考研高等数学知识点总结
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
考研高等数学知识点总结
高等数学知识点总结
导数公式: 基本积分表:
a
x x a a a ctgx x x tgx x x x ctgx x tgx a x x ln 1)(log ln )(csc )(csc sec )(sec csc )(sec )(22
=
'='⋅-='⋅='-='='2
2
22
11
)(11
)(11
)(arccos 11
)(arcsin x arcctgx x arctgx x x x x +-
='+=
'--
='-=
'
三角函数公式:·诱导公式:
·和差角公式: ·和差化积公式:
2
sin
2sin 2cos cos 2cos
2cos 2cos cos 2sin
2cos 2sin sin 2cos
2sin
2sin sin β
αβαβαβ
αβαβαβ
αβαβαβ
αβ
αβα-+=--+=+-+=--+=+α
ββαβαβαβ
αβαβ
αβαβαβ
αβαβαctg ctg ctg ctg ctg tg tg tg tg tg ±⋅=
±⋅±=
±=±±=±1
)(1)(sin sin cos cos )cos(sin cos cos sin )sin(μμμ
·倍角公式:
·半角公式:
α
α
αααααααααααα
α
ααα
cos 1sin sin cos 1cos 1cos 12cos 1sin sin cos 1cos 1cos 12
2
cos 12cos 2cos 12
sin -=
+=-+±=+=-=+-±
=+±=-±=ctg tg
·正弦定理:
R C
c
B b A a 2sin sin sin === ·余弦定理:
C
ab b a c cos 2222-+=
·反三角函数性质:arcctgx arctgx x x -=-=2
arccos 2arcsin π
π
高阶导数公式——莱布尼兹(Leibniz )公式:
)
()
()()2()1()(0)
()()
(!
)1()1(!2)1()
(n k k n n n n n
k k k n k n n uv v u k k n n n v u n n v nu v u v u C uv +++--++''-+
'+==---=-∑ΛΛΛ
中值定理与导数应用:
α
ααααααααα23333133cos 3cos 43cos sin 4sin 33sin tg tg tg tg --=
-=-=α
α
αααααααααα
αα22222212221
2sin cos sin 211cos 22cos cos sin 22sin tg tg tg ctg ctg ctg -=
-=
-=-=-==
拉格朗日中值定理。
时,柯西中值定理就是当柯西中值定理:拉格朗日中值定理:x x F f a F b F a f b f a b f a f b f =''=
---'=-)(F )
()
()()()()()
)(()()(ξξξ
曲率:
.1
;0.
)
1(lim M s M M :.,13202a
K a K y y ds d s K M M s
K tg y dx y ds s =
='+''==∆∆='∆'∆∆∆=
=''+=→∆的圆:半径为直线:点的曲率:弧长。:化量;点,切线斜率的倾角变点到从平均曲率:其中弧微分公式:α
ααα
α
定积分的近似计算:
⎰⎰⎰----+++++++++-≈
++++-≈
+++-≈
b
a
n n n b
a
n n b
a n y y y y y y y y n
a
b x f y y y y n a b x f y y y n
a
b x f )](4)(2)[(3)(])(2
1
[)()()(1312420110110ΛΛΛΛ抛物线法:梯形法:矩形法:
定积分应用相关公式:
⎰⎰--==⋅=⋅=b
a
b a dt t f a b dx x f a b y k r
m
m k F A
p F s
F W )(1)(1
,2221均方根:函数的平均值:为引力系数
引力:水压力:功:
空间解析几何和向量代数:
。
代表平行六面体的体积为锐角时,向量的混合积:例:线速度:两向量之间的夹角:是一个数量轴的夹角。
与是向量在轴上的投影:点的距离:空间ααθθθϕϕ,cos )(][..sin ,cos ,,cos Pr Pr )(Pr ,cos Pr )()()(22
2
2
2
2
2
212121*********c b a c c c b b b a a a c b a c b a r w v b a c b b b a a a k
j i
b a
c b b b a a a b a b a b a b a b a b a b a b a a j a j a a j u j z z y y x x M M
d z
y
x z y x
z
y x
z
y
x
z y x
z
y x z y x z
z y y x x z z y y x x u u ϖ
ϖϖϖ
ϖϖϖϖϖϖϖϖϖϖϖϖϖ
ϖϖ
ϖϖϖϖϖϖϖ⋅⨯==⋅⨯=⨯=⋅==⨯=++⋅++++=++=⋅=⋅+=+=-+-+-==
(马鞍面)双叶双曲面:单叶双曲面:、双曲面:
同号)
(、抛物面:、椭球面:二次曲面:
参数方程:其中空间直线的方程:面的距离:平面外任意一点到该平、截距世方程:、一般方程:,其中、点法式:平面的方程:
1
1
3,,2221
1};,,{,1
302),,(},,,{0)()()(122
222222
22222
222
22220000002
220000000000=+-=-+=+=++⎪⎩⎪
⎨⎧+=+=+===-=-=-+++++=
=++=+++==-+-+-c
z b y a x c z b y a x q p z q y p x c z b y a x pt
z z nt
y y mt
x x p n m s t p z z n y y m x x C B A D
Cz By Ax d c
z
b y a x D Cz By Ax z y x M C B A n z z C y y B x x A ϖϖ