初中三角函数专项练习题与答案

合集下载

初中三角函数练习题及答案初中三角函数知识训练

初中三角函数练习题及答案初中三角函数知识训练

初中三角函数练习题及答案初中三角函数知识训练初中三角函数练习题及答案初中三角函数知识训练三角函数是以角度(数学上最常用弧度制,下同)为自变量,角度对应任意角终边与单位圆交点坐标或其比值为因变量的函数。

下面是为大家的初中三角函数练习题及答案,欢迎阅读!希望对大家有所帮助!初中三角函数练习题及答案一、选择题1.探索如图所呈现的规律,判断2013至2014箭头的方向是( )图1-2-3【解析】观察题图可知0到3为一个周期,则从2013到2014对应着1到2到3.【答案】 B2.-330°是( )A.第一象限角B.第二象限角C.第三象限角D.第四象限角【解析】 -330°=30°+(-1)?360°,则-330°是第一象限角.【答案】 A3.把-1485°转化为α+k?360°(0°≤αA.45°-4×360°B.-45°-4×360°C.-45°-5×360°D.315°-5×360°【解析】 -1485°=-5×360°+315°,故选D.【答案】 D4.(xx?济南高一检测)若α是第四象限的角,则180°-α是( )A.第一象限的角B.第二象限的角C.第三象限的角D.第四象限的角【解析】∵α是第四象限的角,∴k?360°-90°<α<k?360°,k∈z,< p="">∴-k?360°+180°<180°-α<-k?360°+270°,k∈Z,∴180°-α是第三象限的角.【答案】 C5.在直角坐标系中,若α与β的终边互相垂直,则α与β的关系为( )A.β=α+90°B.β=α±90°C.β=α+90°-k?360°D.β=α±90°+k?360°【解析】∵α与β的终边互相垂直,故β-α=±90°+k?360°,k∈Z,∴β=α±90°+k?360°,k∈Z.【答案】 D二、填空题6.α,β两角的终边互为反向延长线,且α=-120°,则β=________.【解析】依题意知,β的终边与60°角终边相同,∴β=k?360°+60°,k∈Z.【答案】k?360°+60°,k∈Z7.θ是第三象限角,则θ2是第________象限角.【解析】∵k?360°+180°<θ<k?360°+270°,k∈z< p="">∴k?180°+90°<θ2<k?180°+135°,k∈z< p="">当k=2n(n∈Z)时,n?360°+90°<θ2<n?360°+135°,k∈z,θ2是第二象限角,< p="">当k=2n+1(n∈Z)时,n?360°+270°<θ2<n?360°+315°,n∈z<p="">θ2是第四象限角.【答案】二或四8.与610°角终边相同的角表示为________.【解析】与610°角终边相同的角为n?360°+610°=n?360°+360°+250°=(n+1)?360°+250°=k?360°+2 50°(k∈Z,n∈Z).【答案】k?360°+250°(k∈Z)三、解答题9.若一弹簧振子相对平衡位置的位移x(cm)与时间t(s)的函数关系如图所示,图1-2-4(1)求该函数的周期;(2)求t=10.5s时该弹簧振子相对平衡位置的位移.【解】 (1)由题图可知,该函数的周期为4s.(2)设本题中位移与时间的函数关系为x=f(t),由函数的周期为4s,可知f(10.5)=f(2.5+2×4)=f(2.5)=-8(cm),故t=10.5s时弹簧振子相对平衡位置的位移为-8cm.图1-2-510.如图所示,试表示终边落在阴影区域的角.【解】在0°~360°范围中,终边落在指定区域的角是0≤α≤45°或315°≤α≤360°,转化为-360°~360°范围内,终边落在指定区域的角是-45°≤α≤45°,故满足条件的角的集合为{α|-45°+k?360°≤α≤45°+k?360°,k∈Z}.11.在与530°终边相同的角中,求满足下列条件的角.(1)最大的负角;(2)最小的正角;(3)-720°到-360°的角.【解】与530°终边相同的角为k?360°+530°,k∈Z.(1)由-360°<k?360°+530°< p="">(2)由0°<k?360°+530°< p="">故所求的最小正角为170°.(3)由-720°≤k?360°+530°≤-360°且k∈Z得k=-3,故所求的角为-550°.</k?360°+530°<></k?360°+530°<></n?360°+315°,n∈z<></n?360°+135°,k∈z,θ2是第二象限角,<></k?180°+135°,k∈z<></k?360°+270°,k∈z<></k?360°,k∈z,<>。

