实变函数的题目库集问题解释
实变函数试题库(4)及参考答案
实变函数试题库(4)及参考答案实变函数试题库及参考答案(4)本科⼀、填空题1.设为两个集合,则.,A B __cA B A B -I 2.设,如果满⾜(其中表⽰的导集),则是nE R ?E E E '?E 'E E 3.若开区间为直线上开集的⼀个构成区间,则满(i) (,)αβG (,)αβ)(b a ,G(ii),a G b G4.设为⽆限集.则的基数(其中表⽰⾃然数集的基数) A A __A a a N5.设为可测集, ,则.12,E E 2mE <+∞1212(\)__m E E mE mE -6.设为可测集上的可测函数列,且,则由______定理可知得,{}()n f x E ()(),n f x f x x E ∈存在的⼦列,使得.{}()n f x {}()k n f x .()()()k a en f x f x x E →∈7.设为可测集()上的可测函数,则在上的积分值存在且()f x E nR ?()f x E L 在上可积.(填“⼀定”“不⼀定”)|()|f x E L 8.若是上的绝对连续函数,则是上的有 ()f x [,]a b ()f x [,]a b ⼆、选择题1.设,则()(){},001E x x =≤≤ 是中闭集是中完备集A 1mE =B 0mE =C E 2RDE 2R 2.设,是上的可测函数,则()()f x ()g x E 、不⼀定是可测集、是可测集A ()()E x f x g x ??≥??B ()()E x f x g x ??≠??、是不可测集、不⼀定是可测C ()()E x f x g x ??≤??D ()()E x f x g x ??=??集3.下列集合关系成⽴的是()A 、 B 、 (\)A B B A B =U U (\)A B B A =U C 、 D 、(\)B A A A ?U \B A A4. 若是开集,则()()nE RA 、的导集B 、的开核C 、D 、的导集E E ?E E =E E =E E=三、多项选择题(每题⾄少有两个以上的正确答案)1.设是上有界函数,且可积,则()()f x [],a b L 在上黎曼可积在上可测A ()f x [],a bB ()f x [],a b 在上⼏乎处处连续在上不⼀定连续C ()f x [],a bD ()f x [],a b 2. 设,则(){[0,1]}E =中的⽆理点A 、是可数集 B 、是闭集 C 、中的每个点均是聚点 D 、E E E 0mE >3. 若()⾄少有⼀个内点,则()E R ?A 、可以等于0 B 、 C 、可能是可数集 D 、不可能是可数集*m E *0m E =E E 4.设是可测集,则的特征函数是()[,]E a b ?E ()E x χA 、上的符号函数C 、上的连续函数[,]a b E B 、上的可测函数 D 、上的连续函数[,]a b [,]a b四、判断题1. 零测集上的函数是可测函数. ()2. 可列个闭集的并集仍为闭集()3. 任何⽆限集均含有⼀个可列⼦集()4. 设为可测集,则⼀定存在集,使,且. ()E G σG E G ?()\0m G E =五、定义题1. 为什么说有界变差函数⼏乎处处可微?2. 简述⽆穷多个开集的交集是否必为开集?3. 可测集上的可测函数与简单函数有什么关系?E 4. 上的有界变差函数与单调函数有什么关系?[],a b 六、计算题7. 设,为康托集,求.()[]3sin 0,1\xx Pf x x x P ?∈?=?∈??P ()[]0,1f x dx ?8. 求.()()0,ln limcos xn n x n e xdx n -→∞+?七、证明题1.设是上⼏乎处处有限的可测函数,且,(),(),(),()n n f x g x f x g x E ()()n f x f x ?,则()()n g x g x ?()()()() n n f x g x f x g x +?+2.设是上在上也是可积的(),()f x g x E L -E L -3.设是可测集上的⾮负可测函数,如果,则于()f x E ()0Ef x dx =?()0.f x a e =E4.证明等式:\()(\)(\)A B C A B A C =U I实变函数试题库及参考答案(4)本科⼀、填空题1.等于2.闭集.3.4.5.6.黎斯7.不⼀定不⼀定8.界变差函数.(a,b)G ?≥≥2、单选题1.B 2.B 3.A 4.B3、多选题1.BD 2.CD 3.BD 4.ABC四、判断题√×√√五、定义题1.答:由若当分解定理,有界变差函数可表⽰成两个单调增函数的差,⽽单调函数⼏乎处处可微,所以有界变差函数⼏乎处处可微.2.答:不⼀定,如[]1111,11,1n n n +∞=??---+=- ??I 3.答:简单函数必是可测函数但可测函数不⼀定是简单函数,可测函数⼀定可表⽰成简单函数列的极限形式.4.答:单调函数必为有界变差函数但有界变差函数不⼀定为单调函数,有界变差函数可表⽰成单调函数之差.六、解答题1.解:因为,所以于0mP =(),.f x x a e =[]0,1于是⽽在上连续,所以()[][]0,10,1f x dx xdx =??x []0,1 因此.[]()2121000,11|22x xdx R x dx ===??()[]0,112f x dx =2.解:令()()()()0,ln cos xn n x n f x x e x nχ-+=显然在上可测,且()n f x ()0,+∞()()()()0,0,ln cos xn n x n e xdx f x dx n -+∞+=??因为()()()()ln ln cos ,0,,1,2,x n x n x n f x e x x n n n-++≤≤?∈+∞=L 不难验证,当⾜够⼤时,是单调递减⾮负函数,且()()ln n x n g x n+=n ,所以()lim 0n n g x →∞=()()()()()()0,0,0,ln lim lim lim n n n n n x n dx g x dx g x n →∞→∞→∞+∞+∞+∞+==() 0,00dx +∞==?由勒贝格控制收敛定理 ()()0,limn n f x dx →∞+∞=?故.()()0,ln limcos 0xn n x n e xdx n -→∞+=?七、证明题1.证明对任何正数,由于0σ>|(()())(()())||()()||()()|n n n n f x g x f x g x f x f x g x g x +-+≤-+- 所以[|(()())(()())|]n n E x f x g x f x g x σ+-+≥[|()()|[|()()|22n n E x f x f x E x g x g x σσ-≥-≥U 于是[|(()())(()())|]n n mE x f x g x f x g x σ+-+≥[|()()|][|()()|]22n n mE x f x f x mE x g x g x σσ≤-≥+-≥0()n →→∞ 故()()()()n n f x g x f x g x +?+2.证明因是上可积,所以在上可积,从⽽(),()f x g x E L -|()|,|()|f x g x E L -可积,|()||()|f x g x +L -|()||()|f x g x ≤=+在上可积E L -3.证明反证,令,则由的可测性知,是可测集.下证,[|()0]A E x f x =>()f x A 0mA =若不然,则0 mA >由于,所以存在,使11[|()0][|()]n A E x f x E x f x n ∞==>=≥U 1N ≥1[|()]0mE x f x d N≥=> 于是11[|()[|()]111()()[|()0EE x f x E x f x NNd f x dx f x dx dx mE x f x N N N N≥≥≥≥=≥=>?因此,⽭盾,故于()0Ef x dx >?()0.f x a e =E4.证明\()()()()()(\)(\)c c c c cA B C A B C A B C A B A C A B A C ====U I U I I I I I I。
实变的一些习题解答
x → x0
0. 注意到
f ( x ) − f ( x0 ) f ( x) = lim , x → x0 x − x0 x − x0
存在δ > 0, 使得
f ( x) x − x0 0, ∀ x ∈ ( x0 − δ, x0 ) ∪ ( x0 , x0 + δ),
即
f ( x) 0, ∀ x ∈ ( x0 − δ, x0 ) ∪ ( x0 , x0 + δ).
因为此时 B \ A为非空开集, 从而m( B \ A) > 0. 因此mB = mA + m( B \ A) > mA.
16. 设E ⊂ [0, 1]为可测集. 若mE = 1, 则E = [0, 1]; 若mE = 0, 则E ◦ = ∅.
证. 注意到简单的事实1 = mE 故[0, 1] ⊂ E ⊂ [0, 1]. 最后得E = [0, 1].
证. 如果存在E ⊂ Rn , E
∅, E Rn ,使得E 为既开又闭的集合, 令 1, x ∈ E , f ( x) = 2, x ∈ Rn \ E .
则 f 为Rn 上连续函数, 然而它的值域 f (Rn ) = {1, 2}不是一个区间. 矛盾!
∂E = E ∩ E c . 由于 x ∈ E ⊂ E , 必 E c . 从而存在δ > 0使得 B( x, δ) ∩ E c = ∅. 故 B( x, δ) ⊂ E . 从而E 为开集. 3 ∂E . 这
以上说明: E 为开集⇐⇒ E ∩ ∂E = ∅.
9. 在Rn 中只有∅和Rn 是既开又闭的点集.
Rn \ G1 , 故G1 ∩ G2 = ∅.
注. 显然G2 为开集的条件是多余的.
实变函数试题库(5)及参考答案
实变函数试题库(5)及参考答案实变函数试题库及参考答案(5)本科一、填空题1.设,A B 为集合,则___(\)A B B A A2.设nE R ?,如果E 满足0E E =(其中0E 表示E 的内部),则E 是3.设G 为直线上的开集,若开区间(,)a b 满足(,)a b G ?且,a G b G ??,则(,)a b必为G 的4.设{|2,}A x x n n ==为自然数,则A 的基数a (其中a 表示自然数集N 的基数) 5.设,A B 为可测集,B A ?且mB <+∞,则__(\)mA mB m A B -6.设()f x 是可测集E 上的可测函数,则对任意实数,()a b a b <,都有[()]E x a f x b <<是7.若()E R ?是可数集,则__0mE 8.设{}()n f x 为可测集E上的可测函数列,()f x 为E 上的可测函数,如果.()()()a en f x f x x E →∈,则()()n f x f x ?x E ∈(是否成立)二、选择题1、设E 是1R 中的可测集,()x ?是E 上的简单函数,则()(A )()x ?是E 上的连续函数(B )()x ?是E 上的单调函数(C )()x ?在E 上一定不L 可积(D )()x ?是E 上的可测函数 2.下列集合关系成立的是()(A )()()()A B C A B A C = (B )(\)A B A =? (C )(\)B A A =? (D )A B A B ?3. 若()nE R ?是闭集,则()(A )0E E = (B )E E = (C )E E '? (D )E E '=三、多项选择题(每题至少有两个以上的正确答案)1.设{[0,1]}E =中的有理点,则()(A )E 是可数集(B )E 是闭集(C )0mE = (D )E 中的每一点均为E 的内点2.若()E R ?的外测度为0,则()(A )E 是可测集(B )0mE =(C )E 一定是可数集(D )E 一定不是可数集3.设mE <+∞,{}()n f x 为E 上几乎处处有限的可测函数列,()f x 为E 上几乎处处有限的可测函数,如果()(),()n f x f x x E ?∈,则下列哪些结果不一定成立()(A )()Ef x dx ?存在(B )()f x 在E 上L -可积(C ).()()()a en f x f x x E →∈(D )lim ()()n EEn f x dx f x dx →∞=??4.若可测集E 上的可测函数()f x 在E 上有L 积分值,则()(A )()()f x L E +∈与()()f x L E -∈至少有一个成立(B )()()f x L E +∈且()()f x L E -∈ (C )|()|f x 在E 上也有L -积分值(D )|()|()f x L E ∈四、判断题1. 可列个开集的交集仍为开集()2. 任何无限集均是可列集()3. 设E 为可测集,则一定存在F σ集F ,使F E ?,且()\0m E F =. ()4. 设E 为零测集,则()f x 为E 上的可测函数的充要条件是:?实数a 都有()E x f x a ?≥是可测集()五、定义题1. 可测函数列几乎处处收敛、依测度收敛和近一致收敛的关系?2. 可测集E 上的可测函数与连续函数有什么关系?3.[],a b 上的绝对连续函数与有界变差函数有什么关系?六、计算题 1. 设()[][]101001x D x x ??=为,上的有理点为,上的无理点,求()[]01D x dx ?,.2. 求()0ln limcos xn x n e xdx n+∞-→∞+?.七、证明题1.设nE R ?是有界集,则*m E <+∞2.1R 上的实值连续函数()f x 是可测函数3.设mE <+∞,函数()f x 在E 上有界可测,则()f x 在E 上L -可积,从而[,]a b 上的连续函数是L -可积的4.设()n f x (1,2,n = )是E 上的L -可积函数,如果lim|()|0nn E n f x dx →∞=?,则()0n f x ?实变函数试题库及参考答案(2)本科一、填空题1.=2.开集3.构成区间4.=5.=6.可测集7.=8.不一定成立二、单选题 1.D 2.A 3.B 三、多选题1.AC2.AB3.ABCD4.AD 四、判断题××√√ 五、定义题1.答:设()(),n f x f x 是可测集E 上的一列可测函数,那当mE <+∞时,()(),.n f x f x a e →于E ,必有()()n f x f x ?. 反之不成立,但不论mE <+∞还是mE =+∞,(){}nf x 存在子列(){}kn f x ,使()(),.k n f x f x a e →于E .当mE <+∞时,()(),.n f x f x a e →于E ,由Egoroff 定理可得()n f x 近一致收敛于()f x ,反之,无需条件mE <+∞,结论也成立.2.答:E 上连续函数必为可测函数但E 上的可测函数不一定时连续函数,E 上可测函数在E 上是“基本上”连续的函数3.答:绝对连续函数必为有界变差函数但有界变差函数不一定为绝对连续函数六、解答题1.证明记1E 是[]0,1中有理数集,2E 是[]0,1中无理数集,则[]12120,1,E E E E ==? ,120,1mE mE ==,且()1210EE D x χχ=+,所以()[]120,1100D x dx mE mE=+=?.2.解易知()ln limcos 0xn x n e x n-→∞+= 对任意0,1x n ≥≥,()()ln ln cos x x n x n e x n n-++≤ 设()ln ()x y f y y+=,0y >,则()2ln ()yx y x yf y y -++'=,当3y ≥时,()1ln yx y x y<<++,()0f y '<. 则()ln ()x n f n n+=是单调减函数且非负(3n ≥);又()ln 1limlim 0n n x n n x n→∞→∞+==+,由Levi 单调收敛定理得()()000ln ln lim lim 00n n x n x n dx dx dx n n +∞+∞+∞→∞→∞++===?,即()ln ()x n L E n+∈,再由Lebsgue 控制收敛定理得()()000ln ln lim cos lim cos 00x xn n x n x n e xdx e xdx dx n n+∞+∞+∞--→∞→∞++===?七、证明题1..证明因为E 是有界集,所以存在开区间I ,使E I ?由外测度的单调性,**m E m I ≤,而*||m I I =<+∞(其中||I 表示区间I 的体积),所以 *m E <+∞2.证明因为()f x 连续,所以对任何实数a ,{|()}x f x a >是开集,而开集为可测集,因此()f x 是可测函数3.证明因为()f x 在E 上有界可测,所以存在0M >,使|()|f x M <,x E ∈,|()|f x 是非负可测函数,由非负可测函数的积分单调性,|()|EEf x dx Mdx M mE <=?<+∞??故|()|f x 在E 上L -可积,从而()f x 在E 上L -可积因为[,]a b 上的连续函数是有界可测函数,所以L -可积的4.证明对任何常数0σ>,[|()|][|()|]|()|n n n E x f x mE x f x f x dx σσσ≥?≥≤所以 [|()|]1[|()|]|()|n n n E x f x mE x f x f x dx σσσ≥≥≤1|()|0()nEfx dx n σ≤→→∞?因此 ()0n f x ?。
