时方位角与方向角坡与坡脚

合集下载

28.2 应用举例 方位角、坡度、坡角

28.2 应用举例 方位角、坡度、坡角
解:设 BC=x 米,在 Rt△ABC 中,∠CAB=180°-∠EAC=50°,所以 AB= BC ≈ BC = 5 x(米), tan 50 1.20 6
因为在 Rt△EBD 中,i=DB∶EB=1∶1, 所以 BD=EB,所以 CD+BC=AE+AB, 即 2+x=4+ 5 x,解得 x=12,所以 BC=12 米.
上,则船C到海岸线l的距离是
km. 3
4.(2017海南)为做好防汛工作,防汛指挥部决定对某水库的水坝进行加高加固,专家提供 的方案是水坝加高2米(即CD=2米),背水坡DE的坡度i=1∶1(即DB∶EB=1∶1),如图所示,已 知AE=4米,∠EAC=130°,求水坝原来的高度BC.(参考数据:sin 50°≈0.77, cos 50°≈0.64,tan 50°≈1.20)
探究点二:坡度与坡角问题 【例2】 如图,水坝的横断面为梯形ABCD,已知上底长CB=5米,迎水面坡度为1∶ 面坡度为1∶1,坝高为4米,求:坝底AD和迎水面CD的长及坡角α 和β .
,背3 水
【导学探究】 1.作CE⊥AD,BF⊥AD,由坡度可得,CE∶ DE =1∶ 2.由坡度是坡角的 正切 值可得坡角.
第2课时 方位角、坡度、坡角
一、方位角 1.平面测量时,经常以正北、正南方向为基准描述物体运动的方向,这种表示方向的角叫 做方位角. 2.如图,射线OA,OB,OC,OD分别表示北偏东30°,南偏东70°,南偏西50°,北偏西35°.
二、坡度、坡角 1.坡度:坡面的铅直高度(h)与水平宽度(l)的比叫做坡面的坡度(或坡比),记作 i,即 i= h .
在 Rt△BCD 中,∠CBD=30°,tan 30°= CD = 3 ,所以 CD= 3 BD≈115(km),

解直角三角形方位角、坡度角讲课教案

解直角三角形方位角、坡度角讲课教案

解直角三角形方位角、坡度角讲课教案一、教学内容本节课的内容选自《初中数学》八年级下册第九章“勾股定理及其应用”的第三节“解直角三角形”。

具体包括:直角三角形的定义及性质,解直角三角形的概念,利用三角函数解直角三角形,以及方位角和坡度角的实际应用。

二、教学目标1. 知识目标:学生能够理解并掌握解直角三角形的基本概念,熟练运用三角函数求解直角三角形的未知边和角。

2. 技能目标:培养学生运用数学知识解决实际问题的能力,提高学生的空间想象力和逻辑思维能力。

3. 情感目标:激发学生学习数学的兴趣,培养学生合作交流、积极参与的学习态度。

三、教学难点与重点教学难点:解直角三角形的实际应用,特别是方位角和坡度角的计算。

教学重点:熟练运用三角函数解直角三角形,以及在实际问题中求解方位角和坡度角。

四、教具与学具准备教具:三角板、直尺、量角器、多媒体课件。

学具:直角三角形模型、计算器、练习本。

五、教学过程1. 导入:通过实际情景引入,如建筑工地上的方位角和坡度角问题,让学生了解解直角三角形在实际生活中的应用。

2. 新课导入:讲解直角三角形的定义及性质,引导学生回顾勾股定理,为解直角三角形打下基础。

3. 新知讲解:(1)介绍解直角三角形的定义及方法,如正弦、余弦、正切函数的定义和应用。

(2)通过例题讲解,让学生掌握解直角三角形的方法。

(3)讲解方位角和坡度角的概念,以及在实际问题中的应用。

4. 随堂练习:布置相关练习题,让学生独立完成,巩固所学知识。

5. 小组讨论:针对练习题中的问题,组织学生进行小组讨论,互相交流解题思路。

六、板书设计1. 直角三角形的定义及性质2. 解直角三角形的方法:(1)正弦函数:sin A = 对边/斜边(2)余弦函数:cos A = 邻边/斜边(3)正切函数:tan A = 对边/邻边3. 方位角和坡度角的计算方法七、作业设计1. 作业题目:(1)已知直角三角形的两个角和一条边,求其他未知边和角。

最新湘教版九年级数学(初三)上册4.4 第2课时 与坡度、方位角有关的应用问题 课件

最新湘教版九年级数学(初三)上册4.4 第2课时   与坡度、方位角有关的应用问题  课件

约等于 293 .
如图,一铁路路基的横断面为等腰梯形,路基 的顶宽(即等腰梯形的上底长)为10.2m,路基的坡度 i=1:1.6,等腰梯形的高为6.2m.求路基的底宽(精确到 0.1m)和坡角α(精确到1′).
答:路基底宽为30.0m, 坡角 α = 32.
例2 如图,海岛A四周20海里周围内为暗礁区,一 艘货轮由东向西航行,在B处见岛A在北偏西60˚,航 行24海里到C,见岛A在北偏西30˚,货轮继续向西航 行,有无触礁的危险?
i hl
坡度通常写成 1 : m 的形式. 如图中的∠MPN叫作坡角(即山坡与地平面的夹角).
显然,坡度等于坡角的正切. 坡度越大,山坡越陡.
例1 如图,一山坡的坡度 i = 1:1.8,小刚从
山坡脚下点P上坡走了24m到达点N,他上升 了多少米(精确到0.1m)?这座山坡的坡角是多 少度(精确到1′)?
July 12, 2020
039、:0少成57年功.1易都2.学永20老远20难不09成会:0,言57一弃.1寸 ,2.光放20阴弃20不者09可永:0轻远50。不9。会:05成:0功37。.12.202009:057.12.2020
盛开的春地去方春,又在回这,醉新人桃芬换芳旧的符季。节在,那愿桃你花 409、:0桃57花.1潭2.水20深20千09尺:0,57不.1及2.汪20伦20送09我:0情50。9:05:037.12.202009:057.12.2020 盛开的地方,在这醉人芬芳的季节,愿你 74.、12敏不.2而要02好为07学它.1,的2.不结20耻束20下而09问哭:0。 ,50。应9当7:0.15为20.9它2:0的250:开073始.1029而.:20笑052:。00309:0509:0509:05:0309:05:03

最新人教版初中数学九年级下册28.2《方位角、坡度、坡角》教案

最新人教版初中数学九年级下册28.2《方位角、坡度、坡角》教案

