考研高等数学知识点总结
高数考研重点罗列
考研数学高等数学重难点第一章函数与极限(考研必考章节,其中求极限是本章最重要题型,要掌握求极限的几种经典方法)第一节映射与函数(一般章节)一集合(不用看)二映射(不用看)三函数(了解)第二节数列的极限(一般章节)(本节用极限定义证明极限的题目考纲不作要求,可不看)一数列极限的定义(了解)二收敛数列的性质(了解)第三节函数的极限(一般章节)一函数极限的定义(了解)二函数极限的性质(了解)第四节无穷小与无穷大(重要)一无穷小(重要)二无穷大(了解)第五节极限运算法则(注意运算法则的前提条件是极限存在)第六节极限存在准则(理解)两个重要极限(重要两个重要极限要会证明)第七节无穷小的比较(重要)第八节函数的连续性与间断点(重要基本必考小题)一函数的连续性二函数的间断点第九节连续函数的运算与初等函数的连续性(了解)一连续函数的和、差、积、商的连续性二反函数与复合函数的连续性三初等函数的连续性第十节闭区间上连续函数的性质(重要,不单独考大题,但考大题会用到)一有界性与最大值最小值定理(重要)二零点定理与介值定理(重要)三一致连续性。
(不用看)第二章导数与微分(小题的必考章节)第一节导数概念(重要)一引例(数三可只看切线问题举例)二导数的定义(重难点,考的频率很高)三导数的几何意义(理解)另外:数一数二要知道导数的物理意义,数三要知道导数的经济意义(边际与弹性)四函数可导性与连续性的关系(重要,要会证明)第二节函数的求导法则(考小题)一函数的和、差、积、商求导法则二反函数的求导法则三复合函数的求导法则四基本求导法则与求导公式(要非常熟)第三节高阶导数(重要,考的可能性大)第四节隐函数及由参数方程所确定的函数的导数(考小题)、相关变化率(不用看)一隐函数的导数二由参数方程所确定的函数的导数三相关变化率(不用看)第五节函数的微分(考小题)一微分的定义二微分的几何意义三基本初等函数的微分公式与微分运算法则四微分在近似计算中的应用(不用看,基本上只要有近似两个字,考纲俊不作要求)第三章微分中值定理与导数的应用(考大题、难题经典章节)第一节微分中值定理(最重要,与中值定理的应用有关的证明题)一罗尔定理(要会证)二拉格朗日中值定理(要会证)三柯西中值定理(要会证)另外要会证明费马定理第二节洛比达法则(重要,基本上必定要考)第三节泰勒公式(掌握其应用,可以不用证明公式本身)第四节函数的单调性与曲线的凹凸性(考小题)一函数单调性的判定法二曲线的凹凸性与拐点第五节函数的极值与最大值最小值(考小题为主)一函数的极值及其求法二最大值最小值问题第六节函数图形的描绘(重要)第七节曲率(了解,只有数一数二考,数三不用看)一弧微分(不用看)二曲率及其计算公式(了解)三曲率圆与曲率半径(了解)四曲率中心的计算公式渐屈线与渐伸线(不用看)第八节方程的近似解(只要有近似,考研不考,不用看)第四章不定积分(重要)相对于数一、数三,本章数二考大题的可能性更大第一节不定积分的概念与性质一原函数与不定积分的概念(理解)二基本积分表(全背且熟练准确)三不定积分的性质(理解)第二节换元积分法(重要,其中第二类换元积分法更加重要)一第一类换元法二第二类换元法第三节分部积分法(考研必考)第四节有理函数的积分(重要)一有理函数的积分二可化为有理函数积分的习题举例第五节积分表的使用(不用看)第五章定积分(重要,考研必考)第一节定积分的概念与性质(理解)一定积分问题举例(了解)其中“变速直线运动的路程”数三不用看二定积分定义(理解)三定积分的近似计算(不用看)四定积分的性质(理解)第二节微积分基本公式(重要)一变速直线运动中位置函数与速度函数之间的联系(了解)数三不用看二积分上限的函数及其导数(极其重要,要会证明)三牛顿-莱布尼茨公式(重要,要会证明)第三节定积分的换元积分法与分部积分法(重要,分部积分法更重要)一定积分的换元法二定积分的分部积分法第四节反常积分(考小题)一无穷限的反常积分二无界函数的反常积分第五节反常积分的审敛法T函数(不用看)第六章定积分的应用(考小题为主)第一节定积分的元素法(理解)第二节定积分在几何学上的应用(面积最重要)一平面图形的面积二体积(数三只看旋转体的体积)三平面曲线的弧长(数三不用看,数一数二记住公式即可)第三节定积分在物理学上的应用(数三不用看,数一数二了解)一变力引直线所作的功二水压力三引力第七章微分方程(必考章节,本章相对于数学二相对最重要)第一节微分方程的基本概念(了解)第二节可分离变量的微分方程(理解)第三节齐次方程(理解)一齐次方程二可化为齐次的方程(不用看)第四节一阶线性微分方程(重要,熟记公式)一线性方程二伯努利方程(只有数一考,记住公式即可)第五节可降阶的高阶微分方程(只有数一数二考,理解)一型的微分方程二型的微分方程三型的微分方程第六节高阶线性微分方程(理解)一二阶线性微分方程举例(不用看)二线性微分方程的解的结构(重要)三常数变易法(不用看)第七节常系数齐次线性微分方程(最重要,考大题的备选章节)第八节常系数非齐次线性微分方程(最重要,考大题的备选章节)一型二第九节欧拉方程(只有数一考,了解)第九节常系数线性微分方程的解法举例(不用看)第八章空间解析几何与向量代数(只有数一考,考小题,了解)第一节向量及其线性运算一向量概念二向量的线性运算三空间向量坐标系四利用坐标作向量的线性运算五向量的模、方向角、投影第二节数量积、向量积、混合积一两向量的数量积二两向量的向量积三向量的混合积第三节曲面及其方程一曲面方程的概念二旋转曲面三柱面四二次曲面第四节空间曲线及其方程一空间曲线的一般方程二空间曲线的参数方程三空间曲线在坐标面上的投影第五节平面及其方程一平面的点法式方程二平面的一般方程三两平面的夹角第六节空间直线及其方程一空间直线的一般方程二空间直线的对称式方程与参数方程三两直线的夹角四直线与平面的夹角第九章多元函数微分法及其应用(考大题经典章节,但难度不大)第一节多元函数的基本概念(了解)一平面点集 n维空间二多元函数概念三多元函数的极限四多元函数的连续性第二节偏导数(理解)一偏导数的定义及其计算法二高阶偏导数(重要)第三节全微分(理解)一全微分的定义二全微分在近似计算中的应用(不用看)第四节多元复合函数的求导法则第五节隐函数的求导公式(理解小题)一一个方程的情形二方程组的情形(不用看)第六节多元函数微分学的几何应用(只有数一考,考小题)一一元向量值函数及其导数(不用看)二空间曲线的切线与法平面三曲面的切平面与法线第七节方向导数与梯度(只有数一考,考小题)一方向导数二梯度第八节多元函数的极值及其求法(重要,大题的常考题型)一多元函数的极值及最大值最小值二条件极值、拉格朗日乘数法第九节二元函数的泰勒公式(只有数一考,了解)一二元函数的泰勒公式(了解)二极值充分条件的证明(不用看)第十节最小二乘法(不用看)第十章重积分(重要,数二数三相对于数一,本章更加重要.