《实变函数》习题库参考答案
《实变函数》习题库参考答案《实变函数》习题库参考答案一、判断题 1、( √ )理由:由内点定义知,存在A P U ?),(0δ,从而对任意的)(0P U ,必含有A 中无穷多个点。
满足聚点定义 2、( √ )理由:[法一]:都具有连续基数,故对等 [法二]:可建立一个映射)2tan()(ππ-?--=a b a x x f ,则f(x)为),(b a 到R 的一一映射.3、( √ )理由:由B A ?知, A A B B )(-=,从而由有限可加性知,mA A B m mB +-=)(,又由+∞<="" 4、(="" b="" m="" ma="" p="" √="" 。
从而移项可得结论。
="" 知,+∞<-+∞理由:f(x)在区间[0,5)及[5,10]上均为连续函数,故分别在2个区间上是可测函数,从而再其和集上也是可测函数。
5、( × )理由:例如有理数集Q ,无理数2是Q 的聚点,但不是其内点。
6、( √ )理由:[法一]:都是可数集,故有相同的基数,即对等。
[法二]:可建立一个映射==+==...2,1,1,11,0,1)(n n x n x x f ,则f(x)为集合,1,,31,21,1,0n 到集合 ,1,,31,21,1n 的一一映射。
7、( √ )理由:由B A ?知A A B B )(-=,且φ=-A A B )(,故mA mA A B mmB =+-=)(8、( √ )理由:狄利克莱函数-∈∈=.]1,0[,0]1,0[,1)(Q x Qx x D 是[0,1]上的简单函数,故可测。
9、( √ )理由:由于E E ?Φ=',所以.}3,2,1{为闭集=E 10、( × )理由:如无界。
实变函数自考真题答案解析
实变函数自考真题答案解析是大家在学习数学中经常会涉及的一个重要内容。
在自考中,也是一个考点。
下面,我将为大家解析一道自考真题,帮助大家更好地理解和掌握的知识。
首先,让我们来看一道自考真题的具体内容:【真题内容】设$f(x)$在区间$(a,b)$内连续,且存在$f'(x)$,则以下命题中正确的是()。
A. 若$f'(x)>0$,则$f(x)$在$(a,b)$内单调递增;B. 若$f'(x)>0$,则$f(x)$在$(a,b)$内单调递减;C. 若$f'(x)=0$,则$f(x)$在$(a,b)$内存在极大值或极小值;D. 若$f'(x)=0$,则$f(x)$在$(a,b)$内不存在极值。
接下来,让我们逐个选项对这道题进行解析。
选项A中说若$f'(x)>0$,则$f(x)$在$(a,b)$内单调递增。
在微积分中,我们知道导数表示函数的变化率,当导数大于0时,函数是递增的。
所以选项A是正确的。
选项B中说若$f'(x)>0$,则$f(x)$在$(a,b)$内单调递减。
根据我们刚才的分析可知,选项B是错误的。
选项C中说若$f'(x)=0$,则$f(x)$在$(a,b)$内存在极大值或极小值。
在函数的极值点处,导数为0。
但是导数为0并不一定代表函数存在极值点,这取决于函数的二阶导数。
所以选项C是错误的。
选项D中说若$f'(x)=0$,则$f(x)$在$(a,b)$内不存在极值。
这个选项显然是错误的,因为我们知道函数在极值点的导数为0。
通过分析,我们可以得出正确答案是选项A。
综上所述,本题的正确答案是选项A。
通过这道题,我们可以进一步理解在微积分中的应用,以及导数和函数的变化关系。
当然,的知识远不止于此,还包括函数极限、连续性、导数、积分等内容。
在自考中,我们需要充分掌握这些概念和定理,并能够熟练运用于解题。
希望通过以上的解析,大家对有了更深入的理解,并能在自考中更好地应用这些知识。
实变函数第五章复习题及解答
第五章 复习题一、判断题1、设()f x 是定义在[,]a b 上的实函数,由于()baV f 总存在,所以()f x 一定是[,]a b 上的有界变差函数。
(× )2、设()f x 是定义在[,]a b 上的实函数,()f x 是[,]a b 上的有界变差函数⇔()baV f <+∞。
(√ )3、设()f x 是[,]a b 上的单调函数,则()f x 一定是[,]a b 上的有界变差函数。
(√ )4、设()f x 是[,]a b 上的有界变差函数,则()f x 既可表示成两个递减函数的差,也可表示成两个递增函数的差。
(√ )5、有界变差函数一定是几乎处处连续的函数,也一定是几乎处处可微的函数。
(√ )6、设()f x 是定义在[,]a b 上的实函数,[,][,][,]a b a c c b =⋃,a c b <<,则()()()bcbaacV f V f V f =+。
(√ )7、设[,][,][,]a b a c c b =⋃,a c b <<,则()f x 是[,]a b 上的有界变差函数的充要条件是()f x 既是[,]a c 上的有界变差函数,也是[,]c b 上的有界变差函数。
(√ ) 8、若()f x 是[,]a b 上的绝对连续函数,则()f x 既是[,]a b 上的一致连续函数,也是()f x 是[,]a b 上的连续函数。
(√ ) 9、若()f x 是[,]a b 上的绝对连续函数,则()f x 一定是[,]a b 上的有界变差函数。
(√ ) 10、若()f x 是[,]a b 上的有界变差函数,则()f x 一定是[,]a b 上的绝对连续函数。
(× ) 11、若()f x 是[,]a b 上的绝对连续函数,()g x 是[,]a b 上的绝对连续函数,则()()f x g x ±,()()f x g x 都是[,]a b 上的绝对连续函数。
实变函数习题精选讲解
实变函数习题精选讲解实变函数是数学分析中的一个重要概念,涉及到实数域上的函数。
在学习实变函数时,习题练习非常重要。
本文将选取一些代表性的实变函数习题进行讲解,帮助读者加深对实变函数的理解。
一、求极限1. $\lim\limits_{x\to0}\frac{\sin(\pi x)}{x}$解:当$x\to 0$时,$\sin(\pi x)\to 0$,$x\to 0$,所以可以使用洛必达法则。
$\lim\limits_{x\to0}\frac{\sin(\pix)}{x}=\lim\limits_{x\to0}\frac{\pi\cos(\pi x)}{1}= \pi$2. $\lim\limits_{x\to\infty}\left(1+\frac{a}{x}\right)^{bx}$解:将$x=\frac{1}{t}$代入式子,可得:$\lim\limits_{t\to0^{+}}\left(1+\frac{a}{\frac{1}{t}}\right)^{b\frac{1}{t}}=\lim\limits_{t\to0^{+}}\left(1+at\right)^{\frac{b}{t}}$令$y=\frac{1}{t}$,则原式可表示为:$\lim\limits_{y\to\infty}\left(1+\frac{a}{y}\right)^{by}=\lim\limits _{y\to\infty}\left(\left(1+\frac{1}{\frac{y}{a}}\right)^{\frac{y}{a}}\ri ght)^{ab}=e^{ab}$二、求导数1. 求$f(x)=\int_{0}^{\sqrt{x}}\frac{\sin t^2}{\sqrt{t}}dt$的导数。
解:使用莱布尼茨公式求导数。
$f'(x)=\frac{d}{dx}\int_{0}^{\sqrt{x}}\frac{\sint^2}{\sqrt{t}}dt=\frac{\sin \sqrt{x}}{\sqrt{x}}$2. 求$f(x)=\int_{0}^{x}e^{t^2}dt$的导数。
2.5 实变函数习题讲解
{x:f ( x0 ) f ( x)} {x:f ( x) f ( x0 ) }为开集, 从而 0, 使得
U ( x0 , ) {x:f ( x0 ) f ( x) f ( x0 ) } (因为x0 {x:f ( x0 ) f ( x) f ( x0 ) }, 从而是{x:f ( x0 ) f ( x) f ( x0 ) }的内点)
不妨令有无限多xn在{x:f ( x) f ( x0 ) }中,
由{x:f ( x) f ( x0 ) }为闭集, 可知x0 {x:f ( x) f ( x0 ) },
则有子列xni {x:f ( x) f ( x0 ) },且xni x0 (i )
证明:任取x0 ∈ E ={x|f(x)>a},则f(x0 )>a, 由f(x)在x0处连续及极限的保号性知,
存在δ>0,当|x-x0|< δ时,有f(x)>a
即U(x0 , δ)
E ={x|f(x)>a},
()
x0
f(x0)+ε f(x0) f(x0)-ε a
即x0为E的内点,从而E为开集;
类似可证{x|f(x)<a}为开集,
可知U ( P, ) U ,U 为开集。
引理证毕
第9题的证明
设F 为任一闭集。对于n Z ,由引理知,集合 Gn P | d ( P, F ) 从而F Gn .
下证F Gn , 这只须证 Gn F .
n 1 n 1
n 1
Gn
n 1 n
所以
n 1
Gn F
实变函数测试题与参考答案
实变函数试题一,填空题1. 设1,2n A n ⎡⎤=⎢⎥⎣⎦,1,2n =,则lim n n A →∞= . 2. ()(),,a b -∞+∞,因为存在两个集合之间的一一映射为3. 设E 是2R 中函数1cos ,00,0x y x x ⎧≠⎪=⎨⎪ =⎩的图形上的点所组成的集合,则E '= ,E ︒= .4. 若集合nE R ⊂满足E E '⊂,则E 为 集. 5. 若(),αβ是直线上开集G 的一个构成区间,则(),αβ满足:, .6. 设E 使闭区间[],a b 中的全体无理数集,则mE = .7. 若()n mE f x →()0f x ⎡⎤=⎣⎦,则说{}()n f x 在E 上 .8. 设nE R ⊂,0nx R ∈,若 ,则称0x 是E 的聚点.9. 设{}()n f x 是E 上几乎处处有限的可测函数列,()f x 是E 上几乎处处有限的可测函数,若0σ∀>,有 ,则称{}()n f x 在E 上依测度收敛于()f x . 10. 设()()n f x f x ⇒,x E ∈,则∃{}()n f x 的子列{}()jn fx ,使得.二,判断题.正确的证明,错误的举反例. 1. 若,A B 可测,A B ⊂且A B ≠,则mA mB <. 2. 设E 为点集,P E ∉,则P 是E 的外点.3. 点集11,2,,E n ⎧⎫=⎨⎬⎩⎭的闭集. 4. 任意多个闭集的并集是闭集.5. 若nE R ⊂,满足*m E =+∞,则E 为无限集合. 三,计算证明题1.证明:()()()A B C A B A C --=-2.设M 是3R 空间中以有理点(即坐标都是有理数)为中心,有理数为半径的球的全体,证明M 为可数集.3.设nE R ⊂,i E B ⊂且i B 为可测集,1,2i =.根据题意,若有()()*0,i m B E i -→ →∞,证明E 是可测集.4. 设P 是Cantor 集,()[]32ln 1,(),0,1x x P f x x x P ⎧+ ∈⎪=⎨ ∈-⎪⎩.求10(L)()f x dx ⎰.5. 设函数()f x 在Cantor 集0P 中点x 上取值为3x ,而在0P 的余集中长为13n 的构成区间上取值为16n ,()1,2n =,求1()f x dx ⎰.6. 求极限:13230lim(R)sin 1n nx nxdx n x →∞+⎰.实变函数试题解答一填空题 1.[]0,2.2.{}1(,)cos ,0(0,)1x y y x y y x ⎧⎫=≠≤⎨⎬⎩⎭;∅.3.闭集.4.b a -.5.几乎处处收敛于()f x 或a.e.收敛于()f x .6.对000,(,)U x δδ∀> 有{}()0E x -=∅.7.()()n f x f x → a.e.于E . 二判断题1. F .例如,(0,1)A =,[]0,1B =,则A B ⊂且A B ≠,但1mA mB ==.2. F .例如,0(0,1)∉,但0不是(0,1)的外点.3. F .由于{}0E E '=⊄.4. F .例如,在1R 中,11,1n F n n ⎡⎤=-⎢⎥⎣⎦,3,4n =是一系列的闭集,但是3(0,1)n n F ∞==不是闭集.5. T .因为若E 为有界集合,则存在有限区间I ,I <+∞,使得E I ⊂,则**,m E m I I ≤=<+∞ 于*m E =+∞ .三,计算证明题. 1.证明如下:2. M 中任何一个元素可以由球心(,,)x y z ,半径为r 唯一确定,x ,y ,z 跑遍所有的正有理数,r 跑遍所有的有理数.因为有理数集于正有理数集为可数集都是可数集,故M 为可数集.3. 令1i i B B ∞==,则i E B B ⊂⊂且B 为可测集,于是对于i ∀,都有i B E B E -⊂-,故()()**0i m B E m B E ≤-≤-,令i →∞,得到()*0m B E -=,故B E -可测.从而()E B B E =--可测.4. 已知0mP =,令[]0,1G P =-,则()1320221130(L)()(L)ln 1(L)(L)()(L)(L)(R)()133PGGPGf x dx x dx x dxf x dxx dx x dxf x dxx=++ =0+ =+ = ==⎰⎰⎰⎰⎰⎰⎰. 5. 将积分区间[]0,1分为两两不相交的集合:0P ,1G ,2G ,其中0P 为Cantor 集,n G 是0P 的余集中一切长为13n 的构成区间(共有12n -个)之并.由L 积分的可数可加性,并且注意到题中的00mP =,可得6. 因为323sin 1nx nx n x +在[]0,1上连续,13230(R)sin 1nx nxdx n x+⎰存在且与13230(L)sin 1nx nxdx n x +⎰的值相等.易知由于12x 在()0,1上非负可测,且广义积分1012dx x ⎰收敛,则 12x在()0,1上(L)可积,由于323lim sin 01n nx nx n x →∞=+,()0,1x ∈,于是根据勒贝格控制收敛定理,得到1133232300132301lim(R)sin lim(L)sin 11lim sin 100n n n nx nx nxdx nxdx n x n x nx nx dxn x dx →∞→∞→∞=++⎛⎫ = ⎪+⎝⎭ ==⎰⎰⎰⎰.一、判定下列命题正确与否,简明理由(对正确者予以证明,对错误者举处反例)(15分,每小题3分) 1. 非可数的无限集为c 势集 2. 开集的余集为闭集。
