传热学习题课

合集下载

传热学-习题课1

传热学-习题课1

化工与材料工程学院---Department of Chemical and Materials Engineering
如图所示的双层平壁中,导热系数λ 7、如图所示的双层平壁中,导热系数λ1,λ2为定 假定过程为稳态, 值,假定过程为稳态,试分析图中三条温度分布曲 线所对应的λ 的相对大小。 线所对应的λ1和λ2的相对大小。 由于过程是稳态的,因此在三种情况下, 答:由于过程是稳态的,因此在三种情况下,热 流量分别为常数 分别为常数, 流量分别为常数,即:
所以对情形① 所以对情形①:

对情形② 对情形②:

对情形③ 对情形③:

化工与材料工程学院---Department of Chemical and Maபைடு நூலகம்erials Engineering
8、试分析室内暖气片的散热过程,各个环节有哪些热量传递方式 试分析室内暖气片的散热过程, 以暖气片管内走热水为例。 ?以暖气片管内走热水为例。 有以下换热环节及传热方式: 答:有以下换热环节及传热方式: 由热水到暖气片管道内壁,热传递方式为强制对流换热; 由热水到暖气片管道内壁,热传递方式为强制对流换热; 由暖气片管道内壁到外壁,热传递方式为固体导热; 由暖气片管道内壁到外壁,热传递方式为固体导热; 由暖气片管道外壁到室内空气, 由暖气片管道外壁到室内空气,热传递方式有自然对流换热和辐射 换热。 换热。 分别写出Nu Re、Pr、Bi数的表达式 并说明其物理意义。 Nu、 数的表达式, 9、分别写出Nu、Re、Pr、Bi数的表达式,并说明其物理意义。 :(1 努塞尔(Nusselt) (Nusselt)数 答:(1)努塞尔(Nusselt)数, ,它表示表面上无量纲温度 h l 梯度的大小。 梯度的大小。 Nu = λ 雷诺(Reynolds) (Reynolds)数 (2)雷诺(Reynolds)数, u ∞ l ,它表示惯性力和粘性力的相对大 Re = ν 小。 普朗特数, (3)普朗特数,Pr = ν ,它表示动量扩散厚度和能量扩散厚度的相 a 对大小。 对大小。 hl Bi = 毕渥数, (4)毕渥数, ,它表示导热体内部热阻与外部热阻的相对大 λ 小。

传热学课后习题

传热学课后习题

第一章1-3 宇宙飞船的外遮光罩是凸出于飞船船体之外的一个光学窗口,其表面的温度状态直接影响到飞船的光学遥感器。

船体表面各部分的表明温度与遮光罩的表面温度不同。

试分析,飞船在太空中飞行时与遮光罩表面发生热交换的对象可能有哪些?换热方式是什么?解:遮光罩与船体的导热遮光罩与宇宙空间的辐射换热1-4 热电偶常用来测量气流温度。

用热电偶来测量管道中高温气流的温度,管壁温度小于气流温度,分析热电偶节点的换热方式。

解:结点与气流间进行对流换热 与管壁辐射换热 与电偶臂导热1-6 一砖墙表面积为12m 2,厚度为260mm ,平均导热系数为1.5 W/(m ·K)。

设面向室内的表面温度为25℃,而外表面温度为-5℃,确定此砖墙向外散失的热量。

1-9 在一次测量空气横向流过单根圆管对的对流换热试验中,得到下列数据:管壁平均温度69℃,空气温度20℃,管子外径14mm ,加热段长80mm ,输入加热段的功率为8.5W 。

如果全部热量通过对流换热传给空气,此时的对流换热表面积传热系数为?1-17 有一台气体冷却器,气侧表面传热系数95 W/(m 2·K),壁面厚2.5mm ,导热系数46.5 W/(m ·K),水侧表面传热系数5800 W/(m 2·K)。

设传热壁可看作平壁,计算各个环节单位面积的热阻及从气到水的总传热系数。

为了强化这一传热过程,应从哪个环节着手。

1-24 对于穿过平壁的传热过程,分析下列情形下温度曲线的变化趋向:(1)0→λδ;(2)∞→1h ;(3) ∞→2h第二章2-1 用平底锅烧水,与水相接触的锅底温度为111℃,热流密度为42400W/m 2。

使用一段时间后,锅底结了一层平均厚度为3mm 的水垢。

假设此时与水相接触的水垢的表面温度及热流密度分别等于原来的值,计算水垢与金属锅底接触面的温度。

水垢的导热系数取为1 W/(m ·K)。

解: δλtq ∆= 2.238110342400111312=⨯⨯+=⋅+=-λδq t t ℃2-2 一冷藏室的墙由钢皮、矿渣棉及石棉板三层叠合构成,各层的厚度依次为0.794mm 、152mm 及9.5mm ,导热系数分别为45 W/(m ·K)、0.07 W/(m ·K)及0.1 W/(m ·K)。

传热学课习题

传热学课习题

传热学课习题第1章习题4. 面积为l m 2、厚度为25mm 的聚氨酯泡沫塑料平板,其两表面的温差为 5℃,导热系数为 0.032W/(m ·K),试计算单位时间通过该平板的热量。