数二数三基本必考大题)第一节二重积分的概念与性质(了解)一二重积分的概念(了解)二二重积分的性质(了解)第二节二重积分的计算法(重要,数二数三极其重要)一利用直角坐标计算二重积分二利用极坐标计算二重积分三二重积分的换元法(不用看)第三节三重积分(只有数一考,理解)一三重积分的概念(了解)二三重积分的计算(重要)第四节重积分的应用(只有数一考,了解)一曲面的面积二质心三转动惯量四引力第五节含参变量的积分(不用看)第十一章曲线积分与曲面积分(只有数一考,数二数三均不考;数一考大题、考难题经典章节)第一节对弧长的曲线积分(重要)一对弧长的曲线积分的概念(理解)与性质(了解)二对弧长的曲线积分的计算法(重要)第二节对坐标的曲线积分(重要)一对坐标的曲线积分的概念(理解)与性质(了解)二对坐标的曲线积分的计算法(重要)第三节格林公式及其应用(重要)一格林公式(重要)二平面上曲线积分与路径无关的条件(重要)三二元函数的全微分求积(理解)四曲线积分的基本定理(不用看)第四节对面积的曲面积分(重要)一对坐标的曲面积分的概念与性质(了解)二对坐标的曲面积分的计算法(重要)三两类曲面积分之间的联系(了解)第五节对坐标的曲面积分(重要)一对坐标的曲面积分的概念与性质(了解)二对面积的曲面积分的计算法(重要)第六节高斯公式(重要)、通量(不用看)与散度(了解)一高斯公式(重要)二沿任意闭曲面的曲面积分为零的条件(不用看)三通量与散度(了解)第七节斯托克斯公式(重要)环流量与旋度(了解)一斯托克斯公式(重要)二空间曲面积分与路径无关的条件(不用看)三环流量与旋度第十二章无穷级数(数学二不考,不用看;数一数三考大题、考难题的经典章节)第一节常数项级数的概念与性质(一般考点)一常数项级数的概念(了解)二收敛级数的基本性质(考选择题章节)三柯西审敛原理(不用看)第二节常数项级数的审敛法(理解)一正项级数及其审敛法二交错级数及其审敛法三绝对收敛与条件收敛四绝对收敛级数的性质(不用看)第三节幂级数(重要)一函数项级数的概念(了解)二幂级数及其收敛性(最重要)三幂级数的运算(乘或除不用看)第四节函数展开为幂级数(数一相对数三本节更重要)第五节函数的幂级数展开式的应用(不用看)一近似计算二微分方程的幂级数解法三欧拉公式第六节函数项级数的一致收敛性及一致收敛级数的基本性质(不用看)一函数项级数的一致收敛性二一致收敛级数的基本性质第七节傅里叶级数(数三不用看,数一了解)一三角函数系的正交性二函数展开为傅里叶级数三正弦级数和余弦级数第八节一般周期函数的傅里叶级数(数三不用看,数一了解)一周期为2l的周期函数的傅里叶级数二傅里叶级数的复数形式(不用看)。
考研数学知识点总结
考研数学知识点总结(实用版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的实用范文,如演讲致辞、合同协议、条据文书、策划方案、总结报告、简历模板、心得体会、工作材料、教学资料、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!In addition, this store provides various types of practical sample essays, such as speeches, contracts, agreements, documents, planning plans, summary reports, resume templates, experience, work materials, teaching materials, other sample essays, etc. Please pay attention to the different formats and writing methods of the model essay!考研数学知识点总结最新考研数学知识点总结简述我们在进行考研数学的复习准备时,要知道必考的知识点有哪些,才能更好的提高自己的复习效率。
考研高数知识总结
考研数学讲座(1)考好数学的基点“木桶原理”已经广为人所知晓。
但真要在做件事时找到自身的短处,下意识地有针对性地采取措施,以求得满意的结果。
实在是一件不容易的事。
非数学专业的本科学生与数学专业的学生的最基本差别,在于概念意识。
数学科学从最严密的定义出发,在准确的概念与严密的逻辑基础上层层叠叠,不断在深度与广度上发展。
形成一棵参天大树。
在《高等数学》中,出发点处就有函数,极限,连续,可导,可微等重要概念。
在《线性代数》的第一知识板块中,最核心的概念是矩阵的秩。
而第二知识板块中,则是矩阵的特征值与特征向量。
在《概率统计》中,第一重要的概念是分布函数。
不过,《概率》不是第一层次基础课程。
学习《概率》需要学生有较好的《高等数学》基础。
非数学专业的本科学生大多没有概念意识,记不住概念。
更不会从概念出发分析解决问题。
基础层次的概念不熟,下一层次就云里雾里了。
这是感到数学难学的关键。
大学数学教学目的,通常只是为了满足相关本科专业的需要。
教师们在授课时往往不会太重视,而且也没时间来进行概念训练。
考研数学目的在于选拔,考题中基本概念与基本方法并重。