实变函数试题库及参考答案
实变函数试题库及参考答案(1) 本科一、填空题1.设,A B 为集合,则()\A B B A B (用描述集合间关系的符号填写) 2.设A 是B 的子集,则A B (用描述集合间关系的符号填写) 3.如果E 中聚点都属于E ,则称E 是 4.有限个开集的交是 5.设1E 、2E 是可测集,则()12m E E 12mE mE +(用描述集合间关系的符号填写)6.设nE ⊂是可数集,则*m E 07.设()f x 是定义在可测集E 上的实函数,如果1a ∀∈,()E x f x a ⎡⎤≥⎣⎦是 ,则称()f x 在E 上可测8.可测函数列的上极限也是 函数9.设()()n f x f x ⇒,()()n g x g x ⇒,则()()n n f x g x +⇒ 10.设()f x 在E 上L 可积,则()f x 在E 上 二、选择题1.下列集合关系成立的是( ) 2.若n R E ⊂是开集,则( )3.设(){}n f x 是E 上一列非负可测函数,则( ) 三、多项选择题(每题至少有两个以上的正确答案) 1.设[]{}0,1E =中无理数,则( )A E 是不可数集B E 是闭集C E 中没有内点D 1mE = 2.设nE ⊂是无限集,则( )A E 可以和自身的某个真子集对等B E a ≥(a 为自然数集的基数) 3.设()f x 是E 上的可测函数,则( )A 函数()f x 在E 上可测B ()f x 在E 的可测子集上可测C ()f x 是有界的D ()f x 是简单函数的极限4.设()f x 是[],a b 上的有界函数,且黎曼可积,则( )A ()f x 在[],a b 上可测B ()f x 在[],a b 上L 可积C ()f x 在[],a b 上几乎处处连续D ()f x 在[],a b 上几乎处处等于某个连续函数四、判断题1. 可数个闭集的并是闭集. ( )2. 可数个可测集的并是可测集. ( )3. 相等的集合是对等的. ( )4. 称()(),f x g x 在E 上几乎处处相等是指使()()f x g x ≠的x 全体是可测集. ( ) 五、定义题1. 简述无限集中有基数最小的集合,但没有最大的集合.2. 简述点集的边界点,聚点和内点的关系.3. 简单函数、可测函数与连续函数有什么关系?4. [],a b 上单调函数与有界变差函数有什么关系? 六、计算题1. 设()[]230,1\xx E f x xx E⎧∈⎪=⎨∈⎪⎩,其中E 为[]0,1中有理数集,求()[]0,1f x dx ⎰.2. 设{}n r 为[]0,1中全体有理数,(){}[]{}12121,,00,1\,,n n n x r r r f x x r r r ∈⎧⎪=⎨∈⎪⎩,求()[]0,1lim n n f x dx →∞⎰.七、证明题1.证明集合等式:(\)A B B A B =2.设E 是[0,1]中的无理数集,则E 是可测集,且1mE = 3.设(),()f x g x 是E 上的可测函数,则[|()()]E x f x g x >是可测集 4.设()f x 是E 上的可测函数,则对任何常数0a >,有1[|()|]|()|EmE x f x a f x dx a ≥≤⎰ 5.设()f x 是E 上的L -可积函数,{}n E 是E 的一列可测子集,且lim 0n n mE →∞=,则实变函数试题库及参考答案(1) 本科一、填空题1.=2.≤3.闭集4.开集5.≤6.=7.可测集8.可测9.()()f x g x + 10.可积 二、单选题 ABB三、多选题ACD AB ABD ABC 四、判断题 × √√√ 五、定义题1.答:因为任何无限集均含有可数集,所以可数集是无限集中基数最小的,但无限集没有基数最大的,这是由于任何集合A ,A 的幂集2A 的基数大于A 的基数.2.答: 内点一定是聚点,边界点不一定是聚点,点集的边界点或为孤立点或为聚点.3.答:连续函数一定是可测函数;简单函数一定是可测函数;简单函数可表示成简单函数或连续函数的极限4.答:单调函数是有界变差函数,有界变差函数可表示成两个单调增函数之差. 六、解答题1.解:因为0mE =,所以()3,.f x x a e =于[]0,1,于是()[][]30,10,1f x dx x dx =⎰⎰,而3x 在[]0,1上连续,从而黎曼可积,故由黎曼积分与勒贝格积分的关系, 因此()[]0,114f x dx =⎰. 2.解:显然()n f x 在[]0,1上可测,另外由()n f x 定义知,()0,.n f x a e =于[]0,1()1n ≥ 所以()[][]0,10,100nf x dx dx ==⎰⎰因此()[]0,1lim0nn f x dx →∞=⎰七、证明题 1.证明2.证明 设F 是[0,1]中的有理数集,则F 是可数集,从而*0m F =,因此F 是可测集,从而c F 可测,又[0,1]\[0,1]c E F F ==,故E 是可测集.由于EF =∅,所以1[0,1]()0m m EF mE mF mF ===+=+,故1mF =3.证明 设{}n r 为全体有理数所成之集,则因为(),()f x g x 是E 上的可测函数,所以[|()]n E x f x r ≥,[|()]n E x g x r <是可测集,1,2,n =,于是由可测集性质知[|()()]E x f x g x >是可测集4.证明 因为()f x 在E 上可测,所以|()|f x 在E 上非负可测,由非负可测函数积分性质, 而[|()|][|()|]E x f x a adx a mE x f x a ≥=⋅≥⎰,所以5.证明 因为lim 0n n mE →∞=,所以0,1N δ∀>∃≥,当n N ≥时,n mE δ<,又()f x 在E上L -可积,所以由积分的绝对连续性,0,0,εδ∀>∃>当,e E me δ⊂<时|()|ef x dx ε<⎰于是当n N ≥时,n mE δ<,因此|()|nE f x dx ε<⎰,即lim ()0nE n f x dx →∞=⎰。
实变的一些习题解答
存在y0 ∈ E , 使得
| x0 − y0 | = d( x0 , E ).
证. =⇒ 设E 为闭集. 根据点到集合的距离的定义, 对任何正整数k, 存在yk ∈ E , 使得
d( x0 , E ) 1 | x0 − yk | < d( x0 , E ) + . k 4
显然{yk } ⊂ E 有界, 且 lim | x0 − yk | = d( x0 , E ). 于是{yk }有收敛子列, 不妨
证 令G1 = { x : d( x, A) < d( x, B)}, G2 = { x : d( x, B) < d( x, A)}, 则G1 , G2 均 为开集, 且A ⊂ G1 , B ⊂ G2 , G1 ∩ G2 = ∅.
12. 若A, B ⊂ Rn , A ∩ B = ∅, B ∩ A = ∅, 试证明存在开集G1 , G2 使
得G1 ⊃ A, G2 ⊃ B, 且G1 ∩ G2 = ∅. 证 注意到
d( x, A) = 0, d( x, B) > 0, ∀ x ∈ A, d( x, B) = 0, d( x, A) > 0, ∀ x ∈ B.
从而取上题解答中的开集G1 , G2 即满足要求. 上题是本题的特例.
13. 证明: Rn 中的子集E 为闭集的充分必要条件是, 对任意 x0 ∈ Rn ,
k→∞
设{yk }本身收敛, 从而| x0 − y0 | = d( x0 , E ). 根据E 为闭集知, y0 ∈ E .
⇐= 若 x ∈ E , 则根据所给条件, 存在y0 ∈ E , 使得| x0 − y0 | = d( x0 , E ). 注
意到d( x0 , E ) = 0. 从而 x0 = y0 ∈ E . 即E ⊂ E . 从而E 为闭集.
实变函数第一章答案解析
习题1.11.证明下列集合等式.(1) ()()()C A B A C B A \\=; (2) ()()()C B C A C B A \\\ =; (3) ()()()C A B A C B A \\\=.证明 (1) )()C \B (cC B A A =)()( c c C B A A B A = c C A B A )()( =)(\)(C A B A = .(2) cC B A A )(C \B)(=)()(c c C B C A ==)\()\(C A C A .(3) )(\C)\(B \cC B A A =cc C B A )( =)(C B A c =)()(C A B A c =)()\(C A B A =.2.证明下列命题.(1) ()A B B A = \的充分必要条件是:A B ⊂;(2) ()A B B A =\ 的充分必要条件是:=B A Ø;(3) ()()B B A B B A \\ =的充分必要条件是:=B Ø.证明 (1) A B A B B B A B B A B B A cc==== )()()()\(的充要条是:.A B ⊂(2) ccccB A B B B A B B A B B A ===)()()(\)(必要性. 设A B B A =\)( 成立,则A B A c= , 于是有cB A ⊂, 可得.∅=B A反之若,∅≠B A 取B A x ∈, 则B x A x ∈∈且, 那么B x A x ∉∈且与c B A ⊂矛盾.充分性. 假设∅=B A 成立, 则c B A ⊂, 于是有A B A c= , 即.\)(A B B A =(3) 必要性. 假设B B A B B A \)()\( =, 即.\cC A B A B A == 若,∅≠B取,B x ∈ 则,cB x ∉ 于是,cB A x ∉ 但,B A x ∈ 与cC A B A =矛盾.充分性. 假设∅=B 成立, 显然B A B A \= 成立, 即B B A B B A \)()\( =. 3.证明定理1.1.6.定理1.1.6 (1) 如果{}n A 是渐张集列, 即),1(1≥∀⊂+n A A n n 则{}n A 收敛且∞=∞→=1;lim n n n n A A(2) 如果{}n A 是渐缩集列, 即),1(1≥∀⊃+n A A n n 则{}n A 收敛且 ∞=∞→=1.lim n n n n A A证明 (1) 设),1(1≥∀⊂+n A A n n 则对任意 ∞=∈1,n n A x 存在N 使得,NAx ∈ 从而),(N n A x N ≥∀∈ 所以,lim n n A x ∞→∈ 则.lim 1n n n n A A ∞→∞=⊂ 又因为 ∞=∞→∞→⊂⊂1,lim lim n n n n n n A A A由此可见{}n A 收敛且 ∞=∞→=1;lim n n n n A A(2) 当)1(1≥∀⊃+n A A n n 时, 对于,lim n n A x ∞→∈存在)1(1≥∀<+k n n k k 使得),1(≥∀∈k A x k n 于是对于任意的,1≥n 存在0k 使得n n k >0, 从而,0n n A A x k ⊂∈ 可见.lim 1∞=∞→⊂n n n n A A 又因为,lim lim 1n n n n n n A A A ∞→∞→∞=⊂⊂ 所以可知{}n A 收敛且 ∞=∞→=1.lim n n n n A A4.设f 是定义于集合E 上的实值函数,c 为任意实数,证明: (1) ⎥⎦⎤⎢⎣⎡+≥=>∞=n c f E c f E n 1][1 ;(2) ⎥⎦⎤⎢⎣⎡+<=≤∞=n c f E c f E n 1][1 ; (3) 若))(()(lim E x x f x f n n ∈∀=∞→,则对任意实数c 有⎥⎦⎤⎢⎣⎡->=⎥⎦⎤⎢⎣⎡->=≥∞→∞=∞=∞=∞=k c f E k c f E c f E n n k n N n N k 1lim 1][111 .证明 (1) 对任意的[],c f E x >∈ 有,)(c x f > 则存在+∈Z n 使得nc x f 1)(+≥成立. 即,1⎥⎦⎤⎢⎣⎡+≥∈n c f E x 那么.11 ∞=⎥⎦⎤⎢⎣⎡+≥∈n n c f E x 故[];11 ∞=⎥⎦⎤⎢⎣⎡+≥⊂>n n c f E c f E 另一方面, 若,11 ∞=⎥⎦⎤⎢⎣⎡+≥∈n n c f E x 则存在+∈Z n 0使得,110 ∞=⎥⎦⎤⎢⎣⎡+≥∈n n c f E x 于是c n c x f >+≥01)(, 故[]c f E x >∈. 则有[].11 ∞=⎥⎦⎤⎢⎣⎡+≥⊃>n n c f E c f E(2) 设[]c f E x ≤∈, 则c x f ≤)(, 从而对任意的+∈Z n , 都有nc x f 1)(+<, 于是 ∞=⎥⎦⎤⎢⎣⎡+<∈11n n c f E x , 故有[];11 ∞=⎥⎦⎤⎢⎣⎡+<⊂≤n n c f E c f E另一方面, 设 ∞=⎥⎦⎤⎢⎣⎡+<∈11n n c f E x , 则对于任意的+∈Z n , 有n c x f 1)(+<, 由n 的任意性, 可知c x f ≤)(, 即[]c f E x ≤∈, 故[] ∞=⎥⎦⎤⎢⎣⎡+<⊃≤11n n c f E c f E . (3) 设[]c f E x ≥∈, 则c x f ≥)(. 由),)(()(lim E x x f x f n n ∈∀=∞→ 可得对于任意的+∈Z k , 存在N 使得)(1|)()(|N n k x f x f n ≥∀<-, 即)1(11)()(≥-≥->k kc k x f x f n , 即k c x f n 1)(->, 故)1(1lim ≥∀⎥⎦⎤⎢⎣⎡->∈∞→k k c f E x n n , 所以 ∞=∞→⎥⎦⎤⎢⎣⎡->∈11lim k n n k c f E x , 故[] ∞=∞→⎥⎦⎤⎢⎣⎡->⊂≥11lim k n n k c f E c f E ;另一方面, 设 ∞=∞→⎥⎦⎤⎢⎣⎡->∈101lim k n n k c f E x , 则对任意+∈Z k 有⎥⎦⎤⎢⎣⎡->∈∞→k c f E x n n 1lim 0. 由下极限的定义知:存在1N 使得当1N n ≥时, 有)(10+∈∀⎥⎦⎤⎢⎣⎡->∈Z k k c f E x n , 即对任意+∈Z k 有kc x f n 1)(0->; 又由),)(()(lim E x x f x f n n ∈∀=∞→ 知),()(lim 00x f x f n n =∞→ 即对任意的+∈Z k , 存在2N 使得当2N n ≥时, 有kx f x f n 1|)()(|00<-. 取},m ax {21N N N =,则有k c x f n 1)(0->与k x f x f n 1|)()(|00<-同时成立, 于是有kc x f k x f n 1)(1)(00->>+,从而kc x f 2)(0->, 由k 的任意性知:c x f ≥)(0, 即[]c f E x ≥∈0, 故有 [] ∞=∞→⎥⎦⎤⎢⎣⎡->⊃≥11lim k n n k c f E c f E ;综上所述:[].11lim 111 ∞=∞=∞=∞=∞→⎥⎦⎤⎢⎣⎡->=⎥⎦⎤⎢⎣⎡->=≥k N N n n n n n k c f E k c f E c f E5.