X在任一有限区间[a,b]上的概率均大于0,故FX(x)是单调增加函数,其反函数FX-1(y)存在,又Y在[0,1]上服从均匀分布,故Y的分布函数为FY(y)=P{Y≤y}={0,y<0y,0≤y≤11,y>0,于是,Z的分布函数为FZ(z)=P{Z≤z}=P{FX-1(Y)≤z}=P{Y≤FX(z)}={0,FX(z)<0FX(z),0≤FX(z)≤1,1,FX(z)>1由于FX(z)为X的分布函数,故0≤FX(z)≤1.FX(z)<0和FX(z)>1均匀不可能,故上式仅有FZ(z)=FX(z),因此,Z与X的分布函数相同.总习题解答习题1从1∼20的整数中取一个数,若取到整数k的概率与k成正比,求取到偶数的概率.解答:设Ak为取到整数k,P(Ak)=ck,k=1,2,⋯,20.因为P(⋃K=120Ak)=∑k=120P(Ak)=c∑k=120k=1,所以c=1210,P{取到偶数}=P{A2∪A4∪⋯∪A20}=1210(2+4+⋯+20)=1121.习题2若每次射击中靶的概率为0.7,求射击10炮,(1)命中3炮的概率;(2)至少命中3炮的概率;(3)最可能命中几炮.解答:若随机变量X表示射击10炮中中靶的次数. 由于各炮是否中靶相互独立,所以是一个10重伯努利概型,X服从二项分布,其参数为n=10,p=0.7,故(1)P{X=3}=C103(0.7)3(0.3)7≈0.009;(2)P{X≥3}=1-P{X<3}=1-[C100(0.7)0(0.3)10+C101(0.7)1(0.3)9+C102(0.7)2(0.3)8]≈0.998;(3)因X∼b(10,0.7),而k0=[(n+1)p]=[(10+1)]×0.7=[7.7]=7,故最可能命中7炮.习题3在保险公司里有2500名同一年龄和同社会阶层的人参加了人寿保险,在1年中每个人死亡的概率为0.002,每个参加保险的人在1月1日须交120元保险费,而在死亡时家属可从保险公司里领20000元赔偿金,求:(1)保险公司亏本的概率;(2)保险公司获利分别不少于100000元, 200000元的概率.解答:(1)以“年”为单位来考虑,在1年的1月1日,保险公司总收入为2500×120元=30000元.设1年中死亡人数为X,则X∼b(2500,0.002),则保险公司在这一年中应付出200000X(元),要使保险公司亏本,则必须200000X>300000即X>15(人).因此,P{保险公司亏本}=P{X>15}=∑k=162500C2500k(0.002)k×(0.998)2500-k≈1-∑k=015e-55kk!≈0.000069,由此可见,在1年里保险公司亏本的概率是很小的.(2)P{保险公司获利不少于100000元}=P{300000-200000X≥100000}=P{X≤10}=∑k=010C2500k(0.002)×(0.998)2500-k≈∑k=010e-55kk!≈0.986305,即保险公司获利不少于100000元的概率在98%以上.P{保险公司获利不少于200000元}=P{300000-200000X≥200000}=P{X≤5}=∑k=05C2500k(0.002)k×(0.998)2500-k≈∑k=05e-55kk!≈0.615961,即保险公司获利不少于200000元的概率接近于62%.习题4一台总机共有300台分机,总机拥有13条外线,假设每台分机向总机要外线的概率为3%, 试求每台分机向总机要外线时,能及时得到满足的概率和同时向总机要外线的分机的最可能台数.解答:设分机向总机要到外线的台数为X, 300台分机可看成300次伯努利试验,一次试验是否要到外线. 设要到外线的事件为A,则P(A)=0.03,显然X∼b(300,0.03),即P{X=k}=C300k(0.03)k(0.97)300-k(k=0,1,2,⋯,300),因n=300很大,p=0.03又很小,λ=np=300×0.03=9,可用泊松近似公式计算上面的概率. 因总共只有13条外线,要到外线的台数不超过13,故P{X≤13}≈∑k=0139kk!e-9≈0.9265,(查泊松分布表)且同时向总机要外线的分机的最可能台数k0=[(n+1)p]=[301×0.03]=9.习题5在长度为t的时间间隔内,某急救中心收到紧急呼救的次数X服从参数t2的泊松分布,而与时间间隔的起点无关(时间以小时计),求:(1)某一天从中午12至下午3时没有收到紧急呼救的概率;(2)某一天从中午12时至下午5时至少收到1次紧急呼救的概率.解答:(1)t=3,λ=3/2,P{X=0}=e-3/2≈0.223;X-101pi1/22-13/2-2(2)由F(x)=P{X≤x}计算X的分布函数F(x)={0,1/2,2-1/2,1,x<-1-1≤x<00≤x<0x≥1.习题7设随机变量X的分布函数F(x)为F(x)={0,x<0Asinx,0≤x≤π/2,1,x>π/2则A=¯,P{∣X∣<π/6}=¯.解答:应填1;1/2.由分布函数F(x)的右连续性,有F(π2+0)=F(π2)⇒A=1.因F(x)在x=π6处连续,故P{X=π6=12,于是有P{∣X∣<π6=P{-π6<X<π6=P{-π6<X≤π6=F(π6)-F(-π6)=12..习题8使用了x小时的电子管,在以后的Δx小时内损坏的概率等于λΔx+o(Δx),其中λ>0是常数,求电子管在损坏前已使用时数X的分布函数F(x),并求电子管在T小时内损坏的概率.解答:因X的可能取值充满区间(0,+∞),故应分段求F(x)=P{X≤x}.当x≤0时,F(x)=P{X≤x}=P(∅)=0;当x>0时,由题设知P{x<X≤x+Δx/X}=λΔx+o(Δx),而P{x<X≤x+Δx/X}=P{x<X≤x+Δx,X>x}P{X>x}=P{x<X≤x+Δx}1-P{X≤x}=F(x+Δx)-F(x)1-F(x),故F(X+Δx)-F(x)1-F(x)=λΔx+o(Δx),即F(x+Δx)-F(x)Δx=[1-F(x)][λ+o(Δx)Δx],令o(Δx)→0,得F′(x)=λ[1-F(x)].这是关于F(x)的变量可分离微分方程,分离变量dF(x)1-F(x)=λdx,积分之得通解为C[1-F(x)]=e-λx(C为任意常数).注意到初始条件F(0)=0,故C=1.于是F(x)=1-e-λx,x>0,λ>0,故X的分布函数为F(x)={0,x≤01-e-λx,x>0(λ>0),从而电子管在T小时内损坏的概率为P{X≤T}=F(T)=1-e-λT.习题9设连续型随机变量X的分布密度为f(x)={x,0<x≤12-x,1<x≤20,其它,求其分布函数F(x).解答:当x≤0时,F(x)=∫-∞x0dt=0;当0<x≤1时,F(x)=∫-∞xf(t)dt=∫-∞00tdt+∫0xtdt=12x2;当1<x≤2时,F(x)=∫-∞xf(t)dt=∫-∞00dt+∫01tdt+∫1x(2-t)dt=0+12+(2t-12t2)∣1x=-1+2x-x22;当x>2时,F(x)=∫-∞00dt+∫01tdt+∫12(2-t)dt+∫2x0dt=1,故F(x)={0,x≤212x2,0<x≤1-1+2x-x22,1<x≤21,x>2.习题10某城市饮用水的日消费量X(单位:百万升)是随机变量,其密度函数为:f(x)={19xe-x3,x>00,其它,试求:(1)该城市的水日消费量不低于600万升的概率;(2)水日消费量介于600万升到900万升的概率.解答:先求X的分布函数F(x).显然,当x<0时,F(x)=0,当x≥0时有F(x)=∫0x19te-t3dt=1-(1+x3)e-x3故F(x)={1-(1+x3)e-x3,x≥00,x<0,所以P{X≥6}=1-P{X<6}=1-P(X≤6}=1-F(6)=1-[1-(1+x3)e-x3]x=6=3e-2,P{6<X≤9}=F(9)-F(6)=(1-4e-3)-(1-3e-2)=3e-2-4e-3.习题11已知X∼f(x)={cλe-λx,x>a0,其它(λ>0),求常数c及P{a-1<X≤a+1}.解答:由概率密度函数的性质知∫-∞+∞f(x)dx=1,而∫-∞+∞f(x)dx=∫-∞a0dx+∫a+∞cλe-λxdx=c∫a+∞e-λxd(λx)=-ce-λx\vlinea+∞=ce-λa,所以ce-λa=1,从而c=eλa.于是P{a-1<X≤a+1}=∫a-1a+1f(x)dx=∫a-1a0dx+∫aa+1λeλae-λxdx=-eλae-λx\vlineaa+1=-eλa(e-λ(a+1)-e-λa)=1-e-λ.注意,a-1<a,而当x<a时,f(x)=0.习题12已知X∼f(x)={12x2-12x+3,0<x<10,其它,计算P{X≤0.2∣0.1<X≤0.5}.解答:根据条件概率;有P{X≤0.2∣0.1<X≤0.5}=P{X≤0.2,0.1<X≤0.5}P{0.1<X≤0.5}=P{0.1<X≤0.2}P{0.1<X≤0.5}=∫0.10.2(12x2-12x+2)dx∫0.10.5(12x2-12x+3)dx=(4x3-6x2+3x)∣0.10.2(4x3-6x2+3x)∣0.10.5=0.1480.256=0.578125.习题13若F1(x),F2(x)为分布函数,(1)判断F1(x)+F2(x)是不是分布函数,为什么?(2)若a1,a2是正常数,且a1+a2=1.证明:a1F1(x)+a2F2(x)是分布函数.解答:(1)F(+∞)=limx→+∞F(x)=limx→+∞F1(x)+limx→+∞F2(x)=1+1=2≠1故F(x)不是分布函数.(2)由F1(x),F2(x)单调非减,右连续,且F1(-∞)=F2(-∞)=0,F1(+∞)=F2(+∞)=1,可知a1F1(x)+a2F2(x)单调非减,右连续,且a1F1(-∞)+a2F2(-∞)=0,a1F1(+∞)+a2F2(+∞)=1.从而a1F1(x)+a2F2(x)是分布函数.习题14设随机变量X的概率密度ϕ(x)为偶函数,试证对任意的a>0,分布函数F(x)满足:(1)F(-a)=1-F(a);(2)P{∣X∣>a}=2[1-F(a)].解答:(1)F(-a)=∫-∞-aϕ(x)dx=∫a+∞ϕ(-t)dt=∫a+∞ϕ(x)dx=1-∫-∞aϕ(x)dx=1-F(a).(2)P{∣X∣>a}=P{X<-a}+P{X>a}=F(-a)+P{X≥a}F(-a)+1-F(a)=2[1-F(a)].习题15设K在(0,5)上服从均匀分布,求x的方程4x2+4Kx+K+2=0有实根的概率.解答:因为K∼U(0,5),所以fK(k)={1/5,0<k<50,其它,方程4x2+4Kx+K+2=0有实根的充要条件为(4K)2-4⋅4(K+2)≥0,即K2-K-2≥0,亦即(k-2)(K+1)≥0,解得K≥2(K≤-1舍去),所以P{方程有实根}=P{K≥2}=∫2515dx=35.习题16某单位招聘155人,按考试成绩录用,共有526人报名,假设报名者考试成绩X∼N(μ,σ2), 已知90分以上12人,60分以下83人,若从高分到低分依次录取,某人成绩为78分,问此人是否能被录取?解答:要解决此问题首先确定μ,σ2, 因为考试人数很多,可用频率近似概率.根据已知条件P{X>90}=12/526≈0.0228,P{X≤90}=1-P{X>90}≈1-0.0228}=0.9772;又因为P{X≤90}=P{X-μσ≤90-μσ, 所以有Φ(90-μσ)=0.9772, 反查标准正态表得90-μσ=2 ①同理:P{X≤60}=83/526≈0.1578; 又因为P{X≤60}=P{X-μσ≤60-μσ,故Φ(60-μσ)≈0.1578.因为0.1578<0.5,所以60-μσ<0, 故Φ(μ-60σ)≈1-0.1578=0.8422, 反查标准正态表得μ-60σ≈1.0 ②联立①,②解得σ=10,μ=70, 所以,X∼N(70,100).某人是否能被录取,关键看录取率. 已知录取率为155526≈0.2947, 看某人是否能被录取,解法有两种:方法1:P{X>78}=1-P{X≤78}=1-P{x-7010≤78-7010=1-Φ(0.8)≈1-0.7881=0.2119,因为0.2119<0.2947(录取率), 所以此人能被录取.方法2:看录取分数线. 设录取者最低分为x0, 则P{X≥x0}=0.2947(录取率),P{X≤x0}=1-P{X≥x0}=1-0.2947=0.7053,P{X≤x0}=P{x-7010≤x0-7010=Φ{x0-7010=0.7053,反查标准正态表得x0-7010≈0.54, 解得x0≈75. 此人成绩78分高于最低分,所以可以录取. 习题17假设某地在任何长为t(年)的时间间隔内发生地震的次数N(t)服从参数为λ=0.1t的泊松分布,X表示连续两次地震之间间隔的时间(单位:年).(1)证明X服从指数分布并求出X的分布函数;(2)求今后3年内再次发生地震的概率;(3)求今后3年到5年内再次发生地震的概率.解答:(1)当t≥0时,P{X>t}=P{N(t)=0}=e-0.1t,∴F(t)=P{X≤t}=1-P{X>t}=1-e-0.1t;当t<0时,F(t)=0,∴F(x)={1-e-0.1t,x≥00,x<0,X服从指数分布(λ=0.1);(2)F(3)=1-e-0.1×3≈0.26;(3)F(5)-F(3)≈0.13.习题18100件产品中,90个一等品,10个二等品,随机取2个安装在一台设备上,若一台设备中有i个(i=0,1,2)二等品,则此设备的使用寿命服从参数为λ=i+1的指数分布.(1)试求设备寿命超过1的概率;(2)已知设备寿命超过1,求安装在设备上的两个零件都是一等品的概率.解答:(1)设X表示设备寿命. A表示“设备寿命超过1”,Bi表示“取出i个二等品”(i=0,1,2),则X的密度函数为fX(x)={λe-λx,x>00,x≤0 (λ=i+1,i=0,1,2),P(B0)=C902C1002, P(B1)=C901C102C1002, P(B2)=C102C1002,P(A∣B0)=∫1+∞e-xdx=e-1,P(A∣B1)=∫1+∞2e-2xdx=e-2,P(A∣B2)=∫1+∞3e-3xdx=e-3,由全概率公式:P(A)=∑i=02P(Bi)P(A∣Bi)≈0.32.(2)由贝叶斯公式:P(B0∣A)=P(B0)P(A∣B0)P(A)≈0.93.习题19设随机变量X的分布律为由定理即得fY(x)={0,y<3(y-32)3e-(y-32),y≥3.习题21设随机变量X的概率密度fX(x)={e-x,x>00,其它,求Y=eX的概率密度.解答:因为α=min{y(0),y(+∞)}=min{1,+∞}=1,β=max{y(0),y(+∞)}=max{1,+∞}=+∞.类似上题可得fY(y)={fX[h(y)]∣h′(y)∣,1<y<+∞0,其它={1/y2,1<y<+∞0,其它.习题22设随便机变量X的密度函数为fX(x)={1-∣x∣,-1<x<10,其它,求随机变量Y=X2+1的分布函数与密度函数.解答:X的取值范围为(-1,1),则Y的取值范围为[1,2).当1≤y<2时,FY(y)=P{Y≤y}=P{X2+1≤y}=P{-Y-1≤x≤y-1}=∫-y-1y-1(1-∣x∣)dx=2∫0y-1(1-x)dx=1-(1-y-1)2,从而Y的分布函数为FY(y)={0,y<11-(1-y-1)2,1≤y<2,1,其它Y的概率密度为fY(y)={1y-1-1,1<y<20,其它.。