这正好击中考生的软肋。
在考研指导课上,往往会有学生莫名惊诧,“大一那会儿学的不一样。
”原因就在于学过的概念早忘完了。
做考研数学复习,首先要在基本概念与基本运算上下足功夫。
按考试时间与分值来匹配,一个4分的选择题平均只有5分钟时间。
而这些选择题却分别来自三门数学课程,每个题又至少有两个概念。
你可以由此体验选拔考试要求你对概念的熟悉程度。
从牛顿在硕士生二年级的第一篇论文算起,微积分有近四百年历史。
文献浩如烟海,知识千锤百炼。
非数学专业的本科生们所接触的,只是初等微积分的一少部分。
方法十分经典,概念非常重要。
学生们要做的是接受,理解,记忆,学会简单推理。
当你面对一个题目时,你的自然反应是,“这个题目涉及的概念是 - - -”,而非“在哪儿做过这道题”,才能算是有点入门了。
你要考得满意吗?基点不在于你看了多少难题,关键在于你是否对基本概念与基本运算非常熟悉。
考研高等数学重要基础知识点单调有界收敛准则及其应用
考研高等数学重要基础知识点单调有界收敛准则及其应用
2023考研高等数学重要基础知识点:单调有界收敛准则及其应用_中公教育网
一、单调有界准则
单调且有界的数列必收敛。
理解:单调递增且有上界的级数必收敛;具有下界的单调递减序列必定收敛。
题型:已知数列极限的递推关系,试图证明数列极限的存在性,并求出这个极限。
总结:
1)根据递推公式证明数列极限存在的基本思想:首先证明数列是单调有界的,从而得到数列极限的存在性;然后同时取方程两边的极限,得到方程,求出极限值。
2)证明数列单调有界的主要方法:
①先设出极限再求出极限值,对比极限值与数列前三项的大小关系确定证明数列单调递增还是单调递减、有上界还是有下界,以及上界或下界各是多少;
②证明时,先证有界性,再证单调性;
③为了更好地运用递推公式,证明过程中一般会用到数学归纳法。
以上根据具体问题给大家展示了利用单调有界收敛准则证明数列极限存在的具体分析思路和解题步骤,希望大家多总结方法,从题目中总结解题技巧和书写规范。
考研大学的数学知识点总结
考研大学的数学知识点总结
一、数学分析
1. 函数的极限与连续
2. 函数的导数与微分
3. 不定积分与定积分
4. 微分方程
5. 级数
6. 多元函数微分学
二、线性代数
1. 行列式与矩阵
2. 线性方程组
3. 矩阵的特征值与特征向量
4. 空间解析几何
5. 线性空间
三、概率统计
1. 随机变量与概率分布
2. 多个随机变量的概率分布
3. 统计推断
4. 假设检验
5. 相关与回归分析
四、离散数学
1. 集合与逻辑
2. 图论
3. 树与树的应用
4. 排列组合
5. 代数系统
五、常微分方程
1. 一阶常微分方程的基础理论
2. 高阶常微分方程与常系数齐次线性微分方程
3. 变系数线性微分方程
4. 高阶线性常系数齐次线性微分方程
5. 常微分方程的应用
六、数学建模
1. 数学建模的基本概念
2. 数学建模的基本方法
3. 实际问题的数学建模
4. 建立模型的思路与方法
5. 数学建模的应用
七、复变函数
1. 复数的基本概念
2. 复变函数的基本概念
3. 复变函数的解析性
4. 几何意义与应用
5. 复变函数的应用
以上是考研大学数学知识点的总结。
希望能对大家的学习有所帮助。
考研高数每章总结知识点
考研高数每章总结知识点一、函数与极限1. 函数的概念与性质2. 一元函数的极限3. 函数的连续性4. 导数与微分5. 多元函数的极限6. 多元函数的连续性7. 偏导数与全微分在这一章节中,我们需要深入理解函数的概念与性质,掌握一元函数的极限和导数与微分的计算方法,以及多元函数的极限、连续性、偏导数与全微分的性质和应用。
二、微分学1. 函数的微分学2. 隐函数与参数方程的微分法3. 高阶导数与微分的应用4. 泰勒公式与函数的逼近5. 不定积分6. 定积分与广义积分7. 定积分的应用在这一章节中,我们需要掌握函数的微分学的相关知识,包括隐函数与参数方程的微分法、高阶导数与泰勒公式的应用,以及不定积分、定积分与广义积分的计算方法及其应用。
三、级数与一些其他杂项1. 数项级数2. 幂级数3. 函数项级数4. 傅立叶级数5. 常微分方程在这一章节中,我们需要掌握数项级数、幂级数和函数项级数的相关知识,包括傅立叶级数的表示和计算方法,以及常微分方程的解法和应用。
四、空间解析几何1. 空间直角坐标系2. 空间点、向量和坐标3. 空间中的直线和平面4. 空间中的曲线5. 空间中的曲面6. 空间曲线和曲面的切线与法线在这一章节中,我们需要掌握空间中的点、向量和坐标的表示和计算方法,以及空间中的直线、平面、曲线和曲面的性质和应用,包括曲线和曲面的切线与法线的计算方法。
五、多元函数微分学1. 函数的极值2. 条件极值与 Lagrange 乘数法3. 二重积分4. 三重积分5. 重积分的应用在这一章节中,我们需要掌握多元函数的极值和条件极值的求解方法,包括 Lagrange 乘数法的应用,以及二重积分和三重积分的计算方法及其应用。
总结起来,考研高数的每个章节都包含了大量的知识点,要想取得好成绩就需要对每个章节的知识点有一个深入的了解和掌握。
在备考的过程中,应该注重理论知识的掌握和应用能力的提升,多做习题和模拟题,以增强对知识点的理解和记忆。
考研高数知识点超强归纳
(t )
连续,
公 式 2 . lim⎜⎛1 + 1 ⎟⎞n = e ; lim⎜⎛1 + 1 ⎟⎞u = e ;
n→∞⎝ n ⎠
u→∞⎝ u ⎠
lim (1
+
v
)1 v
=
e
v→0
则 dy dx
=
f [ϕ2 (x)]ϕ2′ (x) −
f [ϕ1(x)]ϕ1′(x)
4.用无穷小重要性质和等价无穷小代换 5.用泰勒公式(比用等价无穷小更深刻)(数学一和
2
( )e x ′ = e x
de x = e x dx
考研数学知识点-高等数学
ψ ′(t)存在,且ϕ ′(t) ≠ 0 ,则
(arcsin x)′ = 1
1− x2
d arcsin x = 1 dx 1− x2
