第二版工程光学第六章分解

合集下载

第二版工程光学分解课件

第二版工程光学分解课件
详细描述:当光从光密介质射向光疏介质时,如 果入射角大于临界角,光波将被完全反射回原介 质,不进入光疏介质,这种现象称为全反射。全 反射是光的波动性的一种表现。
02
光学系统与元件
透镜与光学镜头
透镜的分类
光学镜头的应用
根据透镜的形状和焦距,透镜可以分 为球面透镜、非球面透镜、双凸透镜 、双凹透镜和凸凹透镜等。
折反镜由反射镜和折射镜 组成,通过改变光路,将 光线聚焦在一点上。
折反镜的应用
在望远镜、显微镜和照相 机等光学仪器中广泛应用 ,用于改变光路和聚焦光 线。
滤光片与分光仪
滤光片的分类
根据滤光片的透过光谱, 滤光片可以分为可见光滤 光片、红外滤光片、紫外 滤光片等。
分光仪的结构
分光仪由棱镜或光栅等分 光元件和探测器组成,可 以将光谱分成不同的波段 。
非线性光学材料
研究和发展新型非线性光学材料,如有机晶体、 无机晶体、光折变晶体等,以提高非线性光学效 应的转换效率。
非线性光学应用
非线性光学在光通信、光信息处理、光计算等领 域有广泛应用,如光参量振荡、倍频、和频等。
光子学与光子技术
光子学基础
01
研究光子的产生、传播、相互作用等基本规律,以及光子与物
在摄影、摄像、显微镜、望远镜等领 域广泛应用,用于聚焦光线、改变光 路等。
光学镜头的基本参数
包括焦距、光圈、视场角、相对孔径 等,这些参数决定了镜头的光学性能 和使用范围。
反射镜与折反镜
01
02
03
反射镜的分类
根据反射面的形状,反射 镜可以分为平面反射镜、 凹面反射镜和凸面反射镜 等。
折反镜的结构
质的相互作用机制。
光子器件
02

工程光学课后答案-第二版-郁道银

工程光学课后答案-第二版-郁道银

工程光学第一章习题1、已知真空中的光速c=3 m/s,求光在水(n=1.333)、冕牌玻璃(n=1.51)、火石玻璃(n=1.65)、加拿大树胶(n=1.526)、金刚石(n=2.417)等介质中的光速。

解:则当光在水中,n=1.333时,v=2.25 m/s,当光在冕牌玻璃中,n=1.51时,v=1.99 m/s,当光在火石玻璃中,n=1.65时,v=1.82 m/s,当光在加拿大树胶中,n=1.526时,v=1.97 m/s,当光在金刚石中,n=2.417时,v=1.24 m/s。

2、一物体经针孔相机在屏上成一60mm大小的像,若将屏拉远50mm,则像的大小变为70mm,求屏到针孔的初始距离。

解:在同种均匀介质空间中光线直线传播,如果选定经过节点的光线则方向不变,令屏到针孔的初始距离为x,则可以根据三角形相似得出:所以x=300mm即屏到针孔的初始距离为300mm。

3、一厚度为200mm的平行平板玻璃(设n=1.5),下面放一直径为1mm的金属片。

若在玻璃板上盖一圆形纸片,要求在玻璃板上方任何方向上都看不到该金属片,问纸片最小直径应为多少?解:令纸片最小半径为x,则根据全反射原理,光束由玻璃射向空气中时满足入射角度大于或等于全反射临界角时均会发生全反射,而这里正是由于这个原因导致在玻璃板上方看不到金属片。

而全反射临界角求取方法为:(1)其中n2=1, n1=1.5,同时根据几何关系,利用平板厚度和纸片以及金属片的半径得到全反射临界角的计算方法为:(2)联立(1)式和(2)式可以求出纸片最小直径x=179.385mm,所以纸片最小直径为358.77mm。

4、光纤芯的折射率为n1、包层的折射率为n2,光纤所在介质的折射率为n0,求光纤的数值孔径(即n0sinI1,其中I1为光在光纤内能以全反射方式传播时在入射端面的最大入射角)。

解:位于光纤入射端面,满足由空气入射到光纤芯中,应用折射定律则有:n0sinI1=n2sinI2 (1)而当光束由光纤芯入射到包层的时候满足全反射,使得光束可以在光纤内传播,则有:(2)由(1)式和(2)式联立得到n0 sinI1 .5、一束平行细光束入射到一半径r=30mm、折射率n=1.5的玻璃球上,求其会聚点的位置。