8. 面积为 3×4m 2的一面墙壁,表面温度维持 60℃,环境空气温度维持20℃,空气与壁面的对流换热系数为10W/(m 2·K),试计算这面墙壁的散热量。

9. 一块黑度为0.8的钢板,温度为27℃,试计算单位面积上每小时内钢板所发射的辐射能。

10. 冬季室内空气温度 1f t =20℃,室外空气温温度 2f t =-25℃。

室内、外空气对墙壁的对流换热系数分别为 1α=10 W/(m 2·K)和 2α= 20 W/(m 2·K),墙壁厚度为δ= 360mm ,导热系数λ=0.5W/(m ·K),其面积F =15m 2。

试计算通过墙壁的热量损失。

第2章习题4. 试用傅里叶定律直接积分的方法,求平壁、长圆筒壁及球壁稳态导热下的热流量表达式及各壁内的温度分布。

5. 一铝板将热水和冷水隔开,铝板两侧面的温度分别维持 90℃和 70℃不变,板厚 10mm ,并可认为是无限大平壁。

0℃时铝板的导热系数λ=35.5 W/(m ·K),100℃时λ=34.3 W/(m ·K),并假定在此温度范围内导热系数是温度的线性函数。

试计算热流密度,板两侧的温度为50℃和30℃时,热流密度是否有变化?6. 厚度为20mm 的平面墙的导热系数为 1.3 W/(m ·K)。

为使通过该墙的热流密度q 不超过 1830W/m 2,在外侧敷一层导热系数为0.25 W/(m ·K)的保温材料。

当复合壁的内、外壁温度分别为 1300℃和50℃时,试确定保温层的厚度。

9. 某大平壁厚为25mm ,面积为0.1m 2,一侧面温度保持38℃,另一侧面保持94℃。

通过材料的热流量为1 kW 时,材料中心面的温度为60℃。

《传热学》习题课(辐射换热)

《传热学》习题课(辐射换热)

第九章 辐射换热的计算—复习题
• 5. 什么是一个表面的自身辐射、投入辐射及 有效辐射?有效辐射的引入对于灰体表面系 统辐射换热的计算有什么作用? 答:自身辐射:物体从一个表面由于自身的 辐射性质而发射出动的辐射。 投入辐射:单位时间内投射到表面的单位面 积上的总辐射能。 有效辐射:单位时间内离开表面单位面积的 总辐射能。 作用:避免了在计算辐射换热时出现多次吸 收反射的复杂性。
第八章 热辐射基本定律及物体的 辐射特性—习题
• 8-11 把地球作为黑体表面,把太阳看成是 T=5800K的黑体,试估算地球表面的温度。 已知地球直径为1.29×107m,太阳直径为 1.39×109m,两者相距1.5×1011m。地球对 太空的辐射可视为对0K黑体空间辐射。 4 4 T 5800 • 解: Eb1 C0 5.67
第八章 热辐射基本定律及物体的 辐射特性—习题
• 8-1 一电炉的电功率为1kW,炉丝温度为 847℃,直径为1mm。电炉的效率(辐射 功率与电功率之比)为0.96。试确定所需 炉丝的最短长度。 4
T 0.96 1000 • 解: 0.96 E 0.96C b 0 dl 100 0.96 1000 l 3.425m 4 1120 3 10 5.57 100
第九章 辐射换热的计算—复习题
• 6. 对于温度已知的多表面系统,试总结求解 每一表面净辐射换热量的基本步骤。 答:温度已知时,发射率、辐射能可求出。 可采用网络法或数值方法求解。 但首先应计算出每个面的辐射能Ebi发射率εi, 解系数Xi,j。然后再计算各表面的有效辐射Ji, 最后由 Ebi J i 确定每个表面的净辐射换热 i 1 i 量。
《传热学》习题课(辐射换热)

传热学课后习题精校版

传热学课后习题精校版

导热1-21有一台气体冷却器,气侧表面传热系数1h =95W/(m 2.K),壁面厚δ=2.5mm ,)./(5.46K m W =λ水侧表面传热系数58002=h W/(m 2.K)。

设传热壁可以看成平壁,试计算各个环节单位面积的热阻及从气到水的总传热系数。

你能否指出,为了强化这一传热过程,应首先从哪一环节着手? 解:;010526.0111==h R ;10376.55.460025.052-⨯===λδR ;10724.1580011423-⨯===h R则λδ++=21111h h K =94.7)./(2K m W ,应强化气体侧表面传热。

平板2-2一冷藏室的墙由钢皮矿渣棉及石棉板三层叠合构成,各层的厚度依次为0.794mm.,152mm 及9.5mm ,导热系数分别为45)./(K m W ,0.07)./(K m W 及0.1)./(K m W 。

冷藏室的有效换热面积为37.22m ,室内外气温分别为-2℃及30℃,室内外壁面的表面传热系数可分别按1.5)./(2K m W 及2.5)./(2K m W 计算。

为维持冷藏室温度恒定,试确定冷藏室内的冷却排管每小时需带走的热量。

解:由题意得332211212111λδλδλδ++++-⨯=Φh h t t A =2.371.00095.007.0152.045000794.05.215.11)2(30⨯++++--=357.14W357.14×3600=1285.6KJ2-4一烘箱的炉门由两种保温材料A 及B 组成,且B A δδ2=(见附图)。