证明集列极限的下列性质.(1) cn n cn n A A ∞→∞→=⎪⎭⎫ ⎝⎛lim lim _____;(2) c n ncn n A A _____lim lim ∞→∞→=⎪⎭⎫ ⎝⎛; (3) ()n n n n A E A E ∞→∞→=lim \\lim ; (4) ()n n n n A E A E ∞→∞→=lim \\lim .证明 (1) cn n n nm c m n c n m m c n n m m cn n A A A A A ∞→∞=∞=∞=∞=∞=∞=∞→====⎪⎭⎫ ⎝⎛lim )()(lim 111_____ .(2) c n n n n nm c m c n m m c n n m m cn n A A A A A _____111lim )()(lim ∞→∞=∞=∞=∞=∞=∞=∞→====⎪⎭⎫ ⎝⎛ . (3) () ∞=∞=∞=∞=∞=∞=∞→===111))(()()\(\lim n nm n n m cm cm n nm mn n A E A E AE A Ec n nm m n c nm m n nm cmA E A E AE )())(()(111 ∞=∞=∞=∞=∞=∞====∞=∞=∞→==1lim \\n n m n n mA E AE .(4) () ∞=∞=∞=∞=∞=∞=∞→===111))(()()\(\lim n n m cm n nm n nm cm m n n A E A E A E A Ec n nm m n c nm m n n m cmA E A E AE )())(()(111 ∞=∞=∞=∞=∞=∞====∞=∞=∞→==1lim \\n nm n n mA E AE .6.如果}{},{n n B A 都收敛,则}\{},{},{n n n n n n B A B A B A 都收敛且 (1) ()n n n n n n n B A B A ∞→∞→∞→=lim lim lim ;(2) ()n n n n n n n B A B A ∞→∞→∞→=lim lim lim ; (3) ()n n n n n n n B A B A ∞→∞→∞→=lim \lim \lim .习题1.21.建立区间)1,0(与]1,0[之间的一一对应.解 令1111{,,,,}2345E =, 111{0,1,,,}234F =,(0,1)\D E =,则(0,1)ED =,[0,1]F D =.定义:(0,1)[0,1]φ→为: ;11();(1,2,)210;2x x Dx x n n n x φ⎧⎪∈⎪⎪===⎨+⎪⎪=⎪⎩则φ为(0,1)[0,1]→之间的一个一一对应.2.建立区间],[b a 与],[d c 之间的一一对应,其中d c b a <<,. 解 定义: :[,][,]a b c d φ→为:()().([,])d c d c bc ad x x a c x x a b b a b a b aφ---=-+=+∀∈--- 可以验证: :[,][,]a b c d φ→为一个一一对应.3.建立区间),(b a 与],[d c 之间的一一对应,其中d c b a <<,. 解 令{,,,}234b a b a b a E a a a ---=+++,{,,,,}23d c d c F c d c c --=++ (,)\D a b E =. 定义:(,)[,]a b c d φ→为:;();(1,2.)2;.2d cbc ad x x D b a b a d c b ax c x a n n n b a c x a φ--⎧+∈⎪--⎪--⎪=+=+=⎨+⎪-⎪=+⎪⎩可以验证: :(,)[,]a b c d φ→为一个一一对应.4.试问:是否存在连续函数,把区间]1,0[一一映射为区间)1,0(?是否存在连续函数,把区间]1,0[一一映射为]4,3[]2,1[ ?答 不存在连续函数把区间[0,1]一一映射为(0,1); 因为连续函数在闭区间[0,1]存在最大、最小值.也不存在连续函数把区间[0,1]一一映射为[1,2][3,4]; 因为连续函数在闭区间[1,2]上存在介值性定理, 而区间[1,2][3,4]不能保证介值性定理永远成立.5.证明:区间2~)1,0()1,0(~)1,0(R ⨯且ℵ=2R . 证明 记(0,1)A =,则(0,1)(0,1)A A ⨯=⨯. 任取(,)x y A A ∈⨯, 设1231230.,0.,x a a a y b b b == 为实数,x y 正规无穷十进小数表示, 并令1122(,)0.f x y a b a b =, 则得到单射:f A A A ⨯→. 因此由定理 1.2.2知A A A ⨯≤.若令10.5A A =⨯, 则1~A A A A ⊂⨯. 从而由定理1.2.2知: A A A ≤⨯. 最后, 根据Bernstein 定理知: (0,1)~(0,1)(0,1)⨯.对于(,)(0,1)(0,1)x y ∀∈⨯,定义2:(0,1)(0,1)R φ⨯→为:(,)((),())22x y tg x tg y ππφππ=--,则φ为2(0,1)(0,1)R ⨯→的一个一一对应,即2(0,1)(0,1)~R ⨯. 又因为: (0,1)~R , 则由对等的传递性知: 2(0,1)~(0,1)(0,1)~~R R ⨯且2R R ==ℵ.6.证明:{}1:),(22≤+=y x y x A 与{}1:),(22<+=y x y x B 对等并求它们的基数.证明 令221{(,):(1,2,3,)}E x y x y n n =+==, \D A E =, 221{(,):(1,2,3,)}1F x y x y n n =+==+.则,A E D B F D ==. 定义: :A B φ→为:2222(,);(,),(,)11;(1,2,3,),(,).1x y x y D x y x y x y n x y E n n φ∈⎧⎪=⎨+=+==∈⎪+⎩可以验证: :A B φ→为一一对应, 即~A B . 又因为2~(0,1)(0,1)~~B R R ⨯, 所以A B ==ℵ.7.证明:直线上任意两个区间都是对等且具有基数ℵ.证明 对任意的,I J R ⊆, 取有限区间(,)a b I ⊆,则(,)a b I R ℵ=≤≤=ℵ, 则由Bernstern 定理知I =ℵ, 同理J =ℵ. 故I J ==ℵ.习题1.31.证明:平面上顶点坐标为有理点的一切三角形之集M 是可数集.证明 因为有理数集Q 是可数集,平面上的三角形由三个顶点所确定,而每个顶点由两个数决定,故六个数可确定一个三角形,所以M 中的每个元素由Q 中的六个相互独立的数所确定,即Q},,,,:{621621∈=x x x a M x x x 所以M 为可数集.2.证明:由平面上某些两两不交的闭圆盘之集M 最多是可数集.证明 对于任意的M O ∈, 使得Q ∈)(O f . 因此可得:Q →M f :. 因为1O 与2O 不相交,所以)()(21O f O f ≠. 故f 为单射,从而a M =≤Q .3.证明:(1)任何可数集都可表示成两个不交的可数集之并;(2)任何无限集都可表成可数个两两不交的无限集之并.证明 (2) 当E 可数时,存在双射Q )1,0(:→E f . 因为∞=⎪⎪⎭⎫⎝⎛⎪⎭⎫⎢⎣⎡+=11,11)1,0(n n n Q Q所以∞=∞=--=⎪⎪⎭⎫ ⎝⎛⎪⎭⎫⎢⎣⎡+==11111,11))1,0((n n n A n n f f E Q Q .其中:)(),3,2,1(1,111j i A A n n n f A j i n ≠Φ==⎪⎪⎭⎫⎝⎛⎪⎭⎫⎢⎣⎡+=- 且Q . 又因为Q Q ⎪⎭⎫⎢⎣⎡+⎪⎪⎭⎫ ⎝⎛⎪⎭⎫⎢⎣⎡+-n n n n f 1,11~1,111且Q ⎪⎭⎫⎢⎣⎡+n n 1,11 可数,所以E 可表示成可数个两两不交的无限集之并.当E 不可数时,由于E 无限,所以存在可数集E E ⊂1, 且1\E E 不可数且无限,从而存在可数集12\E E E ⊂,且)(\\)\(2121E E E E E E =无限不可数. 如此下去,可得),3,2,1( =n E n 都可数且不相交,从而1011)()\(E E E E E E i i n i ==∞=∞=.其中)0(≥i E i 无限且不交.4.证明:可数个不交的非空有限集之并是可数集.5.证明:有限或可数个互不相交的有限集之并最多是可数集.证明 有限个互不相交的有限集之并是有限集;而可数个互不相交的有限集之并最多是可数集.6.证明:单调函数的不连续点之集至多是可数集.证明 不妨设函数f 在),(b a 单调递增,则f 在0x 间断当且仅当0)(lim )(lim )0()0(_000>==--+→→+x f x f x f x f x x x x .于是,每个间断点0x 对应一个开区间))0(),0((00+-x f x f .下面证明:若x x '''<为()f x 的两个不连续点,则有(0)(0)f x f x '''+≤-. 事实上,任取一点1x ,使1x x x '''<<,于是11(0)lim ()inf{()}()sup {()}lim ()x x x x x x x x x f x f x f x f x f x f x +-'>'''→→'''<<'+==≤≤=,从而x '对应的开区间((0),(0))f x f x ''-+与x ''对应的开区间((0),(0))f x f x ''''-+不相交,即不同的不连续点对应的开区间互不相交,又因为直线上互不相交的开区间所构成的集合至多是可数集,所以可知单调函数的不连续点之集至多是可数集.7.证明:若存在某正数d 使得平面点集E 中任意两点之间的距离都大于d ,则E 至多是可数集.证明 定义映射}:)3,{(:E x dx E f ∈→,即))(3,()(E x d x D x f ∈=,其中)3,(d x D 表示以E x ∈为中心,以3d 为半径的圆盘. 显然当y x ≠时,有∅=)3,()3,(dy D d x D ,即)()(y f x f ≠,于是f 为双射,由第2题知:a E x dx ≤∈}:)3,{(,故a E ≤.习题1.41.直线上一切闭区之集具有什么基数?区间],[b a 中的全体有理数之集的基数是什么? 答 直线上一切闭区间之集的基数是c . 这是因为:2),(],[:R ∈→b a b a f 为单射,而R ∈→a b a f ],[:为满射,所以c M c =≤≤=2R R .区间],[b a 中的全体有理数之集的基数是c ,这是因为:a b a a =≤≤Q Q ],[. 2.用],[b a C 表示],[b a 上的一切连续实值函数之集,证明: (1) 设},,,,{],[21 n r r r b a =Q ,],[,b a C g f ∈,则⇔=g f ),2,1)(()( ==k r g r f k k ;(2) 公式)),(,),(),(()(21 n r f r f r f f =π定义了单射)(],[:R S b a C →π;(3) c b a C =],[. 证明 (1) 必要性. 显然.充分性. 假设),2,1)(()( ==k r g r f k k 成立. 因为},,,{\],[321 r r r b a x ∈∀,存在有理数列∞=1}{n n x ,使得x x n n =∞→lim ,由],[,b a c g f ∈,可得)()lim ()(lim x f x f x f n n n ==∞→∞→及)()lim ()(lim x g x g x g n n n ==∞→∞→.又因为∞=1}{n n x 为有理点列,所以有)()(n n x g x f =,故],[b a x ∈∀,都有)()(x g x f =.(2) ],[,b a c g f ∈∀,设)()(g f ππ=,即)),(,),(),(()),(,),(),((2121 n n r g r g r g r f r f r f =.由(1)知:g f =. 故π为单射.(3) 由(2)知:c R S b a c =≤)(],[;又由],[b a c ⊂R ,可得],[b a c c ≤=R . 故c b a C =],[.3.设],[b a F 为闭区间]1,0[上的一切实值函数之集,证明: (1) ]},[:))(,{()(b a x x f x f ∈=π定义了一个单射)(],[:2R P b a F →π;(2) ]1,0[⊂∀E ,E E χα=)(定义了单射],[])1,0([:b a F P →α;(3) ],[b a F 的基数是c 2.证明 (1) ],[,b a F g f ∈∀,设)()(g f ππ=,即]},[:))(,{(]},[:))(,{(b a x x g x b a x x f x ∈=∈.从而]),[)(()(b a x x g x f ∈∀=,故π为单射.(2) ]1,0[,⊂∀F E ,设)()(F E αα=,则F E F E χααχ===)()(,故α为单射. (3) 由(1)知:c P b a F 2)(],[2=≤R ;又由(2)知:],[2])1,0([b a F P c ≤=,故c b a F 2],[=.4.证明:c n =C .证明 因为R R C ⨯~,而c =⨯R R ,故c =C ;又由定理1..4.5知:c n =C . 5.证明:若E 为任一平面点集且至少有一内点,则c E =.证明 显然c E =⨯≤R R . 设00E x ∈,则0>∃δ使得E x B ⊂),(0δ,可知E x B c ≤=),(0δ,故c E =.第一章总练习题.1 证明下列集合等式.(1) ()()F F E F E E F E \\\ ==; (2) ()()()G F G E G F E \\\ =.证明 (1) 因为\()()()()()\c c c c c E EF E EF EE F E E E F E F ====,()\()()()\c c c EF F EF F E F F F E F ===.所以\\()()\E F E EF E F F ==. (2) 因为()\()()()(\)(\),c c c c E F G EF G EFG EG FG E G F G ====所以()()()G F G E G F E \\\ =..2 证明下列集合等式.(1) ()B A B A n n n n \\11∞=∞== ;(2) ()B A B A n n n n \\11∞=∞== .证明 (1)1111\()()(\)ccn n n n n n n n A B A B A B A B ∞∞∞∞=======. (2)1111\()()(\)c c n n nn n n n n A B A B A B A B ∞∞∞∞=======.3.证明:22[][][]c cE f g c E f E g +≥⊂≥≥,其中g f ,为定义在E 的两个实值函数,c 为任一常数.证明 若()()22c c x E f E g ∉≥≥, 则有()2c f x <且()2cg x <, 于是()()()()f x g x f g x c +=+<,故()x E f g c ∉+≥. 所以()()()22c cE f g c E f E g +≥⊂≥≥.4.证明:n R 中的一切有理点之集nQ 与全体自然数之集对等.证明 因为0Q =ℵ,所以0Q Q Q Q n=⨯⨯⨯=ℵ(推论1.3.1). 又因为0N =ℵ, 所以0Q n N ==ℵ, 故Q ~n N .5.有理数的一切可能的序列所成之集)(Q S 具有什么基数?6.证明:一切有理系数的多项式之集][x Q 是可数集. 