工程光学第6章

工程光学第6章

%轴外点主光线细光束光路计算 a=(1.51633*cos(I11)-cos(I1))/r1; T11=1.51633*cos(I11)*cos(I11)/a; S11=1.51633/a;
a=(1.6727*cos(I22)-1.51633*cos(I2))/r2;
D=(h1-h2)/sin(U11);
按实际光线计算,可得实际像高:
ya (La l) tanUa yz (Lz l) tanU z yb (Lb l) tanUb 四. 折射平面光路计算 I U 远轴光线 sin I n sin I / n
U I L L tanU / tanU
四. 折射平面光路计算
近轴光线
%第二近轴光线光路计算 D1=20; r1=62.5; r1=62.5;
r2=-43.65; r3=-124.35;
d1=4.0; d2=2.5; x1=r1-(r1^2-(D1/2)^2)^(1/2) %0.8052;
u1=-3*pi/180; l1=x1;
i1=(l1-r1)*u1/r1; i11=i1/1.51633; u11=u1+i1-i11;
l11=(i11*r1/u11)+r1; l1=l11-d1; u1=u11; i1=(l1-r2)*u1/r2; i11=1.51633*i1/1.67270; u11=u1+i1-i11; l11=(i11*r2/u11)+r2; l1=l11-d2; u1=u11 i1=(l1-r3)*u1/r3; i11=1.67270*i1/1; u11=u1+i1-i11%像方孔径角0.0521 l11=(i11*r3/u11)+r3%像方截距3.3814 y1=(l11-97.009)*u11%像高 5.2306 clear;

工程光学课后答案解析完整版机械工业出版社第二版郁道银

工程光学课后答案解析完整版机械工业出版社第二版郁道银

第一章习题1、已知真空中的光速c=3m/s,求光在水(n=1.333)、冕牌玻璃(n=1.51)、火石玻璃(n=1.65)、加拿大树胶(n=1.526)、金刚石(n=2.417)等介质中的光速。

解:则当光在水中,n=1.333时,v=2.25m/s,当光在冕牌玻璃中,n=1.51时,v=1.99m/s,当光在火石玻璃中,n=1.65时,v=1.82m/s,当光在加拿大树胶中,n=1.526时,v=1.97m/s,当光在金刚石中,n=2.417时,v=1.24m/s。

2、一物体经针孔相机在屏上成一60mm大小的像,若将屏拉远50mm,则像的大小变为70mm,求屏到针孔的初始距离。

解:在同种均匀介质空间中光线直线传播,如果选定经过节点的光线则方向不变,令屏到针孔的初始距离为x,则可以根据三角形相似得出:所以x=300mm即屏到针孔的初始距离为300mm。

3、一厚度为200mm的平行平板玻璃(设n=1.5),下面放一直径为1mm的金属片。

若在玻璃板上盖一圆形纸片,要求在玻璃板上方任何方向上都看不到该金属片,问纸片最小直径应为多少?解:令纸片最小半径为x,则根据全反射原理,光束由玻璃射向空气中时满足入射角度大于或等于全反射临界角时均会发生全反射,而这里正是由于这个原因导致在玻璃板上方看不到金属片。

而全反射临界角求取方法为:(1)其中n2=1,n1=1.5,同时根据几何关系,利用平板厚度和纸片以及金属片的半径得到全反射临界角的计算方法为:(2)联立(1)式和(2)式可以求出纸片最小直径x=179.385mm,所以纸片最小直径为358.77mm。

4、光纤芯的折射率为n1、包层的折射率为n2,光纤所在介质的折射率为n0,求光纤的数值孔径(即n0sinI1,其中I1为光在光纤内能以全反射方式传播时在入射端面的最大入射角)。

解:位于光纤入射端面,满足由空气入射到光纤芯中,应用折射定律则有:n0sinI1=n2sinI2(1)而当光束由光纤芯入射到包层的时候满足全反射,使得光束可以在光纤内传播,则有:(2)由(1)式和(2)式联立得到n0 sinI1.5、一束平行细光束入射到一半径r=30mm、折射率n=1.5的玻璃球上,求其会聚点的位置。