初三数学三角函数(含答案)

初三数学三角函数(含答案)

则电线杆的高度为 ( A.9 米 B.28 米
)
C. 7 3米
D. 14 2 3 米
19、如图 6,两建筑物的水平距离为 am,从 A 点测得 D 点的俯角为 a,测得 C 点的
俯角为β,则较低建筑物 CD 的高为 ( )
A.a m
B.(a·tanα)m
C. a m tan
D.a(tanα-tanβ)m
24、已知 Rt△ABC 的斜边 AB 的长为 10cm , sinA、sinB 是方程 m(x2-2x)+5(x2+x)+12=0 的两根。 (1)求 m 的值 (2)求 Rt△ABC 的内切圆的面积
25、如图,△ABC 是等腰三角形,∠ACB=90°,过 BC 的中点 D 作 DE⊥AB,垂足为 E,连结 CE,求 sin∠ACE 的值.
1、解直角三角形的定义:已知边和角(两个,其中必有一边)→所有未知的 边和角。
依据:①边的关系: a2 b2 c2 ;②角的关系:A+B=90°;③边角关系:三角函
数的定义。(注意:尽量避免使用中间数据和除法)
2、应用举例: (1)仰角:视线在水平线上方的角;俯角:视线在水平线下方的角。
铅垂线
视线
A.(cosα,1)
B.(1,sinα) C.(sinα,cosα)
D.(cosα,sinα)
14、如图 4,在△ABC 中,∠C=90°,AC=8cm,AB 的垂直平分线 MN 交 AC 于 D,
连结 BD,若 cos∠BDC= 3 ,则 BC 的长是(
5
A、4cm
B、6cm C、8cm
) D、10cm
tan A cotB cot A tanB tan A 1 (倒数)

三角函数试题及答案初中

三角函数试题及答案初中

三角函数试题及答案初中一、选择题(每题3分,共30分)1. 若sinα=1/2,则α的度数是()A. 30°B. 60°C. 90°D. 120°2. cos30°的值是()A. 1/2B. √3/2C. √2/2D. 13. 已知tan45°=1,则sin45°的值是()A. 1/√2B. √2/2C. √2D. 14. 如果sinβ=3/5,且β为锐角,则cosβ的值是()A. 4/5B. -4/5C. 3/5D. -3/55. 根据三角函数的定义,下列哪个选项是错误的()A. sin0°=0B. cos90°=0C. tan60°=√3D. sin180°=-16. 已知sinA=1/2,那么cos2A的值是()A. 1/4B. 1/2C. 3/4D. 07. 在直角三角形中,如果一个锐角的正弦值是1/3,那么它的余弦值是()A. 2√2/3B. √2/3C. √6/3D. 3√2/38. 根据三角函数的周期性,sin(360°+α)等于()A. sinαB. -sinαC. co sαD. -cosα9. 一个角的正切值是-√3,那么这个角的度数是()A. 60°B. 120°C. 240°D. 300°10. 根据三角函数的和角公式,sin(α+β)=sinαcosβ+cosαsinβ,那么cos(α+β)的值是()A. cosαcosβ-sinαsinβB. cosαcosβ+sinαsinβC. sinαcosβ-cosαsinβD. -cosαcosβ-sinαsinβ二、填空题(每题4分,共20分)1. sin60°的值是______。