最新⼈教版初中数学九年级下册28.2《⽅位⾓、坡度、坡⾓》教案⽅位⾓、坡度、坡⾓掌握⽅位⾓的定义及表⽰⽅法教学⽬标:重点:理解坡度、坡⽐等相关概念在实际问题中的含义难点:与⽅位⾓有关的实际问题1.掌握⽅位⾓的定义及表⽰⽅法指或指⽅向线与⽬标⽅向线所成的⼩于90°的⽔平⾓,叫⽅位⾓,如图,⽬标⽅向线OA、OB、OC、OD的⽅位⾓分别表⽰, , , .2.理解坡度、坡⽐等相关概念在实际问题中的含义(1)坡度、坡⽐①如图,我们把坡⾯的⾼度h和宽度l的⽐叫做坡度(或叫做坡⽐),⽤字母i表⽰,即i=.坡度⼀般写成1∶m的形式.②坡⾯与的夹⾓α叫做坡⾓,坡⾓与坡度之间的关系为i==tanα.(2)⽔平距离、垂直距离(铅直⾼度)、坡⾯距离如图, 代表⽔平距离, 代表铅直⾼度, 代表坡⾯距离.重点⼀:与⽅位⾓有关的实际问题解答与⽅位⾓有关的实际问题的⽅法(1)弄清航⾏中⽅位⾓的含义,根据题意画出图形,画图时要先确定⽅向标,把实际问题转化为数学问题是解题的关键所在.(2)船在海上航⾏,在平⾯上标出船的位置、灯塔或岸上某⽬标的位置,关键在于确定基准点.当船在航⾏时,基准点在转移,画图时要特别注意.1. (2013河北)如图,⼀艘海轮位于灯塔P的南偏东70°⽅向的M处,它以每⼩时40海⾥的速度向正北⽅向航⾏,2⼩时后到达位于灯塔P的北偏东40°的N处,则N处与灯塔P的距离为( )(A)40海⾥(B)60海⾥ (C)70海⾥(D)80海⾥2.(2013荆门)A、B两市相距150千⽶,分别从A、B处测得国家级风景区中⼼C处的⽅位⾓如图所⽰,风景区区域是以C为圆⼼,45千⽶为半径的圆,tan α=1.627,tan β=1.373.为了开发旅游,有关部门设计修建连接AB两市的⾼速公路.问连接AB的⾼速公路是否穿过风景区,请说明理由.3. 如图,A、B、C分别是三个岛上的点,点C在点A的北偏东47°⽅向,点B在点A的南偏东79°⽅向,且A、B两点的距离约为5.5 km;同时,点B在点C的南偏西36°⽅向.若⼀艘渔船以30 km/h的速度从点A驶向点C捕鱼,需要多长时间到达(结果保留⼩数点后两位)?(参考数据:sin 54°≈0.81,cos 54°≈0.59,tan 47°≈1.07,tan 36°≈0.73,tan 11°≈0.19)重点⼆:与坡度、坡⾓有关的实际问题(1)坡度是坡⾓的正切值,坡度越⼤,坡⾓也越⼤.(2)与坡度有关的问题常与⽔坝有关,即梯形问题,常⽤的⽅法⼀般是过上底的顶点作下底的垂线,构造直⾓三⾓形和矩形来求解.4.(2014丽⽔)如图,河坝横断⾯迎⽔坡AB的坡⽐是1∶(坡⽐是坡⾯的铅直⾼度BC与⽔平宽度AC之⽐),坝⾼BC=3 m,则坡⾯AB的长度是( )(A)9 m (B)6 m (C)6 m (D)3 m5. (2013安徽)如图,防洪⼤堤的横断⾯是梯形ABCD,其中AD∥BC,坡⾓α=60°.汛期来临前对其进⾏了加固,改造后的背⽔⾯坡⾓β=45°.若原坡长AB=20 m,求改造后的坡长AE.(结果保留根号)6.如图所⽰,某防洪指挥部发现长江边⼀处长500⽶,⾼10⽶,背⽔坡的坡⾓为45°的防洪⼤堤(横断⾯为梯形ABCD)急需加固.经调查论证,防洪指挥部专家组制定的加固⽅案是:沿背⽔坡⾯⽤⼟⽯进⾏加固,并使上底加宽3⽶,加固后背⽔坡EF的坡⽐i=1∶.(1)求加固后坝底增加的宽度AF;(2)求共需多少⽴⽅⽶⼟⽯进⾏加固.1. 河堤横断⾯如图所⽰,迎⽔坡AB的坡⽐为1∶(坡⽐是坡⾯的铅直⾼度BC与⽔平宽度AC之⽐),则坡⾓α为( )(A)30° (B)45° (C)50° (D)60°2.王英同学从A地沿北偏西60°⽅向⾛100 m 到B地,再从B地向正南⽅向⾛200 m到C地,此时王英同学离A地( )(A)150 m(B)50 m (C)100 m (D)100 m3.如图,先锋村准备在坡⾓为α的⼭坡上栽树,要求相邻两树之间的⽔平距离为5⽶,那么这两树在坡⾯上的距离AB为( )(A)5cos α(B)(C)5sin α(D)4.如图,将⼀个Rt△ABC形状的楔⼦从⽊桩的底端点P处沿⽔平⽅向打⼊⽊桩底下,使⽊桩向上运动,已知楔⼦斜⾯的倾斜⾓为20°,若楔⼦沿⽔平⽅向前移8 cm(如箭头所⽰),则⽊桩上升了( )(A)8tan 20° cm (B) cm(C)8sin 20° cm (D)8cos 20° cm5. (2013潍坊)如图,⼀渔船在海岛A南偏东20°⽅向的B处遇险,测得海岛A与B的距离为20海⾥,渔船将险情报告给位于A处的救援船后,沿北偏西80°⽅向向海岛C靠近.同时,从A处出发的救援船沿南偏西10°⽅向匀速航⾏.20分钟后,救援船在海岛C处恰好追上渔船,那么救援船航⾏的速度为( )(A)10海⾥/⼩时 (B)30海⾥/⼩时 (C)20海⾥/⼩时(D)30海⾥/⼩时6.在⼀次⾃助夏令营活动中,⼩明同学从营地A出发,要到A地的北偏东60°⽅向的C处,他先沿正东⽅向⾛了200 m到达B地,再沿北偏东30°⽅向⾛,恰能到达⽬的地C(如图),那么由此可知,B,C两地相距m.7. 如图所⽰,某公园⼊⼝处原有三级台阶,每级台阶⾼为18 cm,深为30 cm,为⽅便残疾⼈⼠,拟将台阶改为斜坡,设台阶的起点为A,斜坡的起始点为C,现设计斜坡BC的坡度i=1∶5,则AC的长度是cm.8. 如图所⽰,⼀渔船上的渔民在A处看见灯塔M在北偏东60°⽅向,这艘船以28海⾥/时的速度向正东航⾏,半⼩时到B处,在B处看见灯塔M在北偏东15°⽅向,此时灯塔与渔船的距离是海⾥.9. (2013湘西州)钓鱼岛⾃古以来就是中国的神圣领⼟,为宣誓主权,我海监船编队奉命在钓鱼岛附近海域进⾏维权活动,如图,⼀艘海监船以30海⾥/⼩时的速度向正北⽅向航⾏,海监船在A处时,测得钓鱼岛C在该船的北偏东30°⽅向上,航⾏半⼩时后,该船到达点B处,发现此时钓鱼岛C与该船距离最短.(1)请在图中作出该船在点B处的位置;(2)求钓鱼岛C到B处距离(结果保留根号).10.(2013新疆)如图所⽰,⼀条⾃西向东的观光⼤道l上有A、B两个景点,A、B相距2 km,在A处测得另⼀景点C位于点A的北偏东60°⽅向,在B处测得景点C位于景点B的北偏东45°⽅向,求景点C到观光⼤道l的距离(结果精确到0.1 km).11.(2013烟台)如图,⼀艘海上巡逻船在A地巡航,这时接到B地海上指挥中⼼紧急通知:在指挥中⼼北偏西60°⽅向的C地,有⼀艘渔船遇险,要求马上前去救援.此时C地位于A地北偏西30°⽅向上,A地位于B地北偏西75°⽅向上,A、B两地之间的距离为12海⾥.求A、C两地之间的距离(参考数据:≈1.41,≈1.73,≈2.45,结果精确到0.1).12.如图,马路的两边CF、DE互相平⾏,线段CD为⼈⾏横道,马路两侧的A、B两点分别表⽰车站和超市.CD与AB所在直线互相平⾏,且都与马路两边垂直,马路宽20⽶,A,B相距62⽶,∠A=67°,∠B=37°(1)求CD与AB之间的距离;(2)某⼈从车站A出发,沿折线A→D→C→B去超市B,求他沿折线A→D→C→B到达超市⽐直接横穿马路多⾛多少⽶参考数据:sin 67°≈,cos 67°≈,tan67°≈,si n 37°≈,cos 37°≈,tan 37°≈. 13.如图,公路AB为东西⾛向,在点A北偏东36.5°⽅向上,距离5千⽶处是村庄M;在点A北偏东53.5°⽅向上,距离10千⽶处是村庄N(参考数据:sin 36.5°=0.6,cos 36.5°=0.8, tan 36.5°=0.75).(1)求M,N两村之间的距离;(2)要在公路AB旁修建⼀个⼟特产收购站P,使得M,N两村到P站的距离之和最短,求这个最短距离.教学反思:。