已知)./(1.0K m W A =λ,)./(06.0K m W B =λ,烘箱内空气温度4001=f t ℃,内壁面的总表面传热系数)./(501K m W h =。

为安全起见,希望烘箱炉门的外表面温度不得高于50℃。

设可把炉门导热作为一维问题处理,试决定所需保温材料的厚度。

环境温度=2f t 25℃,外表面总传热系数)./(5.922K m W h =。

《传热学》习题课(对流换热部分)精品课件

《传热学》习题课(对流换热部分)精品课件
5-8.取外掠平板边界层的流动由层流转变为 湍流的临界雷诺数(Rec)5×105,试计算 25℃的空气、水及14号润滑油达到Rec数时 所需的平板长度,取u∞=1m/s。 解: Re ul
查附录8和10,25℃时:
最新 PPT
空气: 15.06 16 15.53106 m2 / s
2
水: 1.006 0.805 0.9055106 m2 / s
最新 PPT
第五章 对流换热—习题
5-23.对置于气流中的一块很粗糙的表面进
行传热试验,测得如下的局部换热特征性的
结果:Nu x
0.04
Re
0.9 x
1
Pr 3
其中特征长度x为计算点离开平板前缘的距离。
试计算当气流温度t∞=27℃、流速u∞=50m/s 时离开平板前缘x=1.2m处的切应力。平壁温
最新 PPT
qw1=2qw2 qw2 qw1=0 qw2
第五章 对流换热—习题
5-4.设某一电子器件的外壳可
以简化成附图所示的形状,截
面呈正方形,上、下表面绝热,
而两侧竖壁分别维持在th及tc
(th>tc)。试定性地画出空腔
截面上空气流动的图像。
th
tc
解:th及tc使近壁介质产生密度 差,上下壁面绝热,无热量传
最新 PPT
第五章 对流换热—复习题
5. 对流换热问题完整的数学描写应包括什么 内容?既然对大多数实际对流换热问题尚无 法求得其精确解,那么建立对流换热问题的 数学描写有什么意义? 答:应包括:质量守恒方程式,即连续性方 程;动量守恒方程式,即纳维—斯托克斯方 程;能量守恒方程式。
最新 PPT
第五章 对流换热—复习题
H

《传热学》课后习题答案(第四版)

《传热学》课后习题答案(第四版)

第1章1-3 解:电热器的加热功率: kW W tcm QP 95.16.195060)1543(101000101018.4633==-⨯⨯⨯⨯⨯=∆==-ττ15分钟可节省的能量:kJ J t cm Q 4.752752400)1527(15101000101018.4633==-⨯⨯⨯⨯⨯⨯=∆=-1-33 解:W h h t t A w f 7.45601044.02.061)]10(2[6311)(2121=++--⨯=++-=Φλδ如果取K m W h ./3022=,则W h h t t A w f 52.45301044.02.061)]10(2[6311)(2121=++--⨯=++-=Φλδ即随室外风力减弱,散热量减小。

但因墙的热阻主要在绝热层上,室外风力变化对散热量的影响不大。

第2章2-4 解:按热平衡关系有:)(1222121f w BBA A w f t t h h t t -=++-λδλδ,得:)2550(5.906.01.0250150400-=++-B Bδδ,由此得:,0794.0,0397.0m m A B ==δδ 2-9 解:由0)(2121=+=w w m t t t ℃从附录5查得空气层的导热系数为K m W ⋅/0244.0空气λ 双层时:W t t A w w s 95.410244.0008.078.0006.02)]20(20[6.06.02)(21=+⨯--⨯⨯=+-=Φ空气空气玻璃玻璃λδλδ单层时:W t t A w w d 187278.0/006.0)]20(20[6.06.0/)(21=--⨯⨯=-=Φ玻璃玻璃λδ两种情况下的热损失之比:)(6.4495.411872倍==ΦΦs d题2-15解:这是一个通过双层圆筒壁的稳态导热问题。

由附录4可查得煤灰泡沫砖的最高允许温度为300℃。

设矿渣棉与媒灰泡沫砖交界面处的温度为t w ,则有 23212121ln 21ln 21)(d d l d d l t t πλπλ+-=Φ (a ) 23221211ln )(2ln )(2d d t t l d d t t l w w -=-=Φπλπλ (b ) 65110ln )50(12.02565ln )400(11.0:-⨯=-⨯w w t t 即由此可解得:4.167=w t ℃<300℃又由式(a )可知,在其他条件均不变的情况下,增加煤灰泡沫砖的厚度δ2对将使3d 增大,从而损失将减小;又由式(b )左边可知t w 将会升高。

传热学-习题课-复习

传热学-习题课-复习

解: 油的流量
t2 ) qm 2 c2 (t2 qm1 c1 (t1 t1) 3 4174 (50 20) 4.37kg/s 2148 (100 60)
平均传热温差
) (t1 t2 ) (t1 t2 t t1 t2 ln t1 t2 (100 50) (60 20) 44.81 100 50 ln 60 20
形状因子
S t (3 22)
A
平壁:

t
形状因子
2 l 圆筒壁: t d2 ln d1
d1d 2 球壁: t
例11
解:查表3-2有: S 0.15x
S t 0.8 0.15x 400 50 =12.6W
tf 2 45℃
0.6415W / (m K) 6 2 由此查出流体物性 0.6075 10 m /s Pr 3.925
Ref ud