2. 一个角的余弦值是-1/2,那么这个角的正弦值是______。

3. 已知tanA=2,则sinA的值是______。

初中三角函数练习题及答案

初中三角函数练习题及答案

初中三角函数练习题及答案初中三角函数练习题及答案(一)精心选一选1、在直角三角形中,各边都扩大2倍,则锐角A 的正弦值与余弦值都( )A 、缩小2倍B 、扩大2倍C 、不变D 、不能确定12、在Rt △ABC 中,∠C=90,BC=4,sinA=54,则AC=( )A 、3B 、4C 、5D 、63、若∠A 是锐角,且sinA=31,则( )A 、00<∠A<300B 、300<∠A<450C 、450<∠A<600D 、600<∠A<9004、若cosA=31,则A A AA tan 2sin 4tan sin 3+-=( )A 、74B 、31C 、21D 、05、在△ABC 中,∠A :∠B :∠C=1:1:2,则a :b :c=( ) A 、1:1:2 B 、1:1:2 C 、1:1:3 D 、1:1:226、在Rt △ABC 中,∠C=900,则下列式子成立的是( ) A 、sinA=sinB B 、sinA=cosB C 、tanA=tanB D 、cosA=tanB7.已知Rt△ABC中,∠C=90°,AC=2,BC=3,那么下列各式中,正确的是()A.sinB=23 B.cosB=23 C.tanB=23D .tanB=3 28.点(-sin60°,cos60°)关于y轴对称的点的坐标是()A.(32,12) B.(-32,12) C.(-32,-12)D.(-12,-32)9.每周一学校都要举行庄严的升国旗仪式,让我们感受到了国旗的神圣.•某同学站在离旗杆12米远的地方,当国旗升起到旗杆顶时,他测得视线的仰角为30°,•若这位同学的目高1.6米,则旗杆的高度约为()A.6.9米 B.8.5米 C.10.3米 D.12.0米10.王英同学从A地沿北偏西60º方向走100m到B地,再从B地向正南方向走200m到C地,此时王英同学离A地()(A)350m (B)100 m(C)150m (D)3100m11、如图1,在高楼前D点测得楼顶的仰角为30︒,向高楼前进60米到C点,又测得仰角为45︒,则该高楼的高度大约为()A.82米B.163米C.52米D.70米图145︒30︒BA D C12、一艘轮船由海平面上A 地出发向南偏西40º的方向行驶40海里到达B 地,再由B 地向北偏西10º的方向行驶40海里到达C 地,则A 、C 两地相距( ).(A )30海里 (B )40海里 (C )50海里 (D )60海里 (二)细心填一填1.在Rt △ABC 中,∠C=90°,AB=5,AC=3,则sinB=_____. 2.在△ABC 中,若BC=2,AB=7,AC=3,则cosA=________. 3.在△ABC 中,AB=2,AC=2,∠B=30°,则∠BAC 的度数是______. 4.如图,如果△APB 绕点B 按逆时针方向旋转30°后得到△A 'P 'B ,且BP=2,那么PP '的长为____________. (不取近似值. 以下数据供解题使用:sin15°=62-,cos15°=62+)5.如图,在甲、乙两地之间修一条笔直的公路,从甲地测得公路的走向是北偏东48°.甲、乙两地间同时开工,若干天后,公路准确接通,则乙地所修公路的走向是南偏西___________度.第6题x O AyB 北甲北乙第5题第46.如图,机器人从A点,沿着西南方向,行了个42单位,到达B点后观察到原点O在它的南偏东60°的方向上,则原来A的坐标为___________结果保留根号).7.求值:sin260°+cos260°=___________.8.在直角三角形ABC中,∠A=090,BC=13,AB=12,那么tan B=___________.9.根据图中所给的数据,求得避雷针CD的长约为_______m(结果精确的到0.01m).(可用计算器求,也可用下列参考数据求:sin43°≈0.6802,sin40°≈0.6428,cos43°≈0.7341,cos40°≈0.7660,tan43°≈0.9325,tan40°≈0.8391)10.如图,自动扶梯AB段的长度为20米,倾斜角A为α,高度BC为___________米(结果用含α的三角比表示).(1) (2)11.如图2所示,太阳光线与地面成60°角,一棵倾斜的大树与地面成30°角,•这时测得大树在地面上的影子约为10米,则大树的高约为________米.(•2≈1.413 1.73)三、认真答一答αA CB第10A4052CD第9B431,计算:sin cos cot tan tan 3060456030︒+︒-︒-︒⋅︒ 分析:可利用特殊角的三角函数值代入直接计算;2计算:22459044211(cos sin )()()︒-︒+-︒+--π分析:利用特殊角的三角函数值和零指数及负整数次幂的知识求解。