概率论与数理统计教程习题(第二章随机变量及其分布)(1)答案

概率论与数理统计教程习题(第二章随机变量及其分布)(1)答案

概率论与数理统计练习题系 专业 班 姓名 学号第六章 随机变量数字特征一.填空题1. 若随机变量X 的概率函数为1.03.03.01.02.043211pX-,则=≤)2(X P ;=>)3(X P ;=>=)04(X X P .2. 若随机变量X 服从泊松分布)3(P ,则=≥)2(X P 8006.0413≈--e.3. 若随机变量X 的概率函数为).4,3,2,1(,2)(=⋅==-k c k X P k则=c1516. 4.设A ,B 为两个随机事件,且A 与B 相互独立,P (A )=,P (B )=,则()P AB =____________.() 5.设事件A 、B 互不相容,已知()0.4=P A ,()0.5=P B ,则()=P AB6. 盒中有4个棋子,其中2个白子,2个黑子,今有1人随机地从盒中取出2个棋子,则这2个棋子颜色相同的概率为____________.(13) 7.设随机变量X 服从[0,1]上的均匀分布,则()E X =____________.(12) 8.设随机变量X 服从参数为3的泊松分布,则概率密度函数为 __.(k 33(=,0,1,2k!P X k e k -==L )) 9.某种电器使用寿命X (单位:小时)服从参数为140000λ=的指数分布,则此种电器的平均使用寿命为____________小时.(40000)10在3男生2女生中任取3人,用X 表示取到女生人数,则X 的概率函数为11.若随机变量X 的概率密度为)(,1)(2+∞<<-∞+=x xa x f ,则=a π1;=>)0(X P ;==)0(X P 0 .12.若随机变量)1,1(~-U X ,则X 的概率密度为 1(1,1)()2x f x ⎧∈-⎪=⎨⎪⎩其它13.若随机变量)4(~e X ,则=≥)4(X P ;=<<)53(X P .14..设随机变量X 的可能取值为0,1,2,相应的概率分布为 , ,,则()E X =15.设X 为正态分布的随机变量,概率密度为2(1)8()x f x +-=,则2(21)E X -= 916.已知X ~B (n,p ),且E (X )=8,D (X )=,则n= 。

《概率论与数理统计》习题及答案

《概率论与数理统计》习题及答案

概率论与数理统计第一部份 习题第一章 概率论基本概念一、填空题1、设A ,B ,C 为3事件,则这3事件中恰有2个事件发生可表示为 。

2、设3.0)(,1.0)(=⋃=B A P A P ,且A 与B 互不相容,则=)(B P 。

3、口袋中有4只白球,2只红球,从中随机抽取3只,则取得2只白球,1只红球的概率 为 。

4、某人射击的命中率为0.7,现独立地重复射击5次,则恰有2次命中的概率为 。

5、某市有50%的住户订晚报,有60%的住户订日报,有80%的住户订这两种报纸中的一种,则同时订这两种报纸的百分比为 。

6、设A ,B 为两事件,3.0)(,7.0)(==B A P A P ,则=)(B A P 。

7、同时抛掷3枚均匀硬币,恰有1个正面的概率为 。

8、设A ,B 为两事件,2.0)(,5.0)(=-=B A P A P ,则=)(AB P 。

9、10个球中只有1个为红球,不放回地取球,每次1个,则第5次才取得红球的概率 为 。

10、将一骰子独立地抛掷2次,以X 和Y 分别表示先后掷出的点数,{}10=+=Y X A {}Y X B >=,则=)|(A B P 。

11、设B A ,是两事件,则B A ,的差事件为 。

12、设C B A ,,构成一完备事件组,且,7.0)(,5.0)(==B P A P 则=)(C P ,=)(AB P 。

13、设A 与B 为互不相容的两事件,,0)(>B P 则=)|(B A P 。

14、设A 与B 为相互独立的两事件,且4.0)(,7.0)(==B P A P ,则=)(AB P 。

15、设B A ,是两事件,,36.0)(,9.0)(==AB P A P 则=)(B A P 。

16、设B A ,是两个相互独立的事件,,4.0)(,2.0)(==B P A P 则=)(B A P 。

17、设B A ,是两事件,如果B A ⊃,且2.0)(,7.0)(==B P A P ,则=)|(B A P 。

(完整版)概率论与数理统计及其应用课后答案(浙大版)第2章随机变量及其分布

(完整版)概率论与数理统计及其应用课后答案(浙大版)第2章随机变量及其分布

第2章 随机变量及其分布1,解:显然,Y 是一个离散型的随机变量,Y 取k 表明第k 个人是A 型血而前1-k 个人都不是A 型血,因此有116.04.0)4.01(4.0}{--⨯=-⨯==k k k Y P , (Λ,3,2,1=k )上式就是随机变量Y 的分布律(这是一个几何分布)。

2,解:X 只能取值0,1,2。

设以)3,2,1(=i A i 记第i 个阀门没有打开这一事件。

则)}(){()}({}0{3121321A A A A P A A A P X P ⋃=⋃==)()()()()()()(}{}{}{32131213213121A P A P A P A P A P A P A P A A A P A A P A A P -+=-+= 072.0)8.01()8.01()8.01(322=---+-=,类似有512.08.0)()}({}2{3321321=====A A A P A A A P X P ,416.0}2{}0{1}1{==-=-==X P X P X P ,综上所述,可得分布律为3,解:根据题意,随机变量X 服从二项分布B(15, 0.2),分布律为15,2,1,0,8.02.0)(1515Λ=⨯⨯==-k C k X P k k k 。

(1),2501.08.02.0)3(123315=⨯⨯==C X P(2)8329.0)0()1(1)2(==-=-=≥X P X P X P ;(3)6129.0)3()2()1()31(==+=+==≤≤X P X P X P X P ;(4))2()3()4()5(1)5(=-=-=-=-=>X P X P X P X P X P0611.0)0()1(==-=-X P X P4,解:对于][5/3G 系统,当至少有3个元件正常工作时,系统正常工作。

而系统中正常工作的元件个数X 服从二项分布B(5, 0.9),所以系统正常工作的概率为99144.01.09.0)(535553=⨯⨯==∑∑=-=k k k k k Ck X P5,解:根据题意,次品数X 服从二项分布B(8000, 0.001),所以∑=-⨯=≤=<6080008000999.0001.0)6()7(k k k kC X P X P3134.0!8!)001.08000(6860001.08000==⨯≈∑∑=-=⨯-k k k k k e k e (查表得)。

概率论与数理统计+第二章+随机变量及其分布+练习题答案

概率论与数理统计+第二章+随机变量及其分布+练习题答案

滨州学院《概率论与数理统计》(公共课)练习题第二章 随机变量及其分布一、填空题 10.712设一本书的各页的印刷错误个数X 服从泊松分布律.已知有一个和两个印刷错误的页数相同,则随意抽查的4页中无印刷错误的概率p = 0.0003 .3⎪⎪⎩⎪⎪⎨⎧≥<≤<≤<=≤=.若,;,若;,若;,若 3 1 324544 21 51 1 0 }{)(x x x x x X x F P 4{}12525.032)05.0()02(25.0=-=---=<≤F F X P . 例2.11设随机变量X 的概率密度函数为⎪⎩⎪⎨⎧≤≤≤≤=其它06310)(9231x x x f ;若k 使得32)(=≥k X P ,则k 的取值范围是 . 【[1,3]】例2.13 设X 服从二项分布),(p n B ,且已知)2()1(===X P X P ,)3(2)2(===X P X P ,则)4(=X P = . 【24310】 例2.14若随机变量X 服从正态分布)0)(,(2>σσμN ,且二次方程042=++X y y 无实根的概率是21,则=μ . 【4】2.22 (1)24310;(2)4;(3)2922;(4)649;(5))0(2)1(ln 221)(+∞<<--=y y Y I e y y f π〖选择题〗1 [ C ]2 [ C ]3 [ C ]例2.1 【C 】例2.2 【A 】 例2.3 【B 】例2.5 【A 】例2.16设随机变量X ,Y 相互独立均服从正态分布)4,1(N , 若概率21)1(=<-bY aX P ,则(A)1,2==b a(B) 2,1==b a(C) 1,2=-=b a(D) 2,1-==b a 【A 】例2.18 设X 为随机变量, 若矩阵⎪⎪⎪⎭⎫ ⎝⎛--=01020232X A 的特征根全为实数的概率为0.5, 则(A)X 服从区间[0,2]上的均匀分布 (B) X 服从二项分布B(2, 0.5) (C) X 服从参数为1的指数分布 (D) X 服从标准正态分布 【A 】2.23 (1)A ;(2)B ;(3)C ;(4)C ;(5)B 解答题〗 〖解答题〗例2.30解 不妨假设正立方体容器的边长为1.引进事件:{}0==X A ,即事件A 表示“小孔出现在容器的下底面”.由于小孔出现在正立方体的6个侧面是等可能的,易见 61)(=A P .从而,{}61===)(0A X P P.对于任意x <0,显然()=x F 0;而()610=F .由于小孔出现的部位是随机性,可见对于任意)75.0,0(∈x ,有(){}{}.641646100xx x X X x F +=+=≤<+≤=P P 该式中4x 表示容器的四个侧面x 以下的总面积,而容器6个侧面的总面积为6.对于任意x ≥0.75,显然()1=x F.于是,最后得()⎪⎪⎩⎪⎪⎨⎧≥<≤+<=.若若若 75.0 , 1 , 75.00 , 641, 0 , 0 x x x x x F例2.31(分布函数)解 因X 服从指数分布,且21==λX E (百小时),故分布参数λ=0.5,故X的分布函数为()⎩⎨⎧≤>-=-.,若;,若0 0 0 e 15.0x x x G x 易见,{}1.0min ,X Y=.设)(y F 是Y 的分布函数,则对于y <0,)(y F =0;对于y >0.1,)(y F =1;对于1.00≤≤y ,有{}{}.,y y G y X y X y Y y F 5.0e 1)(}1.0 min{}{)(--==≤=≤=≤=P P P 于是,{}.10 min ,X Y=的分布函数为()⎪⎩⎪⎨⎧≥<≤-<=-.,若,若,,若 1.0 1 , 1.00 e 1 0 0 5.0y y y y F y例2.33解 试验次数X 是一随机变量.为求X 的概率分布,引进事件:j B ={第j 次试验成功}(j =1,2,…,n ).显然P(j B ) = p .而由于试验的独立性,知事件n B B B ,,,21 …相互独立.设试验进行到成功或n 次为止,则X 的可能值为1,2,…,n 且1}1{B X==;对于2≤k ≤n-1,.;;;,111111112111)(}{ )(}1{)12()(}{}{ }{------======-≤≤=======k n k k k n k k q B B n X p B X n k pq B B B k X B B B n X B B B k X P P P P P P于是,X 的概率分布为有限几何分布:⎪⎪⎭⎫ ⎝⎛---1121321~n n q pq pq pq pn n X . 例2.35解 以ν表示抽到的30件产品中不合格品的件数,则ν服从参数为(30,0.02)的二项分布:.;;4545.0}0{1}1{3340.002.098.030}1{5455.098.0}0{2930==-=≥=⨯⨯=====ννννP P P P1) 不合格品不少于两件的概率.1205.002.098.03098.01}1{}0{1}2{2930=⨯⨯--==-=-=≥=ννναP P P2) 在已经发现一件不合格品的条件下,不合格品不少于两件的条件概率{}.2652.0}1{}2{}1{}2,1{12≈≥≥=≥≥≥=≥≥=νννννννβP P P P P 例2.36解 由条件知每台设备出现故障的概率为0.08.以ν表示10台设备中同时出现故障的台数,则ν服从参数为(10,0.08)的二项分布.需要安排的值班人数k 应满足条件:95.0}{≥≤k νP .需要对不同的k 进行试算.首先,设k =1和k =2,相应得{}{}{}{}{}{}.,95.09599.008.092.008.092.01092.021281.008.092.01092.010128210910910≥≈⨯⨯+⨯⨯+==+≤=≤≈⨯⨯+==+==≤C ννννννP P P P P P因此,至少需要安排2个人值班.例2.37解 设X ——一周5个工作日停用的天数;Y ——一周所创利润.X 服从参数为(5,0.2)的二项分布.因此,有.,,,057.0205.0410.0328.01}3{205.08.02.010}2{410.08.02.05}1{328.08.0}0{3245=---=≥=⨯⨯===⨯⨯=====X X X X P P P P一周所创利润Y 是X 的函数:⎪⎪⎩⎪⎪⎨⎧≥-====3.,若2,,若1,,若,,若X X X X Y 2 2 7 0 10 ⎪⎪⎭⎫ ⎝⎛-328.0410.0205.0057.010722~Y . 例2.38(二项分布)解 设n ——至少出现一件不合格品所要生产产品的件数,则n 件产品中不合格品的件数n ν服从参数为(n ,0.01)的二项分布;按题意,n 应满足条件., 0729.29899.0ln 05.0ln 95.099.01}0{1}1{≈≥≥-==-=≥n nn n ννP P 于是,为至少出现一件不合格品的概率超过95%,最少需要298.0729×3≈895分,将近14小时55分.例3.41解 由条件知X +Y 是一日内到过该商店的顾客的人数,服从参数为λ的泊松分布.设X ——一日内到过该商店的顾客中购货的人数.由条件知,在一日内有n 个顾客到过该商店的条件下,购货人数的条件概率分布为{}().;),2,1,0(1m n m p p C n Y X m X mn m m n ≥=-==+=- P由全概率公式可见,对于m =0,1,2,…,有{}{}{}()[]()()()()[]()()[]()()().p mp mk km m n mn m mn nmn mm nmn n mn mm nmn m p m p p k m p p m n m p n p p C n p p Cn Y X n Y X m Xm X λλλλλλλλλλλλλλλ---∞=-∞=--∞=--∞=--∞===-=--=-=⎥⎦⎤⎢⎣⎡-==+=+===∑∑∑∑∑e ! e e ! 1!1e!1!1e!!1ee ! 110P P P于是,一日内到过该商店的顾客中购货的人数X 服从参数为p λ的泊松分布.同理,Y 服从参数为)1(p -λ的泊松分布.例2.44 解 以()t ν表示t =90天内售出的电冰箱台数.可以假设()t ν服从参数为t λ的泊松分布.由条件知()λν77E ==56,从而λ=8(台).这样,()t ν服从参数为t λ=8t 的泊松分布: (){}()() ,2,1,0 e !88===-k k t k t tkνP .随机变量X 的可能值为自然数m =0,1,2,….记t a λ=.由全概率公式,有{}(){}(){}()()()()()()()(), pa m pa a a m k k a m m n mn ammn a n m n m m nmn m pa m pa k qa m pa m n qa m pan a q p C n a n a m X m X ---∞=-∞=--∞=--∞====-=======∑∑∑∑e !e e ! ! e!! e ! e ! 0ννP P P 其中6.390805.0=⨯⨯==t p pa λ.因此返修件数X 服从参数为3.6的泊松分布:{}() ,2,1,0 e !6.36.3===-m m m X m P .例2.47解 由条件知{}{}{}{},⎪⎭⎫ ⎝⎛--≈⎥⎦⎤⎢⎣⎡--⎪⎭⎫ ⎝⎛--=⎭⎬⎫⎩⎨⎧-≤-≤--=≤≤-=≤-≤--=≤--=>-=310821)36(310821310823108310812011 1 025.0a a a X a X a a X a a a X a a X ΦΦΦP P P P P其中()x Φ是标准正态分布函数.由熟知的事实()975.096.1=Φ,可见.;;94.5696.131082 0.975031082≈≈-≈⎪⎭⎫⎝⎛-a a a Φ 例2.48 解 由条件知()210,0~N X.设ν为100次独立重复测量中事件{}6.19 >X 出现的次数,则{}05.096.1106.19 =⎭⎬⎫⎩⎨⎧>=>=X X p P P .易见ν服从参数为(100 , 0.05)的二项分布,近似服从参数为5的泊松分布.因此{}{}{}{}{}().87.05.125115.125105.095.0299100 05.095.010095.012101313555529899100≈++-=---≈⨯⨯⨯-⨯⨯--==-=-=-=<-=≥=----e e e e ννννναP P P P P 〖证明题〗例2.52(分布函数)证明 只需验证)()()(21x bF x aF x F +=满足分布函数的三条基本性质.由条件知a 和b 非负且a +b =1.由于)(1x F 和)(2x F 都是分布函数,可见对于任意,有1)()()(021=+≤+=≤b a x bF x aF x F对于任意实数21x x <,由于)2,1)(()(21=≤i x F x F i i ,可见,)()()()()()(2222112111x F x bF x aF x bF x aF x F =+≤+=即)(x F 单调不减.由)(1x F 和)(2x F 的右连续性,可见)(x F 也右连续.最后,.;1)(lim )(lim )(lim 0)(lim )(lim )(lim 2121=+==+=+∞→+∞→+∞→-∞→-∞→-∞→x F b x F a x F x F b x F a x F x x x x x x于是)()()(21x bF x aF x F +=也是分布函数.例2.53(分布函数) 证明 指数分布函数为)0(e 1)(≥-=-x x F x λ设}{P )(y Y y G ≤=为Y=)(X F 的分布函数.由于分布函数)(x F 的值域为(0,1),可见当0≤y时0)(=y G ;当1≥y 时1)(=y G .设10<<y ,有.y y F y X y y Y y G X =⎪⎭⎫⎝⎛--=⎭⎬⎫⎩⎨⎧--≤=≤-=≤=-)1ln(1)1ln(1}e 1{}{)(λλλP P P 于是,)(y G 是区间(0,1)上的均匀分布函数,从而Y=例2.4 【π2=C ;5)arctan 2(πe】例2.6 连续型随机变量X 的分布函数为:x B A x F arctan )(+=,∞<<∞-x试求:(1)常数A 、B ;(2))11(<<-X P ;(3)随机变量X 的概率密度.【(1)π1,21==B A ;(2)21;(3))1(12x +π】 例2.7 设随机变量X 具有对称的密度函数,即)()(x f x f =-,证明对任意的0>a ,有(1)⎰-=-=-adx x f a F a F 0)(21)(1)((2)1)(2)|(|-=<a F a X P (3) ))(1(2)|(|a F a X P -=>问题3: 已知实际背景, 求随机变量的分布律与分布函数(或密度函数)例2.8 一袋中装有4个球,球上分别记有号码1,2,3,4。