1.2 0.02 4 39506 10 0.675 106
(1)水被加热的情况
Nuf 0.023Ref0.8 Pr 0.4 0.023 395060.8 3.9250.4 189.1 0.6451 h Nuf 189.1 6064W / (m 2 K) d 0.02
例9
t1 t2 1 1 t t1 r r 1 1 1 r1 r2
(3-13)

热阻
d1d2

t
(3-15)
t R d1d 2
多层球壁
t1 tn1 n d d i 1 i i i 1

传热学习题(含参考答案)

传热学习题(含参考答案)

传热学习题(含参考答案)一、单选题(共50题,每题1分,共50分)l、某厂巳用一换热器使得烟道气能加热水产生饱和蒸汽。

为强化传热过程,可采取的措施中()是最有效,最实用的A、提高水的流速B、在水侧加翅片C、换一台传热面积更大的设备D、提高烟道气流速正确答案:D2、分子筛对不同分子的吸附能力,下列说法正确的是()A、分子越大越容易吸附B、分子极性越弱越容易吸附C、分子越小越容易吸附D、分子不饱和度越高越容易吸附正确答案:D3、生物化工的优点有()。

A、选择性强,三废少B、前三项都是C、能耗低,效率高D、反应条件温和正确答案:B4、有一种30°c流体需加热到80°C'下列三种热流体的热量都能满足要求,应选()有利于节能A、150°C的热流体B、200°c的蒸汽C、300°C的蒸汽D、400°C的蒸汽正确答案:A5、下列物质不是三大合成材料的是()。

A、塑料B、尼龙C、橡胶D、纤维正确答案:B6、若固体壁为金属材料,当壁厚很薄时,器壁两侧流体的对流传热膜系数相差悬殊,则要求提高传热系数以加快传热速率时,必须设法提高()的膜系数才能见效A、无法判断B、两侧C、最大D、最小正确答案:D7、下列阀门中,()不是自动作用阀。

A、闸阀B、止回阀C、疏水阀D、安全阀正确答案:A8、对于反应级数n大于零的反应,为了降低反应器体积,选用()A、全混流反应器接平推流反应器B、全混流反应器C、循环操作的平推流反应器D、平推流反应器正确答案:D9、当提高反应温度时,聚合备压力会()。

A、不变B、增加至10k g/cm2C、降低D、提高正确答案:D10、安全阀应铅直地安装在()A、容器与管道之间B、气相界面位置上C、管道接头前D、容器的高压进口管道上正确答案:B11、环氧乙烧水合生产乙二醇常用下列哪种形式的反应器()A、管式C、固定床D、鼓泡塔正确答案:A12、为了减少室外设备的热损失,保温层外所包的一层金属皮应该是()A、表面光滑,颜色较浅B、上述三种情况效果都一样C、表面粗糙,颜色较浅D、表面粗糙,颜色较深正确答案:A13、离心泵设置的进水阀应该是()。

(完整word版)传热学习题

(完整word版)传热学习题

1-1为测定某材料的导热系数,用该材料制成厚5mm的大平壁,保持平壁两表面间的温差为30℃,并测得通过平壁的热流密度为6210W/m2。

试确定该材料的导热系数。

q=λΔtδ⟹λ=qδΔt=6210×0.00530=1.035W/mK1-6 在测定空气横掠单根圆管的对流传热实验中,得到如下数据:管壁平均温度t w=60℃,空气温度t f =20℃,管子外径d =14mm,加热段长L=80mm,输入加热段的功率Φ=8.6kW。

如果全部热量通过对流换热传给空气,问此时对流传热的表面传热系数多大?Q=hA∆t⟹h=QA∆t=Qπdl∆t=86003.14×0.014×0.08×(60−20)=61135W/m2K1-7 一电炉丝,温度为847℃,长1.5m ,直径2mm,表面发射率为0.95。

试计算电炉丝的辐射功率。

Q=εσAT4= εσπdlT4=0.95×5.67×3.14×0.002×1.5×(8.47+2.73)4= 798.42W2-2 厚度为100mm的大平壁稳态导热时的温度分布曲线为t=a+bx+cx2(x的单位为m),其中a=200℃,b=-200℃/m,c=30℃/m2,材料的导热系数为45 W/(m⋅K)。

(1)试求平壁两侧壁面处的热流密度;(2)该平壁是否存在内热源?若存在的话,强度是多大?(1)q(x)=−λdtdx=−45×(b+2cx)=−45×(−200+60x)=9000−2700xq(0)=9000W/m2q(0.1)= 9000−270=8730W/m2 (2)q v=8730−90000.1=−2700W/m33-5 平壁内表面温度为420℃,采用石棉作为保温材料,若保温材料的导热系数与温度的关系为λ=0.094+0.000125{t}℃ W/(m⋅K),平壁保温层外表面温度为50℃,若要求热损失不超过340W/m2,问保温层的厚度应为多少?保温层平均温度t=0.5×(420+50)=235℃平均导热系数λ̅=0.094+0.000125{t}=0.094+0.000125×235=0.1234W/(m⋅K)q=λΔtδ⟹δ=λΔtq=0.1234×420−50340=0.134m3-26一种火焰报警器采用低熔点的金属丝作为传感元件,其原理是当金属丝受火焰或高温烟气作用而熔断时,报警系统即被触发。