初中三角函数专项练习题及答案

初中三角函数专项练习题及答案

初中三角函数专项练习题(一)精心选一选1、在直角三角形中,各边都扩大2倍,则锐角A 的正弦值与余弦值都( )A 、缩小2倍B 、扩大2倍C 、不变D 、不能确定2、在Rt △ABC 中,∠C=90,BC=4,sinA=54,则AC=( )A 、3B 、4C 、5D 、63、若∠A 是锐角,且sinA=31,则( )A 、00<∠A<300B 、300<∠A<450C 、450<∠A<600D 、600<∠A<9004、若cosA=31,则A A AA tan 2sin 4tan sin 3+-=( )A 、74B 、31C 、21D 、05、在△ABC 中,∠A :∠B :∠C=1:1:2,则a :b :c=( )A 、1:1:2B 、1:1:2C 、1:1:3D 、1:1:226、在Rt △ABC 中,∠C=900,则下列式子成立的是( )A 、sinA=sinB B 、sinA=cosBC 、tanA=tanBD 、cosA=tanB 7.已知Rt △ABC 中,∠C=90°,AC=2,BC=3,则下列各式中,正确的是( )A .sinB=23B .cosB=23C .tanB=23D .tanB=328.点(-sin60°,cos60°)关于y 轴对称的点的坐标是( )A .(32,12)B .(-32,12)C .(-32,-12) D .(-12,-32)9.每周一学校都要举行庄严的升国旗仪式,让我们感受到了国旗的神圣.•某同学站在离旗杆12米远的地方,当国旗升起到旗杆顶时,他测得视线的仰角为30°,•若这位同学的目高1.6米,则旗杆的高度约为( )A .6.9米B .8.5米C .10.3米D .12.0米10.王英同学从A 地沿北偏西60º方向走100m 到B 地,再从B 地向正南方向走200m 到C 地,此时王英同学离A 地 ( )(A )350m (B )100 m(C )150m (D )3100m11、如图1,在高楼前D 点测得楼顶的仰角为30︒, 向高楼前进60米到C 点,又测得仰角为45︒,则该高楼的高度大约为( )A.82米B.163米C.52米D.70米12、一艘轮船由海平面上A 地出发向南偏西40º的方向行驶40海里到达B 地,再由B 地向北偏西10º的方向行驶40海里到达C 地,则A 、C 两地相距( ).(A )30海里 (B )40海里 (C )50海里 (D )60海里 (二)细心填一填1.在Rt △ABC 中,∠C=90°,AB=5,AC=3,则sinB=_____. 2.在△ABC 中,若BC=2,AB=7,AC=3,则cosA=________. 3.在△ABC 中,AB=2,AC=2,∠B=30°,则∠BAC 的度数是______.图145︒30︒BAD C4.如图,如果△APB 绕点B 按逆时针方向旋转30°后得到△A 'P 'B ,且BP=2,那么PP '的长为____________. (不取近似值. 以下数据供解题使用:sin15°=624-,cos15°=624+)5.如图,在甲、乙两地之间修一条笔直的公路,从甲地测得公路的走向是北偏东48°.甲、乙两地间同时开工,若干天后,公路准确接通,则乙地所修公路的走向是南偏西___________度.6.如图,机器人从A 点,沿着西南方向,行了个42单位,到达B 点后观察到原点O 在它的南偏东60°的方向上,则原来A 的坐标为___________结果保留根 号). 7.求值:sin 260°+cos 260°=___________.8.在直角三角形ABC 中,∠A=090,BC=13,AB=12,则tan B =_________. 9.根据图中所给的数据,求得避雷针CD 的长约为_______m (结果精确的到0.01m ).(可用计算器求,也可用下列参考数据求:sin43°≈0.6802,sin40°≈0.6428,cos43°≈0.7341,cos40°≈0.7660,tan43°≈0.9325,tan40°≈0.8391)第6题图xOAy B北甲北乙第5题图αACB第10题图A40°52mCD第9题图B43第4题图10.如图,自动扶梯AB 段的长度为20米,倾斜角A 为α,高度BC 为___________米(结果用含α的三角比表示).11.如图,太阳光线与地面成60°角,一棵倾斜的大树与地面成30°角,•这时测得大树在地面上的影子约为10米,则大树的高约为________米。

初中三角函数练习题及答案

初中三角函数练习题及答案
4如图2,已知 中 , ,求 的面积用 的三角函数及m表示
图2
分析:要求 的面积,由图只需求出BC;
解应用题,要先看条件,将图形抽象出直角三角形来解.
5. 甲、乙两楼相距45米,从甲楼顶部观测乙楼顶部的俯角为30°,观测乙楼的底部的俯角为45°,试求两楼的高.
6. 从A处观测铁塔顶部的仰角是30°,向前走100米到达B处,观测铁塔的顶部的仰角是 45°,求铁塔高.
A30海里 B40海里 C50海里 D60海里
二填空
1.在Rt△ABC中,∠C=90°,AB=5,AC=3,则sinB=_____.
2.在△ABC中,若BC= ,AB= ,AC=3,则cosA=________.
3.在△ABC中,AB=2,AC= ,∠B=30°,则∠BAC的度数是______.
4.如图,如果△APB绕点B按逆时针方向旋转30°后得到△A'P'B,且BP=2,那么PP'的长为____________.不取近似值. 以下数据供解题使用:sin15°= ,cos15°=
5.如图,在甲、乙两地之间修一条笔直的公路,从甲地测得公路的走向是北偏东48°.甲、乙两地间同时开工,若干天后,公路准确接通,则乙地所修公路的走向是南偏西___________度.
6.如图,机器人从A点,沿着西南方向,行了个4 单位,到达B点后观察到原点O在它的南偏东60°的方向上,则原来A的坐标为___________结果保留根号.
2根据你测量的数据,计算塔顶端到地面的高度HG用字母表示,测倾器高度忽略不计;
13.人民海关缉私巡逻艇在东海海域执行巡逻任务时,发现在其所处位置O点的正北方向10海里处的A点有一涉嫌走私船只正以24海里/小时的速度向正东方向航行;为迅速实验检查,巡逻艇调整好航向,以26海里/小时的速度追赶,在涉嫌船只不改变航向和航速的前提下,问1需要几小时才能追上