(arccos x)′ = − 1
d arccos x = − 1 dx
1− x2
1− x2
连续,则 f (x) 必在 [a,b]上有界。
定理 2.(最大值和最小值定理)如果函数 f (x) 在闭
区间 [a, ]b 上连续,则在这个区间上一定存在最大值 M 和
最小值 m 。 其中最大值 M 和最小值 m 的定义如下:
定义 设 f (x0 ) = M 是区间 [a,b]上某点 x0 处的函数
且有
dy = dy du = f ′[ϕ(x)]ϕ ′(x)
dx du dx
对应地 dy = f ′(u)du = f ′[ϕ(x)]ϕ ′(x)dx
由于公式 dy = f ′(u)du 不管 u 是自变量或中间变量
6.隐函数运算法则
设 y = y(x) 是由方程 F (x, y) = 0 所确定,求 y′ 的方
考研数学二重点
考研数学二重点考研数学二是众多考研学子需要攻克的重要科目之一。
对于许多考生来说,明确数学二的重点内容,制定有针对性的复习策略,是取得理想成绩的关键。
以下将详细介绍考研数学二的重点部分。
一、高等数学1、函数、极限、连续函数的概念、性质和各种类型的函数(如幂函数、指数函数、对数函数、三角函数等)是基础。
极限的计算方法,包括四则运算、等价无穷小替换、洛必达法则等,是必考的重点。
连续性的概念以及间断点的类型判断也经常出现。
2、一元函数微分学导数的定义、几何意义和基本公式要熟练掌握。
利用导数判断函数的单调性、极值和最值,以及函数的凹凸性和拐点,是常见的题型。
此外,微分中值定理(如罗尔定理、拉格朗日中值定理、柯西中值定理)的应用也是重点。
3、一元函数积分学不定积分和定积分的计算方法,包括换元法、分部积分法等,要熟练运用。
定积分的应用,如求平面图形的面积、旋转体的体积、曲线的弧长等,也是重要的考点。
4、多元函数微分学多元函数的偏导数、全微分的概念和计算方法,以及多元函数的极值和条件极值问题,需要重点关注。
5、常微分方程常见的一阶和二阶常微分方程的解法,如可分离变量方程、齐次方程、线性方程等,要能够熟练求解。
二、线性代数1、行列式行列式的性质和计算方法是基础,包括展开法则、三角化法等。
2、矩阵矩阵的运算(加法、乘法、转置等)、逆矩阵的求法、矩阵的秩等是重点。
3、向量向量组的线性相关性判断、极大线性无关组的求法,以及向量空间的基本概念。
4、线性方程组线性方程组的解的结构、求解方法(高斯消元法),以及有解的判定条件。
5、特征值和特征向量矩阵的特征值和特征向量的求法,以及相似对角化的条件和方法。
三、复习方法1、基础知识的巩固对于重点概念、定理和公式,要反复理解和记忆,确保能够熟练运用。
2、多做练习题通过大量的练习题,熟悉各种题型和解题方法,提高解题速度和准确性。
3、总结归纳对做过的题目进行总结归纳,找出解题的规律和技巧,形成自己的解题思路。
考研数二知识点归纳总结
考研数二知识点归纳总结考研数学二,通常指的是高等数学和线性代数的组合。
以下是对考研数学二知识点的归纳总结:# 高等数学部分1. 函数、极限、连续性- 函数的概念与性质- 极限的定义与性质- 无穷小的比较- 函数的连续性与间断点2. 一元函数微分学- 导数的定义与几何意义- 基本初等函数的导数- 高阶导数- 微分中值定理- 洛必达法则- 函数的单调性与极值问题- 曲线的凹凸性与拐点- 函数图形的描绘3. 一元函数积分学- 不定积分与定积分的概念- 基本积分公式- 换元积分法与分部积分法- 定积分的性质与几何意义- 定积分的计算- 广义积分4. 多元函数微分学- 偏导数与全微分- 多元函数的极值问题- 方向导数与梯度5. 多元函数积分学- 二重积分与三重积分- 曲线积分与曲面积分- 格林公式、高斯公式与斯托克斯定理6. 无穷级数- 常数项级数的收敛性- 幂级数与泰勒级数- 函数的幂级数展开7. 常微分方程- 一阶微分方程的解法- 高阶微分方程的降阶- 线性微分方程的解法# 线性代数部分1. 矩阵理论- 矩阵的运算- 矩阵的秩与行列式- 逆矩阵与伴随矩阵- 分块矩阵2. 线性空间与线性变换- 向量空间的定义与性质- 基与维数- 线性变换与矩阵表示- 特征值与特征向量3. 线性方程组- 齐次线性方程组与非齐次线性方程组- 高斯消元法- 克拉默法则- 矩阵的行列式与线性方程组的解4. 特征值问题与二次型- 特征值与特征向量的计算- 对称矩阵的谱分析- 二次型的标准化与规范型5. 内积空间与正交性- 内积空间的定义与性质- 正交基与正交投影- 正交变换与酉矩阵6. 矩阵分解- 矩阵的LU分解- 矩阵的QR分解- 奇异值分解(SVD)结束语:考研数学二的知识点广泛且深入,掌握这些基础知识点是解决复杂数学问题的关键。
希望以上的归纳总结能够帮助考生系统地复习和巩固相关知识,为考研数学二的考试做好充分的准备。
考研高数知识点总结
考研高数知识点总结高等数学是考研数学中的重要一部分,对于考研学生来说,掌握高等数学的知识点是非常重要的。
下面是对高等数学知识点的总结,希望对考研学生有所帮助。
一、函数与极限1. 函数的概念:函数的定义域、值域和图像2. 函数的性质:奇偶性、周期性等3. 极限的概念:数列极限和函数极限4. 极限的性质:极限的四则运算、夹逼定理等5. 单调性与有界性:单调递增、单调递减、有界二、导数与微分1. 导数的概念:导数的定义、几何意义、物理意义2. 导数的运算法则:加法减法法则、乘法法则、复合函数法则等3. 高阶导数与隐函数求导4. 微分与微分近似三、高阶导数与泰勒公式1. 高阶导数的定义与运算法则2. 泰勒展开式与泰勒公式四、不定积分与定积分1. 不定积分的概念与运算法则2. 反常积分:可积性、柯西准则、比较判别法等3. 定积分的概念与性质:函数积分的线性性、可加性、区间可加性等4. 牛顿-莱布尼茨公式与定积分的应用五、多元函数与偏导数1. 多元函数的定义与性质:定义域、值域、图像等2. 偏导数的概念:一阶偏导数、高阶偏导数3. 隐函数求导与全微分的概念4. 多元函数的极值与条件极值六、重积分与曲线曲面积分1. 二重积分的概念与计算方法:极坐标法、换元法、直角坐标系下的积分法2. 三重积分的概念与计算方法:柱面坐标法、球面坐标法、直角坐标系下的积分法3. 曲线积分与曲面积分的概念与计算方法七、常微分方程1. 常微分方程的基本概念:初值问题、解的存在唯一性2. 高阶线性常微分方程与常系数齐次线性方程3. 常微分方程的解法:分离变量法、齐次方程法、一阶线性非齐次方程法等4. 常微分方程的应用:动力学模型、电路网络分析等八、级数1. 级数的概念与基本性质:收敛、发散、极限、级数的四则运算等2. 正项级数与比较判别法、比值判别法、根值判别法等3. 幂级数与泰勒级数展开高等数学知识点总结完毕,以上知识点对考研的高等数学考试来说是基础中的基础。