传热学-第2章稳态热传导-习题课

传热学-第2章稳态热传导-习题课

12. 图中所示为纯铝制作的圆锥形截面。其圆形截面
直径为D=ax1/2,其中a=0.5m1/2。小端位于
x1=25mm处,大端位于x2=125mm处,端部温度 分别为T1=600K和T2=400K,周侧面隔热良好。 (1)作一维假定,推导用符号形式
表示的温度分布T(x)的表示式,
画出温度分布的示意图。 (2)计算传热热流量Q。
习题课 一维稳态导热 — 肋片
14. 采用套管式热电偶温度计测量管道内的蒸汽温度,
套管长H=6cm,直径为1.5cm,壁厚为2mm,
导热系数为40W/(m.K),温度计读数为240℃。
若套管根部温度为100℃,
V
蒸汽与套管壁的换热系数
为140W/(m2.K)。
如果仅考虑套管的导热,
t0
试求管道内蒸汽的真实温度。
习题课 一维稳态导热 — 圆筒壁
9. 蒸汽管道的外直径d1=30mm,准备包两层厚度都是 15mm的不同材料的热绝缘层。a种材料的导热系数 λa=0.04W/(m.K),b种材料的导热系数 λb=0.1W/(m.K)。 若温差一定,试问从减少热损失的观点看下列两种方案: (1)a在里层,b在外层; (2)b在里层,a在外层;哪一种好,为什么?
习题课傅立叶定律和导热微分方程应用如图所示的墙壁其导热系数为50wmk厚度为50mm在稳态情况下墙壁内一维温度分布为t2002000x1墙壁两侧表面的热流密度
传热学
第 2 章 稳态热传导 习题课
习题课 傅立叶定律和导热微分方程应用
1. 如图所示的墙壁,其导热系数为50W/(m.K),
厚度为50mm,在稳态情况下墙壁内一维温度
习题课 变导热系数和变截面稳态导热
10. 某炉壁由厚度为250mm的耐火粘土制品层和 厚500mm的红砖层组成。内壁温度为1000℃, 外壁温度为50℃。耐火粘土的导热系数为

《传热学》习题课(导热部分)

《传热学》习题课(导热部分)
• 6. 发生在一个短圆柱中的导热问题, 在哪些情形下可以按一维问题来处理? 答:短圆柱横截面上的温度分布接近均 匀时,可按一维问题处理。
第二章 导热基本定律及稳态导 热——思考题
• 7. 扩展表面中的导热问题可以按一维问 题处理的条件是什么?有人认为,只要 扩展表面细长,就可按一维问题处理, 你同意这种观点吗? 答:扩展表面的横截面上的温度分均匀 可按一维问题处理。不同意,扩展表面 细长,如果不能保证在其横截面上温度 分布均匀,不能按一维问题处理。
热学术语,规定边界上的温度值。 t 第二类边界条件:数学语言 0, n w f 2 ;传 热学术语,规定边界上的热流密度值。 t 0, ht w t f ;传 第三类边界条件:数学语言 n w 热学术语,规定边界上物体与周围流体间的表面传热 系数及周围流体的温度值。
• 7.什么是串联热阻叠加原则,它在什么前提下
成立?以固体中的导热为例,试讨论有哪些情 况可能使热量传递方向上不同截面的热流量不 相等。
答:串联热阻叠加原则:在一个串联的热量传递过 程中,如果通过各个环节的热流量都相同,则各串 联环节的总热阻等于各串于各串联环节热阻的和。 成立的前提是:传热过程为串联热量传递,通过各 个环节的热流量都相同。 固体非稳态导热,在热量传递方向上不同截面上的 热流量随时间变化,不相等。有扩展表面的传热, 在扩展表面的每一垂直于扩展表面的截面上的热流 量,由于沿扩展表面的换热而不相同。
给水,水蒸发把热量转换成潜热和显热,带 入蒸汽和水,水温保持在饱和温度下,而使 壶壁维持在略高于水的饱和温度。但水蒸发 完后,壶内是气体,传热性能变差,使壁温 急剧提高,可能出现超过铝的熔点,而被烧 坏。
第一章 绪论——思考题