高中数学选修2-3(人教A版)第二章随机变量及其分布2.2知识点总结含同步练习及答案

高中数学选修2-3(人教A版)第二章随机变量及其分布2.2知识点总结含同步练习及答案
高中数学选修2-3(人教A版)知识点总结含同步练习题及答案
第二章随机变量及其分布 2.2二项分布及其应用
一、学习任务 1. 了解条件概率的定义及计算公式,并会利用条件概率解决一些简单的实际问题. 2. 能通过实例理解相互独立事件的定义及概率计算公式,并能综合利用互斥事件的概率加法公 式即对立事件的概率乘法公式. 3. 理解独立重复试验的概率及意义,理解事件在 n 次独立重复试验中恰好发生 k 次的概率 公式,并能利用 n 次独立重复试验的模型模拟 n 次独立重复试验. 二、知识清单
(2)设事件“甲、乙两人在罚球线各投球二次均不命中”的概率为 P1 ,则
¯ ∩ ¯¯ ¯ ∩ ¯¯ ¯ ∩ ¯¯ ¯) P1 = P (¯¯ A A B B ¯ ) ⋅ P (¯¯ ¯ ) ⋅ P (¯¯ ¯ ) ⋅ P (¯¯ ¯) = P (¯¯ A A B B 1 2 = (1 − )2 (1 − )2 2 5
n−k k P (X = k) = Ck , k = 0, 1, 2, ⋯ , n. n p (1 − p)
此时称随机变量 X 服从二项分布(binnomial distribution),记作 X ∼ B(n, p)),并称 p 为 成功概率. 例题: 下列随机变量 X 的分布列不属于二项分布的是( ) A.投掷一枚均匀的骰子 5 次,X 表示点数 6 出现的次数 B.某射手射中目标的概率为 p ,设每次射击是相互独立的,X 为从开始射击到击中目标所需要 的射击次数 C.实力相等的甲、乙两选手举行了 5 局乒乓球比赛,X 表示甲获胜的次数 D.某星期内,每次下载某网站数据后被病毒感染的概率为 0.3,X 表示下载 n 次数据后电脑被 病毒感染的次数 解:B 选项 A,试验出现的结果只有两个:点数为 6 和点数不为 6 ,且点数为 6 的概率在每一次试验 都为

概率论与数理统计第二版课后答案

概率论与数理统计第二版课后答案

第1章 随机变量及其概率1,写出下列试验的样本空间:(1) 连续投掷一颗骰子直至6个结果中有一个结果出现两次,记录投掷的次数。

(2) 连续投掷一颗骰子直至6个结果中有一个结果接连出现两次,记录投掷的次数。

(3) 连续投掷一枚硬币直至正面出现,观察正反面出现的情况。

(4) 抛一枚硬币,若出现H 则再抛一次;若出现T ,则再抛一颗骰子,观察出现的各种结果。

解:(1)}7,6,5,4,3,2{=S ;(2)},4,3,2{ =S ;(3)},,,,{ TTTH TTH TH H S =;(4)}6,5,4,3,2,1,,{T T T T T T HT HH S =。

2,设B A ,是两个事件,已知,125.0)(,5.0)(,25.0)(===AB P B P A P ,求)])([(),(),(),(______AB B A P AB P B A P B A P ⋃⋃。

解:625.0)()()()(=-+=⋃AB P B P A P B A P ,375.0)()(])[()(=-=-=AB P B P B A S P B A P ,875.0)(1)(___--=AB P AB P ,5.0)(625.0)])([()()])([()])([(___=-=⋃-⋃=-⋃=⋃AB P AB B A P B A P AB S B A P AB B A P3,在100,101,…,999这900个3位数中,任取一个3位数,求不包含数字1个概率。

解:在100,101,…,999这900个3位数中不包含数字1的3位数的个数为648998=⨯⨯,所以所求得概率为72.0900648=4,在仅由数字0,1,2,3,4,5组成且每个数字之多出现一次的全体三位数中,任取一个三位数。

(1)求该数是奇数的概率;(2)求该数大于330的概率。

解:仅由数字0,1,2,3,4,5组成且每个数字之多出现一次的全体三位数的个数有100455=⨯⨯个。

(完整版)概率论第二章随机变量及其分布答案

(完整版)概率论第二章随机变量及其分布答案

概率论与数理统计练习题系 专业 班 姓名 学号第二章 随机变量及其分布(一)一.选择题:1.设X 是离散型随机变量,以下可以作为X 的概率分布是 [ B ](A )1234111124816Xx x x x p (B ) 123411112488X x x x x p (C )1234111123412Xx x x x p(D ) 1234111123412X x x x x p -2.设随机变量ξ的分布列为 01230.10.30.40.2X p )(x F 为其分布函数,则)2(F =[ C ](A )0.2 (B )0.4 (C )0.8 (D )1 二、填空题:1.设随机变量X 的概率分布为0120.20.5X p a ,则a = 0.32.某产品15件,其中有次品2件。

现从中任取3件,则抽得次品数X 的概率分布为 P{X=0}=22/35;P{X=1}=12/35; P{X=2}=1/353.设射手每次击中目标的概率为0.7,连续射击10次,则击中目标次数X 的概率分布为 P{X=k}=k kkC -⨯10103.07.0,10,,0Λ=k 或X~B(10,0.7)三、计算题:1.同时掷两颗骰子,设随机变量X 为“两颗骰子点数之和”求: (1)X 的概率分布; (2)(3)P X ≤; (3)(12)P X >(1) P{X=2}= P{X=12}=1/36; P{X=3}= P{X=11}=1/18;P{X=4}= P{X=10}=1/12; P{X=5}= P{X=9}=1/9;P{X=6}= P{X=8}=5/36;P{X=7}=1/6(2) P{X=2}=1/36; P{X=3}=1/18 (3) P{X>12}=02.产品有一、二、三等品及废品四种,其中一、二、三等品及废品率分别为60%,10%,20%及10%,任取一个产品检查其质量,试用随机变量X 描述检查结果。

概率论与数理统计浙大四版习题精选答案(完全真实)

概率论与数理统计浙大四版习题精选答案(完全真实)

概率论与数理统计习题答案 精选版浙大第四版说明:剩余习题在学习辅导与习题选解第一章 概率论的基本概念1. 写出下列随机试验的样本空间(1)记录一个小班一次数学考试的平均分数(充以百分制记分)([一] 1)⎭⎬⎫⎩⎨⎧⨯=n n nn o S 1001, ,n 表小班人数(3)生产产品直到得到10件正品,记录生产产品的总件数。

([一] 2)S={10,11,12,………,n ,………}(4)对某工厂出厂的产品进行检查,合格的盖上“正品”,不合格的盖上“次品”,如连续查出二个次品就停止检查,或检查4个产品就停止检查,记录检查的结果。

查出合格品记为“1”,查出次品记为“0”,连续出现两个“0”就停止检查,或查满4次才停止检查。

([一] (3))S={00,100,0100,0101,1010,0110,1100,0111,1011,1101,1110,1111,} 2. 设A ,B ,C 为三事件,用A ,B ,C 的运算关系表示下列事件。

(1)A 发生,B 与C 不发生。

表示为:C B A 或A - (AB+AC )或A - (B ∪C )(2)A ,B 都发生,而C 不发生。

表示为:C AB 或AB -ABC 或AB -C(3)A ,B ,C 中至少有一个发生表示为:A+B+C(4)A ,B ,C 都发生,表示为:ABC(5)A ,B ,C 都不发生,表示为:C B A 或S - (A+B+C)或C B A ⋃⋃(6)A ,B ,C 中不多于一个发生,即A ,B ,C 中至少有两个同时不发生 相当于C A C B B A ,,中至少有一个发生。

