高考物理:求解共点力作用下的动态平衡问题!
高中物理 共点力动态平衡问题常见题型总结
高中物理共点力动态平衡问题常见题型总结一、共点力平衡的概念所谓共点力平衡,讲的就是在共点力的作用下,物体处于静止或者匀速直线运动的状态,当物体处于静止状态的时候,叫做静态平衡,而当物体处于匀速直线运动状态的时候,叫做动态平衡。
这两种状态都是平衡状态,所以物体受到的合外力都是零。
共点力平衡的题型也可以分为静态平衡和动态平衡两类。
其中静态平衡主要是通过力的合成和分解进行求解,这里不多赘述;而动态平衡问题是学生普遍错的比较多,也比较难以理解的,接下来将主要分析这类问题的题型和解法。
二、共点力动态平衡问题的解法一:解析法解析法是对研究对象进行受力分析,画出受力分析图,并根据物体的平衡条件列出方程,得到力与力之间的函数关系,一般会涉及到一个变化角度的三角函数。
解析法比较适合题目中有明显角度变化的题型,比如:【例1】如图所示,小船用绳牵引靠岸,设水的阻力不变,在小船匀速靠岸的过程中,有()A.绳子的拉力不断减小B.绳子的拉力不断增大C.船受的浮力减小D.船受的浮力不变这个题是比较常见的拉小船的问题,解题的时候可以先对小船进行受力分析,小船受到重力mg,水的浮力Fn,拉力F以及水的阻力f,在这四个力中,重力mg和水的阻力f是不变的,Fn方向不变,大小改变,F大小和方向都在变。
由于小船处于匀速直线运动中,所以受力平衡,设拉力与水平方向的夹角为θ,有:Fcosθ=f ①;Fn+Fsinθ=mg ②;再根据小船在靠岸过程中θ增大,则cosθ减小,sinθ增大,由①得F=f/cosθ,F增大;由②得Fn=mg-Fsinθ,F和sinθ都在增大,所以Fn减小。
最后答案选BC。
三、共点力动态平衡问题的解法二:图解法图解法是对研究对象进行受力分析,再根据平行四边形法则或是三角形定则画出不同情况下的矢量图,然后根据有向线段的长度与方向变化,判断各个力的大小和方向的变化。
图解法比较常用,尤其适合受到三个力作用处于平衡状态的题型。
高考物理专题训练17 共点力平衡问题解题方法与技巧
1.平衡问题与正交分解法题型1.物体在粗糙水平面上的匀速运动例1.如图所示,物体与水平面间的动摩擦因数为μ=0.3, 物体质量为m =5.0kg .现对物体施加一个跟水平方向成θ=37°斜向上的拉力F ,使物体沿水平面做匀速运动.求拉力F 的大小.解析:物体受四个力:mg 、 F N 、f 、F .建立坐标系如图所示.将拉力F 沿坐标轴分解.F x = F cosθ F y = F sinθ根据共点力平衡条件,得X 轴:∑ F x = 0 F cosθ — f = 0 ………⑴Y 轴:∑ F y = 0 F sinθ + F N — mg = 0………⑵公式 f = μ F N ………⑶将⑵⑶代入⑴ F cosθ= μ F N = μ (mg — F sinθ )解得 F = θμθμsin cos +mg =N 156.03.08.08.90.53.0=⨯+⨯⨯归纳解题程序:定物体,分析力→建坐标,分解力→找依据,列方程→解方程,得结果.变式1:如果已知θ 、m 、F ,求摩擦因数μ。
变式2:如果将斜向上的拉力改为斜向下的推力F ,θ、m 、μ均不变,则推力需要多大,才能使物体沿水平面做匀速运动。
结果 F = =⨯-⨯⨯=-6.03.08.08.90.53.0sin cos θμθμmg 23.71N 讨论:当θ增大到某一个角度时,不论多大的推力F,都不能推动物体。
求这个临界角。
这里的无论多大,可以看成是无穷大。
则由上式变形为cosθ—μsinθ =F mg μ 时 当 F→∞时, F mgμ → 0 则令cosθ—μsinθ = 0所以有 co t θ= μ 或 tanθ = μ1 θ = tan —1 μ1变式3.如果先用一个水平拉力F 0恰好使物体沿水平面做匀速运动.则这个F 0有多大?现在用同样大小的力F 0推物体,使物体仍然保持匀速运动,则这个推力跟水平方向的夹角多大?解法一:物体受五个力:mg 、 F N 、f 、两个 F 0。
新高考备战2024年高考物理抢分秘籍02共点力的静态平衡动态平衡临界和极值问题整体法和隔离法教师届
秘籍02共点力的静态平衡、动态平衡、临界和极值问题、整体法和隔离法一、共点力的平衡1.平衡状态:物体受到几个力作用时,如果保持静止或匀速直线运动状态,我们就说这个物体处于平衡状态。
【注意】“静止”和“v=0”的区别和联系当v=0时:①a=0时,静止,处于平衡状态②a≠0时,不静止,处于非平衡状态,如自由落体初始时刻2.共点力平衡的条件(1)条件:在共点力作用下物体平衡的条件是合力为0。
(2)公式:F合=03.三个结论:①二力平衡:二力等大、反向,是一对平衡力;②三力平衡:任两个力的合力与第三个力等大、反向;③多力平衡:任一力与其他所有力的合力等大、反向。
二、静态平衡与动态平衡的处理方法1.静态平衡与动态平衡态而加速度也为零才能认为平衡状态。
物理学中的“缓慢移动”一般可理解为动态平衡。
2.静态平衡的分析思路和解决方法方法内容合成法物体受三个共点力的作用而平衡,则任意两个力的合力一定与第三个力大小相等,方向相反。
分解法物体受三个共点力的作用而平衡,将某一个力按力的效果分解,则其分力和其他两个力满足平衡条件。
正交分解法物体受到三个或三个以上力的作用而平衡,将物体所受的力分解为相互垂直的两组,每组力都满足平衡条件。
力的三角形法对受三个力作用而平衡的物体,将力的矢量图平移使三个力组成一个首尾依次相接的矢量三角形,根据正弦定理、余弦定理或相似三角形等数学知识求解未知力。