最新沪科版23.2解直角三角形及其应用(第三课时)--方向角、方位角、坡比等问题

最新沪科版23.2解直角三角形及其应用(第三课时)--方向角、方位角、坡比等问题

察站A相距10 2
海里,请你测算灯塔C处在观察站A的什么方向?
解:过点C作CD ⊥AB,垂足为D ∵灯塔B在观察站A北偏西45°的方向
∴ ∠B=45°
CD ∵sinB = CB
B
10 45° D
C
5 2
10 2
2 =5 2 sinB=10×sin45°= 10× ∴CD= BC· 2 ∵在Rt△DAC中,
解:过点A作AE⊥BC,垂足为E, 设CE=x ∵在Rt△BAE中,∠BAE=45° ∴AE=BE=10+x ∵在Rt△CAE中,AE2+CE2=AC2 ∴x2+(10+x)2=(10 2 )2 即:x2+10x-50=0
45°
B
10
C
55 3
10 2
E
10

x1 5 5 3, x2 5 5
CD CD ∠CAB=30°,∠CBA=45°,AD= ,BD= , tan 45 tan 30 CD CD =1000, ∵AD+BD= tan 30 tan 45
解得CD= 1000 =500( 3 1 )m≈366m.
3 1
答:建筑物C到公路AB的距离约为366m.
ห้องสมุดไป่ตู้
如图,在小岛上有一观察站A.据测,灯塔B在观察站A北偏 西450的方向,灯塔C在B正东方向,且相距10海里,灯塔C与观
AF AD DF
2 2
2x
2
x 2 3x
B
D
F 30°
在Rt△ABF中,
3x AF tan 30 tan ABF BF 12 x
解得x=6
AF 6 x 6 3 10.4

人教初中数学九下 28.2《方位角、坡度、坡角》教案

人教初中数学九下  28.2《方位角、坡度、坡角》教案

方位角、坡度、坡角1.掌握方位角的定义及表示方法指或指方向线与目标方向线所成的小于90°的水平角,叫方位角,如图,目标方向线OA、OB、OC、OD的方位角分别表示, , , .2.理解坡度、坡比等相关概念在实际问题中的含义(1)坡度、坡比①如图,我们把坡面的高度h和宽度l的比叫做坡度(或叫做坡比),用字母i表示,即i=.坡度一般写成1∶m的形式.②坡面与的夹角α叫做坡角,坡角与坡度之间的关系为i==tanα.(2)水平距离、垂直距离(铅直高度)、坡面距离如图, 代表水平距离, 代表铅直高度, 代表坡面距离.重点一:与方位角有关的实际问题解答与方位角有关的实际问题的方法(1)弄清航行中方位角的含义,根据题意画出图形,画图时要先确定方向标,把实际问题转化为数学问题是解题的关键所在.)1. (2013河北)如图,一艘海轮位于灯塔P的南偏东70°方向的M处,它以每小时40海里的速度向正北方向航行,2小时后到达位于灯塔P的北偏东40°的N处,则N处与灯塔P的距离为( )(A)40海里(B)60海里 (C)70海里(D)80海里2.(2013荆门)A、B两市相距150千米,分别从A、B处测得国家级风景区中心C处的方位角如图所示,风景区区域是以C为圆心,45千米为半径的圆,tan α=1.627,tan β=1.373.为了开发旅游,有关部门设计修建连接AB两市的高速公路.问连接AB的高速公路是否穿过风景区,请说明理由.3. 如图,A、B、C分别是三个岛上的点,点C在点A的北偏东47°方向,点B在点A的南偏东79°方向,且A、B两点的距离约为5.5 km;同时,点B在点C的南偏西36°方向.若一艘渔船以30 km/h的速度从点A驶向点C捕鱼,需要多长时间到达(结果保留小数点后两位)?(参考数据:sin 54°≈0.81,cos 54°≈0.59,tan 47°≈1.07,tan 36°≈0.73,tan 11°≈0.19)重点二:与坡度、坡角有关的实际问题(1)坡度是坡角的正切值,坡度越大,坡角也越大.4.(2014丽水)如图,河坝横断面迎水坡AB的坡比是1∶(坡比是坡面的铅直高度BC与水平宽度AC之比),坝高BC=3 m,则坡面AB的长度是( )(A)9 m (B)6 m (C)6 m (D)3 m5. (2013安徽)如图,防洪大堤的横断面是梯形ABCD,其中AD∥BC,坡角α=60°.汛期来临前对其进行了加固,改造后的背水面坡角β=45°.若原坡长AB=20 m,求改造后的坡长AE.(结果保留根号)6.如图所示,某防洪指挥部发现长江边一处长500米,高10米,背水坡的坡角为45°的防洪大堤(横断面为梯形ABCD)急需加固.经调查论证,防洪指挥部专家组制定的加固方案是:沿背水坡面用土石进行加固,并使上底加宽3米,加固后背水坡EF的坡比i=1∶.(1)求加固后坝底增加的宽度AF;(2)求共需多少立方米土石进行加固.1. 河堤横断面如图所示,迎水坡AB的坡比为1∶(坡比是坡面的铅直高度BC与水平宽度AC之比),则坡角α为( )(A)30° (B)45° (C)50° (D)60°2.王英同学从A地沿北偏西60°方向走100 m到B地,再从B地向正南方向走200 m到C地,此时王英同学离A地( )(A)150 m(B)50 m (C)100 m (D)100 m3.如图,先锋村准备在坡角为α的山坡上栽树,要求相邻两树之间的水平距离为5米,那么这两树在坡面上的距离AB为( )(A)5cos α(B)(C)5sin α(D)4.如图,将一个Rt△ABC形状的楔子从木桩的底端点P处沿水平方向打入木桩底下,使木桩向上运动,已知楔子斜面的倾斜角为20°,若楔子沿水平方向前移8 cm(如箭头所示),则木桩上升了( )(A)8tan 20° cm (B) cm(C)8sin 20° cm (D)8cos 20° cm5. (2013潍坊)如图,一渔船在海岛A南偏东20°方向的B处遇险,测得海岛A与B的距离为20海里,渔船将险情报告给位于A处的救援船后,沿北偏西80°方向向海岛C靠近.同时,从A处出发的救援船沿南偏西10°方向匀速航行.20分钟后,救援船在海岛C处恰好追上渔船,那么救援船航行的速度为( )(A)10海里/小时 (B)30海里/小时 (C)20海里/小时(D)30海里/小时6.在一次自助夏令营活动中,小明同学从营地A出发,要到A地的北偏东60°方向的C处,他先沿正东方向走了200 m到达B地,再沿北偏东30°方向走,恰能到达目的地C(如图),那么由此可知,B,C两地相距m.7. 如图所示,某公园入口处原有三级台阶,每级台阶高为18 cm,深为30 cm,为方便残疾人士,拟将台阶改为斜坡,设台阶的起点为A,斜坡的起始点为C,现设计斜坡BC的坡度i=1∶5,则AC的长度是cm.8. 如图所示,一渔船上的渔民在A处看见灯塔M在北偏东60°方向,这艘船以28海里/时的速度向正东航行,半小时到B处,在B处看见灯塔M在北偏东15°方向,此时灯塔与渔船的距离是海里.9. (2013湘西州)钓鱼岛自古以来就是中国的神圣领土,为宣誓主权,我海监船编队奉命在钓鱼岛附近海域进行维权活动,如图,一艘海监船以30海里/小时的速度向正北方向航行,海监船在A处时,测得钓鱼岛C在该船的北偏东30°方向上,航行半小时后,该船到达点B处,发现此时钓鱼岛C与该船距离最短.(1)请在图中作出该船在点B处的位置;(2)求钓鱼岛C到B处距离(结果保留根号).10.(2013新疆)如图所示,一条自西向东的观光大道l上有A、B两个景点,A、B相距2 km,在A处测得另一景点C位于点A的北偏东60°方向,在B处测得景点C位于景点B的北偏东45°方向,求景点C到观光大道l的距离(结果精确到0.1 km).11.(2013烟台)如图,一艘海上巡逻船在A地巡航,这时接到B地海上指挥中心紧急通知:在指挥中心北偏西60°方向的C地,有一艘渔船遇险,要求马上前去救援.此时C地位于A地北偏西30°方向上,A地位于B地北偏西75°方向上,A、B两地之间的距离为12海里.求A、C两地之间的距离(参考数据:≈1.41,≈1.73,≈2.45,结果精确到0.1).12.如图,马路的两边CF、DE互相平行,线段CD为人行横道,马路两侧的A、B两点分别表示车站和超市.CD与AB所在直线互相平行,且都与马路两边垂直,马路宽20米,A,B相距62米,∠A=67°,∠B=37°(1)求CD与AB之间的距离;(2)某人从车站A出发,沿折线A→D→C→B去超市B,求他沿折线A→D→C→B到达超市比直接横穿马路多走多少米参考数据:sin 67°≈,cos 67°≈,tan 67°≈,si n 37°≈,cos 37°≈,tan 37°≈. 13.如图,公路AB为东西走向,在点A北偏东36.5°方向上,距离5千米处是村庄M;在点A北偏东53.5°方向上,距离10千米处是村庄N(参考数据:sin 36.5°=0.6,cos 36.5°=0.8,tan 36.5°=0.75).(1)求M,N两村之间的距离;(2)要在公路AB旁修建一个土特产收购站P,使得M,N两村到P站的距离之和最短,求这个最短距离.教学反思:。