工程光学上篇:第六章 光线的光路计算及像差理论

工程光学上篇:第六章  光线的光路计算及像差理论
L 'FC L 'F L 'C l 'FC l 'F l 'C
二、位置色差的校正
(图6-14)
§6.7.2 倍率色差
(放大率色差或垂轴色差)
一、定义
轴上点两种色光的主光线在消单色光像差的高斯 像面上交点高度差。(图6-15)
对目视光学系统:
Y 'FC Y 'F Y 'C
y 'FC y 'F y 'C
§6.3.1 球差的定义
一、轴向球差
轴上点发出的同心光束经光学系统后,不再是同心 光束,不同入射高度的光线交光轴于不同位置,相对近 轴像点有不同程度的偏离。(图6-4)
L ' L ' l '
二、垂轴球差
由于球差的存在,在高斯像面上的像点已不是一个 点,而是一个圆形的弥散斑。
T ' L 'tgU ' (L ' l ')tgU '
Lz
h tgU
物体在有限远处时三条光线初始数据:
z
上光线
tgUa y h Lz L
La
Lz
h tgU a
主光线
tgU z
y Lz L
Lz
下光线
tgU b
yh Lz
L
Lb
Lz
h tgU a
§6.2.2.2 远轴光线光路计算
利用实际光线的计算公式和过渡公式逐面计 算,得实际像高:
y 'a (L 'a l ')tgU 'a y 'z (L 'z l ')tgU 'z y 'b (L 'b l ')tgU 'b

工程光学韩军第二版第六章课后答案

工程光学韩军第二版第六章课后答案

工程光学韩军第二版第六章课后答案1、23.口罩成为常态防疫“神器”,戴眼镜的人们常因口罩佩戴出现镜片模糊的情况,这是液化现象。

下列实例中与它物态变化相同的是()[单选题] *A.初春,冰雪消融B.夏天,清晨草叶或树叶上形成露珠(正确答案)C.深秋,屋顶的瓦上结了一层霜D.冬天,室外冰冻的衣服变干了2、1.与头发摩擦过的塑料尺能吸引碎纸屑。

下列与此现象所反映的原理相同的是()[单选题] *A.行驶的汽车窗帘被吸出去B.挤压后的吸盘吸在光滑的墙上C.用干燥的双手搓开的塑料袋会吸在手上(正确答案)D.两个表面光滑的铅块挤压后吸在一起3、关于安全用电,下列做法中正确的是()[单选题]A.更换灯泡时先断开电源开关(正确答案)B.在高压线下放风筝C.家用电器电线绝缘皮破损了仍继续使用D.用湿布擦拭正在工作的电视机4、2.物体的加速度a=0,则物体一定处于静止状态.[判断题] *对错(正确答案)5、做匀速直线运动的物体,其机械能保持不变[判断题] *对错(正确答案)答案解析:匀速直线运动的物体,动能保持不变,重力势能无法判断,机械能无法判断。

6、下列说法正确的是()[单选题]A.指南针能够指南北,是由于受到地磁场的作用(正确答案)B.能够自由转动的小磁针静止时,其N极指向地理南极附近C.磁体的磁性越强,能吸引的物质种类就越多D.磁体之间的作用是通过磁场发生的,但磁场并不存在7、使用干冰进行人工增雨过程中,干冰先升华后液化[判断题] *对错(正确答案)答案解析:干冰升华吸热,使空气中的水蒸气液化或者凝华8、电饭锅、电烤箱和微波炉都利用了电流的热效应[判断题] *对错(正确答案)答案解析:微波炉没有利用电流热效应9、D.环形电流的电流强度跟m成反比(正确答案)下列说法不符合分子动理论观点的是()*A.用气筒打气需外力做功,是因为分子间的后斥力作用(正确答案)B.温度升高,布朗运动显著,说明悬浮颗粒的分子运动剧烈C.相距较远的两个分子相互靠近的过程中,分子势能先减小后增大D.相距较远的两个分子相互靠近的过程中,分子间引力先增大后减小(正确答案)10、2.高空雨滴下落的运动是自由落体运动.[判断题] *对错(正确答案)11、89.甲、乙两种物质的V﹣m关系图象如图所示,分析图象可知( ) [单选题] *A.ρ甲:ρ乙=1:4(正确答案)B.ρ甲:ρ乙=4:1C.若m甲=m乙,则V甲<V乙D.若V甲=V乙,则m甲>m乙12、45.关于电冰箱,下列说法正确的是()[单选题] *A.将水放入冷冻室,水会液化B.打开冷冻室的门会看到“白气”,这是汽化现象C.冷冻室侧壁有时会有霜,这是水蒸气凝固形成的D.食品在冷藏室里能保鲜,利用了制冷剂汽化吸热(正确答案)13、当导体中的电流方向改变时,导体在磁场中的受力方向就会改变[判断题] *对错(正确答案)答案解析:在磁场方向不变的前提下14、2022年北京-张家口将举办第24届冬季奥林匹克运动会,我国提出“三亿人参与冰雪运动”的目标。