故 表示为:C A C B B A ++。

(7)A ,B ,C 中不多于二个发生。

相当于:C B A ,,中至少有一个发生。

故 表示为:ABC C B A 或++ (8)A ,B ,C 中至少有二个发生。

相当于:AB ,BC ,AC 中至少有一个发生。

概率论与数理统计 第二章 随机变量及其概率分布 练习题 答案详解

概率论与数理统计 第二章 随机变量及其概率分布 练习题 答案详解

第二章 随机变量及其概率分布(概率论与数理统计)练习题答案与提示(答案在最后)1.一盒零件中有9个合格品和3个废品,现从中任取一个零件,如果是废品不再放回,而从其余剩下的零件中另取一个,如此继续下去,直到取得合格品为止,求取出的废品个数ξ的分布律.2.在汽车行进路上有四个十字路口设有红绿灯,假定在第一.第三个路口汽车遇绿灯通行的概率为6.0,在第二.第四个路口通行的概率为5.0,并且各十字路口红绿灯信号是相互独立的.求该汽车在停下时,已通过的十字路口数的概率分布.3.把4个球任意放到3个盒中,每个球都以同样的概率31落到任一个盒中,用ξ表示落到第一个盒中的球的个数,求ξ的分布律.4.设有80台同类型设备,各台工作是相互独立的,发生故障的概率都是01.0,且一台设备的故障能由一个人处理,考虑两种配备维修工人的方案:其一是由4人维护,每人负责20台;其二是由3人共同维护80台.试比较两种方案在设备发生故障时不能及时维修的概率大小.5.设在保险公司里有2500个同一年龄的人参加了人寿保险,在一年里每个人死亡的概率为002.0,每个参加保险的人在每年一月一日付12元保险费,而在死亡时其家属可到保险公司领取赔付费2000元.试问:(1) 一年内保险公司亏本的概率是多少?(2) 一年内保险公司获利不少于10000元的概率是多少? 6.某盒产品中有8件正品,2件次品,每次从中任取一件进行检查,直到取得正品为止.分别按不放回抽样和有放回抽样,求所需抽取次数的分布律.7.从一批有90个正品和10个次品的产品中任取5个,求抽得的次品数ξ的概率分布.8.通过某路口的每辆汽车发生事故的概率为0001.0=p ,假设在某段时间内有1000辆汽车通过此路口,求在此时间内发生两次以上事故的概率.9.设某种晶体管的寿命ξ(单位:小时)的概率密度函数为=)(x f ⎪⎩⎪⎨⎧≤>,100,0,100,1002x x x (1) 若一个晶体管在使用150小时后仍完好,那么该晶体管使用时间少于200小时的概率是多少?(2) 若一个电子仪器中装有三个独立工作的这种晶体管,在使用150小时之后恰有一个管子损坏的概率是多少?10.设随机变量ξ在)6,0(上服从均匀分布,求方程04522=-++ξξx x有实根的概率.11.以下哪个可以是随机变量的分布函数:(1) =)(x F 211x+, (2) =)(x F arctgx π2143+ (3) =)(x F x -e , (4) =)(x F ⎪⎪⎩⎪⎪⎨⎧≥<≤-+-<.,,,,,1 1112121 03x x xx12.设随机变量ξ的概率分布为==)(k P ξk a2, ,3,2,1=k , 求:(1) 常数a ; (2) )(为偶数ξP ; (3) )5(≥ξP .13.已知ξ的分布律为==)(k P ξkck 6.0, ,3,2,1=k , 求常数c .14.设随机变量ξ的分布律为ξ 0 1 2 P31 61 21 求ξ的分布函数,并求:(1) )21(≤ξP ;(2) )231(≤<ξP ;(3) )231(≤≤ξP .15.设随机变量ξ的分布律为ξ 2- 0 2 3P71 73 72 71求ξ的分布函数.16.一个靶子是一个半径为2米的圆盘,设击中靶上任一同心圆的概率与该圆的面积成正比,并假设每次射击都能中靶,以ξ表示弹着点与圆心的距离,求随机变量ξ的分布函数.17.已知一本书中每页上的印刷错误ξ服从参数为2.0的泊松分布,试求(1) ξ的概率分布;(2) 求每页上印刷错误不多于一个的概率.18.设随机变量ξ的分布函数为⎪⎪⎩⎪⎪⎨⎧≥<≤<≤--<=,,,,,,, ,41415.0112.010)(x x x x x F求ξ的分布律.19.下列哪一个函数可能成为随机变量ξ的密度函数: (1) =)(x f x-e, +∞<<∞-x ;(2) =)(x f )1(12x +π, +∞<<∞-x ;(3) =)(x f ⎩⎨⎧≤其它;,,,011x(4) =)(x f ⎩⎨⎧<<其它.,,,00sin πx x20.若)(x f ,)(x g 均在同一区间],[b a 上是概率密度函数,证明: (1) )(x f +)(x g 不是这区间上的概率密度函数;(2) 对任一数k (10<<k ),)()1()(x g k x kf -+是这个区间上的概率密度函数.21.已知连续型随机变量ξ的分布函数为⎩⎨⎧<≥+=-000e )(x x B A x F x ,,,λ (0>λ为常数),求:(1) 常数A ,B ;(2) 密度函数)(x f .22.设连续型随机变量ξ的分布函数为⎪⎩⎪⎨⎧≤>+=-,,,,000e )(22x x B A x F x 求:(1) 常数A ,B ;(2) )21(<<ξP ;(3) ξ的密度函数)(x f .23.设随机变量ξ的密度函数为)(x f xc λλ-=e(0>λ为常数),求:(1) 常数c ;(2) ξ的分布函数;(3) )21(<ξP .24.某加油站每周补充油料一次,如果它的周出售量ξ(单位:千加仑)是一个随机变量,密度函数为=)(x f ⎩⎨⎧<<-其它,,,,010)1(54x x 要使在给定的一周内油库被吸光的概率是01.0,这个油库的容量应该是多少千加仑?25.设随机变量ξ的概率密度为=)(x f ,其它,,,,,⎪⎪⎩⎪⎪⎨⎧<≤<<0211102x x x ax 求:(1) 常数a ;(2) 分布函数)(x F ;(3) )35.0(<<ξP .26.某商店出售某种商品,据历史记录分析,每月销售量服从参数为5的泊松分布,问该商店月初应库存多少件此种商品,才能以999.0的概率满足顾客的需要?27.已知某自动车床生产的零件,其长度ξ(单位:厘米)服从正态分布)75.0,50(~2N ξ,如果规定零件长度在5.150±厘米之间的为合格品, 求:(1) 零件的合格率;(2) 生产三只零件,至少有一只是不合格的概率. 28.某数学竞赛中的数学成绩)10,65(~2N ξ,若85分以上者为优秀,试问数学成绩优秀的学生占总人数的百分之几?29.某地抽样调查考生的英语成绩近似服从正态分布,平均成绩为72分,96分以上的占考生总数%3.2,求考生的英语成绩在60分到84分之间的概率.30.设随机变量ξ服从参数为2,p 的二项分布,即),2(~p B ξ,随机变量η),3(~p B ,若95)1(=≥ξP ,求)1(≥ηP . 31.已知ξ服从参数为λ的Poisson 分布,且==)1(ξP )2(=ξP ,求)4(=ξP .32.已知离散型随机变量ξ的分布律为ξ 1 2 3 4 5P 51 51 51 51 51 求:(1) 12+=ξη;(2) 2)2(-=ξη的分布律.33.设随机变量ξ的分布律为ξ 2π-2ππP 2.0 3.0 4.0 1.0求:(1) 2ξη=;(2) ξηcos =的分布律.34.设某球直径的测量值为随机变量ξ,若已知ξ在],[b a 上服从均匀分布,求该球体积36ξπη=的概率密度.35.设)1,0(~N ξ,求ξη=的概率分布密度. 36.设随机变量ξ服从]2,2[ππ-上的均匀分布,求随机变量ξηsin =的分布密度)(x f .答案详解1. ξ 0 1 2 3P 43 4492209 22012. ξ 0 1 2 3 4P 4.0 3.0 12.0 09.0 09.0 3.把一个球放入盒中看作一次试验,每个球落到第一个盒中的概率都为31,4个球放入(3个)盒中可以看作4重贝努里试验,所以落入第一个盒中的球数)31,4(~B ξ,即ξ的分布律为:)(k P =ξ=kk k C -44)32()31(,4,3,2,1,0=k4.按第一种方案,每人负责20台,设每个工人需维修的设备数为ξ,则)01.020(~,B ξ.这里设备发生故障时不能及时维修的事件,也就是一个工人负责的20台设备中至少有两台发生了故障,其概率为)2(≥ξP -=-=)0(1ξP )1(=ξP20002099.001.01⋅⋅-=C 1912099.001.0⋅⋅-C 2.00!02.01--≈e 2.01!12.0--e =-=-2.02.11e 0175231.0.上述近似计算是用了泊松定理,其中参数2.0==np λ.按第二种方案,3名维修工人共同维护80台设备,设需要维修的设备数为η,则)01.080(~,B η,这里设备发生故障时不能及时维修的事件,就是80台中至少有4台发生故障,其概率为)4(≥ηP =∑=--30808099.001.0C 1k k k k∑=--≈308.0!8.01k k e k 00908.0≈,比较计算结果,可见第二种方案发挥团队精神,既能节省人力,又能把设备管理得更好.5.(1) 000069.0, (2) 986305.06.不放回抽样,所需抽取次数的分布律为:ξ 1 2 3P 54 458 451放回抽样,所需抽取次数的分布律为:==P )(k ξ54)51(1⋅-k , ,3,2,1=k7.==)(k P ξ510059010C C C k k -⋅, 5 ,4 ,3 ,2 ,1 ,0=k 8.0045.09.(1) 41, (2) 9410.5.011.(4)12.(1) 1=a , (2) 31, (3) 16113.由分布律的性质可知:∑∞====1)(1k k P ξ∑∞=16.0k kk c ,为了求级数∑∞=16.0k kk 的和,令)(x f =∑∞=1k k k x ,逐项求导,得)(x f '=∑∞=-11k k x =x -11,从而 ⎰'xx x f 0d )(=⎰-x x 0d x 11,即)(x f -)0(f =)1ln(x --,又因)0(f =0,从而)(x f =)1ln(x --,令6.0=x ,得=)6.0(f 25ln 4.0ln =-,从而1)2ln 5(ln --=c14.=)(x F ⎪⎪⎪⎩⎪⎪⎪⎨⎧≥<≤<≤<212121103100x x x x ,,,,,,, (1) 31; (2) 0; (3) 6115.=)(x F ⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧≥<≤<≤<≤--<3 ,1,32,76,20,74,02,71,2,0x x x x x 16.=)(x F ⎪⎪⎩⎪⎪⎨⎧≥<≤<2,1,20,4,0,02x x xx 17.(1) ==)(k P ξ2.0e !2.0-k k , ,2,1,0=k , (2) 983.0)1(=≤ξP 18. ξ 1- 1 4P 2.0 3.0 0.5 19.(2) 20.略21.(1) 1=A ,1-=B (2) =)(x f ⎩⎨⎧<≥-0,0,0 ,e x x x λλ22.(1) 1=A ,1-=B , (2) 4712.0, (3) =)(x f ⎪⎩⎪⎨⎧≤>-0 ,0,0,e 22x x x x23.(1) 21, (2) =)(x F ⎪⎪⎩⎪⎪⎨⎧≥-<-,0,e 211,0 ,e 21x x x xλλ (3) 2e 1λ--24.设油库的容量为x 千加仑,据题意,01.0)(=>x P ξ,即99.0)(=≤x P ξ,=≤)(x P ξ⎰-xdx 04x )(15=--=5)1(1x 99.0,从而01.0)1(5=-x ,3981.01=-x ,解得6019.0=x (千加仑)25.(1) 1, (2) =)(x F ⎪⎪⎪⎩⎪⎪⎪⎨⎧≥<≤-<≤<,2,1,21,123,10,2,0,02x x x x x x (3) 875.026.1327.(1) 9545.0, (2) 1304.0 28.%3.229.设考生的英语成绩为ξ,则ξ),72(~2σN ,由题意知,=≥)96(ξP 023.0)729672(=-≥-σσξP , 故977.0)24()2472(=Φ=<-P σσσξ, 查表得,224=σ,所以12=σ,因此,)12,72(~2N ξ,从而所求概率为=≤≤)8460(ξP )1272841272127260(-≤-≤-ξP )1()1(-Φ-Φ=6824.0= 30.=<)1(ξP 94951=-,即94)1(C )0(2002=-==p p P ξ,解得31=p ,从而=≥)1(ηP )1(1<-ηP )0(1=-=ηP =--=3003)1(1p p C 271931.2e 32-32.(1) η 3 5 7 9 11 (2) η 0 1 4 9P 51 51 51 51 51 P 51 52 51 5133.(1) η 0 42π 2πP 3.0 0.6 0.1(2) η 1- 0 1P 1.0 6.0 3.034.=)(y f η⎪⎩⎪⎨⎧≤≤-其它-,0,66,92133323b y a y a b πππ 35.=)(y f η⎪⎩⎪⎨⎧≤>0,0,0,e 222y2y y -π36.ξ的密度函数为=)(x f ξ⎪⎩⎪⎨⎧≤≤-,,0,22,1其它πππx由于x y sin =在]2,2[ππ-内严格单调增加,因此存在反函数y x arcsin =,其导数为:211y x y -=',x y sin =在]2,2[ππ-上的最大值为1,最小值为1-,利用随机变量的单调函数的分布密度的公式,得η的密度函数为:=)(y f η⎪⎩⎪⎨⎧<<-',,0,11)(arcsin )(arcsin 其它,y y y f ξ⎪⎩⎪⎨⎧<<--=其它,0,11,112y yπ。

概率论与数理统计第二章习题与答案

概率论与数理统计第二章习题与答案

概率论与数理统计习题 第二章 随机变量及其分布习题2-1 一袋中装有5只球,编号为1,2,3,4,5.在袋中同时取3只,以X 表示取出的3只球中的最大,写出X 随机变量的分布律.解:X 可以取值3,4,5,分布律为1061)4,3,2,1,5()5(1031)3,2,1,4()4(1011)2,1,3()3(352435233522=⨯====⨯====⨯===C C P X P C C P X P C C P X P 中任取两球再在号一球为中任取两球再在号一球为号两球为号一球为也可列为下表 X : 3, 4,5 P :106,103,101习题2-2 进行重复独立试验,设每次试验成功的概率为p ,失败的概率为p -1)10(<<p .(1)将试验进行到出现一次成功为止,以X 表示所需的试验次数,求X 的分布律.(此时称X 服从以p 为参数的几何分布.)(2)将试验进行到出现r 次成功为止,以Y 表示所需的试验次数,求Y 的分布律.(此时称Y 服从以p r ,为参数的巴斯卡分布.)(3)一篮球运动员的投篮命中率为%45.以X 表示他首次投中时累计已投篮的次数,写出X 的分布律,并计算X 取偶数的概率.解:(1)P (X=k )=q k -1pk=1,2,……(2)Y=r+n={最后一次实验前r+n -1次有n 次失败,且最后一次成功},,2,1,0,)(111Λ===+=-+--+n p q C p p q C n r Y P r n n n r r n n n r 其中 q=1-p , 或记r+n=k ,则 P {Y=k }=Λ,1,,)1(11+=----r r k p p C rk r r k(3)P (X=k ) = (0.55)k -10.45k=1,2…P (X 取偶数)=311145.0)55.0()2(1121===∑∑∞=-∞=k k k k X P习题2-3 一房间有同样大小的窗子,其中只有一扇是打开的。

陈国华等主编概率论与数理统计第二章习题解答

陈国华等主编概率论与数理统计第二章习题解答
π
∫ π 2 cos dx =

1
2
sin x + 1 2
当x≥
π
2
时, F ( x) = P ( X ≤ x) =

2 −∞

π x 1 1 1 cos xdx + ∫ 2π cos xdx + ∫π cos xdx = 1 − 2 2 2 2 2
⎧ Ax 2 e − λx 6.设连续型随机变量 X 的概率密度为 f ( x) = ⎨ ⎩ 0

k
0
λ × e −λ × x dx =
1 2
解之得 k=
ln 2
λ
1. 已知离散随机变量 X 的分布列为 X -2 -1 0 1 1/5 1/6 1/5 P 2 试求Y=X 与Z=|X|的分布列.
答案:解:由题意得:
3
1/15
11/30
x P
2
0 1/5 0 1
1 7/30 2 1/5
4 17/30 3 11/30
1
P=0.02,
39
λ = n × P = 0 .8 .
=1- C 40 × (0.02) × (0.98) (2) P(X>=2)=1-P(X=1)-P(X=0) =1-
0 − C 40 × (0.98) 40 =
0.8 −1 (0.8) 0 ×e − × e 0 = 0.192 1! 0!
已知某商场一天来的顾客数 X 服从参数为λ的泊松分布,而每个来到商场的顾客购物的概 2、 率为 p,证明:此商场一天内购物的顾客数服从参数为λp 的泊松分布. 答案:证明:已知 X~P( λ ),设购物的顾客数为 Y,由题设知
(3)
1 P (0 < X < )

第2章 随机变量及其分布课后习题答案(高教出版社,浙江大学)

第2章  随机变量及其分布课后习题答案(高教出版社,浙江大学)

第2章 随机变量及其分布1,设在某一人群中有40%的人血型是A 型,现在在人群中随机地选人来验血,直至发现血型是A 型的人为止,以Y 记进行验血的次数,求Y 的分布律。

解:显然,Y 是一个离散型的随机变量,Y 取k 表明第k 个人是A 型血而前1-k 个人都不是A 型血,因此有116.04.0)4.01(4.0}{--⨯=-⨯==k k k Y P , ( ,3,2,1=k )上式就是随机变量Y 的分布律(这是一个几何分布)。

2,水自A 处流至B 处有3个阀门1,2,3,阀门联接方式如图所示。

当信号发出时各阀门以0.8的概率打开,以X 表示当信号发出时水自A 流至B 的通路条数,求X 的分布律。

设各阀门的工作相互独立。

解:X 只能取值0,1,2。

设以)3,2,1(=i A i记第i个阀门没有打开这一事件。

则)}(){()}({}0{3121321A A A A P A A A P X P ⋃=⋃==)()()()()()()(}{}{}{32131213213121A P A P A P A P A P A P A P A A A P A A P A A P -+=-+= 072.0)8.01()8.01()8.01(322=---+-=,类似有512.08.0)()}({}2{3321321=====A A A P A A A P XP ,416.0}2{}0{1}1{==-=-==X P X P X P ,综上所述,可得分布律为3,据信有20%的美国人没有任何健康保险,现任意抽查15个美国人,以X 表示15个人中无任何健康保险的人数(设各人是否有健康保险相互独立)。