证明 设},Q ,,,,,0,][:][{][Q 1100111∈≠++++==---n n n n n n n n n n a a a a a a x a x a x a x P x P x于是.][Q ][Q 0∞==n n x x显然,Q~][Q 1n +x n 所以,Q ][Q 1n a x n ==+ 因此由定理1.3.5知:.][Q a x =7.证明:一切实系数的多项式之集][x R 的基数为c . 证明 记},R ,,,,,0,][:][{][R 1100111∈≠++++==---n n n n n n n n n n a a a a a a x a x a x a x P x P x于是.][R ][R 0∞==n n x x显然,R ~][R 1n +x n 所以,R][R 1n c x n ==+ 因此由定理1.4.3知:.][R c x =.8.证明:全体代数数(即可作为有理系数多项式之根的数)之集是可数集,并由此说明超越数(即不是代数数的实数)存在,而且全体超越数之集的基数是c .证明 由于有理系数多项式的全体是可数集,设其元素为,,,,,,210 n P P P P 记多项式)(x P n 的全体实根之集为,n A 由于n 次多项式根的个数为有限个,故n A 为有限集,从而代数数全体 ∞==0n n AA 为可数个有限集的并,故A 为可数集,即.a A =设超越数全体所成之集为,B 即,\R A B = 则R,=B A 从而B 必为无限集,由于A 为可数集,而任一无限集添加一个可数集其基数不变,故.R c B A B ===9.证明:A B B A \~\,则B A ~.证明 因为),()\(),()\(B A A B B B A B A A ==又因为,)(\)(\,~,\~\∅==B A A B B A B A B A B A A B B A 所以由保并性知),()\(~)()\(B A A B B A B A即.~B A10.证明:若,,D B B A <≤则D A <.证明 (反证法) 假设,D A = 则由已知可得,B D ≤ 这与D B <矛盾. 故有D A <.11.证明:若c B A = ,则c A =或c B =.证明 假设,a B A == 则有,a B A = 这与c B A = 矛盾,故有c A =或c B =.12.证明:若c A k k =+∈Z ,则存在+∈Z k 使得c A k =. 证明同上.。
实变函数第一章习题解答
第一章习题参考解答3.等式)()(C B A C B A --=⋃-成立的的充要条件是什么?解: 若)()(C B A C B A --=⋃-,则 A C B A C B A C ⊂--=⋃-⊂)()(. 即,A C ⊂.反过来, 假设A C ⊂, 因为B C B ⊂-. 所以, )(C B A B A --⊂-. 故,C B A ⋃-)(⊂)(C B A --.最后证,C B A C B A ⋃-⊂--)()(事实上,)(C B A x --∈∀, 则A x ∈且C B x -∉。
若C x ∈,则C B A x ⋃-∈)(;若C x ∉,则B x ∉,故C B A B A x ⋃-⊂-∈)(. 从而, C B A C B A ⋃-⊂--)()(.A A CB AC B A C =∅-⊂--=⋃-⊂)()(. 即 A C ⊂.反过来,若A C ⊂,则 因为B C B ⊂-所以)(C B A B A --⊂- 又因为A C ⊂,所以)(C B A C --⊂故 )()(C B A C B A --⊂⋃-另一方面,A x C B A x ∈⇒--∈∀)(且C B x -∉,如果C x ∈则 C B A x )(-∈;如果,C x ∉因为C B x -∉,所以B x ∉故B A x -∈. 则 C B A x ⋃-∈)(. 从而C B A C B A ⋃-⊂--)()(于是,)()(C B A C B A --=⋃-4.对于集合A ,定义A 的特征函数为⎩⎨⎧∉∈=Ax Ax x A ,0,1)(χ, 假设 n A A A ,,,21是一集列 ,证明:(i ))(inflim )(inf lim x x nnA nnA χχ=(ii ))(sup lim )(sup lim x x n nA nnA χχ=证明:(i ))(inf lim n nm N n n nA A x ≥∈⋂⋃=∈∀,N ∈∃0n ,0n m ≥∀时,m A x ∈.所以1)(=x m A χ,所以1)(inf=≥x mA n m χ故1)(inf sup )(inf lim ==≥∈x x mnA nm N b A nχχN n A x n n∈∀⇒∉∀inf lim ,有n k A x n n nm ≥∃⇒⋂∉≥有0)(inf0=⇒=⇒∉≥x A x mnk m A nm A k χχ,故0)(inf sup =≥∈x mA nm N b χ ,即)(inf lim x nA nχ=0 ,从而)(inflim )(inf lim x x nnA nnA χχ=5.设}{n A 为集列,11A B =,)1(11>⋃-=-=i A A B j i j i i 证明(i )}{n B 互相正交(ii )i ni i ni B A N n 11,===∈∀证明:(i )m n N m n ≠∈∀,,;不妨设n>m ,因为m n i n i n n A A A A B -⊂-=-=11,又因为m m A B ⊂,所以m n m n n B A A A B -⊂-⊂,故 ∅=m n B B ,从而 {∞=1}n n B 相互正交.(ii )因为)1(n i i ≤≤∀,有i i A B ⊂,所以i n i i n i A B 11==⋃⊂⋃,现在来证:i ni i n i B A 11==⋃⊂⋃当n=1时,11B A =;当1≥n 时,有:i ni i ni B A 11===则)()()()()(11111111111i ni n i n i i n i n i n i n i n i i n i B B B A A A A A A =+==++=+=+=-=-==事实上,i ni A x 1=⋃∈∀,则)1(n i i ≤≤∃使得i A x ∈,令}{ni A x i i i ≤≤∈=1|m in 0且则 i ni i i i i i B B A A x 111000=-=⊂=-∈ ,其中,当10=i 时,∅=-=i i i A 110 ,从而, i ni i n i B A 11===6.设)(x f 是定义于E 上的实函数,a 为常数,证明: (i )})(|{a x f x E >=}1)({1n a x f n +≥∞=(ii)})(|{a x f x E ≥=}1)({1na x f n ->∞=证明:(i )})(|{a x f x E x >∈∀E x ∈⇒且a x f >)(}1)(|{1)(,na x f x E x E x a n a x f N n +≥∈⇒∈>+≥∈∃⇒且使得 ∈⇒x ⊂>⇒+≥∞=})(|{}1)(|{1a x f x E n a x f x E n }1)(|{1na x f x E n +≥∞=反过来,{N n n a x f x x E x n ∈∃+≥∈∀∞=},1)(|{1 ,使}1)(|{n a x f x E x +≥∈即E x a na x f ∈>+≥且1)( 故})(|{a x f x E x >∈ 所以 })(|{}1)(|{1a x f x E na x f x E n >⊂+≥⋃∞= 故}1)(|{})(|{1n a x f x E a x f x E n +≥>∞=7.设)}({x f n 是E 上的实函数列,具有极限)(x f ,证明对任意常数a 都有:}1)(|{inf lim }1)(|{inf lim })(|{11k a x f x E k a x f x E a x f x E n n k n n k +<=+≤=≤∞=∞=证明:N ∈∀≤∈∀k a x f x E x },)(|{,即k a a x f 1)(+≤≤,且E x ∈ 因为N n x f x f n n ∈∃=∞→,)()(lim ,使n m ≥∀,有ka x f n 1)(+≤,故,)}(1)(|{n m k a x f x E x m ≥∀+≤∈ 所以∈x }1)(|{ka x f x E m n m +≤≥ }1)(|{k a x f x E x m n m N n +≤∈≥∈ = }1)(|{inf lim ka x f x E m n +≤,由k 的任意性:}1)(|{inf lim 1k a x f x E x n n k +≤∈∞= ,反过来,对于}1)(|{inf lim 1ka x f x E x n n k +≤∈∀∞= ,N k ∈∀,有 }1)(|{inf lim k a x f x E x m n +≤∈= }1)(|{ka x f x E m n m N n +≤≥∈ ,即n m N n ≥∀∈∃,时,有:k a x f m 1)(+≤且E x ∈,所以,ka x f x f m m 1)()(lim +≤≤且E x ∈.∞→k 又令,故 E x a x f ∈≤且)( 从而})(|{a x f x E x ≤∈故 })(|{a x f x E ≤=}1)(|{inf lim 1ka x f x E n n k +≤∞=8. 设)}({x f n 是区间(a ,b )上的单调递增的序列,即≤≤≤≤)()()(21x f x f x f n若)(x f n 有极限函数)(x f ,证明:R a ∈∀,})({})({1a x f E a x f E n n >⋃=>∞=证明: })({a x f E x >∈∀,即:E x ∈且a x f >)(,因为)()(lim x f x f n n =∞→所以00,n n N n ≥∀∈∃,恒有:E )(∈>x a x f n 且,从而,})({0a x f E x n >∈})({1a x f E n n >⊂∞=反过来,N n a x f E x n n ∈∃>∈∀∞=01},)({ ,使})({0a x f E x n >∈,故0n n ≥∀,因此,a x f x f x f n n n >≥=∞→)()()(lim 0且E x ∈,即,})({a x f E x >∈,从而,})({})({1a x f E a x f E n n >=>∞=10.证明:3R 中坐标为有理数的点是不可数的。
实变函数习题解答(1)
第一章习题解答1、证明 A (B C)=(A B) (A C)证明:设x∈A (B C),则x∈A或x∈(B C),若x∈A,则x∈A B,且x∈A C,从而x∈(A B) (A C)。
若x∈B C,则x∈B且x∈C,于是x∈A B且x∈A C,从而x∈(A B) (A C),因此A (B C) ⊂ (A B) (A C) (1)设x∈(A B) (A C),若x∈A,则x∈A (B C),若x∈A,由x∈A B 且x∈A C知x∈B且x∈C,所以x∈B C,所以x∈A (B C),因此(A B) (A C) ⊂ A (B C) (2)由(1)、(2)得,A (B C)=(A B) (A C) 。
2、证明①A-B=A-(A B)=(A B)-B②A (B-C)=(A B)-(A C)③(A-B)-C=A-(B C)④A-(B-C)=(A-B) (A C)⑤(A-B) (C-D)=(A C)-(B D)(A-B)=A BA-(A B)=A C(A B)=A (CA CB)=(A CA) (A CB)=φ (A CB)=A-B(A B)-B=(A B) CB=(A CB) (B CB)=(A CB) φ=A-B②(A B)-(A C)=(A B) C(A C)=(A B) (CA CC)=(A B CA) (A B CC)=φ [A (B CC)]=A (B-C)③(A-B)-C=(A CB) CC=A C(B C)=A-(B C)④A-(B-C)=A C(B CC)=A (CB C)=(A CB) (A C)=(A-B) (A C)⑤(A-B) (C-D)=(A CB) (C CD)=(A C) (CB CD)=(A C) C(B D)=(A C)-(B D)⑥A -(A -B)=A C(A CB)=A (CA B)=(A CA) (A B)=φ (A B)=A B3、证明: (A B)-C =(A -C) (B -C)A -(B C)=(A -B) (A -C)证明:(A B)-C =(A B) CC=(A CC) (B CC)=(A -(A -B) (A -C)=(A CB) (A CC)=(A A) (CB CC)=A C(B C)=A -(B C)4、证明:s C (∞=1i i A )=∞=1i s C i A 证明:设x ∈s C (∞=1i i A ),则x ∈∞=1i i A ,于是,i ∀、x ∈i A ,从而x ∈C i A ,所以,x ∈∞=1i C i A ,所以,s C (∞=1i i A )⊂∞=1i s C i A 。
《实变函数》习题库参考答案
《实变函数》习题库参考答案一、判断题 1、( √ )理由:由内点定义知,存在A P U ⊂),(0δ,从而对任意的)(0P U ,必含有A 中无穷多个点。
满足聚点定义 2、( √ )理由:[法一]:都具有连续基数,故对等 [法二]:可建立一个映射)2tan()(ππ-⋅--=a b a x x f ,则f(x)为),(b a 到R 的一一映射.3、( √ )理由:由B A ⊂知, A A B B )(-=,从而由有限可加性知,mA A B m mB +-=)(,又由 +∞<mB 知,+∞<-+∞<)(,A B m mA 。
从而移项可得结论。
4、( √ )理由:f(x)在区间[0,5)及[5,10]上均为连续函数,故分别在2个区间上是可测函数, 从而再其和集上也是可测函数。
5、( × )理由:例如有理数集Q ,无理数2是Q 的聚点,但不是其内点。
6、( √ )理由:[法一]:都是可数集,故有相同的基数,即对等。
[法二]:可建立一个映射⎪⎩⎪⎨⎧==+==...2,1,1,11,0,1)(n n x n x x f ,则f(x)为集合 ⎭⎬⎫⎩⎨⎧ ,1,,31,21,1,0n 到集合⎭⎬⎫⎩⎨⎧ ,1,,31,21,1n 的一一映射。
7、( √ )理由:由B A ⊂知A A B B )(-=,且φ=-A A B )(, 故mA mA A B m mB =+-=)(8、( √ )理由:狄利克莱函数⎩⎨⎧-∈∈=.]1,0[,0]1,0[,1)(Q x Qx x D 是[0,1]上的简单函数,故可测。
9、( √ )理由:由于E E ⊆Φ=',所以.}3,2,1{为闭集=E 10、( × )理由:如无界。
,但,则N mN N E +∞<==0 11、( √ )理由:由于可测。
在连续,从而在]2,1[2)(]2,1[2)(-=-=x f x f 12、( √ ) 理由:事实上:)()(***CE T m E T m T m T E +=∀⇔:可测]([)(**CE C T m CE T m +=可测。
实变函数第三章复习题及解答
第三章 复习题一、判断题1、对任意n E R ⊆,*m E 都存在。
(√ )2、对任意n E R ⊆,mE 都存在。
(× ) 3、设n E R ⊆,则*m E 可能小于零。
(× ) 4、设A B ⊆,则**m A m B ≤。
(√ )5、设A B ⊆,则**m A m B <。
(× ) 6、**11()n n n n m S m S ∞∞===∑ 。
(× )7、**11()n n n n m S m S ∞∞==≤∑ 。
(√ )8、设E 为nR 中的可数集,则*0m E =。
(√ )9、设Q 为有理数集,则*0m Q =。
(√ ) 10、设I 为n R 中的区间,则*m I mI I ==。