物理光学与应用光学第二版第六章

物理光学与应用光学第二版第六章

第 6 章 光的吸收、色散和散射
若将 n~表示成实部和虚部的形式,n~ni, 则 有
n ~ 2 ( n i) 2 ( n 2 2 ) i2 n (6.1-13)
将(6.1-13)式与(6.1-12)式进行比较,可得
n2
2
1
Ne2
0m
(02
02 2 2)2
l=1/K时,光强减少为原来的1/e。若引入消光系数η描述光强
的衰减,则吸收系数K与消光系数η有如下关系:
K 4
由此,朗伯定律可表示为
(6.2-3)
4 l
I I0e
(6.2-4)
各种介质的吸收系数差别很大,对于可见光,金属的
K≈106cm-1,玻璃的K≈10-2cm-1,而一个大气压下空气的K≈105cm-1。这就表明,非常薄的金属片就能吸收掉通过它的全部 光能,因此金属片是不透明的,而光在空气中传播时, 很少
同时,由于电偶极矩随时间变化,这个电偶极子将辐射次波。
利用这种极化和辐射过程, 可以描述光的吸收、色散和散射。
为简单起见,假设在所研究的均匀色散介质中,只有一种
分子,并且不计分子间的相互作用,每个分子内只有一个电子
作强迫振动, 所构成电偶极子的电偶极矩大小为
p=-er
(6.1-2)
式中,e是电子电荷;r是电子离开平衡位置的距离(位移)。如 果单位体积中有N个分子,则单位体积中的平均电偶极矩(极化 强度)为

P(02
Ne2 m
2)i
E~(z)eit
(6.1-8)
由电磁场理论, 极化强度与电场的关系为
P0E
(6.1-9)
第 6 章 光的吸收、色散和散射

工程光学 第六章

工程光学 第六章

则: 所以:
A1 A2hm
4 2 m
2
h 2 4 h 4 L A h ( ) A2 hm ( ) hm hm
'
可由上式求得任意h值的球差值。
微分上式,并令其为零
dL' h 2 K [1 2( ) ] 0 dh hm
h 2 1 1 ( ) h hm 0.707hm hm 2 2
二级球差 三级球差
初级球差
‥‥‥
大部分系统的三级以上球差系数为小量:
L' A1h12 A2h14
L' a1U12 a2U14 小孔径光学系统主要考虑初级球差
大孔径光学系统必须考虑高级球差
光学系统的球差分布公式
单个折射面的球差分布系数可写为:
niL sin U sin I sin I ' sin I ' sin U S 1 1 1 cos I U cos I U cos I I ' 2 2 2
B’b 出瞳
B’z B’a
Y’b
Y’z
Y’a
-U’a P’ -U’z -U’b
O A’o
--L’b
--L’z --L’a --L’
子午面上子午光束和弧矢面上弧矢光束的计算。
Iz
I’z
n ' cos2 I z' n cos2 I z n ' cos I z' n cos I z P ' t r t
L
' 0.707
1 2 1 4 1 1 4 1 4 A h [( ) ( ) ] A2 hm ( ) A2 hm 2 4 4 2 2