3.动态平衡的分析思路和解决方法方法内容解析法对研究对象的任一状态进行受力分析,建立平衡方程,求出已知力与未知力的函数式,进而判断各个力的变化情况图解法①分析物体的受力及特点;②利用平行四边形定则,作出矢量四边形;③根据矢量四边形边长大小作出定性分析;相似三角形法①分析物体的受力及特点;②利用平行四边形定则,作三力矢量三角形;③根据矢量三角形和几何三角形相似作定性分析;拉密定理法①分析物体的受力及特点;②利用平行四边形定则,作三力矢量三角形;③利用正弦或拉密定理作定性分析;三、共点力平衡中的临界极值问题1.临界或极值条件的标志有些题目中有“刚好”、“恰好”、“正好”等字眼,明显表明题述的过程存在着临界点。
高考物理重点难点例析专题1共点力作用下物体的平衡
专题一共点力作用下物体的平衡重点难点1.动态平衡:若物体在共点力作用下状态缓慢转变,其进程可近似以为是平衡进程,其中每一个状态均为平衡状态,这时都可用平衡来处置.2.弹力和摩擦力:平面接触面间产生的弹力,其方向垂直于接触面;曲面接触面间产生的弹力,其方向垂直于过接触点的曲面的切面;绳索产生的弹力的方向沿绳指向绳收缩的方向,且绳中弹力处处相等(轻绳);杆中产生的弹力不必然沿杆方向,因为杆不仅可以产生沿杆方向的拉、压形变,也可以产生微小的弯曲形变.分析摩擦力时,先应按照物体的状态分清其性质是静摩擦力仍是滑动摩擦力,它们的方向都是与接触面相切,与物体相对运动或相对运动趋势方向相反.滑动摩擦力由F f = μF N公式计算,F N为物体间彼此挤压的弹力;静摩擦力等于使物体产生运动趋势的外力,由平衡方程或动力学方程进行计算.3.图解法:图解法可以定性地分析物体受力的转变,适用于三力作历时物体的平衡.此时有一个力(如重力)大小和方向都恒定,另一个力方向不变,第三个力大小和方向都改变,用图解法即可判断两力大小转变的情况.4.分析平衡问题的大体方式:①合成法或分解法:当物体只受三力作用途于平衡时,此三力必共面共点,将其中的任意两个力合成,合力一定与第三个力大小相等方向相反;或将其中某一个力(一般为已知力)沿另外两个力的反方向进行分解,两分力的大小与另两个力大小相等.②正交分解法:当物体受三个或多个力作用平衡时,一般用正交分解法进行计算.规律方式【例1】如图所示,轻绳的两头别离系在圆环A和小球B上,圆环A套在粗糙的水平直杆MN上现用水平力F拉着绳索上的一点O,使小球B从图示实线位置缓慢上升到虚线位置,但圆环A始终维持在原位置不动则在这一进程中,环对杆的摩擦力F f和环对杆的压力F N的转变情况( B )A.F f不变,F N不变B.F f增大,F N不变C.F f增大,F N减小D.F f不变,F N减小训练题如图所示,轻杆BC一端用铰链固定于墙上,另一端有一小滑轮C,重物系一绳经C固定在墙上的A点,滑轮与绳的质量及摩擦均不计若将绳一端从A点沿墙稍向上移,系统再次平衡后,则 ( C )A .轻杆与竖直墙壁的夹角减小B .绳的拉力增大,轻杆受到的压力减小C .绳的拉力不变,轻杆受的压力减小D .绳的拉力不变,轻杆受的压力不变【例2】如图所示,在倾角为θ的滑腻斜面上有两个用轻质弹簧相连接的物块A 、B ,它们的质量别离为m A 、m B ,弹簧的劲度系数为k ,C 为一固定挡板.系统处于静止状态.现开始用一恒力F 沿斜面方向拉物块A 使之向上运动,求物块B 刚要离开C 时物块A 的加速度a 和从开始到此时物块A 的位移d .(重力加速度为g )【解】系统静止时,弹簧处于紧缩状态,分析A 物体受力可知:F 1 = m A g sin θ,F 1为此时弹簧弹力,设此时弹簧紧缩量为x 1,则F 1 = kx 1,得x 1 = k g m Asin在恒力作用下,A 向上加速运动,弹簧由紧缩状态逐渐变成伸长状态.当B 刚要离开C 时,弹簧的伸长量设为x 2,分析B 的受力有:kx 2 = m B g sin θ,得x 2 = m B g sin θk设此时A 的加速度为a ,由牛顿第二定律有:F -m A g sin θ-kx 2 = m A a ,得a = F -(m A +m B )g sin θm AA 与弹簧是连在一路的,弹簧长度的改变量即A 上移的位移,故有d = x 1+x 2,即:d = (m A +m B )g sinθk训练题 如图所示,劲度系数为k 2的轻质弹簧竖直放在桌面上,其上端压一质量为m 的物块,另一劲度系数为k 1的轻质弹簧竖直地放在物块上面,其下端与物块上表面连接在一路要想使物块在静止时,下面簧产生的弹力为物体重力的23,应将上面弹簧的上端A 竖直向上提高多少距离?答案:d = 5(k 1+k 2) mg/3k 1k 2【例3】如图所示,一个重为G 的小球套在竖直放置的半径为R 的滑腻圆环上,一个劲度系数为k ,自然长度为L (L <2R )的轻质弹簧,一端与小球相连,另一端固定在大环的最高点,求小球处于静止状态时,弹簧与竖直方向的夹角φ.【解析】小球受力如图所示,有竖直向下的重力G ,弹簧的弹力F ,圆环的弹力N ,N 沿半径方向背离圆心O .利用合成法,将重力G 和弹力N 合成,合力F 合应与弹簧弹力F 平衡观察发现,图中力的三角形△BCD 与△AOB 相似,设AB 长度为l 由三角形相似有:mg F = ABAO = R l ,即得F = mgl R 另外由胡克定律有F = k (l -L ),而l = 2R cos φ联立上述各式可得:cos φ = kL 2(kR -G ),φ = arcos kL2(kR -G )训练题如图所示,A 、B 两球用劲度系数为k 的轻弹簧相连,B 球用长为L 的细绳悬于0点,A 球固定在0点正下方,且O 、A 间的距离恰为L ,此时绳索所受的拉力为F 1,现把A 、B 间的弹簧换成劲度系数为k 2的轻弹簧,仍使系统平衡,此时绳索所受的拉力为F 2,则F 1与F 2大小之间的关系为 ( C )A .F 1<F 2B . F 1>F 2C .F 1=F 2D .