传热学-第2章稳态热传导-习题课

传热学-第2章稳态热传导-习题课

保温材料的应用范围广泛,不 仅可以用于民用建筑,还可用 于工业和商业建筑等领域。
电子元件散热方案
随着电子技术的不断发展,电子元件的功率密度越来越高,散热问题越 来越突出。
电子元件的散热方案包括自然散热、强制风冷、液冷等,需要根据电子 元件的发热量、使用环境和可靠性要求等因素选择合适的散热方案。
良好的散热方案能够有效地降低电子元件的工作温度,提高其稳定性和 寿命。
稳态热传导通常发生在物体内部,当 热量传递速率与热量生成速率相平衡 时,物体内部温度分布达到稳定状态 。
稳态热传导的物理模型
01
稳态热传导的物理模型通常采用 一维导热模型,即温度随空间坐 标的变化而变化,忽略时间因素 对温度分布的影响。
02
在一维导热模型中,温度分布可 以用一维偏微分方程来描述,该 方程基于傅里叶导热定律和能量 守恒原理。
02
解析
首先,我们需要计算平壁的传热量,然后根据传热量和平壁的热导率计
算平壁的温度变化。由于平壁是稳态热传导,所以温度分布是线性的。
03
答案
平壁的另一面的温度升高了20℃。
习题二解析
题目
一圆筒壁,内径为1m,长度为2m,加热功率为50W,材料的热导率为0.02W/m·℃,求圆 筒壁的另一面的温度升高了多少?
常见问题解答
问题2
如何求解一维稳态热传导问题?
解答
一维稳态热传导问题可以通过分离变量法求解。首先将温度表示为x的函数,然后根据傅里叶定律和 边界条件建立方程,最后求解方程得到温度分布。在求解过程中,需要注意初始条件和边界条件的处 理。
下节课预告
重点内容
非稳态热传导的基本概念、扩散 方程的建立和求解、初始条件和 边界条件的处理。

传热学习题--5

传热学习题--5

第1章绪论习题1—1 一大平板,高3m、宽2m、厚0。

02m,导热系数为45 W/(m·K),两侧表面温度分别为t1 = 100℃、t2 = 50℃,试求该平板的热阻、热流量、热流密度。

1—2 一间地下室的混凝土地面的长和宽分别为11m和8m,厚为0.2m。

在冬季,上下表面的标称温度分别为17℃和10℃。

如果混凝土的热导率为1.4 W/(m·K),通过地面的热损失率是多少?如果采用效率为ηf = 0。

90的燃气炉对地下室供暖,且天然气的价格为C g = $0。

01/MJ,每天由热损失造成的费用是多少?1—3 空气在一根内径50mm,长2.5m的管子内流动并被加热,已知空气平均温度为80℃,管内对流传热的表面传热系数为h = 70W/(m2·K),热流密度为q = 5000W/m2,试求管壁温度及热流量。

1-4 受迫流动的空气流过室内加热设备的一个对流换热器,产生的表面传热系数h = 1135.59 W/(m2·K),换热器表面温度可认为是常数,为65。

6℃,空气温度为18.3℃。

若要求的加热功率为8790W,试求所需换热器的换热面积。

1—5 一电炉丝,温度为847℃,长1。

5m,直径为2mm,表面发射率为0.95.试计算电炉丝的辐射功率.1—6 夏天,停放的汽车其表面的温度通常平均达40~50℃。

设为45℃,表面发射率为0。

90,求车子顶面单位面积发射的辐射功率.1—7 某锅炉炉墙,内层是厚7.5cm、λ = 1.10W/(m·K)的耐火砖,外层是厚0。

64cm、λ = 39W/(m·K)的钢板,且在每平方米的炉墙表面上有18只直径为1。

9cm的螺栓[λ = 39W/(m·K)]。

假定炉墙内、外表面温度均匀,内表面温度为920K,炉外是300K的空气,炉墙外表面的表面传热系数为68 W/(m2 ·K),求炉墙的总热阻和热流密度.1—8 有一厚度为δ = 400mm的房屋外墙,热导率为λ = 0。

传热学第一次习题课

传热学第一次习题课
真空 δ
2
3 t w3 t w2=127℃
6
例题
解: 在稳态导热条件下,通过表面1和2之 间的辐射换热量等于通过 δ 厚平板的导热量, 根据傅里叶公式和式(1-9)得 t w3 t w2 4 4 b Tw 2 Tw1 4 4 b Tw 2 Tw1 t w3 t w2 5.67 0.1 4 4 3 4 127 17.5
300 40 140.3W / m 1 0.066 1 0.106 1n( ) 1n( ) 2 0.25 0.05 2 0.045 0.066
28
通过圆筒壁的导热
由该热流量与通过石棉保温层的热流量相 等,即
l t1 t 2 d2 1n( ) 2 1 d1 1
r
m2·K/W
m2·K/W
m2·K/W
【讨论】1mm厚水垢的热阻相当于40mm厚钢板的热阻,而1mm厚灰 垢的热阻相当于400mm厚钢板的热阻保持换热设备表面清洁是 非常重要的,应经常清洗和吹灰,尽可能地减小污垢热阻的影响。 22
通过平壁的导热
【例3-3】一锅炉围墙由三层平壁组成,内层是 厚度为δ 1=0.23 m,λ 1=0.63W/(m·K)的耐火粘土砖, 外层是厚度为δ 3=0.25 m, λ 3=0.56W/(m·K) 的红 砖 层 , 两 层 中 间 填 以 厚 度 为 δ 2=0.1 m , λ 2=0.08W/(m·K) 的珍珠岩材料。炉墙内侧与温度 为 tf1=520℃ 的 烟 气 接 触 , 其 换 热 系 数 为 h1=35 W/(m2·K) ,炉墙外侧空气温度 tf2=22℃ ,空气侧换 热系数h2=15W/(m2·℃),试求 (1)通过该炉墙单位面积的散热损失。 ( 2 )炉墙内外表面的温度及层与层交界面的温 度,并画出炉墙内的温度分布曲线。