工程光学第六章像差理论解读

工程光学第六章像差理论解读

LF 0.707h LD 0.707h LC 0.707h LD 0.707h LFCD
20
二级 光谱
并称两种波长的球差之差称为 色球差,表示为:
LF LC LFC
lF LC lC LF lFC LFC
为此作一B和球心C的辅助轴,则B点是辅助光轴上的一点,则三 条光线a、b、z对辅助轴相当于三条不同孔径角的轴上入射光线, 则它们在辅助光轴上存在球差且不相等。三条光线不能交于一点, 这样使得出射光线a′、b′不再关于主光轴z′对称。 8
则上下光线对的交点到主光线的垂直距离称为子午彗差。 如用个光线在像面上的交点值来表示,则子午彗差为: 1 KT Ya Yb Yz 2 对弧矢面的情况:弧矢光束中的前后光线c、d入射前对称 于主光线,由于弧矢光线对称子午面,它们折射后仍然交 于子午面内的同一点。但它们的折射情况与主光线不同, 因此并没有交于主光线上。这样出射光线对不再关于主光 线对称,其交点到主光线的垂直距离称为弧矢彗差。
B点的 理想 像点
B点的 实际 像点
16
可见,轴外点B的实际像点偏离了理想像点,产生畸变; 而轴上点A的实际像点与理想像点重合,因此轴上点不存 在畸变。 畸变的度量有: ①绝对畸变:即主光线像点的高度与理想像点的高度之差。
y y z y
z
实际 像高
理想 像高
②相对畸变:即像对于像高的畸变,常用百分比表示。
xt lt l ls l xs
有像散必然有场曲,但如果没有像散存在,像面弯曲现 象也会因球面光学系统的本身特性而存在。
球面 物体
折射 球面
理想像 平面14源自根据物像同向移动的原则,B的像点进一步偏离理想像平面 P′,这种偏离随视场的大小而变化,使得垂直于光轴的平面 物体经球面成像后变得 弯曲,这种弯曲还没有考虑像散的 影响,把像散为0时的像面弯曲称为匹兹伐场曲。

工程光学第六章像差理论重点讲解

工程光学第六章像差理论重点讲解

校对公式:
h lu lu nuy nuy J
最后可计算出像点位置和系统各基点位置。
焦点位置及焦距计算:l1 , u1 0
f ' h1 / u'k
2、轴外物点近轴光线光路计算(第二近轴光线)
仍用近轴光线光路计算公式和校对公式,所有量均注以下标z.
已知:物方物位、入瞳位置和物高,即 l, lz , uz 。 求解:像方物位、出瞳位置和像高,即 l, lz , uz 。
i
l
r
r
u(当l1
时, u1
0,i1
h1
/
r1)
i' n i
n'
u' u i i'
l' r(1 i' )
u'
l' n'lr
n'l n(l r)
第二节 光线的光路计算
对于有k个面的折射系统,需利用根据过渡公式:
过渡公式:
lk lk1 dk 1 uk uk 1 nk nk 1
对于小视场的光学系统,例如望远物镜和显微物镜等,只 要求校正与孔径有关的像差,所以只需计算上述第一种光线。 对大孔径、大视场的光学系统,如照相物镜等,要求校正所 有像差,所以需要计算上述三种光线。
第二节 光线的光路计算
由已知条件:
光学系统的结构参数(r,d,n)
物体的位置和大小 入瞳的位置和大小
解决问题:
第一节 概述
像差校正:
在实际光学系统中,各种像差是同时存在的,像差 影响光学系统成像的清晰度、相似性和色彩逼真度等 ,就降低了成像质量。故像差的大小反映了光学系统 质量的优劣。
除了平面镜成像以外,没有像差的光学系统是不 存在的。完全消除像、色差是不可能的,针对光学系 统的不同用途,只要把像、色差降低在某范围内,使 光接收器不能分辨,或者说这种差别只要能骗过光接 收器,就可以认为是理想的。

工程光学第二版习题答案(李湘宁-贾志宏)汇总重点

工程光学第二版习题答案(李湘宁-贾志宏)汇总重点

工程光学第二版习题答案(李湘宁-贾志宏)汇总重点第一章习题1、已知真空中的光速c=3m/,求光在水(n=1.333)、冕牌玻璃(n=1.51)、火石玻璃(n=1.65)、加拿大树胶(n=1.526)、金刚石(n=2.417)等介质中的光速。

解:则当光在水中,n=1.333时,v=2.25m/,当光在冕牌玻璃中,n=1.51时,v=1.99m/,当光在火石玻璃中,n=1.65时,v=1.82m/,当光在加拿大树胶中,n=1.526时,v=1.97m/,当光在金刚石中,n=2.417时,v=1.24m/。

2、一物体经针孔相机在屏上成一60mm大小的像,若将屏拉远50mm,则像的大小变为70mm,求屏到针孔的初始距离。

解:在同种均匀介质空间中光线直线传播,如果选定经过节点的光线则方向不变,令屏到针孔的初始距离为某,则可以根据三角形相似得出:所以某=300mm即屏到针孔的初始距离为300mm。

3、一厚度为200mm的平行平板玻璃(设n=1.5),下面放一直径为1mm的金属片。

若在玻璃板上盖一圆形纸片,要求在玻璃板上方任何方向上都看不到该金属片,问纸片最小直径应为多少?解:令纸片最小半径为某,则根据全反射原理,光束由玻璃射向空气中时满足入射角度大于或等于全反射临界角时均会发生全反射,而这里正是由于这个原因导致在玻璃板上方看不到金属片。