解直角三角形应用题(方位角、仰角与俯角、坡度)分类汇编

解直角三角形应用题(方位角、仰角与俯角、坡度)分类汇编

:i h l=hlα基础知识2解直角三角形的应用举例1.仰角与俯角:仰角:视线在水平线上方的角;俯角:视线在水平线下方的角。

2.坡度与坡角:坡面的铅直高度h 和水平宽度l 的比叫做坡度(坡比)。

用字母i 表示,即hi l=。

坡度一般写成1:m 的形式,如1:5i =等. 把坡面与水平面的夹角记作α(叫做坡角),那么tan hi lα== 3.方位角:指北或指南方向线与目标方向线所成的小于90°的水平角,叫做方位角.如图,OA 、OB 、OC 、OD 的方向角分别是:北偏东30°(东北方向),南偏东45°(东南方向),南偏西60°(西南方向),北偏西60°(西北方向).【题型1】仰角与俯角如图,两幢建筑物AB 和CD ,AB ⊥BD ,CD ⊥BD ,AB =15m ,CD =20m ,AB 和CD 之间有一观景池,小南在A 点测得池中喷泉处E 点的俯角为42°,在C 点测得E 点的俯角为45°(点B 、E 、D 在同一直线上),求两幢建筑物之间的距离BD (结果精确到0.1m ).(参考数据:sin 42°≈0.67,cos 42°≈0.74,tan 42°≈0.90)【变式训练】1.如图,宁宁在家里楼顶上的点A处,测量建在与自家楼房同一水平线上相邻的电梯楼的高,在点A处看电梯楼顶部点B处的仰角为60°,在点A处看这栋电梯楼底部点C处的俯角为45°,两栋楼之间的距离为30m,则电梯楼的高BC为多少米(精确到0.1).2.如图,大楼AB右侧有一障碍物,在障碍物的旁边有一幢小楼DE,在小楼的顶端D处测得障碍物边缘点C的俯角为30°,测得大楼顶端A的仰角为45°(点B,C,E在同一水平直线上),已知AB=80m,DE=10m,求障碍物B,C两点间的距离(结果精确到0.1m).(参考数据:≈1.414,≈1.732)3.如图,热气球的探测器显示,从热气球A看一栋大楼顶部B的俯角为30°,看这栋大楼底部C的俯角为60°,热气球A的高度为240米,求这栋大楼的高度.4.如图,曦曦在M处用高1米(DM=1米)的测角仪测得旗杆AB的顶端B的仰角为30°,再向旗杆方向前进10米到F处,又测得旗杆顶端B的仰角为60°,请求出旗杆AB的高度.【题型2】坡度与坡角如图,某水库堤坝横断面迎水坡AB的坡比是1,堤坝高BC=50m,则应水坡面AB的长度是多少?【变式训练】1.如图,在坡度为1∶2的山坡上种树,要求株距(相邻两树间的水平距离)是6米,斜坡上相邻两树间的坡面距离是多少米?2.如图,为了缓解交通拥堵,方便行人,在某街道计划修建一座横断面为梯形ABCD的过街天桥,若天桥斜坡AB的坡角∠BAD为35°,斜坡CD的坡度为i=1∶1.2(垂直高度CE与水平宽度DE的比),上底BC=10 m,天桥高度CE=5 m,求天桥下底AD的长度.(结果精确到0.1 m,参考数据:sin35°≈ 0.57,cos35°≈ 0.82,tan35°≈ 0.70)3.如图,一楼房AB后有一假山,其坡度为i=1∶3,山坡坡面上E点处有一休息亭,测得假山坡脚C与楼房水平距离BC=25米,与亭子距离CE=20米,小丽从楼房顶测得E点的俯角为45°,求楼房AB的高.(注:坡度i是指坡面的铅直高度与水平宽度的比).4.如图,曦曦在山坡坡脚A 处测得电视塔尖点C 的仰角为60° ,沿山坡向上走到P 处再测得点C 的仰角为45° ,已知OA=100米,山坡坡度为i=1:2, 且O 、A 、B 在同一条直线上。

第2课时 与方位角、坡角有关的运用举例

第2课时 与方位角、坡角有关的运用举例

6.如图,某海关缉私艇巡逻到达 A 处时接到情报,在 A 处北偏西 60°方向的 B 处发现一艘可疑 船只正以 24 海里/时的速度向正东方向前进,上级命令要对可疑船只进行检查,该艇立即沿北 偏西 45°的方向快速前进,经过 1 个小时的航行,恰好在 C 处截住可疑船只,求该艇的速度.(结 果保留整数, 6 ≈2.449, 3 ≈1.732, 2 ≈1.414)
(1)求点B距水平面AE的高度BH;
解:(1)过 B 作 BG⊥DE 于 G, Rt△ABH 中,i=tan∠BAH= 1 = 3 ,
33 ∴∠BAH=30°, ∴BH= 1 AB=5 米.
2
(2)求广告牌CD的高度.
(测角器的高度忽略不计,结果精确到 0.1 米.参考数据: 2 ≈1.414, 3 ≈1.732)
解:(2)由(1)得 BH=5,AH=5 3 , ∴BG=AH+AE=5 3 +15, Rt△BGC 中,∠CBG=45°, ∴CG=BG=5 3 +15. Rt△ADE 中,∠DAE=60°,AE=15, ∴DE= 3 AE=15 3 . ∴CD=CG+GE-DE=5 3 +15+5-15 3 =20-10 3 ≈2.7 m. 答:宣传牌 CD 高约 2.7 米.
∴需用土石方 V=Sl=1 498.9×150=224 835(m3),
答:斜坡 CD 的坡角约为 21°48′,坡底宽约为 128.6 m,建造这个堤坝需用土石方 224 835 m3.
•9、要学生做的事,教职员躬亲共做;要学生学的知识,教职员躬亲共学;要学生守的规则,教职员躬亲共守。2021/9/32021/9/3Friday, September 03, 2021 •10、阅读一切好书如同和过去最杰出的人谈话。2021/9/32021/9/32021/9/39/3/2021 12:34:09 PM •11、只有让学生不把全部时间都用在学习上,而留下许多自由支配的时间,他才能顺利地学习……(这)是教育过程的逻辑。2021/9/32021/9/32021/9/3Sep-213-Sep-21 •12、要记住,你不仅是教课的教师,也是学生的教育者,生活的导师和道德的引路人。2021/9/32021/9/32021/9/3Friday, September 03, 2021

人教版九年级下册数学:第28章 28.2.2解直角三角形的应用 (2)方位角、坡度坡比

人教版九年级下册数学:第28章 28.2.2解直角三角形的应用 (2)方位角、坡度坡比

达标测试
1.如图,C岛在A岛的北偏东50°方 向,C岛在B岛的北偏西40°方向,则从C
岛看A,B两岛的视角∠ACB等于 90° 。 50°
40° 50° 40°
2、如下图,在一次数学课外活动中,测得电线杆底部B与 钢缆固定点O的距离为4米,钢缆与地面的夹角∠BOA为60º,则 这条钢缆在电线杆上的固定点A到地面的距离AB是多少米.
tanα= 1 = 3 33
∴α=30°
240
C
1: 3
?
A?
B
在Rt△ABC中,∠B=90°,∠A=30°,AC=240m
∴ sinα= BC = BC
AC 240
∴ BC=240×sin30°=120(m)
答:这座山坡的坡角为30°,小刚上升了120m.
【例4 】水库大坝的横断面是梯形,坝顶宽6m,坝高23m,

PC=PA·cos(90°-65°)=80×cos25°
≈80×0.91 =72.8
65°
在Rt△BPC中,∠B=34°
西
P
∵ sinB = PC
PB
34°

PB
=
PC sinB
=
72.8 sin340

72.8 0.559
≈130.23(海里)

?
当海轮到达位于灯塔P的南偏东34°
方向时,它距离灯塔P大约130.23海里。
45° 南
45° 45°
西南
(南偏西45°)

东南
(南偏东45°)
典例精析
【例1】如图,一艘海轮位于灯塔P的北偏东65°方向,距
离灯塔80海里的A处,它沿正南方向航行一段时间后,到达位

人教版九年级下册数学第28章 锐角三角函数 利用解直角三角形解含方位角、坡角(坡度)的应用

人教版九年级下册数学第28章 锐角三角函数 利用解直角三角形解含方位角、坡角(坡度)的应用

感悟新知
知1-练
1. 如图,海中有一个小岛A,它周围8nmile内有暗礁. 渔船跟踪鱼群由西向东航行,在B点测得小岛A在北偏
东60°方向上,航行12nmile到达D点,这时测得小 岛A在北偏东30° 方向上.如果渔船不改 变航线继续向东航行, 有没有触礁的危险?
感悟新知
解:如图,过点A作AC⊥直线BD,垂足为点C.
C.200D3.300
3
感悟新知
知识点 2 用解直角三角形解坡角问题
探究
B
一、如图是某一大坝的横断面:
坡面AB的垂直高度与 水平宽度AE的长度之 比是α的什么三角函数?