(√ ) 11、设I 为n R 中的无穷区间,则*m I =+∞。
(√ )12、设E 为n R 中的有界集,则*m E <+∞。
(√ ) 13、设E 为n R 中的无界集,则*m E =+∞。
(× ) 14、E 是可测集⇔c E 是可测集。
(√ )15、设{n S }是可测集列,则1n n S ∞= ,1n n S ∞= 都是可测集。
(√ ) 16、零测集、区间、开集、闭集和Borel 集都是可测集。
(√ )17、任何可测集总可表示成某个Borel 集与零测集的差集。
(√ )18、任何可测集总可表示成某个Borel 集与零测集的并集。
(√ )19、若E =∅,则*0m E >。
(× ) 20、若E 是无限集,且*0m E =,则E 是可数集。
(× ) 21、若mE =+∞,则E 必为无界集。
(√ )22、在nR 中必存在测度为零的无界集。
(√ )23、若A ,B 都是可测集,A B ⊆且mA mB =,则()0m B A −=。
(× ) 24、∅和n R 都是可测集,且0m ∅=,n mR =+∞。
(√ ) 25、设12,E E 为可测集,则12()m E E −≥12mE mE −。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实变函数试题库及参考答案 本科一、题1.设,A B 为集合,则()\A B B =A B (用描述集合间关系的符号填写)2.设A 是B 的子集,则A ≤B (用描述集合间关系的符号填写) 3.如果E 中聚点都属于E ,则称E 是闭集 4.有限个开集的交是开集 5.设1E 、2E 是可测集,则()12m E E ≤12mE mE +(用描述集合间关系的符号填写)6.设nE ⊂是可数集,则*m E =07.设()f x 是定义在可测集E 上的实函数,如果1a ∀∈,()E x f x a ⎡⎤≥⎣⎦是可测集,则称()f x 在E 上可测8.可测函数列的上极限也是可测函数9.设()()n f x f x ⇒,()()n g x g x ⇒,则()()n n f x g x +⇒()()f x g x + 10.设()f x 在E 上L 可积,则()f x 在E 上可积 11.设,A B 为集合,则()\B A A ⊃A (用描述集合间关系的符号填写)12.设{}211,2,A k k =-=,则A =a (其中a 表示自然数集N 的基数)13.设nE ⊂,如果E 中没有不属于E ,则称E 是闭集14.任意个开集的并是开集15.设1E 、2E 是可测集,且12E E ⊂,则1mE ≤2mE 16.设E 中只有孤立点,则*m E =017.设()f x 是定义在可测集E 上的实函数,如果1a ∀∈,()E x f x a ⎡⎤<⎣⎦是可测,则称()f x 在E 上可测18.可测函数列的下极限也是可测函数19.设()()n f x f x ⇒,()()n g x g x ⇒,则()()n n f x g x ⇒()()f x g x 20.设()n x ϕ是E 上的单调增收敛于()f x 的非负简单函数列,则()Ef x dx =⎰()lim nEn x dx ϕ→∞⎰21.设,A B 为集合,则()\A B B ⊃B22.设A 为有理数集,则A =a (其中a 表示自然数集N 的基数) 23.设nE ⊂,如果E 中的每个点都是内点,则称E 是开集24.有限个闭集的交是闭集25.设nE ⊂,则*m E ≥026.设E 是n中的区间,则*m E =E 的体积27.设()f x 是定义在可测集E 上的实函数,如果1a ∀∈,()E x f x a ⎡⎤≤⎣⎦是可测集,则称()f x 在E 上可测28.可测函数列的极限也是可测函数29.设()()n f x f x ⇒,()()n g x g x ⇒..a e ,则()n f x ⇒()g x30.设()n f x 是E 上的非负可测函数列,且单调增收敛于()f x ,由勒维定理,有()Ef x dx =⎰()lim n En f x dx →∞⎰31.设,A B 为集合,则()\B A B A =A B32.设A 为无理数集,则A =c (其中c 表示自然数集[]0,1的基数) 33.设nE ⊂,如果E 中没有不是内点的点,则称E 是开集34.任意个闭集的交是闭集 35.设nE ⊂,称E 是可测集,如果nT ∀⊂,()**m T m TE =+()*c m T E36.设E 是外测度为零的集合,且F E ⊂,则*m F =037.设()f x 是定义在可测集E 上的实函数,如果1a ∀∈,()E x a f xb ⎡⎤≤<⎣⎦是可测,(a b ≤)则称()f x 在E 上可测38.可测函数列的上确界也是可测函数39.设()()n f x f x ⇒,()()n g x g x ⇒..a e ,则()()n n f x g x ⇒()()f x g x40.设()()n f x f x ⇒,那么由黎斯定理,(){}n f x 有子列()k n f x ,使()()k n f x f x →..a e 于E 41.设,A B 为两个集合,则__c A B AB -.(等于)42.设nE R ⊂,如果E 满足E E '⊆(其中E '表示E 的导集),则E 是闭.43.若开区间(,)αβ为直线上开集G 的一个构成区间,则(,)αβ满(i)(a,b)G ⊆ (ii),a G b G ∉∉ 44.设A 为无限集.则A 的基数__A a (其中a 表示自然数集N 的基数) 答案:≥ 45.设12,E E 为可测集, 2mE <+∞,则1212(\)__m E E mE mE -. 答案:≥ 46.设()f x 是定义在可测集E 上的实函数,若对任意实数a ,都有[()]E x f x a >是可测集E 上的可测函数.47.设0x 是E (R ⊆)的内点,则*__0m E . 答案>48.设{}()n f x 为可测集E 上的可测函数列,且()(),n f x f x x E ⇒∈,则由____黎斯__定理可知得,存在{}()n f x 的子列{}()kn fx ,使得.()()()k a en f x f x x E →∈.49.设()f x 为可测集E (nR ⊆)上的可测函数,则()f x 在E 上的L 积分值不一定存在且|()|f x 在E 上不一定L 可积. 50.若()f x 是[,]a b 上的绝对连续函数,则()f x 是[,]a b 上的有界变差函数. 51.设,A B 为集合,则___(\)AB B A A 答案=52.设nE R ⊂,如果E 满足0E E =(其中0E 表示E 的内部),则E 是开集53.设G 为直线上的开集,若开区间(,)a b 满足(,)a b G ⊆且,a G b G ∉∉,则(,)a b 必为G 的构成区间 54.设{|2,}A x x n n ==为自然数,则A 的基数=a (其中a 表示自然数集N 的基数) 55.设,A B 为可测集,B A ⊆且mB <+∞,则__(\)mA mB m A B - 答案 =56.设()f x 是可测集E 上的可测函数,则对任意实数,()a b a b <,都有[()]E x a f x b <<是可测集 57.若()E R ⊆是可数集,则__0mE 答案=58.设{}()n f x 为可测集E 上的可测函数列,()f x 为E 上的可测函数,如果.()()()a en f x f x x E →∈,则()()n f x f x ⇒ x E ∈不一定成立 59. 设()f x 为可测集()nE R ⊆上的非负可测函数,则()f x 在E 上的L 积分值一定存在60.若()f x 是[,]a b 上的有界变差函数,则()f x 必可表示成两个递增函数的差(或递减函数的差) 多项选择题(每题至少有两个以上的正确答案) 1.设[]{}0,1E =中无理数,则( ACD )A E 是不可数集B E 是闭集C E 中没有内点D 1mE =2.设nE ⊂是无限集,则( AB )A E 可以和自身的某个真子集对等B E a ≥(a 为自然数集的基数)C E '≠∅D *0mE >3.设()f x 是E 上的可测函数,则(ABD )A 函数()f x 在E 上可测B ()f x 在E 的可测子集上可测C ()f x 是有界的D ()f x 是简单函数的极限4.设()f x 是[],a b 上的有界函数,且黎曼可积,则(ABC )A ()f x 在[],a b 上可测B ()f x 在[],a b 上L 可积C ()f x 在[],a b 上几乎处处连续D ()f x 在[],a b 上几乎处处等于某个连续函数5.设nE ⊂,如果E 至少有一个内点,则( BD )A *m E 可以等于0B *0m E >C E 可能是可数集DE 不可能是可数集6.设nE ⊂是无限集,则( AB )A E 含有可数子集B E 不一定有聚点C E 含有内点DE 是无界的7.设()f x 是E 上的可测函数,则( BD )A 函数()f x 在E 上可测B ()f x 是非负简单函数列的极限C ()f x 是有界的D ()f x 在E 的可测子集上可测8.设()f x 是[],a b 上的连续函数,则( ABD )A ()f x 在[],a b 上可测B ()f x 在[],a b 上L 可积,且()()()()[],ba ab R f x dx L f x dx =⎰⎰C ()f x 在[],a b 上L 可积,但()()()()[],baa b R f x dx L f x dx ≠⎰⎰D ()f x 在[],a b 上有界9.设()D x 是狄利克莱函数,即()[][]10,100,1x D x x ⎧⎪=⎨⎪⎩为中有理数为中无理数,则( BCD )A ()D x 几乎处处等于1B ()D x 几乎处处等于0C ()D x 是非负可测函数 D ()D x 是L 可积函数10.设nE ⊂,*0m E =,则( ABD )A E 是可测集B E 的任何子集是可测集C E 是可数集DE 不一定是可数集11.设nE ⊂,()10E cx Ex x Eχ∈⎧=⎨∈⎩,则( AB ) A 当E 是可测集时,()E x χ是可测函数 B 当()E x χ是可测函数时,E 是可测集C 当E 是不可测集时,()E x χ可以是可测函数D 当()E x χ是不是可测函数时,E 不一定是可测集12.设()f x 是(),a b 上的连续函数,则(BD )A ()f x 在(),a b 上有界B ()f x 在(),a b 上可测C ()f x 在(),a b 上L 可积D ()f x 在(),a b 上不一定L 可积13.设()f x 在可测集E 上L 可积,则(AC )A ()f x +,()f x -都是E 上的非负可积函数B ()f x +和()f x -有一个在E 上的非负可积C ()f x 在E 上L 可积D ()f x 在E 上不一定L 可积14.设nE ⊂是可测集,则( AD )A c E 是可测集B mE <+∞C E 的子集是可测集DE 的可数子集是可测集15.设()()n f x f x ⇒,则( CD )A ()n f x 几乎处处收敛于()f xB ()n f x 一致收敛于()f xC ()n f x 有子列()n f x ,使()()n f x f x →..a e 于ED ()n f x 可能几乎处处收敛于()f x16.设()f x 是[],a b 上有界函数,且L 可积,则(BD )A ()f x 在[],a b 上黎曼可积B ()f x 在[],a b 上可测C ()f x 在[],a b 上几乎处处连续D ()f x 在[],a b 上不一定连续17. 设{[0,1]}E =中的无理点,则(CD)(A )E 是可数集 (B )E 是闭集 (C )E 中的每个点均是聚点 (D )0mE > 18. 若E (R ⊆)至少有一个内点,则(BD )(A )*m E 可以等于0 (B )*0m E = (C )E 可能是可数集 (D )E 不可能是可数集 19.设[,]E a b ⊆是可测集,则E 的特征函数()E x χ是(ABC ) (A )[,]a b 上的符号函数 (C )E 上的连续函数(B )[,]a b 上的可测函数 (D )[,]a b 上的连续函数 20. 设()f x 是[,]a b 上的单调函数,则(ACD )(A )()f x 是[,]a b 上的有界变差函数 (B )()f x 是[,]a b 上的绝对连续函数 (C )()f x 在[,]a b 上几乎处处收敛 (D )()f x 在[,]a b 上几乎处处可导 21.设{[0,1]}E =中的有理点,则( AC )(A )E 是可数集 (B )E 是闭集(C )0mE = (D )E 中的每一点均为E 的内点 22.若()E R ⊆的外测度为0,则( AB )(A )E 是可测集 (B )0mE =(C )E 一定是可数集 (D )E 一定不是可数集23.设mE <+∞,{}()n f x 为E 上几乎处处有限的可测函数列,()f x 为E 上几乎处处有限的可测函数,如果()(),()n f x f x x E ⇒∈,则下列哪些结果不一定成立( ABCD )(A )()Ef x dx ⎰存在 (B )()f x 在E 上L -可积(C ).()()()a en f x f x x E →∈ (D )lim ()()n EEn f x dx f x dx →∞=⎰⎰24.若可测集E 上的可测函数()f x 在E 上有L 积分值,则( AD ) (A )()()f x L E +∈与()()f x L E -∈至少有一个成立 (B )()()f x L E +∈且()()f x L E -∈ (C )|()|f x 在E 上也有L -积分值 (D )|()|()f x L E ∈三、单项选择1.下列集合关系成立的是( A )A ()\B A A =∅ B ()\A B A =∅C ()\A B B A = D ()\B A A B =2.若nR E ⊂是开集,则( B )A E E '⊂B 0E E =C E E =DE E '=4.设(){}n f x 是E 上一列非负可测函数,则( B )A ()()lim lim n n E En n f x dx f x dx →∞→∞≤⎰⎰B ()()lim lim n n E En n f x dx f x dx →∞→∞≤⎰⎰C ()()lim lim n n E En n f x dx f x dx →∞→∞≤⎰⎰D ()()lim lim n n EE n n f x dx f x →∞→∞≤⎰⎰5.下列集合关系成立的是( A )A c c A A αααα∈Λ∈Λ⎛⎫= ⎪⎝⎭B cc A A αααα∈Λ∈Λ⎛⎫= ⎪⎝⎭C cc A A αααα∈Λ∈Λ⎛⎫= ⎪⎝⎭ D ccA A αααα∈Λ∈Λ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭6.若n R E ⊂是闭集,则( C )A E E '=B E E '⊂C E E '⊂D 0E E =7.设E 为无理数集,则( C )A E 为闭集B E 是不可测集C mE =+∞D 0mE =9.下列集合关系成立的是(B )A c c A A αααα∈Λ∈Λ⎛⎫= ⎪⎝⎭B cc A A αααα∈Λ∈Λ⎛⎫= ⎪⎝⎭C ccA A αααα∈Λ∈Λ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭ D cc c A A αααα∈Λ∈Λ⎛⎫= ⎪⎝⎭ 10.设n R E ⊂,则( A )A E E ⊃B E E '⊂C E E '⊂DE E =11.设P 为康托集,则( B )A P 是可数集B 0mP =C P 是不可数集D P 是开集 13.