而全反射临界角求取方法为:其中n2=1,n1=1.5,同时根据几何关系,利用平板厚度和纸片以及金属片的半径得到全反射临界角的计算方法为:(2)联立(1)式和(2)式可以求出纸片最小直径某=179.385mm,所以纸片最小直径为358.77mm。

4、光纤芯的折射率为n1、包层的折射率为n2,光纤所在介质的折射率为n0,求光纤的数值孔径(即n0inI1,其中I1为光在光纤内能以全反射方式传播时在入射端面的最大入射角)。

解:位于光纤入射端面,满足由空气入射到光纤芯中,应用折射定律则有:n0inI1=n2inI2(1)而当光束由光纤芯入射到包层的时候满足全反射,使得光束可以在光纤内传播,则有:(2)由(1)式和(2)式联立得到n0inI1.5、一束平行细光束入射到一半径r=30mm、折射率n=1.5的玻璃球上,求其会聚点的位置。

工程光学:第六章_像差理论

工程光学:第六章_像差理论
n / n
3、不晕点(齐明点)
★ 物、像位置:
L (n n)r / n L (n n)r / n
I U
nL nL
nL / nL n / n2
应用:齐明透镜
4、消除球差的方法
(1)加光阑,选择近轴光束;
(2)正、负透镜组合进行校正;
(3)采用非球面透镜(如菲涅耳螺纹透镜)。
5、小结
高斯像面
A0
B B0
B KT
三、彗形像差(Coma,Comatic Aberration)
(1)像点位置的轴向偏离(球差): ——表现在沿辅轴方向上。
(2)高斯像面上的垂轴变化:
所有光线在高斯面上仍不交于同一像 点,并且不是一个简单的弥散圆斑,而 形成彗形像差!
★ 透镜截面
B
高斯像面
A0
A
★ 子午面
BB0
★尖端亮点:近轴细光束与主光线的交点. B KT
2、彗差:轴外物点发出的宽光束,经过透镜不同环
带的光线束(不同孔径角),在高斯像面上形成一 系列大小不同、相互交叠的弥散圆斑;各圆斑中心 在一条直线上,与主轴有不同的距离;形成一个有 尖端亮点、如同彗星形状的像。
3、通常光学系统的彗形像差
4、物理意义
a. 球面像差; b. 彗形像差;
宽光束引起的
c. 像散; d. 像场弯曲; 远轴物、窄光束引起的 e. 畸变
2、几何像差
产生原因:
sin
2
5
7
3! 5! 7!
sin
近轴光学:理想成像
(2)色像差(Chromatic Aberrations):
f. 位置(轴向)色差 g. 倍率(垂轴)色差
非单色物引起的 n n()

工程光学第6章 像差概论

工程光学第6章 像差概论
17
18
校正 • 光阑位置 • 同心原则 • 双分离透镜
19
§6.4 细光束场曲
一、场曲与轴外球差
子午像面:各视场的子午像点构成的像面。 弧矢像面:各视场的弧矢像点构成的像面。
像散和场曲
视场中心(轴上像点):细光束理想成像,像散为0。 即子午像面、弧矢像面重合且与理想像面相切。
细光束的子午场曲和弧矢场曲计算公式:
• 色差分为位置色差和倍率色差两种。前者是由于不同波 长的光线会聚点不同而产生彩色弥散现象,后者是由于 镜头对不同波长的光的放大率不同而引起的。
31
一、位置色差 1.光学现象及数学表达式
2.
LF C LF LC
lF ClF lC
12 3
C D F
32
• 色差在近轴区也存在,所以它比球差更严 重地影响光学系统的成像质量。
轴上点球差
• 共轴球面系统:单透镜不能校球差,需正 负透镜组合。
• 齐明透镜 • 减小光阑直径
8
§6.2 彗差
子午面:光轴和主光线决定的面; 弧矢面:过主光线且与子午面垂直。
9
一、光学现象及定量表示: 1、光学现象
轴外物点在理想像面上形成的像点如同彗星状的光斑, 靠近主光线的细光束交于主光线形成一亮点,而远离主光线 的不同孔径的光线束形成的像点是远离主光线的不同圆环。
36
§6.7 像差综述
• 任何光学系统都有一定的孔径和视场,所 谓某种像差的校正,也仅是对一个孔径带 或一个视场点进行校正,如对轴上点球差 是对边缘光线进行校正,而对色差是对 0.707带光进行校正。
• 所谓像差校正也是将像差校正到相应的像 差容限内,而不可能使其都为零。
37
• 一般来说,七种像差中,球差、位置色差为轴上点 像差,其余为轴外点像差;球差、彗差、位置色差 属于宽光束像差,像散、场曲、畸变、倍率色差属 细光束像差。