问X 服从什么分布?写出分布律。

并求下列情况下无任何健康保险的概率:(1)恰有3人;(2)至少有2人;(3)不少于1人且不多于3人;(4)多于5人。

解:根据题意,随机变量X 服从二项分布B(15, 0.2),分布律为15,2,1,0,8.02.0)(1515 =⨯⨯==-k C k X P k k k。

高二数学 人教A版选修2-3习题 第2章 随机变量及其分布2.2.2 Word版含答案

高二数学   人教A版选修2-3习题 第2章 随机变量及其分布2.2.2 Word版含答案

选修2-3 第二章 2.2 2.2.2一、选择题1.设两个独立事件A 和B 都不发生的概率为19,A 发生B 不发生的概率为19,A 发生B 不发生的概率与B 发生A 不发生的概率相同,则事件A 发生的概率P (A )是( )A .29B .118C .13D .23[答案] D[解析] 由P (A ∩B )=P (B ∩A )得P (A )P (B )=P (B )·P (A ),即P (A )[1-P (B )]=P (B )[1-P (A )],∴P (A )=P (B ).又P (A ∩B )=19,∴P (A )=P (B )=13.∴P (A )=23.2.三个元件T 1,T 2,T 3正常工作的概率分别为12,34,34,且是互相独立的.将它们中某两个元件并联后再和第三个元件串联接入电路,在如图的电路中,电路不发生故障的概率是( )A .1532B .932C .732D .1732[答案] A[解析] 记“三个元件T 1,T 2,T 3正常工作”分别为事件A 1,A 2,A 3,则P (A 1)=12,P (A 2)=34,P (A 3)=34.不发生故障的事件为(A 2∪A 3)∩A 1, ∴不发生故障的概率为 P =P [(A 2∪A 3)∩A 1] =[1-P (A 2)·P (A 3)]·P (A 1) =(1-14×14)×12=1532.故选A .3.投掷一枚均匀硬币和一枚均匀骰子各一次,记“硬币正面向上”为事件A ,“骰子向上的点数是3”为事件B ,则事件A 、B 中至少有一件发生的概率是( )A .512B .12C .712D .34[答案] C[解析] 由题意P (A )=12,P (B )=16,事件A 、B 中至少有一个发生的概率P =1-12×56=712.4.如图所示,在两个圆盘中,指针落在本圆盘每个数所在区域的机会均等,那么两个指针同时落在奇数所在区域的概率是( )A .49B .29C .23D .13[答案] A[解析] 设A 表示“第一个圆盘的指针落在奇数所在的区域”,则P (A )=23,B 表示“第二个圆盘的指针落在奇数据在的区域”,则P (B )=23.故P (AB )=P (A )·P (B )=23×23=49.5.从甲袋内摸出1个白球的概率为13,从乙袋内摸出1个白球的概率是12,从两个袋内各摸1个球,那么概率为56的事件是( )A .2个球都是白球B .2个球都不是白球C .2个球不都是白球D .2个球中恰好有1个白球 [答案] C[解析] 从甲袋内摸出白球与从乙袋内摸出白球两事件相互独立,故两个球都是白球的概率为P 1=13×12=16,∴两个球不都是白球的概率为P =1-P 1=56.6.两个实习生每人加工一个零件,加工为一等品的概率分别为23和34,两个零件是否加工为一等品相互独立,则这两个零件中恰有一个一等品的概率为( )A .12B .512C .14D .16[答案] B[解析] 所求概率为23×14+13×34=512或P =1-23×34-13×14=512.二、填空题7.已知P (A )=0.3,P (B )=0.5,当事件A 、B 相互独立时,P (A ∪B )=________,P (A |B )=________.[答案] 0.65 0.3[解析] ∵A 、B 相互独立,∴P (A ∪B )=P (A )+P (B )-P (A )·P (B )=0.3+0.5-0.3×0.5=0.65. P (A |B )=P (A )=0.3.8.一道数学竞赛试题,甲生解出它的概率为12,乙生解出它的概率为13,丙生解出它的概率为14. 由甲、乙、丙三人独立解答此题只有一人解出的概率为_______. [答案]1124[解析] 甲生解出,而乙、丙不能解出为事件A 1,则P (A 1)=12×⎝⎛⎭⎫1-13×⎝⎛⎭⎫1-14=14, 乙生解出,而甲、丙不能解出为事件A 2,则P (A 2)=13×⎝⎛⎭⎫1-12×⎝⎛⎭⎫1-14=18, 丙生解出,而甲、乙不能解出为事件A 3,则P (A 3)=14×⎝⎛⎭⎫1-12×⎝⎛⎭⎫1-13=112. 甲、乙、丙三人独立解答此题只有一人解出的概率为P (A 1)+P (A 2)+P (A 3)=14+18+112=1124.9.本着健康、低碳的生活理念,租自行车骑游的人越来越多.某自行车租车点的收费标准是每车每次租车时间不超过两小时免费,超过两小时的部分每小时收费标准为2元(不足1小时的部分按1小时计算),有甲、乙两人相互独立来该租车点租车骑游(各租一车一次).设甲、乙不超过两小时还车的概率分别为14,12,两小时以上且不超过三小时还车的概率分别为12,14;两人租车时间都不会超过四小时.求甲、乙两人所付的租车费用相同的概率为________ .[答案]516[解析] 由题意得,甲、乙在三小时以上且不超过四小时还车的概率分别为14,14.设甲,乙两人所付的租车费用相同为事件A , 则P (A )=14×12+12×14+14×14=516,即甲、乙两人所付的租车费用相同的概率为516.三、解答题10.甲、乙、丙三台机床各自独立地加工同一种零件,已知甲机床加工的零件是一等品而乙机床加工的零件不是一等品的概率为14,乙机床加工的零件是一等品而丙机床加工的零件不是一等品的概率为112.甲、丙两台机床加工的零件都是一等品的概率为29.(1)分别求甲、乙、丙三台机床各自加工的零件是一等品的概率;(2)从甲、乙、丙加工的零件中各取一个检验,求至少有一个一等品的概率. [解析] (1)设A 、B 、C 分别为甲、乙、丙三台机床各自加工的零件是一等品的事件.由题设条件有⎩⎪⎨⎪⎧P(A B)=14,P(B C)=112,P(AC)=29,即⎩⎪⎨⎪⎧P(A)·[1-P(B)]=14,①P(B)·[1-P(C)]=112,②P(A)·P(C)=29.③由①、③得P(B)=1-98P(C),代入②得27[P(C)]2-51P(C)+22=0.解得P(C)=23或119(舍去).将P(C)=23分别代入③、②可得P(A)=13、P(B)=14,即甲、乙、丙三台机床各自加工的零件是一等品的概率分别是13、14、23.(2)记D为从甲、乙、丙加工的零件中各取一个检验,至少有一个一等品的事件,则P(D)=1-P(D)=1-[1-P(A)][1-P(B)][1-P(C)]=1-23×34×13=56.故从甲、乙、丙加工的零件中各取一个检验,至少有一个一等品的概率为56.一、选择题1.荷花池中,有一只青蛙在成品字形的三片荷叶上跳来跳去(每次跳跃时,均从一片荷叶跳到另一个荷叶),而且逆时针方向跳的概率是顺时针方向跳的概率的两倍,如图所示.假设现在青蛙在A荷叶上,则跳三次之后停在A荷叶上的概率是()A.13B.29C.49D.827[答案] A[解析]由已知逆时针跳一次的概率为23,顺时针跳一次的概率为13.则逆时针跳三次停在A 上的概率为P1=23×23×23=827,顺时针跳三次停在A上的概率为P2=13×13×13=127.所以跳三次之后停在A 上的概率为P =P 1+P 2=827+127=13.2.袋中有5个小球(3白2黑),现从袋中每次取一个球,不放回地抽取两次,则在第一次取到白球的条件下,第二次取到白球的概率是( )A .35B .34C .12D .310[答案] C[解析] 解法1:5个球中含3个白球,第一次取到白球后不放回,则第二次是在含2个白球的4个球中任取一球,故取到白球的概率为12.解法2:设A =“第一次取到白球”,B =“第二次取到白球”,则 P (A )=35,P (AB )=C 23C 25=310,∴P (B |A )=P (AB )P (A )=12.二、填空题3.某班有4位同学住在同一个小区,上学路上要经过1个路口.假设每位同学在路口是否遇到红绿灯是相互独立的,且遇到红灯的概率都是13,则最多1名同学遇到红灯的概率是________.[答案]1627[解析] P =(23)4+C 14·(13)·(23)3=1627. 4.已知随机变量ξ只能取三个值:x 1,x 2,x 3,其概率依次成等差数列,则公差d 的取值范围是________.[答案] ⎣⎡⎦⎤-13,13 [解析] 由条件知,⎩⎪⎨⎪⎧P (ξ=x 3)+P (ξ=x 1)=2P (ξ=x 2)P (ξ=x 1)+P (ξ=x 2)+P (ξ=x 3)=1, ∴P (ξ=x 2)=13,∵P (ξ=x i )≥0,∴公差d 取值满足-13≤d ≤13.三、解答题5.某项选拔共有四轮考核,每轮设有一个问题,能正确回答者进入下一轮考核,否则即被淘汰.已知某选手能正确回答第一、二、三、四轮的问题的概率分别为0.6、0.4、0.5、0.2.已知各轮问题能否正确回答互不影响.(1)求该选手被淘汰的概率;(2)求该选手在选拔中至少回答了2个问题后最终被淘汰的概率. [解析] 记“该选手能正确回答第i 轮的问题”为事件A i (i =1,2,3,4), 则P (A 1)=0.6,P (A 2)=0.4,P (A 3)=0.5, P (A 4)=0.2.(1)方法一:该选手被淘汰的概率:P =P (A 1∪A 1A 2∪A 1A 2A 3∪A 1A 2A 3A 4)=P (A 1)+P (A 1)P (A 2)+P (A 1)P (A 2)P (A 3)+P (A 1)P (A 2)P (A 3)P (A 4)=0.4+0.6×0.6+0.6×0.4×0.5+0.6×0.4×0.5×0.8=0.976.方法二:P =1-P (A 1A 2A 3A 4)=1-P (A 1)P (A 2)P (A 3)P (A 4)=1-0.6×0.4×0.5×0.2=1-0.024=0.976.(2)方法一:P =P (A 1A 2∪A 1A 2A 3∪A 1A 2A 3A 4)=P (A 1)P (A 2)+P (A 1)P (A 2)P (A 3)+P (A 1)P (A 2)P (A 3)P (A 4)=0.6×0.6+0.6×0.4×0.5+0.6×0.4×0.5×0.8=0.576.方法二:P =1-P (A 1)-P (A 1A 2A 3A 4)=1-(1-0.6)-0.6×0.4×0.5×0.2=0.576.6.甲、乙两人参加一次英语口语考试,已知在备选的10道试题中,甲能答对其中的6道题,乙能答对其中的8道题.规定每次考试都从备选题中随机抽出3道题进行测试,至少答对2道题才算合格.(1)分别求甲、乙两人考试合格的概率; (2)求甲、乙两人至少有一人考试合格的概率.[解析] (1)设甲、乙两人考试合格的事件分别为A 、B ,则P (A )=C 26C 14+C 36C 310=60+20120=23, P (B )=C 28C 12+C 38C 310=56+56120=1415.(2)方法1:因为事件A 、B 相互独立,所以甲、乙两人至少有一人考试合格的概率为 P =P (A B )+P (A B )+P (AB )=P (A )·P (B )+P (A )·P (B )+P (A )·P (B )=23×115+13×1415+23×1415=4445. 答:甲、乙两人至少有一人考试合格的概率为4445.方法2:因为事件A 、B 相互独立,所以甲、乙两人考试均不合格的概率为 P (A B )=P (A )·P (B )=⎝⎛⎭⎫1-23×⎝⎛⎭⎫1-1415=145. 所以甲、乙两人至少有一人考试合格的概率为P =1-P (A B )=1-145=4445.答:甲、乙两人至少有一人考试合格的概率为4445.。

第2章随机变量及其分布习题答案

第2章随机变量及其分布习题答案

第2章随机变量及其分布习题答案第⼆章随机变量及其分布§2.1 随机变量的概念与离散型随机变量习题 1. 解: 1112(1)121,.993θθθθ+-++-=∴=±⼜因为≤0)1(2θθ-1≤ , 所以 13θ=.2. 解:设X 表⽰任取3次,取到的不合格品数,则 1)有放回 33()0.20.8,0,1,2,3.k k k P X k C k -=== 即X 的分布律为 X 0 1 2 3 P12564125481251212512)⽆放回 328310(),3,4,5.kkC C P X k k C-===即X 的分布律为 X 0 1 2 P 1571571514. 解:设X 表⽰直⾄取到⽩球为⽌,取球的次数,则其概率分布为X 1 2 3 4P521031531015. 解:由全概率公式得42(2)()(2|)111113().423448k P Y P Xk P Y X k =======++=∑§2.2 0-1分布和⼆项分布习题1. 解:设A 表⽰“10件中⾄少有两件⼀级品”,则P (A )=1()P A -=1=--6.04.04.0911010C 0.9983.2. 解: X 0 1 2 3 4 5P 54.0 6.04.0415C 23256.04.0C 32356.04.0C 4456.40.0C 5 6.00.01024 0.0768 0.2304 0.3456 0.2592 0.077763. 解:设A 表⽰“4个灯泡中⾄少有3个能使⽤1500⼩时以上”,则4. 解:1)设A 表⽰“恰有3粒种⼦发芽”,则003764768.002.098.0)(2335==C A P2)设B 表⽰“⾄少有4粒种⼦发芽”,则=+=544598.002.098.0)(C B P 0.996§2.3 泊松分布习题1. 解:设A 表⽰“⼀页上⾄多有⼀个印刷错误”,则 010.20.20.20.2()(1)(0)(1)0.9820!1!P A P X P X P X ee--=≤==+==+=2.解:1)设X 表⽰5分钟内接到的电话个数,则0,1,2,X = 22(),0,1,2,3,4,5,6.!kP X k e k k -===2)设A 表⽰“5分钟内⾄多接到3个电话”,则∑2!2-ek k=0.8571或4()(3)1(4)1k P A P X P X +∞==≤=-≥=-∑2!2-ek k=(查表)1-0.1429=0.85713.解:1)设A 表⽰“中午12时⾄下午3时没有急症病⼈”, 则~(1.5),X π1.51.5()(0)0.223.0!P A P X e-====2)设B 表⽰“中午12时⾄下午5时⾄少有2个急症病⼈”,则~(2.5),X π12.52.5()(2)1(0)(1)2.5 2.510.7127.0!1!P B P X P X P X ee--=≥=-=-==-§2.4 随机变量的分布函数习题1. 解:1)≥<≤<≤<=2,121,2110,310,0)(x x x x x F312)()(0)(1),221(14)(2),22(14)(1)(2).3P X P X P X P X P X P X P X P X ≤==+==<≤===≤≤==+==2. 解:X 0 1 2 3 4 5P 54.0 6.04.0415C 23256.04.0C 32356.04.0C 4456.40.0C 56.00.01024 0.0768 0.2304 0.3456 0.2592 0.07776≥<≤≤<≤<≤<≤<=515492.04366.03223.021086.01001.000)(x x x x x x x x F <3. 解:X 的分布律为 X -1 0 2 4 P 0.2 0.4 0.3 0.1 §2.5 连续型随机变量习题 1. 解:1)?? =?=?=101231,1)(c dx cx dx x f2)30,0(),011,1x F x x x x=≤)41()21()2141(=-=≤≤F F x P 22219()1()1().33327P X P X F >=-≤=-= 2. 解:1)连续型随机变量的分布函数左连续,则00012l i m ()(0),l i m ()(1),l i m ()(2),10,1,2211,210,,2.2x x x F x F F x F F x F A B C C A B C ---→→→=====----====解得2),01()()2,120,x x f x F x x x <'==-≤其它3)2111117P ()1P ()1F()1().222=-=-= 3. 解:1)12011()2,~(3,),44P A xdx Y B ==则 Y 的概率分布为 Y 0 1 2 3 P642764276496412)设B 表⽰“对X 的三次独⽴重复观测中事件A ⾄多出现两次”,则3163()1()1(3)1().464P B P B P Y =-=-==-= 4.设最⾼洪⽔位为X,河堤⾄少要修c 单位⾼,由题意得:32()1()10.0110.c P X c P X c dx c x>=-≤=-≤?≥?P X dx >==设A 表⽰“3次独⽴观测中⾄少有两次观测值⼤于3”,则223321220()()().33327P A C =+=2. 解:有实根的条件:2(4)44(2)01K 2,K K K -??+≥?≤-≥或所求概率为 3P (K 2.5dx ≥=521)=5 3. 解:1)33001,|1 3.33xxk k kedx ek +∞--+∞=-==?=?即2)23 4.561.5(1.52)3.xP x edx e e ---≤≤=1(200)1,600x P X e dx e--≤==-?设A 表⽰“3只独⽴元件⾄少1只在最初200⼩时内出故障”,则13311)(1)(1)(---=-=-=eeA P A P .§2.7 正态分布习题1. :(1)(0.022.33)(2.33)(0.02)0.99010.50800.4821;P X <<=Φ-Φ=-=解( 1.850.04)(0.04)( 1.85)(0.04)[1(1.85)](0.04)(1.85)10.5160.967810.4838. P X -<<=Φ-Φ-=Φ--Φ=Φ+Φ-=+-= 2. 解:101)(716)(12)(2)(1)3(2)(1)10.97720.841310.8185;X P X P -<<=-<<=Φ-Φ-=Φ+Φ-=+-=10222)(102)()2()120.748610.4972;333x P x P --<=<=Φ-=?-=103)()0.9()0.9,(1.28)0.9,1.28,13.84.3P X αααα-<=?Φ=Φ≈-==反查表得故得3. 解:设X 表⽰螺栓长度,则:10.05(10.050.12)(2)2(2)120.977210.9544.0.06X P X P --<=<=Φ-=?-=4. 解:30(30)()2(1.5)10.8664,2020X P X P ≤=≤=Φ-=设A 表⽰“三次测量中⾄少有⼀次误差的绝对值不超过30cm ”3()1()1(0.1336)0.9976.P A P A =-=-=§2.8 随机变量函数的分布习题 1. 解:1)Y -3 2 5 6 P161 164 167 1642) Z 1 2 3 4 9 P1621641651641612. 解: 3110≤≤?≤≤y x , 当31≤≤y 时,11()();2y Y Y Y y y F y P Y y P X y P X dx f y F y ---=≤=+≤=≤= ='==;当13,y y ≤≥或时Y 的密度函数为零.故Y 的密度函数为1,13()20,Y y f y ?≤≤?=其它22222()2()22()()()(),,()(),.Y X yy yY Y X Y F y P Y y P y P X y dx y R Y f y F y y R µσµσµσµσµ∈'===∈?3.解:因为的分布函数为所以的密度函数为第⼆章随机变量及其分布复习题⼀选择题1. B2. B3. C4. D5. C ⼆填空题 1.22(),0,1,2,;!kP X k e k k -=== 0.592. 27193. ,1,21π==B A2111,,21x R xπ∈+4.,65,61 分布律:X -1 1 2P 611. 解: X 的分布律为 X 1 2 3 4 P643764196476412. 解: X 的分布律为 1(),1,2,3,.k P X k q p k -=== 3. 解:设X 表⽰两次调整之间⽣产的合格品数,则X 的分布律为1()(1),0,1,2,.k P X k p p k -==-=4. 解: X 的概率分布为55()0.250.75,0,1,2,3,4,5.k k kP X k C k -===设A 表⽰“5道选择题⾄少答对两题”,则()1(0)(1)0.3672.P A P X P X =-=-==5. 解:1)⼀天中必须有油船转⾛意味着“X .>3”242(3)0.143;!kk P X ek ∞(查泊松分布表)2) 设设备增加到⼀天能为y 艘油船服务,才能使到达港⼝的90%的油船可以得到服务.则21212()0.910.9!20.1,15 4.!kk y kk y P X y ek ey y k ∞-=+∞-=+≤≥?-≥?≤+≥?≥∑∑反查泊松分布表得6. 解:21)()()31()31(3131=+=+?>dx b ax dx b ax X P X P47,23=-=?b a7.170170170:1)()0.01()()0.99666170(2.33)0.99 2.33184.6X h h P X h P h h ---≥≥?≥解查表得2)(182)P X ≥=1821701()1(2)0.02,6--Φ=-Φ≈设A 表⽰“100个男⼦中与车门碰头⼈数不多于2个”676.002.098.002.098.098.0)(2982100991100100=++=C C A P .8. 解:(1) X 的分布函数为 1,02()11,02xx e x F x e x -?-∞<≤??=??-<<+∞??011(2)P Y P X e dx P Y P X e dx ∞--∞==>===-=≤==故Y的概率分布律为Y-1 1P1/2 1/2Y的分布函数为0,11(),1121,1YyF y yy<-=-≤<≥。