E
知2-练
C
D
tan
BE 坡面AB与水平面的夹角叫做坡角.
AE
感悟新知
坡度的定义:
知2-练
坡面的垂直高度与水平宽度之比
B
叫做坡度,记作i.
感悟新知
例1 如图, 一艘海轮位于灯塔P的北 偏东65°方向,距离灯塔 80nmile的A处,它沿正南方向 航行一段时间后,到达位于灯
塔P的南偏东34°方向上的B处. 这时,B处距离灯塔P有多远 (结果取整数)?
北 65°
P 34°
知1-练
A
C
B
感悟新知
解:如图,在Rt△APC中, PC=PA•cos(90°-65°) =80×cos25° ≈72. 505. 在Rt△BPC中,∠B=34°,
第二十八章锐角三角函数
28.2解直角三角形及其应用
第6课时利用解直角三 角形解含方位角、坡角 (坡度)的应用
学习目标
1 课时讲解 用解直角三角形解方位角问题
用解直角三角形解坡角(或坡度) 问题

九年级数学上册第4章锐角三角函数4.4解直角三角形的应用4.4.2坡度与坡角、方向角相关问题教案湘

九年级数学上册第4章锐角三角函数4.4解直角三角形的应用4.4.2坡度与坡角、方向角相关问题教案湘

2018年秋九年级数学上册第4章锐角三角函数4.4 解直角三角形的应用4.4.2 坡度与坡角、方向角相关问题教案(新版)湘教版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2018年秋九年级数学上册第4章锐角三角函数4.4 解直角三角形的应用4.4.2 坡度与坡角、方向角相关问题教案(新版)湘教版)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2018年秋九年级数学上册第4章锐角三角函数4.4 解直角三角形的应用4.4.2 坡度与坡角、方向角相关问题教案(新版)湘教版的全部内容。

第4章锐角三角函数4.4 解直角三角形的应用第2课时坡度与坡脚、方位角相关问题例5 [宿迁中考] 如图4-4-60是某通道的侧面示意图,已知AB∥CD∥EF,AM∥BC∥DE,AB=CD=EF,∠AMF=90°,∠BAM=30°,AB=6 m.(1)求FM的长;(2)连接AF,若sin∠FAM=错误!,求AM的长。

图4-4-60[答案: (1)9 m(2)18 错误!m]角形.活动四:课堂总结反思【当堂训练】1.教材P129练习中的T1,T2。

2。

教材P129习题4。

4中的T1,T2。

当堂检测,及时反馈学习效果.【知识网络】提纲挈领,重点突出。

【教学反思】①[授课流程反思]用来源于学生比较熟悉的实际问题吸引他们的注意力,激发他们的好奇心,体会数学来源于反思,更进一步提升。

4.4.2坡度与坡角、方位角相关问题

4.4.2坡度与坡角、方位角相关问题

新 知 梳 理
知识点一 与坡度相关概念
坡角:山坡的坡面与地平面的夹角叫作坡角,如图 4- 4-20 中,角α 为其斜面的坡角.
图 4-4-20 坡度: 如图 4-4-20 所示,通常把坡面的铅直高度 h 和水平宽度 l 的比叫作坡度,又叫作坡比.
4.4.2 坡度与坡角、方位角相关问题
h [注意] 坡度习惯上用字母 i 表示,i= ,通常把这个比的前 l 1 项化为 1,写成 1∶m 或 的形式. m h 坡度与坡角关系式:tan α =i= . l 文字表述:坡度 i 是坡角 α的正切.
4.4.2 坡度与坡角、方位角相关问题
解:如图 4-4- 25,过 A 点作 AF ⊥BC 于 F . ∵∠DEB =∠AFB =90°,∠B 为公共角, ∴△BDE ∽△BAF . BD DE ∴ = . BA AF BA ·DE 5×0.6 ∴AF = = =3(m). BD 1 在 Rt△ACF 中, ∵CF = AC2-AF 2= 3.42-32=1.6(m), AF 3 15 i=tan α= = = . CF 1.6 8 [归纳总结 ] 解答本题的关键是作高线,只有作出辅助 线 AF ,才能在直角三角形中利用坡度的概念去求解.
图 4-4-24
4.4.2 坡度与坡角、方位角相关问题
[归纳总结] 解非直角三角形常见的辅助线: (1)通过作高构造直角三角形; (2)利用图形本身的性质构造直角三角形,如等腰三角 形顶角平分线垂直于底边.
4.4.2 坡度与坡角、方位角相关问题
备选探究问题
坡度、坡比在工程设计上的应用
例 某地区由于过度开山采石,发生了严重的滑坡现象, 影响了附近公路的交通.为了防止再次发生滑坡,主管部门欲 筑建一个护坡石坝, 如图 4-4-25 所示. 护坡石坝的坡角为α, 为了测量石坝斜坡的坡度 i,把一根长 5 m 的竹竿 AB 斜靠在 石坝旁, 当竿长 BD 为 1 m 时, 点 D 离地面的高度 DE 为 0.6 m , 又测得坝底离坝顶的距离 AC 是 3.4 m ,请你计算护坡石坝的 坡度 i.

解直角三角形(2)仰角与俯角、方位角、坡角(比)问题(知识讲解)2022-2023学年九年级数学下册

解直角三角形(2)仰角与俯角、方位角、坡角(比)问题(知识讲解)2022-2023学年九年级数学下册

专题1.11解直角三角形(2)——仰角与俯角、方位角、坡角(比)问题(知识讲解)【学习目标】1.理解用三角函数解决实际问题的有关概念;2.理解并解决实际问题中转化为三角函数模型解决实际问题。

【要点梳理】解直角三角形的知识应用很广泛,关键是把实际问题转化为数学模型,善于将某些实际问题中的数量关系化归为直角三角形中的边角关系是解决实际应用问题的关键.解这类问题的一般过程是:(1)弄清题中名词、术语的意义,如仰角、俯角、坡度、坡角、方向角等概念,然后根据题意画出几何图形,建立数学模型.(2)将已知条件转化为几何图形中的边、角或它们之间的关系,把实际问题转化为解直角三角形的问题.(3)根据直角三角形(或通过作垂线构造直角三角形)元素(边、角)之间的关系解有关的直角三角形.(4)得出数学问题的答案并检验答案是否符合实际意义,得出实际问题的解.拓展:在用直角三角形知识解决实际问题时,经常会用到以下概念:(1)坡角:坡面与水平面的夹角叫做坡角,用字母表示.坡度(坡比):坡面的铅直高度h和水平距离的比叫做坡度,用字母表示,则,如图,坡度通常写成=∶的形式.(2)仰角、俯角:视线与水平线所成的角中,视线中水平线上方的叫做仰角,在水平线下方的叫做俯角,如图.(3)方位角:从某点的指北方向线按顺时针转到目标方向的水平角叫做方位角,如图①中,目标方向PA,PB,PC的方位角分别为是40°,135°,245°.(4)方向角:指北或指南方向线与目标方向线所成的小于90°的水平角,叫做方向角,如图②中的目标方向线OA,OB,OC,OD 的方向角分别表示北偏东30°,南偏东45°,南偏西80°,北偏西60°.特别如:东南方向指的是南偏东45°,东北方向指的是北偏东45°,西南方向指的是南偏西45°,西北方向指的是北偏西45°.特别说明:1.解直角三角形实际是用三角知识,通过数值计算,去求出图形中的某些边的长或角的大小,最好画出它的示意图.2.非直接解直角三角形的问题,要观察图形特点,恰当引辅助线,使其转化为直角三角形或矩形来解.3.解直角三角形的应用题时,首先弄清题意(关键弄清其中名词术语的意义),然后正确画出示意图,进而根据条件选择合适的方法求解.【典型例题】类型一、解直角三角形的应用——仰角和俯角问题1.在一次综合实践活动中,某小组对一建筑物进行测量.如图,在山坡坡脚C处测得该建筑物顶端B 的仰角为60°,沿山坡向上走20m 到达D 处,测得建筑物顶端B 的仰角为30°.已知山坡坡度3:4i =,即3tan 4θ=,请你帮助该小组计算建筑物的高度AB .(结果精确到0.1m 1.732≈)在Rt CDE △中,90E ∠=︒∴222DE CE CD +=∴222(3)(4)20x x +=∴4x =(负值舍去)∴12DE =,16CE =举一反三:【变式1】如图,小文在数学综合实践活动中,利用所学的数学知识测量居民楼的高度AB ,在居民楼前方有一斜坡,坡长15m CD =,斜坡的倾斜角为α,4cos 5α=.小文在C 点处测得楼顶端A 的仰角为60︒,在D 点处测得楼顶端A 的仰角为30°(点A ,B ,C ,D 在同一平面内).(1)求C ,D 两点的高度差;(2)求居民楼的高度AB .(结果精确到1m 1.7≈)AFDF 4三角函数的定义是解答本题的关键.【变式2】如图,希望中学的教学楼AB和综合楼CD之间生长着一棵高度为12.88米的白杨树EF,且其底端B,D,F在同一直线上,BF=FD=40米.在综合实践活动课上,小明打算借助这棵树的高度测算出综合楼的高度,他在教学楼顶A处测得点C的仰角为9°,点E的俯角为16°.问小明能否运用以上数据,得到综合楼的高度?若能,请求出其高度(结果精确到0.01米);若不能,说明理由.(解答过程中可直接使用表格中的数据哟!)【答案】能,综合楼的高度约是37.00米.【分析】在Rt△AEG中,利用正切函数求得AG的长,在Rt△ACH中,利用正切函数求得CH的长,据此求解即可得到综合楼的高度.解:小明能运用以上数据,得到综合楼的高度,理由如下:作EG⊥AB,垂足为G,作AH⊥CD,垂足为H,如图:·类型二、解直角三角形的应用——方位角问题2.小明学了《解直角三角形》内容后,对一条东西走向的隧道AB进行实地测量.如图所示,他在地面上点C处测得隧道一端点A在他的北偏东15︒方向上,他沿西北方向前进D,此时测得点A在他的东北方向上,端点B在他的北偏西60︒方向上,(点A、B、C、D在同一平面内)(1)求点D与点A的距离;(2)求隧道AB的长度.(结果保留根号)举一反三:【变式1】如图,我国某海域有A,B,C三个港口,B港口在C港口正西方向33.2nmile (nmile是单位“海里”的符号)处,A港口在B港口北偏西50°方向且距离B港口40nmile 处,在A港口北偏东53°方向且位于C港口正北方向的点D处有一艘货船,求货船与A港口之间的距离.(参考数据:sin50°≈0.77,cos50°≈0.64,tan50°≈1.19,sin53°≈0.80,cos53°≈0.60,tan53°≈1.33.)由题意得:EF=BC=33.2海里,【变式2】如图,AB 为东西走向的滨海大道,小宇沿滨海大道参加“低碳生活·绿色出行”健步走公益活动.小宇在点A 处时,某艘海上观光船位于小宇北偏东68︒的点C 处,观光船到滨海大道的距离CB 为200米.当小宇沿滨海大道向东步行200米到达点E 时,观光船沿北偏西40︒的方向航行至点D 处,此时,观光船恰好在小宇的正北方向,求观光船从C处航行到D 处的距离.(参考数据:sin 400.64︒≈,cos 400.77︒≈,tan 400.84︒≈,sin 680.93︒≈,cos680.37︒≈,tan 68 2.48︒≈)类型三、解直角三角形的应用——坡度坡比问题来的37°减至30°,已知原电梯坡面AB的长为8米,更换后的电梯坡面为AD,点B延伸至点D,求BD的长.(结果精确到0.1米.参考数据:︒︒︒)≈≈≈≈sin370.60,cos370.80,tan37 1.73【答案】约为1.9米【分析】根据正弦的定义求出AC,根据余弦的定义求出BC,根据正切的定义求出CD,结合图形计算,得到答案.举一反三:【变式1】如图是某水库大坝的横截面,坝高20m CD =,背水坡BC 的坡度为11:1i =.为了对水库大坝进行升级加固,降低背水坡的倾斜程度,设计人员准备把背水坡的坡度改为2i =求背水坡新起点A 与原起点B 之间的距离. 1.41≈ 1.73≈.结果精确到0.1m)【变式2】宜宾东楼始建于唐代,重建于宜宾建城2200周年之际的2018年,新建成的东楼(如图1)成为长江首城会客厅、旅游休闲目的地、文化地标打卡地.某数学小组为测量东楼的高度,在梯步A处(如图2)测得楼顶D的仰角为45°,沿坡比为7:24的斜坡AB前行25米到达平台B处,测得楼顶D的仰角为60°,求东楼的高度DE.(结果精确到1≈)1.7≈ 1.4【点拨】本题考查了解直角三角形的实际应用,掌握三角形中的边角关系是解题的关键.类型四、解直角三角形的应用——其他问题4.2022年6月5日,“神舟十四号”载人航天飞船搭载“明星”机械臂成功发射.如图是处于工作状态的某型号手臂机器人示意图,OA 是垂直于工作台的移动基座,AB 、BC 为机械臂,1OA =m ,5AB =m ,2BC =m ,143ABC ∠=︒.机械臂端点C 到工作台的距离6CD =m .(1)求A 、C 两点之间的距离;(2)求OD 长.(结果精确到0.1m ,参考数据:sin 370.60︒≈,cos370.80︒≈,tan 370.75︒≈ 2.24≈)【答案】(1)6.7m(2)4.5m【分析】(1)连接AC ,过点A 作AH BC ⊥,交CB 的延长线于H ,根据锐角三角函数定义和勾股定理即可解决问题.(2)过点A 作AG DC ⊥,垂足为G ,根据锐角三角函数定义和勾股定理即可解决问题..∴==m.OD AG4.5答:OD的长为4.5m.【点拨】求角的三角画数值或者求线段的长时,我们经常通过观察图形将所求的角成者线段转化到直角三角形中(如果没有直角三角形,设法构造直角三角形),再利用锐角三角画数求解【变式1】某型号飞机的机翼形状如图所示,根据图中数据计算AB的长度(结果保留≈).1.7∠=︒FDB45,∴=,DF FB【变式2】小强在物理课上学过平面镜成像知识后,在老师的带领下到某厂房做验证实验.如图,老师在该厂房顶部安装一平面镜MN ,MN 与墙面AB 所成的角∠MNB =118°,厂房高AB =8m ,房顶AM 与水平地面平行,小强在点M 的正下方C 处从平面镜观察,能看到的水平地面上最远处D 到他的距离CD 是多少?(结果精确到0.1m ,参考数据:sin34°≈0.56,tan34°≈0.68,tan56°≈1.48)【答案】11.8m【分析】过M 点作ME ⊥MN 交CD 于E 点,证明四边形ABCM 为矩形得到CM=AB =8,∠NMC =180°-∠BNM=62°,利用物理学入射光线与反射光线之间的关系得到∠EMD =∠EMC ,且∠CME =90°-∠CMN =28°,进而求出∠CMD =56°,最后在Rt △CMD 中由tan ∠CMD 即可求解.解:过M 点作ME ⊥MN 交CD 于E 点,如下图所示:∵C点在M点正下方,∴CM⊥CD,即∠MCD=90°,∵房顶AM与水平地面平行,∴四边形AMCB为矩形,【点拨】本题借助平面镜入射光线与反射光线相关的物理学知识考查了解直角三角形,解题的关键是读懂题意,利用数形结合的思想解答.。