无法肯定【例4】如图有一半径为r = 0.2m 的圆柱体绕竖直轴OO ′以ω = 9rad/s 的角速度匀速转动.今使劲F 将质量为1kg 的物体A 压在圆柱侧面,使其以v 0 = 2.4m/s的速度匀速下降.若物体A 与圆柱面的摩擦因数μ = ,求力F 的大小.(已知物体A 在水平方向受滑腻挡板的作用,不能随轴一路转动.)【解析】在水平方向圆柱体有垂直纸面向里的速度,A 相对圆柱体有纸垂直纸面向外的速度为υ′,υ′ = ωr = 1.8m/s ;在竖直方向有向下的速度υ0 = 2.4m/sA 相对于圆柱体的合速度为υ= υ20+υ′2 = 3m/s合速度与竖直方向的夹角为θ,则cosθ = υ0υ = 45A 做匀速运动,竖直方向平衡,有F f cos θ = mg ,得F f =mg cos θ = 另F f =μF N ,F N =F ,故F = fF = 50N训练题 质量为m 的物体,静止地放在倾角为θ的粗糙斜面上,现给物体一个大小为F 的横向恒力,如图所示,物体仍处于静止状态,这时物体受的摩擦力大小是多少?答案: f={F 2+(mgsin θ)2}1/2能力训练1.如图所示,在用横截面为椭圆形的墨水瓶演示坚硬物体微小弹性形变的演示实验中,能观察到的现象是( B )A.沿椭圆长轴方向压瓶壁,管中水面上升;沿椭圆短轴方向压瓶壁,管中水面下降B.沿椭圆长轴方向压瓶壁,管中水面下降;沿椭圆短轴方向压瓶壁,管中水面上升C.沿椭圆长轴或短轴方向压瓶壁,管中水面均上升D.沿椭圆长轴或短轴方向压瓶壁,管中水面均下降2.欲使在粗糙斜面上匀速下滑的物体静止,可采用的方式是( B )A.在物体上叠放一重物B.对物体施一垂直于斜面的力C.对物体施一竖直向下的力D.增大斜面倾角3.弹性轻绳的一端固定在O点,另一端拴一个物体,物体静止在水平地面上的B点,并对水平地面有压力,O点的正下方A处有一垂直于纸面的滑腻杆,如图所示,OA为弹性轻绳的自然长度此刻用水平力使物体沿水平面运动,在这一进程中,物体所受水平面的摩擦力的大小的转变情况是( C )A.先变大后变小B.先变小后变大C.维持不变D.条件不够充分,无法肯定4.在水平天花板下用绳AC和BC悬挂着物体m,绳与竖直方向的夹角别离为α = 37°和β = 53°,且∠ACB为90°,如图1-1-13所示.绳AC能经受的最大拉力为100N,绳BC 能经受的最大拉力为180N.重物质量过大时会使绳索拉断.现悬挂物的质量m为14kg.(g = 10m/s2,sin37° = ,sin53° = )则有)( C )A.AC绳断,BC不断B.AC不断,BC绳断C.AC和BC绳都会断D.AC和BC绳都不会断5.如图所示在倾角为37°的斜面上,用沿斜面向上的5N的力拉着重3N的木块向上做匀速运动,则斜面对木块的总作使劲的方向是( A )A.水平向左B.垂直斜面向上C.沿斜面向下D.竖直向上6.当物体从高空下落时,所受阻力会随物体的速度增大而增大,因此通过下落一段距离后将匀速下落,这个速度称为此物体下落的扫尾速度。
高中物理中动态平衡问题
第一部分动态平衡分析动态平衡问题中的一部分力是变力,是动态力,力的大小和方向均要发生变化,故这是力平衡问题中的一类难题。
根据现行高考要求,物体受到往往是三个共点力问题,利用三力平衡特点讨论动态平衡问题是力学中一个重点和难点。
方法一:三角形图解法特点:三角形图象法则适用于物体所受的三个力中,有一力的大小、方向均不变(通常为重力,也可能是其它力),另一个力的方向不变,大小变化,第三个力则大小、方向均发生变化的问题。
方法:先正确分析物体所受的三个力,将三个力的矢量首尾相连构成闭合三角形。
然后将方向不变的力的矢量延长,根据物体所受三个力中二个力变化而又维持平衡关系时,这个闭合三角形总是存在,只不过形状发生改变而已,比较这些不同形状的矢量三角形,各力的大小及变化就一目了然了。
1 质量为m的物体用轻绳AB悬挂于天花板上.用水平向左的力F缓慢拉动绳的中点O,如图所示.用T表示绳OA段拉力的大小,在O点向左移动的过程中()A.F逐渐变大,T逐渐变大B.F逐渐变大,T逐渐变小C.F逐渐变小,T逐渐变大D.F逐渐变小,T逐渐变小【答案】A【解析】动态平衡问题,F与T的变化情况如图:可得:'''F F F→→↑'''T T T→→↑2 如图所示,一个重力G的匀质球放在光滑斜面上,斜面倾角为α,在斜面上有一光滑的不计厚度的木板挡住球,使之处于静止状态。
今使板与斜面的夹角β缓慢增大,问:在此过程中,挡板和斜面对球的压力大小如何变化?12【解析】取球为研究对象,如图所示,球受重力G 、斜面支持力F 1、挡板支持力F 2。
因为球始终处于平衡状态,故三个力的合力始终为零,将三个力矢量构成封闭的三角形。
F 1的方向不变,但方向不变,始终与斜面垂直。
F 2的大小、方向均改变,随着挡板逆时针转动时,F 2的方向也逆时针转动,动态矢量三角形图中一画出的一系列虚线表示变化的F 2。
由此可知,F 2先减小后增大,F 1随 增大而始终减小。
共点力平衡之动态平衡问题