第六章.像差(工程光学)第二讲

第六章.像差(工程光学)第二讲

I
E I’ h n’ U’ C B’ r
4
△A’CE中,正弦定理有:
sin U sin I ' r L r
' '
B y -U A
n O
A’ -y’

L r sin I r sin U '
' '
ห้องสมุดไป่ตู้
-L
L’
5
由 将
3
、 4
L r sin I sin U ' 可以推出: L' r sin I ' sin U
y L r ' ' y L r
' '
y Lr ' y' L r
sin I n' ' sin I n
根据折射定律有: n sin I n sin I

sin I sin U 3 △ACE中,正弦定理有: L r r

Lr sin I r sin U
初级场曲 二级场曲
三级场曲
6、场曲的分布 初级子午场曲和弧矢场曲的分布式分别为: k 1 xt' ' '2 (3S III S IV ) 2nk uk 1 k 1 初 级 像 散 x' ( S III S IV ) s ' ' 2 分布系数 2nk uk 1
(6-46) (6-47) (6-48) (6-49)
对于垂直于光轴平面内的轴上点和轴外点(小视场),理想 成像的条件是正弦条件,即 当物体位于有限远时: 当物体位于无限远时:
nysinU n' y'sinU '
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
接收器所能接收的波段范围两边缘附近的谱线校 正
色差,同时接收器的光谱特性也直接受光源和光 学
系统的材料限制,设计时应使三者的性能匹配好,
尽可能使光源辐射的波段与最强谱线、光学系统 透
过的波段与最强谱线和接收器所能接收的波段与 灵
二、像差计算的谱线选择
不同光学系统具有不同的接收器,因此在计算和校正像
n λ ( n λ 1 n λ 2 ) / 2 , ν λ ( n λ 1 ) /n λ 1 ( n λ 2 )
第三节 轴上点的球差
一、球差的定义及表示方法 由第二章实际光线得光路计算公式知,物距L为定值 时,像距 L 是孔径角 U 的函数。由轴上一点发出光 线,角 U不同,通过光学系统后有不同的像距 L 。 即轴上点发出的同心光束经光学系统后,不再是同 心光束,不同入射高度 h(U) 的光线交于光轴不同位 置,相对于近轴像点(理想像点)有不同程度的偏 离,这种偏离称为轴向球差,简称球差。用 L 表示:
差时选择的谱线不同。
1、目视光学系统
目视光学系统的接收器是人的眼睛。由人眼视可函数曲
线
38~076n0m
可其知,人眼只(λ对λ波55长45.n1在65nmm )
范围的波段有响应,
(λ58.39nm )
中最灵敏的波长
,故目视光学系统一般选择靠

(λ灵敏48波.16长n的m )D光 (λ65.36n或m )e光
校正单

像差。用e光校n D 正,ν 单D 色(n 像F差 1 更)/为n (F 合 n 适C ) ,对近轴区两端的F 光
和C光
校正色差。
选择光学材料相应的参数是:
二、像差计算的谱线选择
2、普通照相系统 照相系统的光能接收器是照相底片,一般照相乳胶对蓝光 角灵敏,所以对蓝光F光校正单色像差,而对D光和G′ (λ43.14nm ) 校正色差。实际上,各种照相乳胶的光谱灵 敏度不尽相同,并常用目视法调焦,故也可以与目视系统 一样来选择谱线。光谱材料相应的参数指标是
是根据光学系统的作用和接收器的特性把影响像 质
的主要像差校正到某一个公差范围内,是接收器 不
能察觉,即可认为像质是令人满意的。
一、基本概念
总之,由于实际光学系统的成像不完善,光线经光学系统
各表面传输会形成多种像差,使成像产生模糊、变形等缺 陷。
因此像差就是光学系统成像不完善程度的描述。
光学系统设计的一项重要工作就是要校正这些像差,使成
像质量达到技术要求。光学系统的像差可以用几何像差来