新人教版九年级下册初中数学 课时3 方向角、坡度问题 教案(教学设计)

新人教版九年级下册初中数学 课时3 方向角、坡度问题 教案(教学设计)

第二十八章锐角三角函数28.2 解直角三角形及其应用28.2.2 应用举例课时3 方向角、坡度问题【知识与技能】1.了解方位角等有关概念,能准确把握所指的方位角是指哪一个角.2.了解坡度、坡角的有关概念,知道坡度与坡角之间的关系.3.经历对实际问题的探究,会利用解直角三角形的知识解决有关方位角、坡度、坡角的实际问题.【过程与方法】1.通过探究从实际问题中建立数学模型的过程,发展学生的抽象概括能力,提高应用数学知识解决实际问题的能力.2.通过将实际问题中的数量关系转化为直角三角形中元素之间的关系,增强应用意识,体会数形结合思想的应用.3.体验用解直角三角形的有关知识解决简单的实际问题的策略和方法,培养学生分析问题和解决问题的能力,提高学生思维能力的灵活性.【情感态度与价值观】1.通过根据实际问题画示意图的过程,培养学生的动手能力,激发学生对数学的好奇心和求知欲.2.在运用三角函数知识解决问题的过程中,认识数学具有抽象、严谨和应用广泛的特点,体会数学的应用价值.3.通过将实际问题转化为数学问题,培养建模思想,体会数形结合思想在数学中的应用,培养学生良好的学习习惯.用三角函数有关知识解决方位角、坡度、坡角等有关问题.准确分析问题并将实际问题转化成数学模型.多媒体课件.导入一:【复习提问】1.在练习本上画出方向图(表示东南西北四个方向的).2.依次画出表示东南方向、西北方向、北偏东65度、南偏东34度方向的射线.【师生活动】学生动手画图,小组内交流答案,教师巡视过程中发现学生易犯错误,作出点评.导入二:如果你是修建三峡大坝的工程师,现在有这样一个问题请你解决:如图,水库大坝的横断面是梯形,坝顶宽6m,坝高23m,斜坡AB的坡度i=1∶3,斜坡CD的坡度i=1∶2.5,求斜坡AB的坡角α,坝底宽AD和斜坡AB的长.【师生活动】教师课件展示实际问题,学生审题,面对学生对没学过的概念的疑惑,教师导出本节课课题.[过渡语]在这个实际问题中,什么是坡度、坡角?如何解决这个实际问题?这就是我们这节课要学习的内容.[设计意图]通过复习有关方位角的概念,为本节课探究例题做好铺垫.以有关斜坡问题的生活实例导入新课,让学生体会数学在生活中无处不在,同时激发学生的好奇心和求知欲.一、探究一如图,一艘海轮位于灯塔P的北偏东65°方向,距离灯塔80nmile的A处,它沿正南方向航行一段时间后,到达位于灯塔P的南偏东34°方向上的B处.这时,B处距离灯塔P有多远(结果取整数)?思路一教师引导分析:(1)要求BP的长,常作的辅助线是什么?(构造直角三角形)(2)在Rt△BPC中,要求BP的长,已知什么?需要求什么?(3)题目中的已知条件是什么?在哪个直角三角形中?(4)在Rt△APC中,根据已知条件可以求出什么?(5)结合(2),只要求出哪条线段的长即可?(线段PC的长)(6)根据以上分析,你能写出解答过程吗?【师生活动】学生根据教师提出的问题思考后,独立完成解答过程,教师巡视过程中及时辅导,鼓励学生用不同角度思考问题,最后展示学生的解答过程,学生点评与总结.解:在Rt△APC中,PC=PA·cos(90°-65°)=80·cos25°≈72.505.在Rt△BPC中,∠B=34°,∵sin B=,∴PB=≈≈≈130(nmile).因此,当海轮到达位于灯塔P的南偏东34°方向上的B处时,它距离灯塔P大约130nmile.思路二【学生活动】(1)根据题意,自己画出示意图.(2)分析题意,写出解答过程.(3)小组内成员交流答案.【教师活动】(1)巡视过程中及时辅导,帮助有困难的学生,引导学生从不同角度思考问题.(2)展示学生的成果,让学生进行点评.(3)规范解题格式,强调解决实际问题的关键.【课件展示】同思路一[设计意图]通过教师引导或自主学习方式解决有关方位角的实际问题,让学生进一步体会数形结合思想和建模思想在数学中的应用,提高学生分析问题、解决问题的能力,体会将实际问题转化为解直角三角形问题的一般思路和方法.二、探究二活动一:认识有关概念:【课件展示】坡度:坡面的铅直高度h和水平宽度l的比叫做坡度(或叫做坡比),一般用i表示.即i=,常写成i=1∶m的形式.坡角:把坡面与水平面的夹角α叫做坡角.【思考】坡度i与坡角α之间具有什么关系?(i==tanα)【师生活动】学生小组合作交流,归纳结论,教师点评.活动二:解决课前导入问题:如图,水库大坝的横断面是梯形,坝顶宽6m,坝高23m,斜坡AB的坡度i=1∶3,斜坡CD的坡度i=1∶2.5,求斜坡AB的坡角α(精确到1'),坝底宽AD和斜坡AB的长(精确到0.1m).〔解析〕(1)进行和坡度有关的计算,常作辅助线构造直角三角形,根据解直角三角形的知识求坡角.(2)根据坡度的概念及梯形的高,可以求出AE,DF的长.(3)由矩形的性质可得EF与BC的数量关系,求出EF的值,从而求出AD的长.(4)在Rt△ABE中,由勾股定理或三角函数的定义可得AB的长.【师生活动】教师引导学生分析问题,然后学生独立完成解答过程,小组内交流答案,小组代表板书过程,教师进行点评.【课件展示】解:在Rt△ABE和Rt△CDF中,=,=,∴AE=3BE=3×23=69(m),FD=2.5CF=2.5×23=57.5(m).∴AD=AE+EF+FD=69+6+57.5=132.5(m).∵斜坡AB的坡度i=tanα=≈0.3333,∴α≈18°26'.在Rt△ABE中,AB==≈72.7(m).答:斜坡AB的坡角α约为18°26',坝底宽AD为132.5m,斜坡AB的长约为72.7m.[设计意图]通过利用解直角三角形的知识解决有关坡度问题,培养学生逻辑思维能力及良好的学习习惯.坡度问题计算过程很繁琐,通过严格要求学生,选择最简练、准确的方法计算,培养学生运算能力.三、共同归纳[过渡语]通过两节课的学习,你能归纳出利用解直角三角形的知识解决实际问题的一般过程是什么吗?【师生活动】学生小组讨论,教师对学生的回答给予鼓励,师生共同归纳解题过程:【课件展示】(1)将实际问题抽象为数学问题(画出平面图形,转化为解直角三角形的问题);(2)根据问题中的条件,适当选用锐角三角函数等解直角三角形;(3)得到数学问题的答案;(4)得到实际问题的答案.[设计意图]通过归纳总结用解直角三角形知识解决实际问题的一般过程,培养学生归纳总结能力,提高学生的数学思维.[知识拓展](1)解决实际问题时,可利用正南、正北、正西、正东方向线构造直角三角形求解.(2)坡度也叫坡比,即i=,一般写成i=1∶m的形式(比的前项是1,后项可以是整数,也可以是小数或根式).(3)坡度i与坡角α之间的关系为i=tanα.(4)坡角越大,坡度越大,坡面越陡.利用解直角三角形的知识解决实际问题的一般过程:(1)将实际问题抽象为数学问题(画出平面图形,转化为解直角三角形的问题);(2)根据问题中的条件,适当选用锐角三角函数等解直角三角形;(3)得到数学问题的答案;(4)得到实际问题的答案.第3课时1.探究一2.探究二3.共同归纳一、教材作业二、课后作业【基础巩固】1.如图,某商场自动扶梯的长l为10米,该自动扶梯到达的高度h为6米,自动扶梯与地面所成的角为θ,则tanθ等于()A. B. C. D.2.如图,小雅家(图中点O处)门前有一条东西走向的公路,经测得有一水塔(图中点A处)在她家北偏东60°方向500m处,那么水塔所在的位置到公路的距离AB 是()A.250mB.250mC.mD.250m3.一段公路的坡度为1∶3,某人沿这段公路路面前进100米,那么他上升的最大高度是()A.30米B.10米C.30米D.10米4.一只船向正东方向航行,上午7时在灯塔A的正北方向的C处,上午9时到达灯塔A的北偏东60°方向的B处,已知船的速度为每小时20千米,那么AB的长是()A.千米B.千米C.千米D.千米5.已知传送带与水平面所成斜坡的坡度i=1∶2.4,如果它把物体送到离地面10米高的地方,那么物体所经过的路程为米.6.一只船向正东方向航行,上午9点到达一座灯塔的西南方向68海里处,上午11点到达这座灯塔的正南方向,这只船航行的速度是海里/时.(答案可带根号)7.如图,沿江堤坝的横断面是梯形ABCD,坝顶AD=4m,坝高AE=6m,斜坡AB的坡比i=1∶2,∠C=60°,求斜坡AB,CD的长.8.如图,一船在A处测得北偏东45°方向有一灯塔B,船向正东方向以每小时20海里的速度航行1.5小时到达C处时,又观测到灯塔B在北偏东15°方向上,求此时船与灯塔相距多少海里.【能力提升】9.如图,一游人由山脚A沿坡角为30°的山坡行走600m,到达一个景点B,再由B 沿山坡BC行走200m到达山顶C,若在山顶C处观测到景点B的俯角为45°,则山高CD等于(结果用根号表示).10.如图,一艘轮船航行到B处时,测得小岛A在船的北偏东60°的方向,轮船从B处继续向正东方向航行200海里到达C处时,测得小岛A在船的北偏东30°的方向.已知在小岛周围170海里内有暗礁,若轮船不改变航向继续向前行驶,轮船有无触礁的危险?(≈1.732)11.如图,某渔船在小岛O南偏东75°方向的B处遇险,在小岛O南偏西45°方向A处巡航的中国渔政船接到求救信号后立刻前往救援,此时,中国渔政船与小岛O相距8海里,渔船在中国渔政船的正东方向上.(1)求∠BAO与∠ABO的度数(直接写出答案);(2)若中国渔政船以每小时28海里的速度沿AB方向赶往B处救援,能否在1小时内赶到?请说明理由.(参考数据:tan75°≈3.73,tan15°≈0.27,≈1.41,≈2.45)【拓展探究】12.如图,某气象台测得“苹果1号”台风的中心在A地,A地在B城的正西方向300km处,台风中心正以50km/h的速度沿北偏东60°的方向移动.距台风中心250km范围内的区域都会受到台风的影响.(1)B城是否会受到台风的影响?请说明理由.(2)如果B城会受到台风的影响,那么受到影响的时间有多长?【答案与解析】1.A解析:由勾股定理可得另一直角边的长为=8,所以tanθ==.故选A.2.A解析:由已知得∠AOB=30°,OA=500m,则AB=OA=250m.故选A.3.D解析:如图,在Rt△ABC中,tan A=,AB=100米.设BC=x米,则AC=3x米.根据勾股定理,得x2+(3x)2=1002,解得x=±10(负值舍去).故选D.4.D解析:如图,由题意得BC=20×2=40(千米),∠A=60°,∴sin A=sin60°=,∴=,解得AB=千米.故选D.5.26解析:如图,由题意得斜坡AB的坡度为i=1∶2.4,AE=10米,AE⊥BD.∵i==,∴BE=24米.在Rt△ABE中,AB==26(米).6.17解析:如图,由题意知∠M=45°,PM=68,则在Rt△PNM中,cos M=,即=,∴MN=34,∴这只船航行的速度为==17(海里/时).7.解:∵斜坡AB的坡比i=1∶2,∴AE∶BE=1∶2.又AE=6m,∴BE=12m,∴AB==6(m),作DF⊥BC于F(如图),则得矩形AEFD,有DF=AE=6m.∵∠C=60°,∴CD==4(m).答:斜坡AB,CD的长分别是6m,4m.8.解:如图,过C作CD⊥AB,垂足为D,过C作CE⊥AC,交AB于E.在Rt△ACD中, ∠DAC=45°,AC=20×1.5=30,∴CD=AC sin45°=30×=15.在Rt△BCD中,∠BCD=∠BCE+∠ECD=45°+15°=60°,∴BC==30(海里).答:此时船与灯塔相距30海里.9.(100+300)m解析:过B作BF⊥AD于F,BE⊥CD于E,如图.∵在山顶C处观测到景点B的俯角为45°,∴△BEC为等腰直角三角形,而BC=200m,∴CE=BC=100(m).∵∠A=30°,AB=600m,∴BF=AB=300m,∴CD=CE+ED=100+300(m).10.解:该轮船不改变航向继续前行,无触礁的危险.理由如下:如图,作AD⊥BC于D,则有∠ABD=30°,∠ACD=60°,∴∠CAB=∠ABD,∴AC=BC=200海里.在Rt△ACD中,设CD=x海里,则AC=2x,AD===x,在Rt△ABD 中,AB=2AD=2x,BD===3x.又∵BD=BC+CD,∴3x=200+x,∴x=100.∴AD=x=100≈173.2.∵173.2海里>170海里,∴轮船不改变航向继续向前行驶,轮船无触礁的危险.11.解:(1)∠BAO=45°,∠ABO=15°. (2)能.过点O作OC⊥AB于点C,如图,则△AOC与△BOC都是直角三角形,由(1)得∠BAO=45°,∠ABO=15°,∴△AOC是等腰直角三角形,∴AC=OC.在Rt△AOC中,AC=OA cos45°=8×=4≈5.64,∴OC=AC≈5.64.在Rt△BOC中,BC=≈≈20.89.∴AB=AC+BC≈5.64+20.89=26.53(海里).∵中国渔政船的速度是每小时28海里,∴中国渔政船能在1小时内赶到.11.解:(1)如图,过点B作BD⊥AC于点D.∵台风中心正以50km/h的速度沿北偏东60°的方向移动,∴∠CAB=30°.∵AB=300km,∴BD=AB=×300=150(km),150km<250km,∴B城会受到台风的影响.(2)过点B作BE=BF=250km.∵BD⊥AC,∴DE=DF=EF.在Rt△DEB中,∵BE=250km,BD=150km,∴DE===200(km),∴EF=2DE=400(km).∵台风中心正以50km/h的速度沿北偏东60°的方向移动,∴经过EF的时间t==8(h).答:受到影响的时间是8小时.以和本节课有关的坡度、坡角的实际问题导入新课,激发学生的好奇心和求知欲,探究一是解决和方位角有关的实际问题,因为学生对方位角比较熟悉,所以探究活动以学生为主,独立完成后小组合作交流,展示成果,让学生体会成功的快乐;探究二是解决导入中的生活实例,做到首尾呼应,教师引导学生熟悉坡度、坡角的概念后,学生在教师提出的问题的引导下自主学习,建立数学模型,将实际问题转化为数学问题解决,学生通过小组合作交流、共同探究等数学活动,明确解题思路,学生在展示成果后教师归纳总结,引导学生熟悉用解直角三角形知识解决实际问题的方法和思路,从而让学生的数学思维能力得到提升.本节课的重点是建立数学模型,用解直角三角形知识解决实际问题,教学设计的主要特点是突出学生活动,让学生真正成为课堂的主人,通过自主学习、合作交流、共同归纳解决与方位角、坡角有关的实际问题.教学中忽略了知识之间的联系,没有把一些零散的练习和例题用主线串联起来,其实这些应用就是在直角三角形中解决边角之间的关系,设计时可以将添加辅助线构造直角三角形的练习加在例题后边,让学生对这类习题有整体认识.。