高等数学基本知识点大全大一复习,考研必备
大一期末复习和考研复习必备高等数学基本知识点一、函数与极限1、集合的概念⑴、全体非负整数组成的集合叫做非负整数集(或自然数集)。
记作N⑵、所有正整数组成的集合叫做正整数集。
记作N+或N+。
⑶、全体整数组成的集合叫做整数集。
记作Z。
⑷、全体有理数组成的集合叫做有理数集。
记作Q。
⑸、全体实数组成的集合叫做实数集。
记作R。
⑶、邻域:设α与δ是两个实数,且δ>0.满足不等式│x-α│<δ的实数x的全体称为点α的δ邻域,点α称为此邻域的中心,δ称为此邻域的半径。
2、函数⑴、函数的定义:如果当变量x在其变化范围内任意取定一个数值时,量y按照一定的法则f总有确定的数值与它对应,则称y是x的函数。
变量x的变化范围叫做这个函数的定义域。
通常x叫做自变量,y 叫做函数值(或因变量),变量y的变化范围叫做这个函数的值域。
注:为了表明y是x的函数,我们用记号y=f(x)、y=F(x)等等来表示。
这里的字母"f"、"F"表示y与x之间的对应法则即函数关系,它们是可以任意采用不同的字母来表示的。
如果自变量在定义域内任取一个确定的值时,函数只有一个确定的值和它对应,这种函数叫做单值函数,否则叫做多值函数。
这里我们只讨论单值函数。
⑵、函数相等由函数的定义可知,一个函数的构成要素为:定义域、对应关系和值域。
由于值域是由定义域和对应关系决定的,所以,如果两个函数的定义域和对应关系完全一致,我们就称两个函数相等。
⑶、域函数的表示方法a):解析法:用数学式子表示自变量和因变量之间的对应关系的方法即是解析法。
例:笛卡尔直角坐标系中,半径为r、圆心在原点的圆的方程是:x2+y2=r2b):表格法:将一系列的自变量值与对应的函数值列成表来表示函数关系的方法即是表格法。
例:在实际应用中,我们经常会用到的平方表,三角函数表等都是用表格法表示的函数。
c):图示法:用坐标平面上曲线来表示函数的方法即是图示法。
考研数学复习中的重点知识汇总
考研数学复习中的重点知识汇总考研数学是众多考生在研究生入学考试中面临的一座大山,需要系统而深入的复习。
在复习过程中,掌握重点知识是取得高分的关键。
以下为大家详细汇总考研数学复习中的重点知识。
一、高等数学1、函数、极限与连续函数的概念与性质,包括单调性、奇偶性、周期性等。
极限的计算方法,如四则运算法则、两个重要极限等。
连续的定义、间断点的类型及判断。
2、一元函数微分学导数的定义、几何意义及物理意义。
求导法则,包括四则运算、复合函数求导、反函数求导等。
函数的单调性、极值与最值。
凹凸性与拐点。
3、一元函数积分学不定积分的计算方法,如换元法、分部积分法等。
定积分的定义、性质及计算。
定积分的应用,如求平面图形的面积、旋转体的体积等。
4、多元函数微分学多元函数的概念、极限与连续。
偏导数与全微分的定义及计算。
多元函数的极值与最值。
5、多元函数积分学二重积分的计算方法,包括直角坐标法、极坐标法等。
三重积分的概念及计算。
曲线积分与曲面积分的概念及计算。
6、无穷级数数项级数的敛散性判断,如正项级数的比较判别法、比值判别法等。
幂级数的收敛半径、收敛区间及和函数的计算。
7、常微分方程一阶常微分方程的求解方法,如可分离变量方程、齐次方程、一阶线性方程等。
二阶常微分方程的求解方法,如常系数齐次方程、常系数非齐次方程等。
二、线性代数1、行列式行列式的定义、性质及计算方法。
2、矩阵矩阵的概念、运算,包括加法、乘法、转置等。
逆矩阵的定义、性质及求法。
矩阵的秩的概念及计算。
3、向量向量的线性表示、线性相关与线性无关。
向量组的秩的概念及计算。
4、线性方程组线性方程组的解的判定、求解方法。
齐次线性方程组的基础解系的求法。
5、矩阵的特征值与特征向量特征值与特征向量的定义、性质及计算方法。
相似矩阵的概念及性质。
6、二次型二次型的标准形与规范形的求法。
正定二次型的判定方法。
三、概率论与数理统计1、随机事件与概率随机事件的概念、关系与运算。
概率的定义、性质及计算方法。
考研必看考研数学基础知识点梳理(高数篇)
考研数学基础知识点梳理(高数篇) 第一章函数、极限与连续1、函数的有界性2、极限的定义(数列、函数)3、极限的性质(有界性、保号性)4、极限的计算(重点)(四则运算、等价无穷小替换、洛必达法则、泰勒公式、重要极限、单侧极限、夹逼定理及定积分定义、单调有界必有极限定理)5、函数的连续性6、间断点的类型7、渐近线的计算第二章导数与微分1、导数与微分的定义(函数可导性、用定义求导数)2、导数的计算(“三个法则一个表”:四则运算、复合函数、反函数,基本初等函数导数表;“三种类型”:幂指型、隐函数、参数方程;高阶导数)3、导数的应用(切线与法线、单调性(重点)与极值点、利用单调性证明函数不等式、凹凸性与拐点、方程的根与函数的零点、曲率(数一、二)) 