共点力平衡之动态平衡问题一共点力的平衡1.平衡状态:在共点力的作用下,物体处于静止或匀速直线运动的状态.2.共点力作用下物体的平衡条件:合力为零,即=F0.合二物体的动态平衡问题物体在几个力的共同作用下处于平衡状态,如果其中的某个力或某几个力的大小或方向,发生变化时,物体受到的其它力也会随之发生变化,如果在变化的过程中物体仍能保持平衡状态,我们称之为动态平衡;解决这类问题的一般思路是:把“动”化为“静”,“静”中求“动”;分析方法:1三角形图解法如果物体在三个力作用下处于平衡状态,其中只有一个力的大小和方向发生变化,而另外两个力中,一个大小、方向均不变化;一个只有大小变化,方向不发生变化的情况;例1.半圆形支架BAD上悬着两细绳OA和OB,结于圆心O,下悬重为G的物体,使OA绳固定不动,将OB绳的B端沿半圆支架从水平位置缓慢移到竖直位置C的过程中如图,分析OA绳和OB绳所受力的大小如何变化;练习1.如图所示,质量为m的小球被轻绳系着,光滑斜面倾角为θ,向左缓慢推动劈,在这个过程中A.绳上张力先增大后减小B .斜劈对小球支持力减小C .绳上张力先减小后增大D .斜劈对小球支持力增大2相似三角形法例2.一轻杆BO,其O 端用光滑铰链固定在竖直轻杆AO 上,B 端挂一重物,且系一细绳,细绳跨过杆顶A 处的光滑小滑轮,用力F 拉住,如图2-1所示;现将细绳缓慢往左拉,使杆BO 与杆AO 间的夹角θ逐渐减少,则在此过程中,拉力F 及杆BO 所受压力FN 的大小变化情况是A .FN 先减小,后增大 始终不变 C .F 先减小,后增大 始终不变练习2.光滑的半球形物体固定在水平地面上,球心正上方有一光滑的小滑轮,轻绳的一端系一小球,靠放在半球上的A 点,另一端绕过定滑轮后用力拉住,使小球静止,如图所示;现缓慢的拉绳,在小球沿球面由A 到B 的过程中,半球对小球的支持力N 和绳对小球的拉力T 的大小变化情况是:变大,T 变小 变小,T 变大 变小,T 先变大后变小 不变,T 变小 3平衡方程式法例3.人站在岸上通过定滑轮用绳牵引低处的小船,若水的阻力不变,则船在匀速靠岸的过程中,下列说法中正确的是 A.绳的拉力不断增大 B.绳的拉力保持不变A FBOθ 图2-1 F ABCOC.船受到的浮力保持不变D.船受到的浮力不断减小E.小船受的合力不断增大练习3.如图所示,某人通过定滑轮拉住一重物,当人向右跨出一步后,人与物仍保持静止,则A .地面对人的摩擦力减小B .地面对人的摩擦力增大C .人对地面的压力增大D .人对地面的压力减小三警示易错试题警示1::注意“死节”和“活节”问题;1、如图33所示,长为5m 的细绳的两端分别系于竖立在地面上相距为4m 的两杆的顶端A 、B ,绳上挂一个光滑的轻质挂钩,其下连着一个重为12N 的物体,平衡时,问:①绳中的张力T 为多少②A 点向上移动少许,重新平衡后,绳与水平面夹角,绳中张力如何变化2、如图34所示,AO 、BO 和CO 三根绳子能承受的最大拉力相OB AC 图34A图33Bα α等,O为结点,OB与竖直方向夹角为θ,悬挂物质量为m;求错误!OA、OB、OC三根绳子拉力的大小 ;②A点向上移动少许,重新平衡后,绳中张力如何变化警示2:注意“死杆”和“活杆”问题;3、如图37所示,质量为m的物体用细绳OC悬挂在支架上的O点,轻杆OB可绕B点转动,求细绳OA中张力T大小和轻杆OB受力N大小;4、如图38所示,水平横梁一端A插在墙壁内,另一端装有小滑轮B,一轻绳一端C固定于墙壁上,另一端跨过滑轮后悬挂一质量为m=10kg的重物,∠=︒CBA30,则滑轮受到绳子作用力为:A. 50NB. 503NC. 100ND. 1003N达标练习A组基础巩固1.如图,用细绳将重球悬挂在竖直光滑墙上,当绳伸长时A.绳的拉力变小,墙对球的弹力变大B.绳的拉力变小,墙对球的弹力变小C.绳的拉力变大,墙对球的弹力变小D.绳的拉力变大,墙对球的弹力变大2.如图所示,把球夹在竖直墙AC和木板BC之间,不计摩擦,球对墙的压力为FN1,球对板的压力为FN2.在将板BC逐渐放至水平的过程中,下列说法中,正确的是A.FN1和FN2都增大 B.FN1和FN2都减小C.FN1增大,FN2减小 D.FN1减小,FN2增大3.电灯悬挂于两墙之间,如图所示,使接点A上移,但保持O点位置不变,则A点上移过程中,绳OB的拉力A.逐渐增大 B.逐渐减小C.先增大,后减小 D.先减小,后增大4.如图所示某屋顶为半球形,一人在半球形屋顶上向上缓慢爬行,他在向上爬的过程中A.屋顶对他的支持力不变B.屋顶对他的支持力变大C.屋顶对他的摩擦力不变D.屋顶对他的摩擦力变大5.如图所示,在细绳的下端挂一物体,用力F拉物体,使细绳偏离竖直方向α角,且保持α不变,当拉力F与水平方向夹角β为多大时,拉力F值最小最小值为多少B组能力提升6.如图所示,一个重为G的匀质球放在光滑斜直面上,斜面倾角为α,在斜面上有一光滑的不计厚度的木板挡住球,使之处于静止状态.今使板与斜面的夹角β缓慢增大,问:在此过程中,球对挡板和球对斜面的压力大小如何变化7. 如图所示,斜劈ABC放在粗糙的水平地面上,在斜劈上放一重为G的物块,物块静止在斜劈上,今用一竖直向下的力F作用于物块上,下列说法正确的是A.斜劈对物块的弹力增大B.物块所受的合力不变C.物块受到的摩擦力增大D.当力F增大到一定程度时,物体会运动ACB F。
动态平衡(解析版)--2024高考物理疑难题分析与针对性训练
2024高考物理疑难题分析与针对性训练动态平衡高考原题1(2024高考新课程卷第24题)将重物从高层楼房的窗外运到地面时,为安全起见,要求下降过程中重物与楼墙保持一定的距离。
如图,一种简单的操作方法是一人在高处控制一端系在重物上的绳子P,另一人在地面控制另一根一端系在重物上的绳子Q,二人配合可使重物缓慢竖直下降。
若重物的质量m= 42kg,重力加速度大小g=10m/s2,当P绳与竖直方向的夹角α=370时,Q绳与竖直方向的夹角β=530,(sin370=0.6)(1)求此时P、Q绳中拉力的大小;(2)若开始竖直下降时重物距地面的高度h10m,求在重物下降到地面的过程中,两根绳子拉力对重物做的总功。
试题分析:本题考查的是力的动态平衡问题,高楼吊重物的情景在现在的楼层装修,高楼搬运家具等非常常见。