传热学-第2章 稳态热传导-习题课

传热学-第2章 稳态热传导-习题课
2 1 2
f1
75mm
2
t f 2 10C
75mm 0
t f1 h1
t f2 h2
x
习题课
有接触热阻的计算
7. 考虑一个复合平壁,它由两种材料构成,材料的 导热系数分别为λA=0.1 W/(m.K)和λB=0.04 W/(m.K), 厚度分别为LA=10mm和LB=20mm。已知两种材料 交界面上的接触热阻为0.30m2.K/W。材料A 与200℃ 的流体相邻,h=10W/(m2.K);材料B与40℃的流体 相邻,h=20W/(m2.K)。确定: (1)通过一个高2m,宽2.5m的壁的热流量有多大; (2)画出温度分布。
T D=ax x1 x2 x a=0.51/2
习题课
一维稳态导热 — 肋片
13. 一直肋厚6mm,高50mm,宽0.8m,导热系数 为120W/(m.K),肋基温度 t0=95℃,周围流体 温度 tf=20℃,表面换热系数 h=12W/(m2.K)。 如需计及肋端散热。 试求肋端温度和肋片的散热量。
传热学
第 2 章 稳态热传导 习 题 课
习题课
傅立叶定律和导热微分方程应用
1. 如图所示的墙壁,其导热系数为50W/(m.K), 厚度为50mm,在稳态情况下墙壁内一维温度 分布为 t=200–2000x2。式中x的单位为m。 t 试求: (1)墙壁两侧表面的热流密度; 50W /(m.K ) t 200 2000x 2 (2)壁内单位体积的内热源生成热。
50 mm
0 δ x
习题课
傅立叶定律和导热微分方程应用
2. 半径为0.1m的无内热源,常物性长圆柱体。 已知某时刻温度分布为 t=500+200r2+50r3 (r为径向坐标,单位为m)。 导热系数λ=40W/(m.K),导温系数a=0.0001m2/s。 试求: (1)该时刻圆柱表面上的热流密度及热流方向; (2)该时刻中心温度随时间的变化率。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1 1 R = = = 0.167 K / W 内侧对流换热热阻为: 内侧对流换热热阻为: 2 Ah1 5 × 1.2
外侧对流换热热阻为: 外侧对流换热热阻为:
R3 =
1 1 = = 0.0417 K / W Ah2 20 × 1.2
8-5、解:传热系数
1 h= = = 0.822 K / W 1 δ 1 1 0. 4 1 + + + + h1 λ h2 4 0.5 6 1
δ 1 + + h1 λ h2
tf1 − tf 2
[25 − (−10)] K = = 100W / m 2 1 0.15m 1 + + 5W (m 2 ⋅ K ) 1.5W (m ⋅ K ) 20W (m 2 ⋅ K )
根据牛顿冷却公式,对于内、 根据牛顿冷却公式,对于内、外墙面与空气之间的 对流换热, 对流换热,
9-2、解:根据多层复壁导热计算公式: 根据多层复壁导热计算公式:
700 − 80 q= = = 595.2W / m 2 δ 1 δ 2 0.250 0.250 + + λ1 λ2 0.6 0 .4 t w1 − t w2

700 − 80 q= = 595.2 = δ 1 δ 2 0.250 δ2 + + 0.6 0.076 λ1 λ2
q = h1 (t f 1 − t w1 )
1 t w1 = tf 1 − q = 5°C h1
q = h2 (t w 2 − t f 2 )
tw 2
1 = tf 2 + q = −15°C h2
2、 来自分馏塔的饱和蒸气苯 , 温度为 80℃ , 今通过冷凝和再冷 、 来自分馏塔的饱和蒸气苯, 温度为80 80℃ 却而得每小时8000kg,温度为46 的液体苯。冷却介质为12 8000kg 46℃ 12℃ 却而得每小时8000kg ,温度为46℃的液体苯。冷却介质为12℃的 每小时流量5000kg。K=1140 5000kg 1140W/(m 水 , 每小时流量 5000kg 。 K= 1140W/(m2. ℃) 。 苯的比热和汽化 75kJ/(kJ kJ/(kJ. 710kJ/kg 潜 热 分 别 为 1.75kJ/(kJ.℃) 和 710kJ/kg , 水 的 比 热 为 19kJ/(kJ kJ/(kJ. 如采用逆流换热器,计算所需的换热面积。 4.19kJ/(kJ.℃)如采用逆流换热器,计算所需的换热面积。 解:
传热学部分习题课
课本习题部分
8-3.解: 3.解
根据对流换热计算公式: 根据对流换热计算公式:
t f1 − t f2
20-5 Q = s× =1.2 × 1 × = 71.9W 1 δ 1 1 0.0003 1 + + + + h1 λ h2 5 1.05 20
δ 0.0003 = = 0.000238 K / W 导热热阻为: 导热热阻为: R1 = Aλ 1.05 × 1.2
=
t w2 − t w3 R2
=
t w3 − t w4 R3
得到: 得到:
t w 2 = t w1 − Φ l × R1 = 400 − 353.1 × .000228 = 399.9o C
t w3 = t w1 − Φ l × (R 1 + R2 ) = 400 − 353.1× (0.000228 + 0.645) = 172.230 C
Φ t =t − = 200 − 120 = 80 C qm1 ⋅ Cp1
" 1 ' 1
4、有两块平行放置的大平板,板间距远小于半的长度 有两块平行放置的大平板, 和宽度,温度分别为400℃ 50℃,表面发射率为0.8 400℃和 0.8, 和宽度,温度分别为400℃和50℃,表面发射率为0.8, 试计算两块平板间单位面积的辐射换热量。 试计算两块平板间单位面积的辐射换热量。
q = h t f1 − t f 2 = 0.822 × (20+10)=24.66W / m 2 热流量为: 热流量为:

(
q = h t f1 − t w
(
)
)
q 24.66 0 t = 13.84 C 得到:w1 = t f1 − = 20 − 得到: h 4
t w2 q 24.66 = t f 2 + = −10 + = −5.89 0 C h 6
1
根据圆筒壁稳态导热计算公式: 根据圆筒壁稳态导热计算公式:
400 − 50 Φl = = = 353.1W / m R1 + R2 + R3 0.000228 + 0.645 + 0.346 t w1 − t w4

Φl =
t w1 − t w4 R1 + R2 + R3

t w1 − t w2 R1
F1 = 35.23m 2
Q ′ = KF1 ∆ t m1 放
冷凝部分所需面积: 冷凝部分所需面积:
(80 − 34.72) − (80 − 61.83) ∆tm2 = = 24.75 C 80 − 34.72 ln 80 − 61.83
F2 = 5.59m 2
Q 放 = KF2 ∆tm2
F = F1 + F2 = 35.23 + 5.59 = 40.82m 2
课外习题部分
一房屋的混凝土外墙的厚度为δ 150mm 1、一房屋的混凝土外墙的厚度为δ=150mm ,混凝土 W/(m·K) 的热导率为 λ =1.5W/(m K) , 冬季室外空气温度为 10℃ tf2=-10℃, 有 风 天 和 墙 壁 之 间 的 表 面 传 热 系 数 为 20W/(m K) 室内空气温度为t K), 25℃ h2=20W/(m2·K),室内空气温度为tf1= 25℃,和墙壁之 间的表面传热系数为h K)。 间的表面传热系数为 h1=5 W/(m2·K) 。 假设墙壁及两 K) 侧的空气温度及表面传热系数都不随时间而变化, 侧的空气温度及表面传热系数都不随时间而变化 , 求单位面积墙壁的散热损失及内外墙壁面的温度。 求单位面积墙壁的散热损失及内外墙壁面的温度。 解:q = 1
Hale Waihona Puke 3、有一套管式换热器,热流体流量 qm1 = 0.125kg / s ,比定压热容 、有一套管式换热器,
CP1 = 2100 J /( kg ⋅ K ),进口温度 t1' = 200 ;冷流体流量 qm 2 = 0.25kg / s ℃
' ,比定压热容 CP 2 = 4200 J /( kg ⋅ K ) ,进口温度 t2 = 20 ℃,出口温度
' c

tc = 12 C
t' = 34.72 C c
Q 放 = m c C pc(t'' − t' ) 冷凝部分: 冷凝部分: c c
t' = 34.72 C c
再冷却部分所需面积: 再冷却部分所需面积:

t" = 61.83 C c
∆tm1
(80 − 34.72) − (46 − 12) = = 3.23 C 80 − 34.72 ln 46 − 12
" t2 = 50℃,试求:①换热器的换热量;②热流体出口温度。 50℃,试求: 换热器的换热量; 热流体出口温度。
解: ①
Φ = qm2Cp2(t − t ) = 0.25 × 4200 (50 − 20)
" 2 ' 1
= 31500J / s = 31.5KJ / s
" " ' ② Φ = qm1 ⋅ C P1 (t1' − t1 ) = qm 2 ⋅ C P 2 (t 2 − t 2 )
q 解: 1,2
Eb1 − Eb2 σ(T14 − T24 ) = = 1 1 1 1 + −1 + −1
ε1
ε2
ε1
ε2
5.67 × 10−8 × (273 + 400)4 − (273 + 50)4 = 1 1 + −1 0.8 0.8
= 7.43 × 103 W / m 2
Q 放 = 8000 × 710 = 5.68 × 106 kJ/h 苯: 冷凝部分: 冷凝部分:

Q 再冷却部分: 放 再冷却部分: ′ = mh Cph∆t = 8000 × 1.75 × (80 − 46)
= 47.6 × 104 kJ h
水: 再冷却部分: 再冷却部分: ′ Q

= m c C pc(t − tc )
t w1 − t w2
得到: 得到: δ 2 = 47.5mm
9-7、解:
d2 1 160 R1 = ln = ln = 0.000228 K ⋅ m / W 2πλ1 d1 2π × 45 150
d3 1 240 R2 = ln = ln = 0.645 K ⋅ m / W 2πλ2 d 2 2π × 0.1 160 1
相关文档
最新文档