中考解直角三角形的实际应用

中考解直角三角形的实际应用

解直角三角形的实际应用一、知识要点1.仰角与俯角:在视线与水平线所成的角中,视线在水平线上方的叫做仰角,在水平线下方的叫做俯角.如图(1).2.坡角与坡度:坡面的垂直高度h 和水平宽度l 的比叫做坡度(或叫做坡比),用字母表示为h i l =,坡面与水平面的夹角记作α,叫做坡角,则tan h i l α==.坡度越大,坡面就越陡.如图(2).3.方向角(或方位角):方向角一般是指以观测者的位置为中心,将正北或正南方向作为起始方向旋转到目标的方向线所成的角(一般指锐角),通常表达为北(南)偏东(西)××度.如图(3).二、例题讲解例1.如图,某数学兴趣小组在活动课上测量学校旗杆的高度.已知小亮站着测量,眼睛与地面的距离(AB )是1.7米,看旗杆顶部E 的仰角为30°;小敏蹲着测量,眼睛与地面的距离(CD )是0.7米,看旗杆顶部E 的仰角为45°.两人相距5米且位于旗杆同侧(点B 、D、F 在同一直线上).(1)求小敏到旗杆的距离DF .(结果保留根号) (2)求旗杆EF 的高度.(结果保留整数,参考数据:≈1.4,≈1.7)图(3)北图(2)图(1)俯角仰角视线视线水平线铅垂线迁移练习1.数学活动课上老师让学生以小组为单位测量学校旗杆AB的高度,如图所示,“希望小组”在教学楼一楼地面D处测得旗杆顶部仰角为60°,在教学楼三楼地面C处测得旗杆顶部仰角为30°,已知旗杆底部于教学楼一楼地面在同一水平线上,每层楼高为3米,求旗杆AB高度.例2.某体育场看台的坡面AB与地面的夹角是37°,看台最高点B到地面的垂直距离BC为3.6米,看台正前方有一垂直于地面的旗杆DE,在B点用测角仪测得旗杆的最高点E的仰角为33°,已知测角仪BF的高度为1.6米,看台最低点A与旗杆底端D之间的距离为16米(C,A,D在同一条直线上).(1)求看台最低点A到最高点B的坡面距离;(2)一面红旗挂在旗杆上,固定红旗的上下两个挂钩G、H之间的距离为1.2米,下端挂钩H与地面的距离为1米,要求用30秒的时间将红旗升到旗杆的顶端,求红旗升起的平均速度(计算结果保留两位小数)(sin37°≈0.6,cos37°≈0.8,tan37°≈0.75,sin33°≈0.54,cos33°≈0.84,tan33°≈0.65)迁移练习2.如图,某数学兴趣小组为了测量学校旗杆AB的高度,他们在旗杆对面的实验楼的顶部C处测得旗杆顶端A的仰角为46°,测得旗杆底端B的俯角为32°,同时测量了旗杆底端与实验楼的地面距离BD长为9.5米.求旗杆AB的高.(结果精确到0.1米).【参考数据:sin32°=0.53,cos32°=0.85,tan32°=0.62,sin46°=0.72,cos46°=0.69,tan46°=1.04】例3.金桥学校“科技体艺节”期间,八年级数学活动小组的任务是测量学校旗杆AB的高,他们在旗杆正前方台阶上的点C处,测得旗杆顶端A的仰角为45°,朝着旗杆的方向走到台阶下的点F处,测得旗杆顶端A的仰角为60°,已知升旗台的高度BE为1米,点C距地面的高度CD为3米,台阶CF的坡角为30°,且点E、F、D在同一条直线上,求旗杆AB的高度(计算结果精确到0.1米,参考数据:≈1.41,≈1.73)迁移练习3.某数学兴趣小组同学进行测量大树CD高度的综合实践活动,如图,在点A处测得直立于地面的大树顶端C的仰角为36°,然后沿在同一剖面的斜坡AB行走13米至坡顶B 处,然后再沿水平方向行走6米至大树脚底点D处,斜面AB的坡度(或坡比)i=1:2.4,那么大树CD的高度约为(参考数据:sin36°≈0.59,cos36°≈0.81,tan36°≈0.73)()例4.如图,某数学活动小组为测量学校旗杆AB的高度,沿旗杆正前方2米处的点C出发,沿斜面坡度i=1:的斜坡CD前进4米到达点D,在点D处安置测角仪,测得旗杆顶部A的仰角为37°,量得仪器的高DE为1.5米.已知A、B、C、D、E在同一平面内,AB⊥BC,AB∥DE.求旗杆AB的高度.(参考数据:sin37°≈,cos37°≈,tan37°≈.计算结果保留根号)迁移练习4.如图,某河大堤上有一颗大树ED,小明在A处测得树顶E的仰角为45°,然后沿坡度为1:2的斜坡AC攀行20米,在坡顶C处又测得树顶E的仰角为76°,已知ED⊥CD,并且CD与水平地面AB平行,求大树ED的高度.(精确到1米)(参考数据:sin76°≈0.97,cos76°=0.24,tan76°≈4.01,=2.236)例5.中考结束后,小明和好朋友一起前往三亚旅游.他们租住的宾馆AB坐落在坡度为i=1∶2.4的斜坡上.某天,小明在宾馆顶楼的海景房A处向外看风景,发现宾馆前的一座雕像C的俯角为76°(雕像的高度忽略不计),远处海面上一艘即将靠岸的轮船E的俯角为27°.已知雕像C距离海岸线D的距离CD为260米,与宾馆AB的水平距离为36米,问此时轮船E距离海岸线D的距离ED的长为(参考数据:tan76°≈4.0,tan27°≈0.5,sin76°≈0.97,sin27°≈0.45)()A. 262B. 212C. 244D. 276迁移练习5.气魄雄伟的大礼堂座落在渝中区学田湾,它是一座仿古民族建筑.“五一”期间,小明和妈妈到重庆大礼堂参观游玩.参观结束后,穿过人民广场到达A处,回望礼堂,更显气势雄伟,金碧辉煌.此时,在A点观察到礼堂顶端的仰角为31,沿着坡度为1:3的斜坡AB 走一段距离到达B点,观察到礼堂顶端的仰角是22,测得点B与地面的高度9BC=米,则大礼堂的高度DE为()米.(精确到1米.参考数据:2tan225≈,3tan315≈)A.56 B.59 C.62 D.65跟踪训练1.一艘货轮以20海里/时的速度在海面上航行,当它行驶到A处时,发现它的东北方向有一灯塔B.货轮继续向北航行1小时后到达C处,发现灯塔B在它北偏东75°方向,那么此时货轮与灯塔B的距离为()海里(结果不取近似值)2.轮船从B处以每小时50海里的速度沿南偏东30°方向匀速航行,在B处观测灯塔A位于南偏东75°方向上,轮船航行半小时到达C处,在C处观测灯塔A位于北偏东60°方向上,则C处与灯塔A的距离是()海里.A.25B.25C.50 D.253.今年北京市大规模加固中小学校舍,房山某中学教学楼的后面靠近一座山坡,坡面上是一块平地,如图所示,BC∥AD,斜坡AB=40米,坡度i=:1,为防止山体滑坡,保障学生安全,学校决定不仅加固教学楼,还对山坡进行改造,经地质人员勘测,当坡角不超过45°时,可确保山体不滑坡,改造时保持坡脚A不动,从坡顶B沿BC削进到E处,问BE至少是多少米?(结果保留根号)4.如图,已知点C与某建筑物底端B相距306米(点C与点B在同一水平面上),某同学从点C出发,沿同一剖面的斜坡CD行走195米至坡顶D处,斜坡CD的坡度(或坡比)i=1:2.4,在D处测得该建筑物顶端A的俯视角为20°,则建筑物AB的高度约为()(精确到0.1米,参考数据:sin20°≈0.342,cos20°≈0.940,tan20°≈0.364)A. 29.1米B. 31.9米C. 45.9米D. 95.9米5.某水库大坝的横截面是如图所示的四边形ABCD,其中AB∥CD.大坝顶上有一瞭望台PC,PC正前方有两艘渔船M,N.观察员在瞭望台顶端P处观测到渔船M的俯角α为31°,渔船N 的俯角β为45°.已知MN所在直线与PC所在直线垂直,垂足为E,且PE长为30米.(1)求两渔船M,N之间的距离(结果精确到1米);(2)已知坝高24米,坝长100米,背水坡AD的坡度i=1∶0.25.为提高大坝防洪能力,请施工队将大坝的背水坡通过填筑土石方进行加固,坝底BA加宽后变为BH,加固后背水坡DH 的坡度i=1∶1.75.施工队施工10天后,为尽快完成加固任务,施工队增加了机械设备,工作效率提高到原来的2倍,结果比原计划提前20天完成加固任务.施工队原计划平均每天填筑土石方多少立方米?(参考数据:tan31°≈0.60,sin31°≈0.52)6.如图,斜坡AB长130米,坡度i=1:2.4,BC⊥AC,现计划在斜坡中点D处挖去部分坡体修建一个平行于水平线CA的平台DE和一条新的斜坡BE.(1)若修建的斜坡BE的坡角为30°,求平台DE的长.(结果保留根号).(2)斜坡AB正前方一座建筑物QM上悬挂了一幅巨型广告MN,小明在D点测得广告顶部M 的仰角为26.5°,他沿坡面DA走到坡脚A处,然后向大楼方向维续行走10米来到P处,测得广告底部N的仰角为53°,此时小明距大楼底端Q处30米.已知B、C、A、M、Q在同一平面内,C、A、P、Q在同一条直线上,求广告MN的长度.(参考数据:sin26.5°≈0.45,cos26.5°=0.89,tan26.5°=0.50,sin53°≈0.80,cos53°≈0.60,tan53°≈1.33°)7.如图,一幢居民楼OC临近山坡AP,山坡AP的坡度为i=1:,小亮在距山坡坡脚A处测得楼顶C的仰角为60°,当从A处沿坡面行走10米到达P处时,测得楼顶C的仰角刚好为45°,点O,A,B在同一直线上,求该居民楼的高度.(结果保留整数,≈1.73)。

人教版八年级下册数学课件方位角、坡度、坡角问题pptx

人教版八年级下册数学课件方位角、坡度、坡角问题pptx

解析:∵ AB =2CD,∴ 设 CD =x m ,则 AB =2x m .



tan37°= = ≈0.75,∴

DF =

x.

A
∵ AE 的坡度 i =1:2,
C
∴ BE =2AB =4x.
故 BD-EF =BE+FD =13-3=4x+
解得 x =

,故

AB =2×


=

∵AC + BC = AB,
∴PC ·tan 30°+PC ·tan 45° = 200,

PC+PC = 200,解得 PC ≈ 126.8km>100km.
答:计划修筑的这条高速公路不会穿越保护区.
C
200km
23.1.3 一般锐角的三角函数值
返回目录
思考
如图,从山脚到山顶有两条路 AB 与 BC,问哪条路比较陡?
人教版
28.2.3 方位角、坡度、坡角问题
九年级下


01
学习目标
02
新课引入
03
新知学习
04
课堂小结
23.1.3 一般锐角的三角函数值
返回目录
学习目标
1. 正确理解方向角、坡度的概念.
重点
2. 能运用解直角三角形知识解决方向角、坡度的问题;能够掌握综合性
较强的题型、融会贯通地运用相关的数学知识,进一步提高运用解直角
0.01n mile)?
65°
P
A
C
34°
B
23.1.3 一般锐角的三角函数值
返回目录
解:如图 ,在 Rt△APC 中,