此题以学生熟悉的情境为载体,考查共点力的动态平衡问题.解析:(1)对重物受力分析,根据正交分解得(1)重物下降的过程中受力平衡,设此时P、Q绳中拉力的大小分别为T P和T Q,竖直方向T P cosα=mg+T Q cosβ水平方向T P sinα=T Q sinβ联立代入数值得T P=1200N,T Q=900N(2)由于重物是缓慢下落,则动能变化为零,整个过程根据动能定理得W+mgh=0解得两根绳子拉力对重物做的总功为W=-4200J评价:本题情境接近学生实际生活,从学生实际生活中抽象提炼出来的物理问题模型,第(1)问主要考查学生对缓慢的关键词的提取与理解,能从题述中挖掘隐含的物理条件,构建平衡条件解决问题;第(2)问同样也是建立在缓慢的关键条件中,这是很多学生容易忽略以及难发现的,同时此问绳子拉力拉力的总功,部分学生可能应用第(1)问求解的拉力来做功,这里是一个动态的变化过程,只有在夹角为37度和53度时才是上面的数值。
因此此问应用功能关系进行求解是学生判断与选择物理规律的关键。
本题情境新颖,问题创新强,虽然是平衡问题的处理,但是通过高楼搬运重物的方法来考查学生对平衡问题的深度理解,同时强化学生物理知识学以致用的达成。
高中物理【共点力平衡条件的应用——动态平衡问题】
专题课4共点力平衡条件的应用——动态平衡问题题型一解析法的应用如图所示,人通过跨过定滑轮的轻绳牵引一物体,人向右缓慢移动时,地面对人的支持力和摩擦力如何变化?提示:人受重力、绳子的拉力及地面对人的支持力和摩擦力,当人缓慢向右移动时,绳子拉力的大小不变,但在水平方向的分力增大,竖直方向的分力减小,故地面对人的支持力和摩擦力都变大。
1.动态平衡:物体所受的力中有些是变力,是动态力,力的大小和方向均要发生变化,但变化过程中的每一个状态均可视为平衡状态,所以叫作动态平衡。
2.分析方法(1)列平衡方程求出未知量与已知量的关系表达式;(2)根据已知量的变化情况来确定未知量的变化情况。
如图所示,木板P下端通过光滑铰链固定于水平地面上的O点,物体A、B叠放在木板上且处于静止状态,此时物体B的上表面水平。
现使木板P绕O点缓慢旋转到虚线所示位置,物体A、B仍保持静止,与原位置的情况相比()A.B对A的作用力变小B.A对B的压力增大C.木板对B的作用力不变D.木板对B的摩擦力不变[解析]设板与水平地面的夹角为α,木板转过的角度为β,以A为研究对象,无论木板如何转动,只要二者保持相对静止,B对A的作用力始终与A的重力平衡,保持不变,故A错误;当将P绕O点缓慢旋转到虚线所示位置,B 的上表面不再水平,A的重力分解情况如图甲,开始时物体A不受B对A的摩擦力,B对A的支持力大小与重力相等;旋转后设B的上表面与水平方向之间的夹角是β,受到的B对A的支持力、摩擦力的合力仍然与A的重力大小相等,方向相反,则A受到B对A的作用力保持不变,由于支持力与摩擦力相互垂直,则N=G A·cos β,所以A受到的支持力一定减小了,根据牛顿第三定律可知A对B的压力减小,故B错误;以A、B整体为研究对象,分析受力情况如图乙,总重力G AB、板的支持力N2和摩擦力f2,板对B的作用力是支持力N2和摩擦力f2的合力,系统始终保持静止,由平衡条件分析可知,板对B的作用力大小与总重力大小相等,保持不变,支持力N2=G AB cos α,摩擦力f2=G AB sin α,α增大,N2减小,f2增大,故C正确,故D错误。
2024年高考物理题源展望专题02 受力分析 共点力的平衡(解析版)
专题二受力分析共点力的平衡目录:真题考查解读2023年真题展现考向一竖直平衡与生活、高科技实际考向二三力静态平衡考向三连接体平衡与生产实际近年真题对比考向一静态平衡考向二动态平衡及平衡的临界极值问题命题规律解密名校模拟探源易错易混速记【命题意图】2023年受力分析与共点力的平衡考题结合生活实际考查受力分析、一条直线受力平衡和三个力共点力的平衡条件的简单应用,意在考查考生对力学基本知识的掌握情况,以及运用物理知识解决实际问题的能力。
【考查要点】受力分析和共点力的平衡问题是高中物理的基础,也是高考考查的重点。
受力分析是解决动力学问题的关键,单独命题时往往和实际问题结合在一起。
共点力的平衡问题,单独命题时往往和实际问题结合在一起,但是考查更多的是融入到其他物理模型中间接考查,如,结合运动学命题,或者出现在导轨模型中等。
【课标链接】①掌握受力分析的方法和共点力平衡条件的应用。
②会用整体法与隔离法、三角形法、正交分解法等分析和处理共点力的平衡问题。
考向一竖直平衡与生活、高科技实际1.(2023·山东卷·第2题). 餐厅暖盘车的储盘装置示意图如图所示,三根完全相同的弹簧等间距竖直悬挂在水平固定圆环上,下端连接托盘。
托盘上叠放若干相同的盘子,取走一个盘子,稳定后余下的正好升高补平。
已知单个盘子的质量为300g ,相邻两盘间距1.0cm ,重力加速度大小取10m/s 2。
弹簧始终在弹性限度内,每根弹簧的劲度系数为( )A. 10N/mB. 100N/mC. 200N/mD. 300N/m【答案】B【解析】【详解】由题知,取走一个盘子,稳定后余下的正好升高补平,则说明一个盘子的重力可以使弹簧形变相邻两盘间距,则有mg = 3∙kx解得k = 100N/m故选B 。
2.(2023·江苏卷·第7题).如图所示,“嫦娥五号”探测器静止在月球平坦表面处。
已知探测器质量为m ,四条腿与竖直方向的夹角均为θ,月球表面的重力加速度为地球表面重力加速度g 的16。
共点力平衡之动态平衡问题