下列集合关系成立的是( A )A 若AB ⊂则c c B A ⊂ B 若A B ⊂则c c A B ⊂C 若A B ⊂则AB B = D 若A B ⊂则A B B =14.设nR E ⊂,则( A )A ()E E = B 0E E ⊃ C E E '⊂ D E E '⊂15.设(){},001E x x =≤≤,则( B )A 1mE =B 0mE =C E 是2R 中闭集DE 是2R 中完备集16.设()f x ,()g x 是E 上的可测函数,则( B )A ()()E x f x g x ⎡⎤≥⎣⎦不一定是可测集B ()()E x f x g x ⎡⎤≠⎣⎦是可测集C ()()E x f x g x ⎡⎤≤⎣⎦是不可测集D ()()E x f x g x ⎡⎤=⎣⎦不一定是可测集17.下列集合关系成立的是(A )(A )(\)A B B A B = (B )(\)A B B A =(C )(\)B A A A ⊆ (D )\B A A ⊆18. 若()nE R ⊆是开集,则 ( B )(A )E 的导集E ⊆ (B )E 的开核E = (C )E E = (D )E 的导集E =19. 设P 的康托集,则(C)(A )P 为可数集 (B )P 为开集 (C )0mP = (D )1mP =20、设E 是1R 中的可测集,()x ϕ是E 上的简单函数,则 ( D )(A )()x ϕ是E 上的连续函数 (B )()x ϕ是E 上的单调函数 (C )()x ϕ在E 上一定不L 可积 (D )()x ϕ是E 上的可测函数 21.下列集合关系成立的是( A ) (A )()()()AB C A B A C = (B )(\)A B A =∅(C )(\)B A A =∅ (D )A B A B ⊆22. 若()nE R ⊆是闭集,则 ( B )(A )0E E = (B )E E = (C )E E '⊆ (D )E E '= 23. 设Q 的有理数集,则( C )(A )0mQ > (B )Q 为闭集 (C )0mQ = (D )Q 为不可测集24.设E 是nR 中的可测集,()f x 为E 上的可测函数,若()0Ef x dx =⎰,则 ( A )(A )在E 上,()f x 不一定恒为零 (B )在E 上,()0f x ≥ (C )在E 上,()0f x ≡ (D )在E 上,()0f x ≠ 四、判断题1. 可数个闭集的并是闭集. ( × )2. 可数个可测集的并是可测集. ( √ )3. 相等的集合是对等的. ( √ )4. 称()(),f x g x 在E 上几乎处处相等是指使()()f x g x ≠的x 全体是可测集. ( √ )5. 可数个F σ集的交是F σ集. ( × )6. 可数个可测函数的和使可测函数. ( √ )7. 对等的集合是相等的. (× )8. 称()(),f x g x 在E 上几乎处处相等是指使()()f x g x =的x 全体是零测集. ( × ) 9. 可数个G σ集的并是G σ集. ( √ )10. 零测集上的函数是可测函数. ( √ )11. 对等的集合不一定相等. ( √ ) 12. 称()(),f x g x 在E 上几乎处处相等是指使()()f x g x ≠的x 全体是零测集.( √ ) 13. 可数个开集的交是开集 ( × ) 14. 可测函数不一定是连续函数. ( √ ) 15. 对等的集合有相同的基数. ( √ )16. 称()(),f x g x 在E 上几乎处处相等是指使()()f x g x ≠的x 全体的测度大于0 ( × ) 17. 可列个闭集的并集仍为闭集 ( × ) 18. 任何无限集均含有一个可列子集 ( √ ) 19. 设E 为可测集,则一定存在G σ集G ,使E G ⊆,且()\0m G E =. ( √ ) 20. 设E 为零测集,()f x 为E 上的实函数,则()f x 不一定是E 上的可测函数( × ) 21. 设()f x 为可测集E 上的非负可测函数,则()()f x L E ∈ ( × ) 22. 可列个开集的交集仍为开集 (× ) 23. 任何无限集均是可列集 ( × ) 24. 设E 为可测集,则一定存在F σ集F ,使F E ⊆,且()\0m E F =. ( √ ) 25. 设E 为零测集,则()f x 为E 上的可测函数的充要条件是:∀实数a 都有()E x f x a ⎡≥⎤⎣⎦是可测集( √ )26. 设()f x 为可测集E 上的可测函数,则()Ef x dx ⎰一定存在. ( × )五、简答题1. 简述无限集中有基数最小的集合,但没有最大的集合.答:因为任何无限集均含有可数集,所以可数集是无限集中基数最小的,但无限集没有基数最大的,这是由于任何集合A ,A 的幂集2A的基数大于A 的基数.2. 简述点集的边界点,聚点和内点的关系.答: 内点一定是聚点,边界点不一定是聚点,点集的边界点或为孤立点或为聚点. 3. 简单函数、可测函数与连续函数有什么关系?答:连续函数一定是可测函数;简单函数一定是可测函数;简单函数可表示成简单函数或连续函数的极限 4. [],a b 上单调函数与有界变差函数有什么关系?答:单调函数是有界变差函数,有界变差函数可表示成两个单调增函数之差. 5. 简述集合对等的基本性质.答:A A ;若A B ,则B A ;若A B ,且B C ,则A C . 6. 简述点集的内点、聚点、边界点和孤立点之间关系.答:内点一定是聚点,内点不是孤立点,边界点由点集的孤立点和聚点组成. 7. 可测集与开集、G σ集有什么关系?答:设E 是可测集,则0ε∀>,∃开集G ,使G E ⊃,使()\m G E ε<,或∃ G σ集G ,使G E ⊃,且()\0m G E =.8. [],a b 上单调函数、有界变差函数与绝对连续函数有什么关系?答:绝对连续函数是有界变差函数,反之不然;有界变差函数是单调增函数的差,而单调函数是有界变差函数. 9. 简述证明集合对等的伯恩斯坦定理. 答:若AB B *⊂,又B A A *⊂,则AB10. 简述1R 中开集的结构.答: 设G 为1R 中开集,则G 可表示成1R 中至多可数个互不相交的开区间的并. 11. 可测集与闭集、F σ集有什么关系?答:设E 是可测集,则0ε∀>,∃闭集F E ⊂,使()\m E F ε<或∃ F σ集F E ⊂,使()\0m E F =.12. 为什么说绝对连续函数几乎处处可微?答:因为绝对连续函数是有界变差,由若当分解定理,它可表示成两个单调增函数的差,而单调函数几乎处处有有限的导数,所以绝对连续函数几乎处处可微.13. 简述连续集的基数大于可数集的基数的理由.答:连续集是无限集,因而包含可数子集,又连续集是不可数集,所以连续集的基数大于可数集的基数. 14. 简述nR 中开集的结构.答:nR 中开集可表示成可数个互不相交的半开半闭区间的并 15. 可测函数列几乎处处收敛、依测度收敛和近一致收敛的关系? 答:设()(),n f x f x 是可测集E 上的一列可测函数,那当mE <+∞时,()(),.n f x f x a e →于E ,必有()()n f x f x ⇒.反之不成立,但不论mE <+∞还是mE =+∞,(){}n f x 存在子列(){}k n f x ,使()(),.k n f x f x a e →于E .当mE <+∞时,()(),.n f x f x a e →于E ,由Egoroff 定理可得()n f x 近一致收敛于()f x ,反之,无需条件mE <+∞,结论也成立.16. 为什么说有界变差函数几乎处处可微?答:由若当分解定理,有界变差函数可表示成两个单调增函数的差,而单调函数几乎处处可微,所以有界变差函数几乎处处可微.17. 简述无穷多个开集的交集是否必为开集? 答:不一定,如[]1111,11,1n n n +∞=⎛⎫---+=- ⎪⎝⎭18. 可测集E 上的可测函数与简单函数有什么关系?答:简单函数必是可测函数但可测函数不一定是简单函数,可测函数一定可表示成简单函数列的极限形式. 19. [],a b 上的有界变差函数与单调函数有什么关系?答:单调函数必为有界变差函数但有界变差函数不一定为单调函数,有界变差函数可表示成单调函数之差. 20. 简述无穷多个闭集的并集是否必为闭集?答:不一定 如()1111,11,1n n n +∞=⎡⎤---+=-⎢⎥⎣⎦ 21. 可测集E 上的可测函数与连续函数有什么关系?答:E 上连续函数必为可测函数但E 上的可测函数不一定时连续函数,E 上可测函数在E 上是“基本上”连续的函数 22. [],a b 上的绝对连续函数与有界变差函数有什么关系?答:绝对连续函数必为有界变差函数但有界变差函数不一定为绝对连续函数六、计算题1. 设()[]230,1\xx E f x xx E⎧∈⎪=⎨∈⎪⎩,其中E 为[]0,1中有理数集,求()[]0,1f x dx ⎰.解:因为0mE =,所以()3,.f x x a e =于[]0,1,于是()[][]30,10,1f x dx x dx =⎰⎰,而3x 在[]0,1上连续,从而黎曼可积,故由黎曼积分与勒贝格积分的关系,[]()41331000,11|44x x dx R x dx ===⎰⎰ 因此()[]0,114f x dx =⎰. 2. 设{}n r 为[]0,1中全体有理数,(){}[]{}12121,,00,1\,,n n n x r r r f x x r r r ∈⎧⎪=⎨∈⎪⎩,求()[]0,1lim n n f x dx →∞⎰.解:显然()n f x 在[]0,1上可测,另外由()n f x 定义知,()0,.n f x a e =于[]0,1()1n ≥ 所以()[][]0,10,100nf x dx dx ==⎰⎰因此()[]0,1lim0nn f x dx →∞=⎰.3. 设()[]2sin 0,1\xx P f x x x P ∈⎧=⎨∈⎩,P 为康托集,求()[]0,1f x dx ⎰.解:因为0mP =,所以()2,.f x x a e =于[]0,1于是()[][]20,10,1f x dx x dx =⎰⎰而2x 在[]0,1上连续,所以[]()31221000,11|33x x dx R x dx ===⎰⎰ 因此()[]0,113f x dx =⎰.4. 设()()[]22sin ,0,11n nx nx f x x n x =∈+,求()[]0,1lim n n f x dx →∞⎰.解:因为()n f x 在[]0,1上连续,所以可测()1,2,n =又()()[]2222sin 1,0,1,1,2,1122n nx nx nx nx f x x n n x n x nx =≤≤=∈=++而22lim01n nxn x →∞=+,所以()lim 0n n f x →∞=.因此由有界控制收敛定理()[]()[][]0,10,10,1limlim 00nnn n f x dx f x dx dx →∞→∞===⎰⎰⎰5. 设()3cos 0,\2x x E f x x x E π⎧∈⎪=⎨⎡⎤∈⎪⎢⎥⎣⎦⎩,E 为0,2π⎡⎤⎢⎥⎣⎦中有理数集,求()0,2f x dx π⎡⎤⎢⎥⎣⎦⎰. 解:因为0mE =,所以()cos ,.f x x a e =于[]0,1 于是()0,0,22cos f x dx xdx ππ⎡⎤⎡⎤⎢⎥⎢⎥⎣⎦⎣⎦=⎰⎰而cos x 在0,2π⎡⎤⎢⎥⎣⎦上连续,所以黎曼可积,由牛顿莱布尼公式 []()22000,1cos cos sin |1xdx R xdx x ππ===⎰⎰因此()0,21f x dx π⎡⎤⎢⎥⎣⎦=⎰6. 设()()[]22cos ,0,11n nx nx f x x n x =∈+,求()[]0,1lim n n f x dx →∞⎰.解:因为()n f x 在[]0,1上连续,所以可测()1,2,n =又()()[]2222cos 1,0,1,1,2,1122n nx nx nx nx f x x n n x n x nx =≤≤=∈=++而22lim01n nxn x →∞=+,所以()lim 0n n f x →∞=.因此由有界控制收敛定理()[]()[][]0,10,10,1limlim 00nnn n f x dx f x dx dx →∞→∞===⎰⎰⎰7. 设()[]3sin 0,1\xx P f x xx P⎧∈⎪=⎨∈⎪⎩,P 为康托集,求()[]0,1f x dx ⎰.解:因为0mP =,所以(),.f x x a e =于[]0,1 于是()[][]0,10,1f x dx xdx =⎰⎰而x 在[]0,1上连续,所以[]()2121000,11|22x xdx R x dx ===⎰⎰ 因此()[]0,112f x dx =⎰. 8. 求()()0,ln limcos xn n x n e xdx n -→∞+⎰.解:令()()()()0,ln cos xn n x n f x x e x nχ-+= 显然()n f x 在()0,+∞上可测,且()()()()0,0,ln cos xn n x n e xdx f x dx n -+∞+=⎰⎰ 因为()()()()ln ln cos ,0,,1,2,x n x n x n f x e x x n n n-++≤≤∀∈+∞=不难验证()()ln n x n g x n+=,当n 足够大时,是单调递减非负函数,且 ()lim 0n n g x →∞=,所以()()()()()()0,0,0,ln limlim lim n n n n n x n dx g x dx g x n →∞→∞→∞+∞+∞+∞+==⎰⎰⎰()0,00dx +∞==⎰由勒贝格控制收敛定理()()0,lim0n n f x dx →∞+∞=⎰故()()0,ln lim cos 0xn n x n e xdx n -→∞+=⎰. 9. 设()[][]101001x D x x ⎧⎪=⎨⎪⎩为,上的有理点为,上的无理点,求()[]01D x dx ⎰,.证明 记1E 是[]0,1中有理数集,2E 是[]0,1中无理数集,则[]12120,1,E E E E ==∅,120,1mE mE ==,且()1210E E D x χχ=+,所以()[]120,1100D x dx mE mE=+=⎰.10 求()0ln limcos xn x n e xdx n+∞-→∞+⎰. 证明 易知()ln limcos 0xn x n e x n-→∞+=对任意0,1x n ≥≥,()()ln ln cos x x n x n e x n n-++≤设()ln ()x y f y y+=,0y >,则()2ln ()yx y x yf y y -++'=,当3y ≥时,()1ln yx y x y<<++,()0f y '<. 则()ln ()x n f n n+=是单调减函数且非负(3n ≥);又()ln 1limlim 0n n x n n x n→∞→∞+==+,由Levi 单调收敛定理得()()000ln ln lim lim 00n n x n x n dx dx dx n n +∞+∞+∞→∞→∞++===⎰⎰⎰,即()ln ()x n L E n+∈,再由Lebsgue 控制收敛定理得()()000ln ln lim cos lim cos 00x xn n x n x n e xdx e xdx dx n n+∞+∞+∞--→∞→∞++===⎰⎰⎰11. 设()[]230,1xx P f x xx P⎧∈⎪=⎨∈-⎪⎩,其中P 为康托集,求()[]01f x dx ⎰,.解:因为P 为康托集,故0mP =,[]()0,1\1m P = 所以()[]320,1P P f x x x χχ-=+ 所以()[][]()2330,10,1f x dx x mP x m P x =+-=⎰12. 