第三章中值定理1、闭区间上连续函数的性质(最值定理、介值定理、零点存在定理)2、三大微分中值定理(重点)(罗尔、拉格朗日、柯西)3、积分中值定理4、泰勒中值定理5、费马引理第四章一元函数积分学1、原函数与不定积分的定义2、不定积分的计算(变量代换、分部积分)3、定积分的定义(几何意义、微元法思想(数一、二))4、定积分性质(奇偶函数与周期函数的积分性质、比较定理)5、定积分的计算6、定积分的应用(几何应用:面积、体积、曲线弧长和旋转面的面积(数一、二),物理应用:变力做功、形心质心、液体静压力)7、变限积分(求导)8、广义积分(收敛性的判断、计算)第五章空间解析几何(数一)1、向量的运算(加减、数乘、数量积、向量积)2、直线与平面的方程及其关系3、各种曲面方程(旋转曲面、柱面、投影曲面、二次曲面)的求法第六章多元函数微分学1、二重极限和二元函数连续、偏导数、可微及全微分的定义2、二元函数偏导数存在、可微、偏导函数连续之间的关系3、多元函数偏导数的计算(重点)4、方向导数与梯度5、多元函数的极值(无条件极值和条件极值)6、空间曲线的切线与法平面、曲面的切平面与法线第七章多元函数积分学(除二重积分外,数一)1、二重积分的计算(对称性(奇偶、轮换)、极坐标、积分次序的选择)2、三重积分的计算(“先一后二”、“先二后一”、球坐标)3、第一、二类曲线积分、第一、二类曲面积分的计算及对称性(主要关注不带方向的积分)4、格林公式(重点)(直接用(不满足条件时的处理:“补线”、“挖洞”),积分与路径无关,二元函数的全微分)5、高斯公式(重点)(不满足条件时的处理(类似格林公式))6、斯托克斯公式(要求低;何时用:计算第二类曲线积分,曲线不易参数化,常表示为两曲面的交线)7、场论初步(散度、旋度)第八章微分方程1、各类微分方程(可分离变量方程、齐次方程、一阶线性微分方程、伯努利方程(数一、二)、全微分方程(数一)、可降阶的高阶微分方程(数一、二)、高阶线性微分方程、欧拉方程(数一)、差分方程(数三))的求解2、线性微分方程解的性质(叠加原理、解的结构)3、应用(由几何及物理背景列方程)第九章级数(数一、数三)1、收敛级数的性质(必要条件、线性运算、“加括号”、“有限项”)2、正项级数的判别法(比较、比值、根值,p级数与推广的p级数)3、交错级数的莱布尼兹判别法4、绝对收敛与条件收敛5、幂级数的收敛半径与收敛域6、幂级数的求和与展开7、傅里叶级数(函数展开成傅里叶级数,狄利克雷定理)。
考研高等数学基本知识点大全
高等数学基本知识点一、函数与极限1、集合的概念一般地我们把研究对象统称为元素,把一些元素组成的总体叫集合(简称集)。
集合具有确定性(给定集合的元素必须是确定的)和互异性(给定集合中的元素是互不相同的)。
比如“身材较高的人”不能构成集合,因为它的元素不是确定的。
我们通常用大字拉丁字母A、B、C、……表示集合,用小写拉丁字母a、b、c……表示集合中的元素。
如果a是集合A中的元素,就说a属于A,记作:a∈A,否则就说a不属于A,记作:a A。
⑴、全体非负整数组成的集合叫做非负整数集(或自然数集)。
记作N⑵、所有正整数组成的集合叫做正整数集。
记作N+或N+。
⑶、全体整数组成的集合叫做整数集。
记作Z。
⑷、全体有理数组成的集合叫做有理数集。
记作Q。
⑸、全体实数组成的集合叫做实数集。
记作R。
集合的表示方法⑴、列举法:把集合的元素一一列举出来,并用“{}”括起来表示集合⑵、描述法:用集合所有元素的共同特征来表示集合。
集合间的基本关系⑴、子集:一般地,对于两个集合A、B,如果集合A中的任意一个元素都是集合B的元素,我们就说A、B有包含关系,称集合A为集合B的子集,记作A B(或B A)。
⑵相等:如何集合A是集合B的子集,且集合B是集合A的子集,此时集合A中的元素与集合B中的元素完全一样,因此集合A与集合B相等,记作A=B。
⑶、真子集:如何集合A是集合B的子集,但存在一个元素属于B但不属于A,我们称集合A是集合B的真子集。
⑷、空集:我们把不含任何元素的集合叫做空集。
记作,并规定,空集是任何集合的子集。
⑸、由上述集合之间的基本关系,可以得到下面的结论:①、任何一个集合是它本身的子集。
即A A②、对于集合A、B、C,如果A是B的子集,B是C的子集,则A是C的子集。
③、我们可以把相等的集合叫做“等集”,这样的话子集包括“真子集”和“等集”。
集合的基本运算⑴、并集:一般地,由所有属于集合A或属于集合B的元素组成的集合称为A与B的并集。
高数考研知识点归纳
高数考研知识点归纳高等数学是考研数学的重要组成部分,其知识点广泛且深入,以下是对高数考研知识点的归纳总结:一、极限与连续性- 极限的定义与性质- 无穷小的比较- 函数的连续性与间断点- 连续函数的性质二、导数与微分- 导数的定义与几何意义- 基本导数公式- 高阶导数- 隐函数与参数方程的导数- 微分的概念与应用三、中值定理与导数的应用- 罗尔定理- 拉格朗日中值定理- 柯西中值定理- 泰勒公式- 导数在几何、物理等领域的应用四、不定积分与定积分- 不定积分的概念与性质- 基本积分公式- 换元积分法- 分部积分法- 定积分的定义与性质- 定积分的计算方法五、级数- 级数的概念与性质- 正项级数的收敛性判别- 幂级数与泰勒级数- 函数项级数的一致收敛性六、多元函数微分学- 偏导数与全微分- 多元函数的极值问题- 方向导数与梯度- 多元函数的泰勒展开七、重积分与曲线积分、曲面积分- 二重积分与三重积分- 重积分的计算方法- 曲线积分与曲面积分- 格林公式、高斯公式与斯托克斯定理八、常微分方程- 一阶微分方程的解法- 高阶微分方程- 线性微分方程的解法- 微分方程的应用结束语:考研高等数学的知识点繁多,要求考生不仅要掌握基本的概念和公式,还要能够灵活运用这些知识点解决实际问题。
通过系统地复习和大量的练习,可以提高解题速度和准确率,为考研数学取得高分打下坚实的基础。
希望以上的知识点归纳能够帮助考生更好地复习和准备考研高等数学。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