共点力平衡之动态平衡问题公司标准化编码 [QQX96QT-XQQB89Q8-NQQJ6Q8-MQM9N]共点力平衡之动态平衡问题(一)共点力的平衡1.平衡状态:在共点力的作用下,物体处于静止或匀速直线运动的状态.2.共点力作用下物体的平衡条件:合力为零,即=F0.合(二)物体的动态平衡问题物体在几个力的共同作用下处于平衡状态,如果其中的某个力(或某几个力)的大小或方向,发生变化时,物体受到的其它力也会随之发生变化,如果在变化的过程中物体仍能保持平衡状态,我们称之为动态平衡。
解决这类问题的一般思路是:把“动”化为“静”,“静”中求“动”。
分析方法:(1)三角形图解法如果物体在三个力作用下处于平衡状态,其中只有一个力的大小和方向发生变化,而另外两个力中,一个大小、方向均不变化;一个只有大小变化,方向不发生变化的情况。
例1.半圆形支架BAD上悬着两细绳OA和OB,结于圆心O,下悬重为G的物体,使OA绳固定不动,将OB绳的B端沿半圆支架从水平位置缓慢移到竖直位置C的过程中(如图),分析OA绳和OB绳所受力的大小如何变化。
练习1.如图所示,质量为m 的小球被轻绳系着,光滑斜面倾角为θ,向左缓慢推动劈,在这个过程中( ) A .绳上张力先增大后减小 B .斜劈对小球支持力减小C .绳上张力先减小后增大D .斜劈对小球支持力增大 (2)相似三角形法例2.一轻杆BO ,其O 端用光滑铰链固定在竖直轻杆AO 上,B 端挂一重物,且系一细绳,细绳跨过杆顶A 处的光滑小滑轮,用力F 拉住,如图2-1所示。
现将细绳缓慢往左拉,使杆BO 与杆AO 间的夹角θ逐渐减少,则在此过程中,拉力F 及杆BO 所受压力FN 的大小变化情况是( )A .FN 先减小,后增大 始终不变 C .F 先减小,后增大 始终不变练习2.光滑的半球形物体固定在水平地面上,球心正上方有一光滑的小滑轮,轻绳的一端系一小球,靠放在半球上的A 点,另一端绕过定滑轮后用力拉住,使小球静止,如图所示。
专题01 共点力的动态平衡(解析版).docx
独孤九剑丨浙江2020高考物理尖子生核心素养提升之共点力的动态平衡共点力的动态平衡问题是高考的重点,这类问题常和生活中的实际情景相结合,选题不避常规模型,没有偏难怪题出现。
选择题中物理情景较简单,难度在中等偏易到中等难度之间;计算题物理情景较新颖,抽象出物理模型的难度较大。
命题点一分析动态平衡问题的三种方法(一)解析法对研究对象进行受力分析,先画出受力示意图,再根据物体的平衡条件列式求解,得到因变量与自变量的函数表达式(通常为三角函数关系),最后根据自变量的变化确定因变量的变化。
[例1]如图所示,与水平方向成θ角的推力F作用在物块上,随着θ逐渐减小到零的过程中,物块始终沿水平面做匀速直线运动。
关于物块受到的外力,下列判断正确的是()A.推力F先增大后减小B.推力F一直减小C.物块受到的摩擦力先减小后增大D.物块受到的摩擦力一直不变[解析]建立如图所示的坐标系,对物块受力分析,由平衡条件得,F cos θ-F f=0,F N-(mg+F sin θ)=0,又F f=μF N,联立可得F=μmgcos θ-μsin θ,可见,当θ减小时,F一直减小;F f=μF N=μ(mg+F sin θ),可知,当θ、F减小时,F f一直减小。
综上所述,只有B正确。
[参考答案]B(二)图解法此法常用于求解三力平衡问题中,已知一个力是恒力、另一个力方向不变的情况。
一般按照以下流程解题。
受力分析――→化“动”为“静”画不同状态下的平衡图――→“静”中求“动”确定力的变化[例2](2019·吉林模拟)如图所示,半圆形框架竖直放置在粗糙的水平地面上,光滑的小球P 在水平外力F的作用下处于静止状态,小球P与圆心O的连线与水平面的夹角为θ。
现将力F在竖直面内沿顺时针方向缓慢地转过90°,框架与P始终保持静止状态,重力加速度为g。
在此过程中,下列说法正确的是()A.框架对P的支持力先减小后增大B.力F的最小值为mg cos θC.地面对框架的摩擦力先减小后增大D.框架对地面的压力先增大后减小[解析]以P为研究对象受力分析,如图所示,根据几何关系可知,将力F沿顺时针方向转动至竖直向上之前,支持力N逐渐减小,F先减小后增大,当F的方向沿P与框架接触点的切线方向向上时,F 最小,此时F=mg cos θ,故A错误,B正确;以框架与P组成的整体为研究对象,整体受到重力、地面的支持力、地面的摩擦力以及力F的作用,由图可知,F在沿顺时针方向转动的过程中,沿水平方向的分力逐渐减小,沿竖直方向的分力逐渐增大,所以地面对框架的摩擦力和支持力都逐渐减小,故C、D错误。
微专题06 共点力作用下的动态平衡问题
微专题06 共点力作用下的动态平衡问题【核心要点提示】动态平衡问题:所谓动态平衡是指在预设情景中对物体受力大小和方向、空间位置等发生一系列缓慢变化,由于在变化过程“缓慢”,可以认为在变化过程中物体仍然受力平衡。
【核心方法点拨】处理共点力作用下平衡的方法:(1)涉及三个力的动态平衡问题解决方法:动态图解法、相似三角形法,极个别情况需要运用数学正弦定理解决问题。
(2)涉及四个及四个以上力的动态平衡问题一般采用解析法,通过寻找变化力的函数解析式,运用数学函数知识判断力的变化情况【微专题训练】【经典例题选讲】类型一:图解法解决动态平衡【例题1】(2016·全国卷Ⅱ,14)质量为m的物体用轻绳AB悬挂于天花板上。
用水平向左的力F缓慢拉动绳的中点O,如图所示。
用T表示绳OA段拉力的大小,在O点向左移动的过程中()A.F逐渐变大,T逐渐变大B.F逐渐变大,T逐渐变小C.F逐渐变小,T逐渐变大D.F逐渐变小,T逐渐变小【解析】对O点受力分析如图所示,F与T的变化情况如图,由图可知在O点向左移动的过程中,F逐渐变大,T逐渐变大,故选项A正确。