求()[]22,0,11n nxf x E n x ==+,求()lim n n Ef x dx →∞⎰.解:易知:[]()22lim00,11n nxx n x →∞=∈+令()()2221,1n nx f x g x n x x ==+, 则()()()22232222222221110111n nx n x nx n x nx g x f x nx nx x n x x x n x n x+-+--=-==≥+++ 所以()()[]()00,1,1n f x g x x n ≤≤∈≥ 又因为()g x 在[]0,1上Lebesgue 可积, 所以由控制收敛定理,得 22lim 001n E Enxdx dx n x →∞==+⎰⎰七、证明题1.证明集合等式:(\)A B B A B =证明(\)()c A B B A B B =()()()c c A B A B B A B B B A B ===2.设E 是[0,1]中的无理数集,则E 是可测集,且1mE =证明 设F 是[0,1]中的有理数集,则F 是可数集,从而*0m F =,因此F 是可测集,从而c F 可测,又[0,1]\[0,1]c E F F ==,故E 是可测集.由于EF =∅,所以1[0,1]()0m m E F mE mF mF ===+=+,故1mF =3.设(),()f x g x 是E 上的可测函数,则[|()()]E x f x g x >是可测集 证明 设{}n r 为全体有理数所成之集,则()11[|()()][|()()][|()][|()]n n n n n E x f x g x E x f x r g x E x f x r E x g x r ∞∞==>=≥>=≥<因为(),()f x g x 是E 上的可测函数,所以[|()]n E x f x r ≥,[|()]n E x g x r <是可测集,1,2,n =,于是由可测集性质知[|()()]E x f x g x >是可测集4.设()f x 是E 上的可测函数,则对任何常数0a >,有1[|()|]|()|EmE x f x a f x dx a ≥≤⎰ 证明 因为()f x 在E 上可测,所以|()|f x 在E 上非负可测,由非负可测函数积分性质,[|()|][|()|]|()||()|E x f x a E x f x a Eadx f x dx f x dx ≥≥≤≤⎰⎰⎰而[|()|][|()|]E x f x a adx a mE x f x a ≥=⋅≥⎰,所以1[|()|]|()|E mE x f x a f x dx a≥≤⎰ 5.设()f x 是E 上的L -可积函数,{}n E 是E 的一列可测子集,且lim 0n n mE →∞=,则lim ()0nE n f x dx →∞=⎰证明 因为lim 0n n mE →∞=,所以0,1N δ∀>∃≥,当n N ≥时,n mE δ<,又()f x 在E 上L -可积,所以由积分的绝对连续性,0,0,εδ∀>∃>当,e E me δ⊂<时|()|ef x dx ε<⎰于是当n N ≥时,n mE δ<,因此|()|nE f x dx ε<⎰,即lim ()0nE n f x dx →∞=⎰6.证明集合等式:\(\)A A B A B =证明 \(\)()(())(cc c c c cA AB A AB A A B AA B=== ()()c AA AB A B ==7.设12,A A 是[0,1]的可测子集,且121mA mA +>,则12()0m A A >证明 因为12[0,1],[0,1]A A ⊂⊂,所以12[0,1]A A ⊂,于是12()[0,1]1m A A m ≤=另一方面,121122[\()]A A A A A A =,所以()12112211221122()[\()][\()]()m A A m A A A A m A A A mA mA m A A mA ==+=-+ 于是1212()()0m AAmA m A m AA=+->8.设()f x 是定义在可测集nE R ⊂上的实函数,n E 为E 的可测子集(1,2,n =),且1n n E E ∞==,则()f x 在E 上可测的充要条件是()f x 在每个n E 上可测 证明 对任何实数a ,因为11[|()][|()]([|()])n nn n E x f x a E x f x a E E x f x a ∞∞==>=>=>所以()f x 在E 上可测的充要条件是对每个1,2,n =,()f x 在每个n E 上可测9.设()f x 是E 上的可测函数,则对任何常数0a >,有()[|()]af x EmE x f x a ee dx -≥≤⎰证明 因为()f x 在E 上可测,所以()f x e 是非负可测函数,于是由非负可测函数积分性质,()()[|()][|()]a f x f x E x f x a E x f x a Ee dx e dx e dx ≥≥≤≤⎰⎰⎰而[|()][|()]a a E x f x a e dx e mE x f x a ≥=⋅≥⎰,所以 ()[|()]af x EmE x f x a ee dx -≥≤⎰10.设()f x 是E 上的可积函数,{}n E 为E 的一列可测子集,mE <+∞,如果lim n n mE mE →∞= 则lim()()nE En f x dx f x dx →∞=⎰⎰证明 因()f x 在E 上L -可积,由积分的绝对连续性知,对任意0ε>,存在0δ>,对任何A E ⊆,当mA δ<时有|()|Af x dx ε<⎰,由于lim n n mE mE →∞=<+∞,故对上述的0δ>,存在0k ,当0n k >时n E E ⊆,且有()n n mE mE m E E δ-=-<,于是|()()||()|nnEE E E f x dx f x dx f x dx ε--=<⎰⎰⎰,即 lim()()nE En f x dx f x dx →∞=⎰⎰11.证明集合等式:()\(\)(\)A B C A C B C =证明 ()\()()()(\)(cccAB C A B C AC BC A C B C=== 12.设nE R ⊂是零测集,则E 的任何子集F 是可测集,且0mF =证明 设F E ⊂,*0m E =,由外测度的单调性和非负性,*00m F mE ≤≤=,所以*0m F =,于是由卡氏条件易知F 是可测集13.设(),(),(),(n n f x g x f x g x 是E 上几乎处处有限的可测函数,且()()n f x f x ⇒,()()n g x g x ⇒,则()()()()n n f x g x f x g x +⇒+ .证明 对任何正数0σ>,由于|(()())(()())||()()||()()|n n n n f x g x f x g x f x f x g x g x +-+≤-+- 所以[|(()())(()())|]n n E x f x g x f x g x σ+-+≥ [|()()|][|()()|]22n n E x f x f x E x g x g x σσ⊂-≥-≥于是[|(()())(()())|]n n mE x f x g x f x g x σ+-+≥ [|()()|][|()()|]22n n mE x f x f x mE x g x g x σσ≤-≥+-≥0()n →→∞故()()()()n n f x g x f x g x +⇒+ 14.设(),()f x g x 是E 上L -可积函数,则22()()f x g x +在E 上也是L -可积的证明 因(),()f x g x 是E 上L -可积,所以|()|,|()|f x g x 在E 上L -可积,从而 |()||()|f x g x +L -可积,又222()()(|()||()|)|()||()|f x g x f x g x f x g x +≤+=+ 故22()()f x g x +在E 上L -可积15.设()f x 是可测集E 上的非负可测函数,如果()0Ef x dx =⎰,则()0.f x a e =于E证明 反证,令[|()0]A E x f x =>,则由()f x 的可测性知,A 是可测集.下证0mA =,若不然,则0mA >由于11[|()0][|()]n A E x f x E x f x n ∞==>=≥,所以存在1N ≥,使1[|()]0mE x f x d N≥=> 于是11[|()][|()]111()()[|()]0EE x f x E x f x NNd f x dx f x dx dx mE x f x N N N N ≥≥≥≥=≥=>⎰⎰⎰因此()0Ef x dx >⎰,矛盾,故()0.f x a e =于E16.证明等式:\()(\)(\)A B C A B A C =证明 \()()()()()(\)(cc cc c A BC A BC A BC A B A C A B A C==== 17.设nE R ⊂是有界集,则*m E <+∞.证明 因为E 是有界集,所以存在开区间I ,使E I ⊂由外测度的单调性,**m E m I ≤,而*||m I I =<+∞(其中||I 表示区间I 的体积),所以*m E <+∞18.1R 上的实值连续函数()f x 是可测函数证明 因为()f x 连续,所以对任何实数a ,{|()}x f x a >是开集,而开集为可测集,因此()f x 是可测函数19.设mE <+∞,函数()f x 在E 上有界可测,则()f x 在E 上L -可积,从而[,]a b 上的连续函数是L -可积的证明 因为()f x 在E 上有界可测,所以存在0M >,使|()|f x M <,x E ∈,|()|f x 是非负可测函数,由非负可测函数的积分单调性,|()|E E f x dx Mdx M mE <=⋅<+∞⎰⎰故|()|f x 在E 上L -可积,从而()f x 在E 上L -可积因为[,]a b 上的连续函数是有界可测函数,所以L -可积的20.设()n f x (1,2,n =)是E 上的L -可积函数,如果lim |()|0n n E n f x dx →∞=⎰,则()0n f x ⇒证明 对任何常数0σ>,[|()|][|()|]|()|n n n E x f x mE x f x f x dx σσσ≥⋅≥≤⎰ 所以 [|()|]1[|()|]|()|n n n E x f x mE x f x f x dx σσσ≥≥≤⎰ 1|()|0()n E f x dx n σ≤→→∞⎰ 因此 ()0n f x ⇒21. 证明集合等式 :()()()\\\AB C A C B C =. 证明 ()()()()()()\\\c c c AB C A B C A C BC A C B C === 22. 设[]{}00,1E =中的有理点,则0E 为可测集且00mE =. 证明 因为0E 为可数集,记为{}012,,,n E r r r =,0ε∀>,取()11,1,2,22n n n n n I r r n εε++⎛⎫=--= ⎪⎝⎭ 显然 01n n E I +∞=⊂,所以0011102n n n n n n E I m E I εε+∞+∞+∞*===⊂≤≤==∑∑,让0ε→,得00m E *=.n T R ∀∈,由于()()00c T TE T E = 所以()()00c m T m T E m T E ***≤+.又00,0c T E T m E *⊆=,所以()()()000c c m T m TE m T E m T E ****≥=+. 故()()00c m T m TE m T E ***=+ 故0E 为可测集,且00mE =23. 证明:1R 上的实值连续函数()f x 必为1R 上的可测函数 证明 1,a b R ∀∈,不妨假设a b <,因为()f x 是1R 上的连续函数,故()f x 是[],a b 上的连续函数,记[],F a b =,由()f x 在F 上连续,则(),M m m M ∃<,使()m f x M ≤≤,则显然易证,()1,R F f αα∀∈≥是闭集,即()f x 为[],a b 上的可测函数,由,a b 的任意性可知,()f x 是1R 上的可测函数. 24. 设()()f x L E ∈,{}n E 为E 的一列可测子集,mE <+∞ ,如果lim n n mE mE →∞=,则()()l i m n n E Ef x dx f x dx →∞=⎰⎰. 证明 因()f x 在E 上L 可积,由积分的绝对连续性知,对任意0ε>,存在0δ>,对任何A E ⊆,当mA δ<时有|()|A f x dx ε<⎰,由于l i m n n m E m E →∞=<+∞,故对上述的0δ>,存在0k ,当0n k >时n E E ⊆,且有()n n mE mE m E E δ-=-<,于是\|()()||()|nn E E E E f x dx f x dx f x dx ε-=<⎰⎰⎰,即 lim ()()n E En f x dx f x dx →∞=⎰⎰ 25. 证明集合等式 :()()()\\\A BC A B A C =.证明 ()()()()()()()\\\c c c c cA B C AB C A B C A B A C A B A C ==== 26. 设1E R ⊆,且0m E *=,则E 为可测集. 证明 n T R ∀∈,由于()()n c T R T TE T E ∀∈= 所以()()c m T m T E m T E ***≤+.又,0c T E T m E *⊆=,所以()()()c c m T m TE m T E m T E ****≥=+.故()()c m T m T E m T E ***=+所以E 为可测集27. 证明:1R 上的单调函数()f x 必为可测函数. 证明 1,a b R ∀∈,不妨假设a b <,因为()f x 是1R 上的单调函数,不妨设()f x 为单调增函数,故()f x 是[],a b 上的单调增函数,即()()121212,,,x x E x x f x f x ∀∈<≤,则1R α∀∈,有1) 当()sup x E f x α∈≤时,();E xf x α⎡>⎤=∅⎣⎦2) 当()inf x E f x α∈>时,();E x f x E α⎡>⎤=⎣⎦3) 当()()inf sup x E x E f x f x α∈∈≤<时,必有10x E R ∈,使()()000,f x f x αα+>≤或()()000,0f x f x αα+≥-<.由()f x 的单调增知,()0(),E xf x E x α⎡>⎤=+∞⎣⎦或[)0,E x +∞. 在所有情况下,()E x f x α⎡>⎤⎣⎦都可测.即()f x 是[],a b 上的可测函数.由由,a b 的任意性可知,()f x 是1R 上的可测函数. 28. 设()f x 为可测集n E R ⊆上的可测函数,则()()f x L E ∈的充要条件()()f x L E ∈.证明 必要性 若()()f x L E ∈,因为()()()f x f x f x +-=+,且()()f x L E ∈所以()(),E Ef x dx f x dx +-⎰⎰中至少有一个是有限值, 故()()()E E E f x dx f x dx f x dx +-=+⎰⎰⎰即()()f x L E ∈充分性 若()()f x L E ∈因为()()()f x fx f x +-=-,且()()f x L E ∈ 所以()(),EE f x dx f x dx +-⎰⎰中至少有一个是有限值,故()()()E E E f x dx f x dx f x dx +-=-⎰⎰⎰, 即()()f x L E ∈.。