考研高等数学知识点总结高等数学知识点总结导数公式: 基本积分表:ax x a a a ctgx x x tgx x x x ctgx x tgx a x x ln 1)(log ln )(csc )(csc sec )(sec csc )(sec )(22='='⋅-='⋅='-='='222211)(11)(11)(arccos 11)(arcsin x arcctgx x arctgx x x x x +-='+='--='-='三角函数公式:·诱导公式:·和差角公式: ·和差化积公式:2sin2sin 2cos cos 2cos2cos 2cos cos 2sin2cos 2sin sin 2cos2sin2sin sin βαβαβαβαβαβαβαβαβαβαβαβα-+=--+=+-+=--+=+αββαβαβαβαβαβαβαβαβαβαβαctg ctg ctg ctg ctg tg tg tg tg tg ±⋅=±⋅±=±=±±=±1)(1)(sin sin cos cos )cos(sin cos cos sin )sin(μμμ·倍角公式:·半角公式:ααααααααααααααααααcos 1sin sin cos 1cos 1cos 12cos 1sin sin cos 1cos 1cos 122cos 12cos 2cos 12sin -=+=-+±=+=-=+-±=+±=-±=ctg tg·正弦定理:R CcB b A a 2sin sin sin === ·余弦定理:Cab b a c cos 2222-+=·反三角函数性质:arcctgx arctgx x x -=-=2arccos 2arcsin ππ 高阶导数公式——莱布尼兹(Leibniz )公式:)()()()2()1()(0)()()(!)1()1(!2)1()(n k k n n n n nk k k n k n n uv v u k k n n n v u n n v nu v u v u C uv +++--++''-+'+==---=-∑ΛΛΛ中值定理与导数应用:αααααααααα23333133cos 3cos 43cos sin 4sin 33sin tg tg tg tg --=-=-=αααααααααααααα222222122212sin cos sin 211cos 22cos cos sin 22sin tg tg tg ctg ctg ctg -=-=-=-=-==拉格朗日中值定理。
时,柯西中值定理就是当柯西中值定理:拉格朗日中值定理:x x F f a F b F a f b f a b f a f b f =''=---'=-)(F )()()()()()())(()()(ξξξ曲率:.1;0.)1(lim M s M M :.,13202aK a K y y ds d s K M M sK tg y dx y ds s =='+''==∆∆='∆'∆∆∆==''+=→∆的圆:半径为直线:点的曲率:弧长。
:化量;点,切线斜率的倾角变点到从平均曲率:其中弧微分公式:ααααα定积分的近似计算:⎰⎰⎰----+++++++++-≈++++-≈+++-≈ban n n ban n ba n y y y y y y y y nab x f y y y y n a b x f y y y nab x f )](4)(2)[(3)(])(21[)()()(1312420110110ΛΛΛΛ抛物线法:梯形法:矩形法:定积分应用相关公式:⎰⎰--==⋅=⋅=bab a dt t f a b dx x f a b y k rmm k F Ap F sF W )(1)(1,2221均方根:函数的平均值:为引力系数引力:水压力:功:空间解析几何和向量代数:。
代表平行六面体的体积为锐角时,向量的混合积:例:线速度:两向量之间的夹角:是一个数量轴的夹角。
与是向量在轴上的投影:点的距离:空间ααθθθϕϕ,cos )(][..sin ,cos ,,cos Pr Pr )(Pr ,cos Pr )()()(2222222212121*********c b a c c c b b b a a a c b a c b a r w v b a c b b b a a a kj ib ac b b b a a a b a b a b a b a b a b a b a b a a j a j a a j u j z z y y x x M Md zyx z y xzy xzyxz y xzy x z y x zz y y x x z z y y x x u u ϖϖϖϖϖϖϖϖϖϖϖϖϖϖϖϖϖϖϖϖϖϖϖϖϖϖ⋅⨯==⋅⨯=⨯=⋅==⨯=++⋅++++=++=⋅=⋅+=+=-+-+-==(马鞍面)双叶双曲面:单叶双曲面:、双曲面:同号)(、抛物面:、椭球面:二次曲面:参数方程:其中空间直线的方程:面的距离:平面外任意一点到该平、截距世方程:、一般方程:,其中、点法式:平面的方程:113,,22211};,,{,1302),,(},,,{0)()()(1222222222222222222220000002220000000000=+-=-+=+=++⎪⎩⎪⎨⎧+=+=+===-=-=-+++++==++=+++==-+-+-cz b y a x c z b y a x q p z q y p x c z b y a x ptz z nty y mtx x p n m s t p z z n y y m x x C B A DCz By Ax d czb y a x D Cz By Ax z y x M C B A n z z C y y B x x A ϖϖ多元函数微分法及应用zy z x y x y x y x y x F F y zF F x z z y x F dx dy F F y F F x dx y d F F dx dy y x F dy y v dx x v dv dy y u dx x u du y x v v y x u u xvv z x u u z x z y x v y x u f z tvv z t u u z dt dz t v t u f z y y x f x y x f dz z dz zu