【精品】概率论与数理统计(理工类_第四版)吴赣昌主编课后习题答案完整版

【精品】概率论与数理统计(理工类_第四版)吴赣昌主编课后习题答案完整版

概率论与数理统计(理工类_第四版)吴赣昌主编课后习题答案完整版随机事件及其概率1.1 随机事件习题1试说明随机试验应具有的三个特点.习题2将一枚均匀的硬币抛两次,事件A,B,C分别表示“第一次出现正面”,“两次出现同一面”,“至少有一次出现正面”,试写出样本空间及事件A,B,C中的样本点.1.2 随机事件的概率1.3 古典概型与几何概型1.4 条件概率1.5 事件的独立性复习总结与总习题解答习题3. 证明下列等式:习题5.习题6.习题7习题8习题9习题10习题11习题13习题14习题16习题17习题18习题19习题20习题21习题22习题23习题24习题25习题26第二章随机变量及其分布2.1 随机变量习题1随机变量的特征是什么?解答:①随机变量是定义在样本空间上的一个实值函数.②随机变量的取值是随机的,事先或试验前不知道取哪个值.③随机变量取特定值的概率大小是确定的.习题2试述随机变量的分类.解答:①若随机变量X的所有可能取值能够一一列举出来,则称X为离散型随机变量;否则称为非离散型随机变量.②若X的可能值不能一一列出,但可在一段连续区间上取值,则称X为连续型随机变量.习题3盒中装有大小相同的球10个,编号为0,1,2,⋯,9, 从中任取1个,观察号码是“小于5”,“等于5”,“大于5”的情况,试定义一个随机变量来表达上述随机试验结果,并写出该随机变量取每一个特定值的概率.解答:分别用ω1,ω2,ω3表示试验的三个结果“小于5”,“等于5”,“大于5”,则样本空间S={ω1,ω2,ω3},定义随机变量X如下:X=X(ω)={0,ω=ω11,ω=ω2 ,2,ω=ω3则X取每个值的概率为P{X=0}=P{取出球的号码小于5}=5/10,P{X=1}=P{取出球的号码等于5}=1/10,P{X=2}=P{取出球的号码大于5}=4/10.2.2 离散型随机变量及其概率分布习题1设随机变量X服从参数为λ的泊松分布,且P{X=1}=P{X=2}, 求λ.解答:由P{X=1}=P{X=2}, 得λe-λ=λ^2/2e^-λ,解得λ=2.习题2设随机变量X的分布律为P{X=k}=k15,k=1,2,3,4,5,试求(1)P{12<X<52; (2)P{1≤X≤3};(3)P{X>3}.解答:(1)P{12<X<52=P{X=1}+P{X=2}=115+215=15;(2)P{≤X≤3}=P{X=1}+P{X=2}+P{X=3}=115+215+315=25;(3)P{X>3}=P{X=4}+P{X=5}=415+515=35.习题3已知随机变量X只能取-1,0,1,2四个值,相应概率依次为12c,34c,58c,716c, 试确定常数c, 并计算P{X<1∣X≠0}.习题5某加油站替出租车公司代营出租汽车业务,每出租一辆汽车,可从出租公司得到3元.因代营业务,每天加油站要多付给职工服务费60元,设每天出租汽车数X是一个求因代营业务得到的收入大于当天的额外支出费用的概率.解答:因代营业务得到的收入大于当天的额外支出费用的概率为:P{3X>60}, 即P{X>20},P{X>20}=P{X=30}+P{X=40}=0.6.就是说,加油站因代营业务得到的收入大于当天的额外支出费用的概率为0.6.习题6设自动生产线在调整以后出现废品的概率为p=0.1, 当生产过程中出现废品时立即进行调整,X代表在两次调整之间生产的合格品数,试求:(1)X的概率分布;(2)P{X≥5};(3)在两次调整之间能以0.6的概率保证生产的合格品数不少于多少?解答:(1)P{X=k}=(1-p)kp=(0.9)k×0.1,k=0,1,2,⋯;(2)P{X≥5}=∑k=5∞P{X=k}=∑k=5∞(0.9)k×0.1=(0.9)5;(3)设以0.6的概率保证在两次调整之间生产的合格品不少于m件,则m应满足P{X≥m}=0.6,即P{X≤m-1}=0.4. 由于P{X≤m-1}=∑k=0m-1(0.9)k(0.1)=1-(0.9)m,故上式化为1-0.9m=0.4, 解上式得m≈4.85≈5,因此,以0.6的概率保证在两次调整之间的合格品数不少于5.习题7设某运动员投篮命中的概率为0.6, 求他一次投篮时,投篮命中的概率分布.解答:此运动员一次投篮的投中次数是一个随机变量,设为X, 它可能的值只有两个,即0和1.X=0表示未投中,其概率为p1=P{X=0}=1-0.6=0.4,X=1表示投中一次,其概率为p2=P{X=1}=0.6.则随机变量的分布律为习题8某种产品共10件,其中有3件次品,现从中任取3件,求取出的3件产品中次品的概率分布.解答:设X表示取出3件产品的次品数,则X的所有可能取值为0,1,2,3. 对应概率分布为P{X=0}=C73C103=35120, P{X=1}=C73C31C103=36 120,P{X=2}=C71C32C103=21120, P{X=3}=C33C103=1120. X的分布律为习题9一批产品共10件,其中有7件正品,3件次品,每次从这批产品中任取一件,取出的产品仍放回去,求直至取到正品为止所需次数X的概率分布.解答:由于每次取出的产品仍放回去,各次抽取相互独立,下次抽取时情况与前一次抽取时完全相同,所以X的可能取值是所有正整数1,2,⋯,k,⋯.设第k次才取到正品(前k-1次都取到次品), 则随机变量X的分布律为P{X=k}=310×310×⋯×310×710=(310)k-1×710,k=1,2,⋯.习题10设随机变量X∼b(2,p),Y∼b(3,p), 若P{X≥1}=59,求P{Y≥1}.解答:因为X∼b(2,p),P{X=0}=(1-p)2=1-P{X≥1}=1-5/9=4/9,所以p=1/3.因为Y∼b(3,p), 所以P{Y≥1}=1-P{Y=0}=1-(2/3)3=19/27.习题11纺织厂女工照顾800个纺绽,每一纺锭在某一段时间τ内断头的概率为0.005, 在τ这段时间内断头次数不大于2的概率.解答:以X记纺锭断头数, n=800,p=0.005,np=4,应用泊松定理,所求概率为:P{0≤X≤2}=P{⋃0≤xi≤2{X=xi}=∑k=02b(k;800,0.005)≈∑k=02P(k;4)=e-4(1+41!+422!)≈0.2381.习题12设书籍上每页的印刷错误的个数X服从泊松分布,经统计发现在某本书上,有一个印刷错误与有两个印刷错误的页数相同,求任意检验4页,每页上都没有印刷错误的概率.解答:\becauseP{X=1}=P{X=2}, 即λ11!e-λ=λ22!e-λ⇒λ=2,∴P{X=0}=e-2,∴p=(e-2)4=e-8.2.3 随机变量的分布函数习题1F(X)={0,x<-20.4,-2≤x<01,x≥0,是随机变量X的分布函数,则X是___________型的随机变量.解答:离散.由于F(x)是一个阶梯函数,故知X是一个离散型随机变量.习题2设F(x)={0x<0x20≤1,1x≥1问F(x)是否为某随机变量的分布函数.所以其分布函数(2)P{X<2∣X≠1}=P{X=-1}P{X≠1}=23.习题5设X的分布函数为F(x)={0,x<0x2,0≤x<1x-12,1≤x<1.51,x≥1.5,求P{0.4<X≤1.3},P{X>0.5},P{1.7<X≤2}.解答:P{0.4<X≥1.3}=P{1.3}-F(0.4)=(1.3-0.5)-0.4/2=0.6,P{X>0.5}=1-P{X≤0.5}=1-F(0.5)=1-0.5/2=0.75,P{1.7<X≤2}=F(2)-F(1.7)=1-1=0.习题6设随机变量X的分布函数为F(x)=A+Barctanx(-∞<x<+∞),试求:(1)系数A与B; (2)X落在(-1,1]内的概率.解答:(1)由于F(-∞)=0,F(+∞)=1,可知{A+B(-π2)A+B(π2)=1=0⇒A=12,B=1π,于是F(x)=12+1πarctanx,-∞<x<+∞;(2)P{-1<X≤1}=F(1)-F(-1)=(12+1πarctan1)-[12+1πarctanx(-1)]=12+1π⋅π4-12-1π(-π4)=12.习题7在区间[0,a]上任意投掷一个质点,以X表示这个质点的坐标.设这个质点落在[0,a]中任意小区间内的概率与这个小区间的长度成正比例,试求X的分布函数.解答:F(x)=P{X≤x}={0,x<0xa,0≤x<a.1,x≥a2.4 连续型随机变量及其概率密度习题1设随机变量X的概率密度为f(x)=12πe-(x+3)24(-∞<x<+∞),则Y=¯∼N(0,1).解答:应填3+X2.由正态分布的概率密度知μ=-3,σ=2由Y=X-μσ∼N(0,1), 所以Y=3+X2∼N(0,1).习题2已知X∼f(x)={2x,0<x<10,其它, 求P{X≤0.5};P{X=0.5};F(x).解答:P{X≤0.5}=∫-∞0.5f(x)dx=∫-∞00dx+∫00.52xdx=x2∣00.5=0.25,P{X=0.5}=P{X≤0.5}-P{X<0.5}=∫-∞0.5f(x)dx-∫-∞0.5f(x)dx=0.当X≤0时,F(x)=0;当0<x<1时,F(x)=∫-∞xf(t)dt=∫-∞00dt+∫0x2tdt=t2∣0x=x2;当X≥1时,F(x)=∫-∞xf(t)dt=∫-∞00dt+∫0x2tdt+∫1x0d t=t2∣01=1,故F(x)={0,x≤0x2,0<x<1.1,x≥1习题3设连续型随机变量X的分布函数为F(x)={A+Be-2x,x>00,x≤0,试求:(1)A,B的值;(2)P{-1<X<1}; (3)概率密度函数F(x).解答:(1)\becauseF(+∞)=limx→+∞(A+Be-2x)=1, ∴A=1;又\becauselimx→0+(A+Be-2x)=F(0)=0, ∴B=-1.(2) P{-1<X<1}=F(1)-F(-1)=1-e-2.(3)f(x)=F′(x)={2e-x,x>00,x≤0.习题4服从拉普拉斯分布的随机变量X的概率密度f(x)=Ae-∣x∣, 求系数A及分布函数F(x).解答:由概率密度函数的性质知,∫-∞+∞f(x)dx=1,即∫-∞+∞Ae-∣x∣dx=1,而∫-∞+∞Ae-∣x∣dx=∫-∞0Aexdx+∫0+∞Ae-xdx=Aex∣-∞0+(-Ae-x∣0+∞)=A+A=2A或∫-∞+∞Ae-xdx=2∫0+∞Ae-xdx=-2Ae-x∣0+∞=2A,所以2A=1, 即A=1/2.从而f(x)=12e-∣x∣,-∞<x<+∞,又因为F(x)=∫-∞xf(t)dt,所以当x<0时,F(x)=∫-∞x12e-∣t∣dt=12∫-∞xetdt=12et ∣-∞x=12ex;当x≥0时,F(x)=∫-∞x12e-∣x∣dt=∫-∞012etdt+∫0x12e-tdt=12et∣-∞0-12e-t∣0x=12-12e-x+12=1-12e-x,从而F(x)={12ex,x<01-12e-x,x≥0.习题5某型号电子管,其寿命(以小时计)为一随机变量,概率密度f(x)={100x2,x≥10 00,其它,某一电子管的使用寿命为X, 则三个电子管使用150小时都不需要更换的概率.解答:设电子管的使用寿命为X, 则电子管使用150小时以上的概率为P{X>150}=∫150+∞f(x)dx=∫150+∞100x2dx=-100x∣150+∞=100150=23,从而三个电子管在使用150小时以上不需要更换的概率为p=(2/3)3=8/27.习题6设一个汽车站上,某路公共汽车每5分钟有一辆车到达,设乘客在5分钟内任一时间到达是等可能的,试计算在车站候车的10位乘客中只有1位等待时间超过4分钟的概率.解答:设X为每位乘客的候车时间,则X服从[0,5]上的均匀分布. 设Y表示车站上10位乘客中等待时间超过4分钟的人数. 由于每人到达时间是相互独立的.这是10重伯努力概型. Y服从二项分布,其参数n=10,p=P{X≥4}=15=0.2,所以P{Y=1}=C101×0.2×0.89≈0.268.习题7设X∼N(3,22).(1)确定C, 使得P{X>c}=P{X≤c};(2)设d 满足P{X>d}≥0.9,问d至多为多少?解答:因为X∼N(3,22), 所以X-32=Z∼N(0,1).(1)欲使P{X>c}=P{X≤c},必有1-P{X≤c}=P{X≤c},即P{X≤c}=1/2,亦即Φ(c-32)=12, 所以 c-32=0, 故c=3.(2)由P{X>d}≥0.9可得1-P{X≤d}≥0.9,即P{X≤d}≤0.1.于是Φ(d-32)≤0.1,Φ(3-d2)≥0.9.查表得3-d2≥1.282,所以d≤0.436.习题8设测量误差X∼N(0,102), 先进行100次独立测量,求误差的绝对值超过19.6的次数不小于3的概率.解答:先求任意误差的绝对值超过19.6的概率p,p=P{∣X∣>19.6}=1-P{∣X∣≤19.6}=1-P{∣X10∣≤1.96=1-[Φ(1.96)-Φ(-1.96)]=1-[2Φ(1.96)-1]=1-[2×0.975-1]=1-0.95=0.05.设Y为100次测量中误差绝对值超过19.6的次数,则Y∼b(100,0.05).因为n很大,p很小,可用泊松分布近似,np=5=λ,所以P{Y≥3}≈1-50e-50!-51e-51!-52e-52!=1-3722-5≈0.87.习题9某玩具厂装配车间准备实行计件超产奖,为此需对生产定额作出规定. 根据以往记录,各工人每月装配产品数服从正态分布N(4000,3600).假定车间主任希望10%的工人获得超产奖,求:工人每月需完成多少件产品才能获奖?解答:用X表示工人每月需装配的产品数,则X∼N(4000,3600).设工人每月需完成x件产品才能获奖,依题意得P{X≥x}=0.1,即1-P{X<x}=0.1,所以1-F(x)=0.1, 即1-Φ(x-400060)=0.1, 所以Φ(x-400060)=0.9.查标准正态人分布表得Φ(1.28)=0.8997,因此x-400060≈1.28,即x=4077件,就是说,想获超产奖的工人,每月必须装配4077件以上.习题10某地区18岁女青年的血压(收缩压,以mm-HG计)服从N(110,122). 在该地区任选一18岁女青年,测量她的血压X.(1)求P{X≤105},P{100<X≤120};(2)确定最小的x, 使P{X>x}≤0.005.解答:已知血压X∼N(110,122).(1)P{X≤105}=P{X-11012≤-512≈1-Φ(0.42)=0.3372,P{100<X≤120}=Φ(120-11012)-Φ(100-11012)=Φ(0.833)-Φ(-0.833)=2Φ(0.833)-1≈0.595.(2)使P{X>x}≤0.05,求x, 即1-P{X≤x}≤0.05,亦即Φ(x-11012)≥0.95,查表得x-10012≥1.645,从而x≥129.74.习题11设某城市男子身高X∼N(170,36), 问应如何选择公共汽车车门的高度使男子与车门碰头的机会小于0.01.解答:X∼N(170,36), 则X-1706∼N(0,1).设公共汽车门的高度为xcm,由题意P{X>x}<0.01, 而P{X>x}=1-P{X≤x}=1-Φ(x-1706)<0.01,即Φ(x-1706)>0.99, 查标准正态表得x-1706>2.33, 故x>183.98cm.因此,车门的高度超过183.98cm时,男子与车门碰头的机会小于0.01.习题12某人去火车站乘车,有两条路可以走. 第一条路程较短,但交通拥挤,所需时间(单位:分钟)服从正态分布N(40,102); 第二条路程较长,但意外阻塞较少,所需时间服从正态分布N(50,42), 求:(1)若动身时离开车时间只有60分钟,应走哪一条路线?(2)若动身时离开车时间只有45分钟,应走哪一条路线?解答:设X,Y分别为该人走第一、二条路到达火车站所用时间,则X∼N(40,102),Y∼N(50,42).哪一条路线在开车之前到达火车站的可能性大就走哪一条路线.(1)因为P{X<60}=Φ(60-4010)=Φ(2)=0.97725,P{Y<60}=Φ(60-504)=Φ(2.5)=0.99379,所以有60分钟时应走第二条路.(2)因为P{X<45}=Φ(45-4010)=Φ(0.5)=0.6915,P{X<45}=Φ(45-504)=Φ(-1.25)=1-Φ(1.25)=1-0.8925=0.1075所以只有45分钟应走第一条路.2.5 随机变量函数的分布。