【答案A】【变式1】如图所示,质量相同分布均匀的两个圆柱体a、b靠在一起,表面光滑,重力均为G,其中b的下一半刚好固定在水平面MN的下方,上边露出另一半,a静止在平面上.现过a的轴心施以水平作用力F,可缓慢地将a拉离水平面且一直滑到b的顶端,对该过程进行分析,应有()A.拉力F先增大后减小,最大值是GB.开始时拉力F最大为3G,以后逐渐减小为0C.a、b间弹力由0逐渐增大,最大为GD.a、b间的弹力开始时最大为2G,而后逐渐减小到G【解析】对圆柱体a受力分析可知,a受重力、b的弹力和拉力F三个力的作用,拉力F方向不变,始终沿水平方向,重力大小、方向均不变,b的弹力始终沿两轴心的连线,画出力的矢量三角形分析易得b的弹力N=Gsinθ,拉力F=Gtanθ,由于θ逐渐增大,所以b的弹力和拉力F均逐渐减小,开始时的最大值分别为2G和3G,而后逐渐减小,至θ=90°时,最小值分别为G和0.故选项B、D正确.【答案】BD类型二:运用正弦定理解决动态平衡问题【例题2】图所示,置于地面的矩形框架中用两细绳拴住质量为m的小球,绳B水平。
高中物理共点力的动态平衡问题
共点力的动态平衡问题1、动态三角形法特点:物体所受的三个力中,其中一个力的大小、方向均不变(通常为重力,也可能是其它力),视为合力,一个分力的方向不变,大小变化,另一个分力则大小、方向均发生变化的问题。
分析技巧:正确画出物体所受的三个力,将方向不变的分力F1的矢量延长,通过合力的末端做另一个分力F2的平行线,构成一个闭合三角形。
看这个分力F2在动态平衡中的方向变化,画出其变化平行线,形成动态三角形,三角形变长的变化对应力的变化。
1.★★如图,一小球放置在木板与竖直墙面之间.设球对墙面的压力大小为N1,球对木板的压力大小为N2,以木板与墙连接点所形成的水平直线为轴,将木板从水平位置开始缓慢地转到图示位置.不计摩擦,在此过程中()A.N1始终增大,N2始终增大B.N1始终减小,N2始终减小C.N1先增大后减小,N2始终减小D.N1先增大后减小,N2先减小后增大2.★★如图所示,重物G系在OA、OB两根等长的轻绳上,轻绳的A端和B端挂在半圆形支架上.若固定A端的位置,将OB绳的B端沿半圆形支架从水平位置逐渐移至竖直位置OC的过程中()A.OA绳上的拉力减小B.OA绳上的拉力先减小后增大C.OB绳上的拉力减小D.OB绳上的拉力先减小后增大2、相似三角形法特点:物体所受的三个力中,一个力大小、方向不变(一般是重力,视为合力),其它二个分力力的方向均发生变化。
分析技巧:先正确画出物体的受力,画出受力分析图,将三个力的矢量首尾相连构成闭合三角形,再寻找与力的三角形相似的几何三角形,利用相似三角形的性质,建立比例关系,把力的大小变化问题转化为几何三角形边长的大小变化问题进行讨论。
3.★★一轻杆BO,其O端用光滑铰链固定在竖直轻杆AO上,B端挂一重物,且系一细绳,细绳跨过杆顶A处的光滑小滑轮,用力F拉住,如图所示,现将细绳缓慢往右放,使杆BO 与杆AO间的夹角θ逐渐增大,则在此过程中,拉力F及杆BO所受压力F N的大小变化情况是()A.F N减小,F增大B.F N、F都不变C.F增大,F N不变D.F、F N都减小4.★★光滑的半球形物体固定在水平地面上,球心正上方有一光滑的小滑轮,轻绳的一端系一小球,靠放在半球上的A点,另一端绕过定滑轮,后用力拉住,使小球静止.现缓慢地拉绳,在使小球沿球面由A到半球的顶点B的过程中,半球对小球的支持力N和绳对小球的拉力T的大小变化情况是( )。
高中物理讲义:共点力平衡-动态平衡处理方法
共点力平衡-动态平衡处理方法【考点归纳】一、共点力作用下物体的平衡1.平衡状态一个物体在力的作用下保持静止或匀速直线运动状态,就说这个物体处于平衡状态.如光滑水平面上做匀速直线滑动的物块、沿斜面匀速直线下滑的木箱、天花板上悬挂的吊灯等,这些物体都处于平衡状态.2.共点力的平衡条件在共点力作用下物体的平衡条件是合力为零,即0F =合。
3.平衡条件的推论(1)如果物体在两个力的作用下处于平衡状态,这两个力必定大小相等、方向相反,为一对平衡力。
(2)如果物体在三个力的作用下处于平衡状态,其中任意两个力的合力一定与第三个力大小相等、方向相反。
(3)如果物体受多个力作用而处于平衡状态,其中任何一个力与其他力的合力大小相等、方向相反。
(4)当物体处于平衡状态时,沿任意方向物体所受的合力均为零。
(5)三力汇交原理:如果一个物体受到三个非平行力作用而平衡,这三个力的作用线必定在同一平面内,而且必为共点力。
4.解答平衡问题时常用的数学方法解决共点力的平衡问题有力的合成分解法、矢量三角形法、正交分解法、相似三角形法等多种方法,要根据题目具体的条件,选用合适的方法。
有时将各种方法有机的运用会使问题更易解决,多种方法穿插、灵活运用,有助于能力的提高。
(1)菱形转化为直角三角形如果两分力大小相等,则以这两分力为邻边所作的平行四边形是一个菱形,而菱形的两条对角线相互垂直,可将菱形分成四个相同的直角三角形,于是菱形转化成直角三角形。
(2)相似三角形法如果在对力利用平行四边形定则(或三角形定则)运算的过程中,力三角形与几何三角形相似,则可根据相似三角形对应边成比例等性质求解。
(3)正交分解法共点力作用下物体的平衡条件( 0F =合)是矢量方程,求合力需要应用平行四边形定则,比较麻烦;通常用正交分解法把矢量运算转化为标量运算。
正交分解法平衡问题的基本思路是: ①选取研究对象:处于平衡状态的物体; ②对研究对象进行受力分析,画受力图; ③建立直角坐标系;④根据0F =x 和0y F =列方程;⑤解方程,求出结果,必要时还应进行讨论。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高考物理:求解共点力作用下的动态平衡问题!