dy y u dx x u du dy y z dx x z dz -=∂∂-=∂∂=⋅-∂∂-∂∂=-==∂∂+∂∂=∂∂+∂∂===∂∂⋅∂∂+∂∂⋅∂∂=∂∂=∂∂⋅∂∂+∂∂⋅∂∂==∆+∆=≈∆∂∂+∂∂+∂∂=∂∂+∂∂=, , 隐函数+, , 隐函数隐函数的求导公式: 时,,当 :多元复合函数的求导法全微分的近似计算: 全微分:0),,()()(0),(),(),()],(),,([)](),([),(),(22),(),(1),(),(1),(),(1),(),(1),(),(0),,,(0),,,(y u G F J y v v y G F J y u x u G F J x v v x G F J x u G G F F vG uG v FuFv u G F J v u y x G v u y x F vu v u ∂∂⋅-=∂∂∂∂⋅-=∂∂∂∂⋅-=∂∂∂∂⋅-=∂∂=∂∂∂∂∂∂∂∂=∂∂=⎩⎨⎧== 隐函数方程组:微分法在几何上的应用:),,(),,(),,(30))(,,())(,,())(,,(2)},,(),,,(),,,({1),,(0),,(},,{,0),,(0),,(0))(())(())(()()()(),,()()()(000000000000000000000000000000000000000000000000000z y x F z z z y x F y y z y x F x x z z z y x F y y z y x F x x z y x F z y x F z y x F z y x F n z y x M z y x F G G F F G G F F G G F F T z y x G z y x F z z t y y t x x t M t z z t y y t x x z y x M t z t y t x z y x z y x z y x yx y x x z x z z y z y -=-=-=-+-+-==⎪⎩⎪⎨⎧====-'+-'+-''-='-='-⎪⎩⎪⎨⎧===、过此点的法线方程::、过此点的切平面方程、过此点的法向量:,则:上一点曲面则切向量若空间曲线方程为:处的法平面方程:在点处的切线方程:在点空间曲线ϖϖωψϕωψϕωψϕ方向导数与梯度:上的投影。
在是单位向量。
方向上的,为,其中:它与方向导数的关系是的梯度:在一点函数的转角。
轴到方向为其中的方向导数为:沿任一方向在一点函数l y x f l fl j i e e y x f lf j yf i x f y x f y x p y x f z l x y fx f l f l y x p y x f z ),(grad sin cos ),(grad ),(grad ),(),(sin cos ),(),(∂∂∴⋅+⋅=⋅=∂∂∂∂+∂∂==∂∂+∂∂=∂∂=ϖϖϖϖϖϖϕϕϕϕϕ多元函数的极值及其求法:⎪⎪⎪⎩⎪⎪⎪⎨⎧=-<-⎩⎨⎧><>-===== 不确定时值时, 无极为极小值为极大值时,则: ,令:设,00),(,0),(,00),(,),(,),(0),(),(22000020000000000B AC B AC y x A y x A B AC C y x f B y x f A y x f y x f y x f yy xy xx y x重积分及其应用:⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰++-=++=++==>======⎪⎪⎭⎫ ⎝⎛∂∂+⎪⎭⎫ ⎝⎛∂∂+==='Dz Dy Dx z y x Dy Dx DDy Dx DD Da y x xd y x fa F a y x yd y x f F a y x xd y x f F F F F F a a M z xoy d y x x I y d y x y I x d y x d y x y MM y d y x d y x x MMx dxdy y z x z A y x f z rdrd r r f dxdy y x f 23222232222322222D22)(),()(),()(),(},,{)0(),,0,0(),(,),(),(),(,),(),(1),()sin ,cos (),(σρσρσρσρσρσρσρσρσρθθθ, , ,其中:的引力:轴上质点平面)对平面薄片(位于轴 对于轴对于平面薄片的转动惯量: 平面薄片的重心:的面积曲面柱面坐标和球面坐标:⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰ΩΩΩΩΩΩΩΩΩΩΩ+=+=+=========⋅⋅⋅=⎪⎩⎪⎨⎧=====⎪⎩⎪⎨⎧===dvy x I dv z x I dv z y I dvx M dv z Mz dv y My dv x Mx drrr F d d d drd rr F dxdydz z y x f d drd r dr d r rd dv r z r y r x z r r f z r F dz rdrd z r F dxdydz z y x f zz r y r x z y x r ρρρρρρρϕθϕϕθθϕϕθϕθϕϕθϕϕϕθϕθϕθθθθθθθππθϕ)()()(1,1,1sin ),,(sin ),,(),,(sin sin cos sin sin cos sin ),sin ,cos (),,(,),,(),,(,sin cos 22222220),(0222, , 转动惯量:, 其中 重心:, 球面坐标:其中: 柱面坐标:曲线积分:⎩⎨⎧==<'+'=≤≤⎩⎨⎧==⎰⎰)()()()()](),([),(),(,)()(),(22t y tx dt t t t t f ds y x f t t y t x L L y x f Lϕβαψϕψϕβαψϕβα 特殊情况: 则: 的参数方程为:上连续,在设长的曲线积分):第一类曲线积分(对弧。