28.2.4 方位角与方向角问题-

28.2.4 方位角与方向角问题-

第4课时方位角与方向角问题复习引入本节课将应用解直角三角形知识解决测量中的方位角问题.探究新知(一)方位角与方向角1.方向角教师讲解:指北或指南方向线与目标方向所成的小于90°的角叫做方向角.如课本图28.2-1中的目标方向线OA,OB,OC分别表示北偏东60°,南偏东30°,北偏西70°.特别地,若目标方向线与指北或指南的方向线成45°的角,如图28.2-1的目标方向线OD 与正南方向成45°角,通常称为西南方向.图28.2-1 图28.2-22.方位角教师讲解:从某点的指北方向线按顺时针转到目标方向的水平角,叫做方位角.•如课本图28.2-2中,目标方向线PA,PB,PC的方位角分别是40°,135°,225°.(二)用解直角三角形的方法解决实际问题方法要点教师讲解:在解决实际问题时,我们要学会将千变万化的实际问题转化为数学问题,要善于将某些实际问题中的数量关系归结为直角三角形中的元素(边、角)•之间的关系,这样才能很好地运用解直角三角形的方法求解.解题时一般有以下三个步骤:1.审题.按题意画出正确的平面或截面示意图,并通过图形弄清已知和未知.2.将已知条件转化为示意图中的边、角或它们之间的关系,把实际问题转化为解直角三角形的问题.如果没有现成是直角三角形可供使用,可通过作辅助线产生直角三角形,再把条件和问题转化到这个直角三角形.3.根据直角三角形(或通过作垂线构造直角三角形)元素(边、•角)之间关系解有关的直角三角形.(三)例题讲解教师解释题意:如课本图28.2-8所示,一艘海轮位于灯塔P的北偏东65°方向,•距离灯塔80海里的A处,它沿正南方向航行一段时间后,•到达位于灯塔P的南偏东34°方向上的B处.这时,海轮所在的B处距离灯塔P有多远?(精确到0.01海里)教师提示:这道题的解题思路与上一节课的例4相似.因为△APB不是一个直角三角形,所以我们把一个三角形分解为两个直角三角形,△ACP与△PCB.PC•是东西走向的一条直线.AB是南北走向的一直线,所以AB与PC是相互垂直的,即∠ACP与∠BDP•均为直角.再通过65度角与∠APC互余的关系求∠APC;通过34度角与∠BPC•互余的关系求∠BPC.教师分析后要求学生自行做完这道题.学生做完后教师再加以总结并板书.解:如课本图28.2-8,在Rt△APC中,PC=PA·cos(90°-65°)=80×cos25°≈80×0.91=72.8.在Rt△BPC中,∠B=34°,∵sinB=PC PB,∴PB=72.872.8sin sin340.559PCB=≈︒≈130.23.因此,当海轮到达位于灯塔P的南偏东34°方向时,它距离灯塔P大约130.23海里.教师讲解:解直角三角形有广泛的应用,解决问题时,•要根据实际情况灵活运用相关知识.例如,当我们要测量如课本图28.2-9所示大坝的高度h时,只要测出仰角α和大坝的坡面长度L,就能算出h=Lsinα.但是,当我们要测量如课本图28.2-10所示的山高h时,问题就不那么简单了.这是由于不能很方便地得到仰角α和山坡长度L.图28.2-9 图28.2-10 与测坝高相比,测山高的困难在于:坝坡是“直”的,而山坡是“曲”的.怎样解决这样的问题呢?我们设法“化曲为直,以直代曲”.我们可以把山坡“化整为零”地划分为一些小段,课本图28.2-11表示其中一部分小段.划分小段时,注意使每一小段上的山坡近似是“直”的,可以量出这段坡长L1,测出相应的仰角α,这样就可以算出这段山坡的高度h1=L1sin α.图28.2-11在每个小段上,我们都构造出直角三角形,利用上面的方法分别算出各段山坡的高度h1,h2,…….然后我们再“积零为整”,把h1,h2,…相加,于是得到山高h.以上解决问题中所用的“化整为零,积零为整”“化曲为直,以直代曲”的做法,就是高等数学中微积分的基本思想,它在数学中有重要地位,在今后的学习中,你会更多地了解这方面的内容.随堂练习课本第95页练习第1题、第2题.课时总结利用解直角三角形的知识解决实际问题的一般过程是:1.将实际问题抽象为数学问题(画出平面图形,•转化为解直角三角形的问题).2.根据条件的特点,适当选用锐角三角函数等去解直角三角形.3.得到数学问题的答案.4.得到实际问题的答案.教后反思:________________________________________________________________________ ____________________________________________________________________________ 第4课时作业设计课本练习课本第97页习题28.2拓广探索第9题、第10题.双基与中考一、选择题.1.如图,轮船航行到C处时,观测到小岛B的方向是北偏西35°,那么同时从B观测到轮船的方向是().A.南偏西35° B.东偏西35° C.南偏东55° D.南偏东35°东(第1题) (第5题) (第8题)2.•身高相同的三个小朋友甲、•乙、•丙放风筝,•他们放出的线长分别是300m,250m,200m,线与地面所成的角分别为30°、45°、60°(假设风筝线是拉直的),则三人所放风筝().A.甲的最高 B.乙的最低 C.丙的最低 D.乙的最高3.一日上午8时到12时,若太阳光线与地面所成角由30°增大到45°,•一棵树的高为10m,则树在地面上影长h的范围是().A.5<h≤.10≤h≤.10<h<15 D.4.△ABC中,AB=6,AC=3,则∠B最大值是().A.30° B.45° C.60° D.无法确定5.如图,水库大坝横断面为梯形,坝顶宽6m,坝高2m,斜坡AB的坡角为45°,•斜坡CD的坡度i=1:2,则坝底AD的长为().A.42m B.(m C.78m D.(m6.△ABC+(2=0且AB=4,则△ABC的面积是().A..4 C..27.一渔船上的渔民在A处看见灯塔M在北偏东60°方向,这艘船以28海里/小时的速度向正东航行,半小时到B处,在B处看见灯塔M在北偏东15°方向,此时,灯塔M与渔船的距离是().A...7 D.148.某地夏季中午,当太阳移到屋顶上方偏南时光线与地面成80°角,房屋朝南的窗子高AB=1.8m;要在窗子外面上方安装一个水平挡光板AC,•使午间光线不能直接射入室内,那么挡光板AC的宽度应为().A.1.8tan80°m B.1.8cos80°mC.1.8sin80︒D.1.8cot80°m9.若菱形的边长为4,它的一个内角为126°,则较短的对角线长为().A.4sin54° B.4cos63° C.8sin27° D.8cos27°10.如图,上午9时,一条船从A处出发以20海里/小时的速度向正北方向航行,•11时到达B处,从A、B望灯塔C,测得∠NAC=36°,∠NBC=72°,那么从B处到灯塔C的距离是().A.20海里 B.36海里 C.72海里 D.40海里北BNC(第10题) (第11题)11.如图,一电线杆AB 的影子分别落在了地上和墙上,某一时刻,小明竖起1•米高的直杆,量得其影长为0.5米,此时,他又量得电线杆AB 落在地上的影子BD 长3米,落在墙上的影子CD 的高为2米,小明用这些数据很快算出了电线杆AB 的高,•请你计算电线杆AB 的高为( ).A .5米B .6米C .7米D .8米二、填空题.12.升国旗时,某同学站在离旗杆底部24m 处行注目礼,当国旗升至旗杆顶端时,•该同学视线的仰角恰为30°,若双眼离地面1.5m ,则旗杆高度为______m .(•用含根号的式子表示)13.在地面上一点,测得一电视塔尖的仰角为45°,沿水平方向,•再向塔底前进a 米,又测得塔尖的仰角为60°,那么电视塔高为________.• • •14.•如图一铁路路基的横断面为等腰梯形ABCD ,•根据图示数据得下底宽AD=______米.(第14题) (第15题) 15.如图△ABC 的顶点A 、C 的坐标分别是(0,4),(3,0),并且∠ACB=90°,∠B=•30°,则顶点B 的坐标是________.16.如图,•燕尾槽的外口宽AD=•90mm ,•深为70mm ,•燕尾角为60•°,•则里口宽为________.(第16题) (第17题) 17.如图,从高出海平面500m 的直升飞机上,测得两艘船的俯角分别为45•°和30°,如果这两艘船一个在正东,一个在正西,那么它们之间的距离为______.三、解答题.18.甲、乙两船同时从港口O 出发,甲船以16.1海里/小时的速度向东偏南35°方向航行,乙船向西偏南58°,方向航行,航行了两小时,甲船到达A 处并观测到B 处的乙船恰好在其正西方向,求乙船的速度v .(精确到0.1海里/小时)(参考数据:sin32°≈0.53,cos32°≈0.85,tan32°≈0.62,cot32°≈1.60)19.去年某省将地处A 、B 两地的两所大学合并成了一所综合性大学,•为了方便A 、B 两地师生的交往,学校准备在相距2千米的A 、B 两地之间修筑一条笔直公路(图中的线段AB ),经测量,在A 地的北偏东60°方向,B 地的北偏西45°方向的C•处有一个半径为0.7千米的公园,问计算修筑的这条公路会不会穿出公园?为什么?60︒ 45︒BA C答案:一、1.D 2.D 3.B 4.A 5.C 6.A 7.A 8.D 9.C 10.D 11.D二、12.32 13.32a 米 14.29.2 15.(16.(90+3)mm 17.500(m 三、18.由题意可知:OA=16.1×2=32.2(海里).∠1=32°,∠2=58°.∴∠AOB=180°-(∠1+∠2)=180°-(32°+58°)=90°.由B 在A 的正西方向,可得:∠A=∠1=32°.又∵在Rt △AOB 中,tanA=OB OA, ∴OB=OA ·tanA=32.2×tan32°=32.2×0.62=19.964(海里). ∴v=2OB =19.964÷2=9.982≈10.0(海里/小时). 即:乙船的速度约为10.0海里/小时.19.过点C 作CD ⊥AB 于D ,,这条公路不会穿过公园.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
如何利用条件求AD? 3.土方数=S·l
解:

i
BE AE
1, 1.5
BE=0.6(米).
∴AE=1.5×0.6=0.9(米).
∵等腰梯形ABCD,
∴FD=AE=0.9(米).
∴AD=2×0.9+0.5=2.3(米).
1
S梯形ABCD= 2 (0.5+2.3) ×0.6=0.84≈0.8米2
总土方数=截面积×渠长 =0.8×100=80(米3). 答:横断面ABCD面积为0.8平方米,修一条长为100米的 渠道要挖出的土方数为80立方米.
S SHMED SABCD
6 29.4 5.2 6 18.8 3.2 92.04 39.68 52.36(m2)
2
2
(3):
解: 52.36 1000 52360(m3 )
答:需52360方土加上去。
3.问题1:怎样利用解直角三角形的知识,去解决与等腰
梯形有关的实际问题?
问题2:怎样利用解直角三角形的知识,去解决与直角梯
在Rt△ADE中,∵
i DE 4.2 tan32
AE AE

AE 4.2 6.72(米) tan 32
在Rt△BCF中,同理可得
BF
4.2
7.90(米)
∴AB=AE+EF+BF
tan 28
≈6.72+12.51+7.90≈27.1(米).
答: 路基下底的宽约为27.1米.
12.51米
D
2.如图:是一海堤的横断面为梯形ABCD,已知堤顶宽BC 为6m,堤高为3.2m,为了提高海堤的拦水能力,需要将 海也堤不加变高。但2m是,背并水且坡保的持:坡堤度顶由宽原度来不: 的变i,=迎1:水2改坡成CDi的=1坡:2度.5 (有关数据在图上已注明)。
(1)求加高后的堤底HD的长。 (2)求增加部分的横断面积 (3)设大堤长为1000米,需多少方土加上去?

B
边 线:,另一一边边是南是南视(北线)
在修路、挖河、开渠和筑坝时,设计图纸上都 要注明斜坡的倾斜程度.
如图,坡面的铅垂高度(h)和水平长度(l)的
比叫做坡面坡度(或坡比)做坡角,记作a,即i=
h
=tan a
l
显然,坡度越大,坡角a就越大,坡面就越陡.
坡度通常写成1∶m的形式, 如i=1∶6.
典例剖析

温岭市
83°
松门在箬山的 北偏东11° 松门在温岭的 南偏东83° 温岭在松门的 北偏西83°
松门镇
11°
箬山镇
2:如图.货轮O在航行过程中,发现灯塔A在它南偏 东 60° 的 方 向 上 , 同 时 , 在 它 北 偏 东 40°, 南 偏 西 10°,西北(即北偏西45°)方向上又分别发现了客 轮B,货轮C和海岛D.仿照表示灯塔方位的方法画出 表示客轮B,货轮C和海岛D方向的射线.
课后作业
1.从教材习题中选取, 2.完成练习册本课时的习题.
人要独立生活,学习有用的技艺。 —— 凯德
60°
C ●10°
●A

坡度在日常生活中的应用也很广泛!
3. 如图,一段路基的横断面是梯形,高 为4.2米,上底的宽是12.51米,路基的坡 面与地面的倾角分别是32°和28°.求 路基下底的宽.(精确到0.1米)
解 作DE⊥AB,CF⊥AB,垂足分别为E、F.由题意可知
DE=CF=4.2(米),CD=EF=12.51(米).
C
4.2米
A
32° E
28°
F
B
巩固提高
1.利用土埂修筑一条渠道,在埂中间挖去深为0.6米的 一块(图6-35阴影部分是挖去部分),已知渠道内坡度为 1∶1.5,渠道底面宽BC为0.5米,求:
①横断面(等腰梯形)ABCD的面积;
②修一条长为100米的渠道要挖去的土方数.
分析: 1.将实际问题转化为数学问题. 2.要求S等腰梯形ABCD,首先要求出AD,
M 6m E
B 2m
C
6m
3.2m
H
A
D
(1):从图③中,你能求得这个横断面哪些量? 图②呢? 求堤底HD的长与图 ③有关吗? 从图②中如何求出HD的长.
解:HD=HN+NF+DF=13+6+10.4=29.4(m)
(2):如何求增加部分的面积?直接能 求图①中阴影部分的面积吗?那么增加 部分的面积与什么图形的面积有关?
∴射线OA的方向就是南偏东 ● D 60°,即灯塔A所在的方向。
射 线 OB 的 方 向 就 是 北 偏 东 40°,即客轮B所在的方向。 西

●B
45°40°
O


射 线 OC 的 方 向 就 是 南 偏 西 10°,即货轮C所在的方向。
射 线 OD 的 方 向 就 是 南 偏 西 45°,即海岛D所在的方向。
形有关的问题?
例:如图,在直角梯形中,∠B=900,BC=3,CD=2,AB=6, 求∠A的度数?
D
C
A
B
直角梯形
过D作高 分割
直角三角形和矩形
D
C
A
B
等腰梯形
过D、C作高 两个全等的直角三角形和矩形
分割
D
C
A
B
课堂小结
利用解直角三角形的知识解决实际问题的一般过程是: (1)将实际问题抽象为数学问题(画出平面图形,转化 为解直角三角形的问题); (2)根据条件的特点,适当选用锐角三角形函数等去解 直角三角形; (3)得到数学问题的答案; (4)得到实际问题的答案.
新课导入

●B
在茫茫大海上,我缉私艇正在执行任务,当行驶 到某处时,发现有一只可疑船只,这时测得可疑 船只在我船的北偏东404°0°的方向.
西
●A


探索新知

说出B在A的 北偏东40°
那么A在B的 南偏西40°
●B
44007°°0°
B
西●

A
20°

方位角有何特征? 顶点是测点65° ● B
方位角的特征
相关文档
最新文档