轴上点像差 球差
述,包括单ห้องสมุดไป่ตู้色像差
像 差
轴外点像差
彗差 象散 场曲
色差 位置色差
畸变
倍率色差
二、像差计算的谱线选择
计算校正像差时的谱线选择主要取决于光能接收 器的光谱特性。基本原则是: 对光能接收器的最灵敏的谱线校正单色像差,对
ni,νi (ni 1)/n25 7nh)
二、像差计算的谱线选择
4、特殊光学系统 有些光学系统,例如某些激光光学系统,只需某一波长 的单色照明,所以只对使用波长校正单色像差,而不校正 色差。 对应用可见光谱区以外的某一个波段的光学系统(如夜
视仪),若其光谱区范围从 λ1 到 λ2 ,则其光学参数是
波面的偏差称为波像差,简称波差。 由于波像差的大小可直接用于评价光学系统的成
像质量,而波像差与几何像差之间又有着直接的
一、基本概念
除平面反射镜成像之外,没有像差的光学系统是 不存在的。实践表明,完全消除像差是不可能的,
也是没有必要的,因为所有的光能探测器,包括 人
眼都具有像差,或者说具有一定缺陷。光学设计 总
n F ,ν F (n F 1 )/n ( G n D )
对于天文照相光学系统,所用感光乳胶的灵敏区更偏于蓝 光一端,并且不用目视调焦,所以常用G′光校正单色像 差,对h光 (λ40.74nm ) 和F光校正色差。
二、像差计算的谱线选择
3、近红外和近紫外的光学系统 对近红外光学系统,一般对C光校正单色像差,对d光 (λ58.67nm ) 和A′光 (λ76.28nm ) 校正色差。 对近紫外光学系统,一般对i光 (λ36.05n校m )正单色像 差,而对 λ25n7m和h光校正色差。相应的光学材料的参 数是 nC,νC(nC1)/(nd nA)
的大小和位置也不相同,这种不同色光的成像差 异
一、基本概念
若基于波动光学理论,在近轴区内一个物点发出
的球面波经过光学系统后仍然是一球面波,由于 衍
射现象的存在,一个物点的理想像是一个复杂的 艾
里斑。 对于实际的光学系统,由于衍射现象的存在,经
光学系统形成的波面已不是球面,实际波面与理 想
些像差的原因及校正这些像差的方法。
第一节 概述
一、基本概念 在近轴光学系统中,根据精确的球面折射公式,导出在 siθn θ,co θ s1时的物象大小和位置,即理想光学系统的物 象关系式。 一个物点的理想像仍然是一个点,从物点发出的所有光线 通过光学系统后都会聚于其像点。 近轴光学系统只适用于近轴的小物体以细光束成像。 对任何一个实际光学系统 而言,都需要一定的相对孔径和 视场,恰恰是相对孔径和视场这两个因素才与系统的功能和 使用价值紧密相连。因此,实际的光路计算,远远超过近轴 区域所限制的范围,物象的大小和位置与近轴光学系统计算 的结果不同。这种实际像与理想像之间的差异称为像差。
一、基本概念
正弦函数的级数展开为:
siθ nθθ3θ5θ7 3! 5! 7!
利用展开式中的第一项 代θ 替三角函数 sin,θ 导 出了近轴公式。用 θ 代替sinθ 时忽略了级数展开 式中的高次项,而这些高次项即是产生像差的原因 所在。 由于光学系统的成像均具有一定的孔径和视场, 因此对不同孔径的入射光线其成像的位置不同,不 同视场的入射光线其成像的倍率也不同,子物面和 弧矢面光束成像的性质也不尽相同,
一、基本概念
因此,单色光成像会产生性质不同的五种像差,
即球差、彗差(正弦差)、象散、场曲和畸变, 统
称为单色像差。
实际上绝大多数的光学系统都是对白光或复色光
成像的,由于同一光学介质对不同的色光有不同 的
折射率,因此,白光进入光学系统后,由于折射 率
不同而有不同的光程,这样就导致了不同色光成 像
第六章
光线的光路计算 及像差理论
第六章 光线的光路计算及像差理论
实际光学系统与理想光学系统有很大差异,即物
空间的一个点物发出的光线经实际光学系统后, 不
会再会聚于像空间的一点,而是一个弥散斑,弥 散
斑的大小和形状与系统的像差有关。本章主要介 绍
实际光学系统的单色像差和色差的基本概念产生 这
相关文档
最新文档