第二章 概率论解析答案习题解答

第二章 概率论解析答案习题解答

第二章 随机变量及其分布I 教学基本要求1、了解随机变量的概念以及它与事件的联系;2、理解随机变量的分布函数的概念与性质;理解离散型随机变量的分布列、连续型随机变量的密度函数及它们的性质;3、掌握几种常用的重要分布:两点分布、二项分布、泊松分布、均匀分布、指数分布、正态分布,且能熟练运用;4、会求简单随机变量函数的分布.II 习题解答A 组、1、检查两个产品,用T 表示合格品,F 表示不合格品,则样本空间中的四个样本点为1(,)F F ω=、2(,)T F ω=、3(,)F T ω=、4(,)T T ω=以X 表示两个产品中的合格品数.(1) 写出X 与样本点之间的对应关系;(2) 若此产品的合格品率为p ,求(1)p X = 解:(1) 10ω→、21ω→、31ω→、42ω→;(2) 12(1)(1)2(1)p X C p p p p ==-=-.2、下列函数是否是某个随机变量的分布函数(1) 021()2021x F x x x <-⎧⎪⎪=-≤<⎨⎪≥⎪⎩; (2) 21()1F x x =+ ()x -∞<<+∞. :解:(1) 显然()F x 是单调不减函数;0()1F x ≤≤,且()0F -∞=、()1F +∞=;(0)()F x F x +=,故()F x 是某个随机变量的分布函数.(2) 由于()01F +∞=≠,故()F x 不是某个随机变量的分布函数. 3、设X 的分布函数为(1)0()00x A e x F x x -⎧-≥=⎨<⎩求常数A 及(13)p X <≤解:由()1F +∞=和lim (1)xx A e A -→+∞-=得1A =;(13)(3)(1)(3)(1)p X p X p X F F <≤=≤-≤=- 3113(1)(1)e e e e ----=---=-.4、设随机变量X 的分布函数为>200()0111x F x Ax x x ≤⎧⎪=<≤⎨⎪>⎩求常数A 及(0.50.8)p X <≤解:由(10)(1)F F +=得1A =;(0.50.8)(0.8)(0.5)(0.8)(0.5)p X p X p X F F <≤=≤-≤=- 220.80.50.39=-=.5、设随机变量X 的分布列为()ap X k N==(1,2,,)k N =求常数a解:由11ii p+∞==∑得>11Nk a N==∑1a ⇒=.6、一批产品共有100个,其中有10个次品,求任意取出的5个产品中次品数的分布列解:设X 表示5个产品中的次品数,则X 是离散型随机变量,其所有可能取值为0、1、…、5,且0510905100(0)C C p X C ==、1410905100(1)C C p X C ==、2310905100(2)C C p X C ==、3210905100(3)C C p X C ==、4110905100(4)C C p X C ==、5010905100(5)C C p X C ==于是X 的分布列为510905100()k kC C p X k C -== (0,1,,5)k =.7、设10件产品中有2件次品,进行连续无放回抽样,直至取到正品为止,以X 表示抽样次数,求(1) X 的分布列; (2) X 的分布函数\解:(1) 由题意知X 是离散型随机变量,其所有可能取值为1、2、3,且84(1)105p X ===、288(2)10945p X ==⨯=、2181(3)109845p X ==⨯⨯=于是X(2) 由(1)可知的分布函数为014125()44234513x x F x x x <⎧⎪⎪≤<⎪=⎨⎪≤<⎪⎪≥⎩.8、设随机变量X 的分布函数为010.211()0.3120.52313x x F x x x x <-⎧⎪-≤<⎪⎪=≤<⎨⎪≤<⎪≥⎪⎩ 求X 的分布列解:X 的分布列为9、求在同一时刻(1) 恰有2个设备被使用的概率; (2) 至少有3个设备被使用的概率; .(3) 至多有3个设备被使用的概率解:设X 表示被同时使用的供水设备数,则~(5,0.1)X b (1) 恰有2个设备被使用的概率为2235(2)(0.1)(0.9)0.0729p X C ===;(2) 至少有3个设备被使用的概率为(3)(3)(4)(5)p X p X p X p X ≥==+=+=33244550555(0.1)(0.9)(0.1)(0.9)(0.1)(0.9)0.00856C C C =++=;(3) 至多有3个设备被使用的概率为(3)1(4)(5)p X p X p X ≤=-=-=44550551(0.1)(0.9)(0.1)(0.9)0.99954C C =--=.!10、经验表明:预定餐厅座位而不来就餐的顾客比例为20%,如今餐厅有50个座位,但预定给了52位顾客,求到时顾客来到餐厅而没有座位的概率是多少解:设X 表示预定的52位顾客中不来就餐的顾客数,则~(52,0.2)X b ,由于“顾客来到餐厅没有座位”等价于“52位顾客中至多有1位不来就餐”,于是所求概率为005211515252(1)(0)(1)(0.2)(0.8)(0.2)(0.8)p X p X p X C C ≤==+==+0.0001279=.11、设某城市在一周内发生交通事故的次数服从参数为的泊松分布,求 (1) 在一周内恰好发生2次交通事故的概率; (2) 在一周内至少发生1次交通事故的概率解:设X 表示该城市一周内发生交通事故的次数,则~(0.3)X P (1) 在一周内恰好发生2次交通事故的概率20.30.3(2)0.03332!p X e -===;,(2) 在一周内至少发生1次交通事故的概率00.30.3(1)1(0)10.2590!p X P X e -≥=-==-=.12、设X 服从泊松分布,已知(1)(2)p X p X ===,求(4)p X =解:由(1)(2)p X p X ===得22ee λλλλ--=2λ⇒=422(4)0.09024!p X e -⇒===.13、一批产品的不合格品率为,现从中任取40件进行检查,若发现两件或两件以上不合格品就拒收这批产品,分别用以下方法求拒收的概率:(1) 用二项分布作精确计算; (2) 用泊松分布作的似计算 …解:设X 表示抽取的40件产品中的不合格品数,则~(40,0.02)X b (1) 拒收的概率为(2)1(0)(1)p X p X p X ≥=-=-=0040113940401(0.02)(0.98)(0.02)(0.98)0.1905C C =--=;(2) 由于400.020.8λ=⨯=,于是拒收的概率为(2)1(0)(1)p X p X p X ≥=-=-= 0.80.810.80.1912e e --≈--=.14、设随机变量X 的密度函数为201()0x x f x ≤≤⎧=⎨⎩其它求X 的分布函数 *解:由()()xF x f t dt -∞=⎰得当0x <时()()00xxF x f t dt dt -∞-∞===⎰⎰当01x ≤≤时2200()()02|x xxF x f t dt dt tdt t x -∞-∞==+==⎰⎰⎰当1x >时0121001()()020|1x xF x f t dt dt tdt dt t -∞-∞==++==⎰⎰⎰⎰于是所求分布函数为200()0111x F x x x x <⎧⎪=≤≤⎨⎪>⎩. 15、设随机变量X 的密度函数为 ~212(1)12()0x f x x⎧-≤≤⎪=⎨⎪⎩其它求X 的分布函数解:由()()xF x f t dt -∞=⎰得当1x <时()()00xxF x f t dt dt -∞-∞===⎰⎰当12x ≤≤时1121111()()02(1)2()|2(2)xxx F x f t dt dt dt t x t t x-∞-∞==+-=+=+-⎰⎰⎰ 当2x >时122121211()()02(1)02()|1xx F x f t dt dt dt dt t t t-∞-∞==+-+=+=⎰⎰⎰⎰于是所求分布函数为 ·011()2(2)1212x F x x x x x <⎧⎪⎪=+-≤≤⎨⎪>⎪⎩.16、设随机变量X 的密度函数为cos ()220A x x f x ππ⎧-≤≤⎪=⎨⎪⎩其它求(1) 常数A ;(2) X 的分布函数;(3) (0)4p X π<≤解:(1) 由()1f x dx +∞-∞=⎰得2222220cos 0sin |21dt A xdx dt A x A ππππππ-+∞--∞-++===⎰⎰⎰12A ⇒=; (2) 当2x π<-时()()00xxF x f t dt dt -∞-∞===⎰⎰当22x ππ-≤≤时]2221111()()0cos sin |sin 2222xxxF x f t dt dt tdt t x πππ---∞-∞-==+==+⎰⎰⎰当2x π>时22222211()()0cos 0sin |122xx F x f t dt dt tdt dt t ππππππ---∞-∞-==++==⎰⎰⎰⎰ 于是所求分布函数为0211()sin 222212x F x x x x ππππ⎧<-⎪⎪⎪=+-≤≤⎨⎪⎪>⎪⎩;(3) (0)()(0)()(0)444p X p X p X F F πππ<≤=≤-≤=-1111sin sin 0242224π=+--=. 17、设随机变量X 的分布函数为1()ln 11x F x xx e x e<⎧⎪=≤≤⎨⎪>⎩求(1) (03)p X <≤、(2)p X <、(2 2.5)p X <<;(2) X 的密度函数]解:(1) (03)(3)(0)(3)(0)101p X p X p X F F <≤=≤-≤=-=-=(2)(2)(2)(2)ln 2p X p X p X F <=≤-===5(2 2.5)(2 2.5)(2.5)(2)ln 2.5ln 2ln 4p X p X F F <<=<≤=-=-=;(2) 由于在()F x 的可导点处,有()()f x F x '=,于是X 的密度函数为11()0x ef x x⎧≤≤⎪=⎨⎪⎩其它.18、设~(1,6)K U ,求方程210x Kx ++=有实根的概率 解:由~(1,6)K U 得K 的密度函数为116()5k f k ⎧<<⎪=⎨⎪⎩其它又由于方程210x Kx ++=有实根等价于240K -≥,即||2K ≥,于是方程有实根的概率为22(||2)(2)(2)()()p K p K p K f k dk f k dk -+∞-∞≥=≤-+≥=+⎰⎰?621455dk ==⎰. 19、调查表明某商店从早晨开始营业起直至第一个顾客到达的等待时间X (单位:分钟)服从参数为0.4的指数分布,求下述事件的概率(1) X 至多3分钟; (2) X 至少4分钟;(3) X 在3分钟至4分钟之间; (4) X 恰为3分钟解:(1) X 至多3分钟的概率为0.43 1.2(3)(3)11p X F e e -⨯-≤==-=-;(2) X 至少4分钟的概率为0.44 1.6(4)1(4)1(4)1(1)p X p X F e e -⨯-≥=-<=-=--=;?(3) X 在3分钟至4分钟之间的概率为(34)(4)(3)(4)(3)p X p X p X F F ≤≤=≤-<=- 0.440.43 1.2 1.6(1)(1)e e e e -⨯-⨯--=---=-;(4) X 恰为3分钟的概率为(3)0p X ==.20、设~(0,1)X N ,求下列事件的概率( 2.35)p X ≤;( 1.24)p X ≤-;(|| 1.54)p X ≤ 解:( 2.35)(2.35)0.9906p X ≤=Φ=;( 1.24)( 1.24)1(1.24)10.89250.1075p X ≤-=Φ-=-Φ=-=; (|| 1.54)( 1.54 1.54)(1.54)( 1.54)p X p X ≤=-≤≤=Φ-Φ-(1.54)[1(1.54)]2(1.54)120.938210.8764=Φ--Φ=Φ-=⨯-=.&21、设~(3,4)X N ,(1) 求(25)p X <≤、(||2)p X >、(3)p X >;(2) 确定c ,使得()()p X c p X c >=≤;(3) 若d 满足()0.9p X d >≥,则d 至多为多少解:(1) 23353(25)()222X p X p ---<≤=≤≤ (1)(0.5)(1)(0.5)10.84130.691510.5328=Φ-Φ-=Φ+Φ-=+-=23323(||2)1(||2)1()222X p X p X p ---->=-≤=-≤≤ 1(0.5)( 2.5)1(0.5)(2.5)=-Φ-+Φ-=+Φ-Φ10.69150.99380.6977=+-= 333(3)1(3)1()22X p X p X p -->=-≤=-≤ 1(0)10.50.5=-Φ=-=;(2) 由()()p X c p X c >=≤得1()()p X c p X c -≤=≤?3330.5()()()222X c c p X c p ---⇒=≤=≤=Φ3032c c -⇒=⇒=; (3) 由()0.9p X d >≥得3330.9()1()1()1()222X d d p X d p X d p ---≤>=-≤=-≤=-Φ 33()0.11()0.122d d--⇒Φ≤⇒-Φ≤ 33()0.9 1.2820.43622d d d --⇒Φ≥⇒≥⇒≤.22、从甲地飞住乙地的航班,每天上午10:10起飞,飞行时间X 服从均值为4h ,标准差为20min 的正态分布.(1) 该航班在下午2:30以后到达乙地的概率; (2) 该航班在下午2:20以前到达乙地的概率;(3) 该航班在下午1:50至2:30之间到达乙地的概率 *解:(1) 该航班在下午2:30以后到达乙地的概率为240260240240(260)()1(1)202020X X p X p p ---≥=≥=-< 1(1)10.84130.1587=-Φ=-=;(2) 该航班在下午2:20以前到达乙地的概率为240250240(250)()(0.5)0.69152020X p X p --≤=≤=Φ=; (3) 该航班在下午1:50至2:30之间到达乙地的概率为220240240260240(220260)()202020X p X p ---≤≤=≤≤(1)(1)2(1)120.841310.6826=Φ-Φ-=Φ-=⨯-=.23、某地抽样调查结果表明,考生的外语成绩(百分制)近似地服从2(72,)N σ,已知96分以上的人数占总数的%,试求考生的成绩在60分至84分之间的概率解:设考生的外语成绩为X ,则2~(72,)X N σ】由96分以上的人数占总数的%得0.023(96)p X =>729672240.977(96)()()X p X p σσσ--⇒=≤=≤=Φ242σ⇒=12σ⇒=于是,考生的成绩在60分至84分之间的概率为6072728472(6084)()121212X p X p ---≤≤=≤≤ (1)(1)2(1)120.841310.6826=Φ-Φ-=Φ-=⨯-=.24求cos Y X =的分布列解:由X于是Y25求2Y X =的分布列解:由26、设随机变量的密度函数为2311()2X xx f x ⎧-<<⎪=⎨⎪⎩其它求随机变量3Y X =+的密度函数解:由题意知,当2y ≤时,有()()0Y F y p Y y =≤=当24y <<时,有()()(3)(3)(3)Y X F y p Y y p X y p X y F y =≤=+≤=≤-=-当4y ≥时,有()()1Y F y p Y y =≤=¥即Y 的分布函数02()(3)2414Y X y F y F y y y ≤⎧⎪=-<<⎨⎪≥⎩于是,Y 的密度函数()()Y Y f y F y '=(3)240XF y y '-<<⎧=⎨⎩其它23(3)2420y y ⎧-<<⎪=⎨⎪⎩其它.27、设随机变量~(0,1)X U ,求随机变量XY e =的密度函数 解:由题意知,当1y ≤时,有()()0Y F y p Y y =≤=当1y e <<时,有()()()(ln )(ln )X Y X F y p Y y p e y p X y F y =≤=≤=≤=:当y e ≥时,有()()1Y F y p Y y =≤=即Y 的分布函数1()(ln )11Y X y F y F y y e y e≤⎧⎪=<<⎨⎪≥⎩于是,Y 的密度函数()()Y Y f y F y '=(ln )10XF y y e'<<⎧=⎨⎩其它110y ey ⎧<<⎪=⎨⎪⎩其它.28、随机变量X 的密度函数为()0xX e x f x x -⎧>=⎨≤⎩ 求随机变量2Y X =的密度函数~解:由于20Y X =≥,故当0y <时,有()()0Y F y p Y y =≤=;当0y ≥时,有2()()()(Y F y p Y y p X y p X =≤=≤=≤≤0()1x X f x dx dx e -===-即Y 的分布函数10()0Y e y F y y ⎧-≥⎪=⎨<⎪⎩于是,Y 的密度函数0()()00Y Y y f y F y y >'==≤⎩.29、设随机变量~(0,1)X N ,试求随机变量||Y X =的密度函数 解:由于||0Y X =≥,故当0y <时,有()()0Y F y p Y y =≤=;$当0y ≥时,有()()(||)()2()1Y F y p Y y p X y p y X y y =≤=≤=-≤≤=Φ-即Y 的分布函数2()10()00Y y y F y y Φ-≥⎧=⎨<⎩于是,Y 的密度函数()()Y Y f y F y '=2()00y y y 'Φ>⎧=⎨≤⎩22000yy y ->=≤⎩.B 组1、A2、B3、D4、B5、B6、B7、C8、C9、C10、C:11、设随机变量X 的分布函数为0111()21232x a x F x a x a b x <-⎧⎪-≤<⎪⎪=⎨-≤<⎪⎪+≥⎪⎩且1(2)2p X==,求常数a、b解:由()1F+∞=及()()(0)p X a F a F a==--得()121(2)(2)(20)()()32F a bp X F F a b a+∞=+=⎧⎪⎨==--=+--=⎪⎩1726a ba b+=⎧⎪⇒⎨+=⎪⎩1656ab⎧=⎪⎪⇒⎨⎪=⎪⎩.12求常数a解:由11 ii p+∞==∑得20.5121a a+-+=12a⇒=±|再由11202a a-≥⇒≤,可得1a=13、口袋中有5个球,编号为1、2、3、4、5,从中任取3个,以X表示取出的3个球中的最大号码.(1) 求X的分布列;(2) 求X的分布函数解:(1) 由题意知X是离散型随机变量,其所有可能取值为3、4、5,且22351(3)10C p X C ===、23353(4)10C p X C ===、24356(5)10C p X C ===于是X(2) 由(1)可知的分布函数为030.134()0.44515x x F x x x <⎧⎪≤<⎪=⎨≤<⎪⎪≥⎩.14、设随机变量X 的密度函数为||()x af x Ce -= (0)a >-求(1) 常数C ;(2) X 的分布函数;(3) (||2)p X <解:(1) 由()1f x dx +∞-∞=⎰得||()2221x xa a f x dx C e dx C e dx aC +∞+∞+∞---∞====⎰⎰⎰12C a⇒=; (2) 当0x <时 ||111()()222t t xa a a x x x F x f t dt e dt e dt e a a --∞-∞-∞====⎰⎰⎰ 当0x ≥时||||0011()()22t t a a xx F x f t dt e dt e dt a a ---∞-∞==+⎰⎰⎰001111222t t x a a a x e dt e dt e a a ---∞=+=-⎰⎰ 于是102()1102xa x a e x F x e x -⎧<⎪⎪=⎨⎪-≥⎪⎩;(3) 22211(||2)(22)(2)(2)1122a a ap X p X F F e e e ---<=-<<=--=--=-.15、设随机变量X 的密度函数为201()0x x f x ≤≤⎧=⎨⎩其它以Y 表示对X 的三次独立重复观察中事件1{}2X ≤出现的次数,求(2)P Y =解:由题意知:事件1{}2X ≤在一次观察中出现的概率为1112222001()02|4p f x dx dt xdx x -∞-∞==+==⎰⎰⎰ 且~(3,)Y b p ,于是223139(2)()()4464P Y C ===. 16、设顾客在某银行的窗口等待服务的时间X (单位:分钟)服从指数分布,其密度函数为510()5x e x f x x -⎧>⎪=⎨⎪≤⎩某顾客在窗口等待服务,若超过10分钟他就离开.他一个月要到银行5次,以Y 表示一个月内他未等到服务而离开窗口的次数,求(1)p Y ≥解:由题意知:顾客在窗口等待服务的时间超过10分钟的概率为5521010101()|5x x p f x dx e dx e e +∞+∞--+∞-===-=⎰⎰且~(5,)Y b p ,于是02025255(1)1(0)1()(1)1(1)0.5167P Y P Y C e e e ---≥=-==--=--=.17、设随机变量2~(2,)X N σ且(24)0.3p X <<=,求(0)p X < 解:由2~(2,)X N σ得224242(24)()()(0)0.3p X p X σσσ---<<=<<=Φ-Φ=2()0.8σ⇒Φ=0222(0)()()1()10.80.2p X p X σσσ-⇒<=<=Φ-=-Φ=-=.18、设随机变量X 的分布函数为()F x ,试求随机变量()Y F X =的密度函数 解:由于0()1F X ≤≤,故当0Y <时,有()()0Y F y p Y y =≤=; 当01y ≤≤时,有11()()(())(())(())Y F y p Y y p F X y p X F y F F y y --=≤=≤=≤==当1y >时,有()()1Y F y p Y y =≤= 即Y 的分布函数00()0111Y y F y yy y <⎧⎪=≤≤⎨⎪>⎩于是,Y 的密度函数()()Y Y f y F y '=101y <<⎧=⎨⎩其它即随机变量Y 服从区间(0,1)上的均匀分布.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1 1 k 6 , f (k ) 5 其他 0,
又 x 2 kx 1 0 有实根,等价于 k 2 4 0 ,得 k 2 或 k 2 ,故方程有实 根的概率为:
p
2