共点力作用下的平衡问题是力学中常见的一种题型,解决共点力作用下的平衡问题的基本思路是对物体进行受力分析,根据平衡条件来求解。
而共点力作用下的动态平衡问题是指通过控制某些物理量的变化,使物体的状态发生缓慢变化,“缓慢”指物体的速度很小,可认为速度为零,所以物体在变化过程中处于平衡状态,所以把物体的这种状态称为动态平衡状态,求解共点力作用下的动态平衡问题的常见方法有:
例1、如图所示,轻绳的一端系在质量为m的物体上,另一端系在一个轻质圆环上,圆环套在粗糙水平杆MN上,现用水平力F拉绳上一点,使物体处于图中实线位置,然后改变F的大小使其缓慢下降到图中虚线位置,圆环仍在原来的位置不动,则在这一过程中,水平拉力F、环与杆的摩擦力和环对杆的压力的变化情况是()
A. F逐渐增大,F摩保持不变,F N逐渐增大;
B. F逐渐增大,F摩逐渐增大,F N保持不变;
C. F逐渐减小,F摩逐渐增大,F N逐渐减小;
D. F逐渐减小,F摩逐渐减小,F N保持不变。
解析:以环、绳及物体整体为研究对象,受力如图所示,根据平衡条件有:
在物体缓慢下降的过程,系统仍然在此四个力的作用下处于平衡状态,仍然有关系式mg=F N,由牛顿第三定律可知:物体缓慢下降过程中环对杆的压力F N保持不变,F与F摩仍满足大小相等,方向相反,所以两个力同时发生改变,关键是判断物体在下降过程中F的变化规律。
方法一:计算法(解析法)
以物体为研究对象,受力如图所示,由平衡条件可知:mg与F的合力与绳子的拉力F T等大反向,F大小满足关系式,在物体缓慢下降过程中,物体的受力情况及平衡状态保持不变,所以关系式仍然成立,但θ逐渐减小,所以F也随之减小,F摩也随之减小,D答案正确。
小结:此题为高中阶段最常见的三力平衡问题,而力的合成法(这儿用的是力的合成思想,当然也可用力的正交分解来求解)与正交分解法是进行力的运算时最基本的方法。
同时需要借助数学知识中的正、余弦定理,相似三角形规律,直角三角形中勾股定理和三角函数进行综合求解,同学们应具备这种应用数学规律解决物理问题的能力,尤其要熟练掌握应用直角三角形中勾股定理和三角函数来解决物理问题。
方法二:图解法(矢量三角形法)
物体在三个力的作用下处于平衡状态,力F和绳子的拉力F T的合力与重力平衡,所以大小恒定,方向竖直向上,且F的方向保持不变,根据力的三角法则可用图示的方法来确定力F的变化规律,如图所示,θ减小,F随之减小,F摩也随之减小,D答案正确。
小结:图解法是根据物体的平衡条件作出力的矢量图,如物体只受三个力则三个力构成封闭矢量三角形,然后根据图进行动态分析,确定各力的变化情况。
图解法具有简单,直观的特点,所以在物理解题中有广泛的应用。
用图解法求解动态平衡问题时应注意以下几点。
1. 确定哪个力为恒力;
2. 确定哪个力的方向不变;
3. 确定另一个力变化时的角度增、减关系,从而利用三角形法则进行动态分析。
方法三:极限法
在物体缓慢下降过程中,细绳与竖直方向的夹角θ不断减小,可把这种减少状态推到无限小,即细绳与竖直方向的夹角;此时系统仍处于平衡状态,由平衡条件可知,当时,F=0,F摩=0,所以可得出结论:在物体缓慢下降过程中,F逐渐减小,F摩也随之减小,D答案正确。
小结:极限法就是运用极限思维,把所涉及的变量在不超过变量取值范围的条件下,使某些量的变化抽象成无限大或无限小去思考解决实际问题的一种解题方法,极限法具有好懂、易学、省时、准确的特点,在数学和物理学中有着重要应用。
例2、如图所示,为质量均可忽略的轻绳与轻杆组成系统,轻杆A端用铰链固定,滑轮在A点正上方(滑轮大小及摩擦均可不计),轻杆B端吊一重物G.现将绳的一端拴在杆的B端,用拉力F将B端缓慢释放(均未断)到AB杆转到水平位置前,以下说法正确的是()
A. 绳子受到的拉力越来越大
B. 绳子受到的拉力越来越小
C. AB杆受到的压力越来越大
D. AB杆受到的压力越来越小
解析:图解法(相似三角形法)
在这题中,取B点为研究对象进行受力分析,如下:
B点受到下方绳子的拉力,大小为G,方向水平向下不变;受到上方绳子的拉力,大小为F,方向沿绳方向变化;同时受到杆的弹力,大小为N,方向沿杆方向变化。
下一步同样作出三个力的矢量三角形:
显然,这个三角形和图中的三角形ABO是相似三角形,OB对应F,AB对应N,AO对应G,根据相似三角形的特点,得到
G/AO=N/AB=F/OB,其中G、OA、AB都是大小不变的,OB及绳长逐渐增大,根据比例关系得到,恒定不变,F=G*OB/AO,逐渐增大。
答案选A。
小结:相似三角形法适用于一个力大小方向不变,另外两个力大小变化的情况,能用相似三角形法解的题目,往往会有非常明显的几何关系存在。
解题思路为:
1. 画出力构成的矢量三角形
2. 找与力的三角形相似的几何三角形
3. 写出两相似三角形的比例式进行判断
例3、如图所示,柔软轻绳ON的一端O固定,其中间某点M拴一重物,用手拉住绳的另一端N,初始时,OM竖直且MN被拉直,OM与MN之间的夹角为α(α> 90°)(Wewuli).现将重物向右上方缓慢拉起,并保持夹角α不变.在OM由竖直被拉到水平的过程中()
A.OM上的张力逐渐增大
B.OM上的张力先减小后增大
C.MN上的张力逐渐增大
D.MN上的张力先增大后减小
解析:图解法(辅助圆法)
分析题目发现在初始阶段物体只受到两个力的作用,无法画出矢量三角形,因此可以先看OM被拉到水平时的绳子状态:
此时的受力情况如下:
画成矢量三角形如下:
由几何关系可知,F1和F2的夹角大小为π-α,由于α大小始终不变,π-α大小也不变。
接下来画矢量三角形的外接圆:
再在圆上画出多个状态对应的矢量三角形:
在图中可以看出,绳MN的拉力F1逐渐增大,而绳OM的拉力F2先增大后减小,即答案选C。
小结:辅助圆法适用于一个力大小方向不变,另外两个力方向变化但夹角不变的情况,不同于适用相似三角形法的题目,适用辅助圆法的题目往往没有明显的几何长度可以利用,而是由两个力的夹角不变,利用初中的圆周角定理,“在同圆或等圆中,同弧或等弧对应的圆周角相等”,当给这三个力组成的矢量三角形外接一个圆时,那个大小方向不变的力就是所谓的“同弧”所对的弦,而那个大小不变的夹角就是“同弧对应的圆周角”,移动角的端点在圆弧上的位置,就可以模拟动态变化过程中力的大小变化。
解题思路如图:
1. 画出力构成的三角形
2. 画出该三角形的外接圆
3. 找到起点和终点判断变化。