f (k )dk

2
61 4 f (k )dk 0 dk . 25 5

X ~ N (170,62 ) ,
所以
X 170 x 170 P( X x) P 0.01 . 6 6 x 170 0.99 , 6

x 170 2.31 . 6
所以 x 183.86 .故选择的车门高度应为 183.86 cm ,为便于制造可取为 1.84m . 习题 2.5 1. 设离散型随机变量 X 的分布律为
习题 2.3 1. 设 X 的分布函数为
A(1 e x ), F ( x) 0,
求常数 A 及 P 1 X 3 .
x 0, x 0.
解:由 lim F ( x) 1 ,而 lim A(1 e x ) A ,因此 A 1 .
x
x
2 PX k C , 3
k
k 1,2,,
求 C 的值. 解:由分布律的性质,有
2 1 P( X k ) C 2C , k 1 k 1 3 k
可求得 C 5.
1 . 2
一幢大楼装有 5 个不同类型的供水设备,调查表明在任一时刻 t 每个设
P( X 8)
i 0
8
i
i!
e


i 0
7
i
i!
e 0.97864 0.94887 0.02977 . 4i 4 e 1 0.97864 0.02136 . i 0 i!
8
(2) P( X 8) 1 P( X 8) 1
P( X 2) F (2) ln 2 .
P(0 X 3) P( X 3) P( X 0) F (3) F (0) 1 0 1 .
5 5 5 5 P(2 X ) P(2 X ) F ( ) F (2) ln . 2 2 2 4
0 0 x x
从而
1 e 3 x , x 0 F ( x) x0 0,
3. 设随机变量 X 的分布函数为
0, F ( x) ln x, 1,
x 1, 1 x e, x e.
(1) 求 PX 2 , (2) 求 X 的概率密度 f ( x) . P0 X 3, P2 X 5 2; 解:(1)
3 解:基本事件总数为 C5 10 .设
Ai "最大号码为i" , i 3,4,5 ,于是
2 C32 C4 1 , , P( A3 ) 3 0.1 P( A4 ) 3 0.3 P( A5 ) 3 0.6 C5 C5 C5

P( X k ) P( Ak ) , k 3,4,5 ,
X
2 1
0
1
2
P
0 .1 .2
0 .3
0 .3
0 .1
0
求(1) Y 3 X 1的分布律; (2) Z 2 X 2 的分布律. 解: (1)因为Y的可能取值为-5,-2,1,4,7,而且
P(Y 5) P( X 2) 0.1 , P(Y 2) P( X 1) 0.2 P(Y 1) P( X 0) 0.3 , P(Y 4) P( X 1) 0.3 P(Y 7) P( X 2) 0.1 ,
5. 某类日光灯管的使用寿命 X (单位:小时)服从参数为 20001 的指数分 布.任取一只这种灯管, 求能正常使用 1000 小时以上的概率. 解: P( X 1000) 6.
1 2000 e dx e 0.5 0.607 . 1000 2000
x
设 X ~ N (3, 22 ) , (1)求 P{2 X 5}, P{4 X 10}, P{| X | 2}, P{X 3} ; (2)试确定 c 使得 P{X c} P{X c} ; (3)设 d 满足 P{X d} 0.9 ,问 d 至多为多少?
7 2( ) 1 0.9996 2
P( X 2) P( X 2) P( X 2) 1 P( X 2) P( X 2)
X 3 2 3 X 3 2 3 1 P P 2 2 2 2
2 P( X 2) C5 (0.1)2 (0.9)3 0.0729
P( X 3) C5k (0.1)k (0.9)5 k 0.00856
k 3 3
5
(3) (4)
P( X 3) C5k (0.1)k (0.9)5 k 0.99954
k 0
0 P( X 1) 1 C5 (0.1)k (0.9)5 1 (0.9)5 0.40951
备被使用的概率为 0.1,问在同一时刻: (1) 恰有 2 个设备被使用的概率是多少? (2) 至少有 3 个设备被使用的概率是多少? (3) 至多有 3 个设备被使用的概率是多少? (4) 至少有 1 个设备被使用的概率是多少? 解:设被使用的设备数为X,则X的可能值为0,1,2,…5,则 (1) (2)
解:
由题意
f ( x)
1 2 2
e
( x 3) 2 8
1 2 3 x 3 5 3 (1) P(2 X 5) P (1) ( ) 2 2 2 2
0.8413 1 0.6915 0.5328
7 7 4 3 x 3 10 3 P(4 X 10) P ( ) ( ) 2 2 2 2 2
(2)
P( X 1) 1 P( X 1) 1
7. 已知一电话交换台每分钟接到的呼唤次数服从参数为 4 的泊松分布.求: (1) 每分钟恰有 8 次呼唤的概率; (2) 每分钟呼唤次数大于 8 的概率. 解:(1) P( X 8)
48 4 e . 8!
可以直接计算这个数值,但比较繁.使用泊松分布表(附表1)可使计算简单多 了,查附表1,对于 4 ,
所以 X 的分布律如下表所示
X
P
3
0.1
4
0.3
5
0.6
3.
对某一目标进行射击,直至击中为止.如果每次射击命中率为 p ,求射
击次数的分布律. 解:直到第一次击中目标为止的射击次数的 X 分布律为
P( X k ) q k 1 p , k 1,2,
4.
设离散型随机变量 X 的分布律为
P(1 x 3) P( X 3) P( X 1) F (3) F (1)
(1 e3 ) (1 e1 ) e1 e3 .
2. 一口袋中有 6 个球,球上分别标有 3, 3,1,1,1, 2 这样的数字.从中任取一 球,设各个球被取到的可能性相同,求取得的球上标明的数字 X 的分布律与分 布函数.
1 5 1 ( ) ( ) 0.6977 2 2
X 3 3 3 P( X 3) 1 P( X 3) 1 P 1 (0) 1 0.5 0.5 2 2
(2)由 P{X c} P{X c} 则
从而

d 3 1.282 ,因此 d 0.436 . 2
7. 公共汽车的高度是按男子与车门顶碰头的机会在 0.01 以下来设计的,设 男子身高 X (单位:cm)服从正态分布 N (170,6 2 ) ,试确定车门的高度. 解:设男子身高 X ,选择的车门高度 x 应满足
P( X x) 0.01
1 P( X c) P( X c)
X 3 c 3 1 P( X c) P 2 2 2 c 3 1 2 2
查表得
c3 0 ,故 c 3 . 2
d 3 0.9 ,故 2 d 3 0.9 (1.282) 2
6. 设某城市在一周内发生交通事故的次数服从参数为 0.3 的泊松分布,试问 (1) 在一周内恰好发生 2 次交通事故的概率是多少? (2) 在一周内至少发生 1 次交通事故的概率是多少?
解:(1)
P( X 2)
(0.3) 2 e0.3 0.0334 2! (0.3)e0.3 0.259 1!
(2) 由 f ( x) F ( x) ,有
1 , f ( x) x 0,
1 x e, 其它

4. 若随机变量 K 在 (1, 6) 上服从均匀分布,求方程 x 2 Kx 1 0 有实根的概 率是多少? 解:由K在 (1, 6) 上服从均匀分布,则K的概率概率密度为:
1
K 3.


f ( x)dx Ke3 x dx
0

K 3
(2) P( X 0.1) 1 P( X 0.1) 1 3 e3 x dx 0.7408
0
0.1
(3) F ( x)
x

f (t )dt
当 x 0 时, F ( x) 0 , 当 x 0 时, F ( x) f (t )dt 3 e3t dt 1 e3 x ,
习题 2.1-2.2 1. 下列表中所列出的是否是某个随机变量的分布律? (1)
X
P
0
0.2
1
0.3
2
相关文档
最新文档