初中数学三角函数专题练习答案

初中数学三角函数专题练习答案

初中数学三角函数专题练习答案在初中数学的学习中,三角函数是一个重要且具有一定难度的知识点。

为了帮助同学们更好地掌握这部分内容,我们进行了一系列的专题练习。

下面将为大家详细呈现这些练习的答案及解析。

一、选择题1、在直角三角形中,若一个锐角为 30°,斜边为 2,则直角边的长度为()A 1B √3C 2√3D √3/2答案:B解析:在直角三角形中,30°角所对的直角边等于斜边的一半。

已知斜边为 2,所以 30°角所对的直角边为 1。

根据勾股定理,另一条直角边的长度为√(2² 1²) =√3 。

2、已知 sinA = 1/2 ,且∠A 为锐角,则∠A 的度数为()A 30°B 45°C 60°D 90°答案:A解析:因为 sin30°= 1/2 ,且∠A 为锐角,所以∠A = 30°。

3、若tanα =√3 ,则α的度数为()A 30°B 45°C 60°D 90°答案:C解析:因为 tan60°=√3 ,所以α = 60°。

二、填空题1、计算:sin45°=____答案:√2/2解析:sin45°的值是固定的,为√2/2 。

2、已知 cosA = 1/2 ,且 0°<∠A < 90°,则∠A =____答案:60°解析:因为 cos60°= 1/2 ,且 0°<∠A < 90°,所以∠A = 60°。

3、若tanθ = 1,则θ =____答案:45°解析:因为 tan45°= 1 ,所以θ = 45°。

三、解答题1、已知在 Rt△ABC 中,∠C = 90°,∠A = 60°,AB = 4,求AC 和 BC 的长度。

三角函数专项练习60题(有答案)

三角函数专项练习60题(有答案)

三角函数专项练习60题(有答案)题目1:已知三角形ABC,角A的补角是30度,角B的补角是60度,求角C的度数。

答案:90度。

题目2:已知sin(60°)的值等于√3/2,求cos(30°)的值。

答案:√3/2。

题目3:已知cos(30°)的值等于0.866,求sin(60°)的值。

答案:0.866。

题目4:已知tan(45°)的值等于1,求cot(45°)的值。

答案:1。

题目5:已知cot(60°)的值等于√3/3,求tan(30°)的值。

答案:√3。

题目6:已知cos(45°)的值等于0.707,求sin(45°)的值。

答案:0.707。

题目7:已知sin(45°)的值等于0.707,求cot(45°)的值。

答案:1.题目8:已知sin(30°)的值等于0.5,求cos(60°)的值。

答案:0.5.题目9:已知cot(30°)的值等于√3,求tan(60°)的值。

答案:√3.题目10:已知cos(60°)的值等于0.5,求sin(30°)的值。

答案:0.5.题目11:已知sin(90°)的值等于1,求cos(0°)的值。

答案:1.题目12:已知sin(0°)的值等于0,求cos(90°)的值。

答案:0.题目13:已知cos(90°)的值等于0,求sin(0°)的值。

答案:1.题目14:已知cos(0°)的值等于1,求sin(90°)的值。

答案:0.题目15:已知cot(45°)的值等于1,求tan(45°)的值。

答案:1.题目16:已知tan(60°)的值等于√3,求cot(60°)的值。

答案:√3.题目17:已知cot(30°)的值等于√3/3,求tan(30°)的值。

2024年数学九年级下册三角函数基础练习题(含答案)

2024年数学九年级下册三角函数基础练习题(含答案)

2024年数学九年级下册三角函数基础练习题(含答案)试题部分一、选择题:1. 已知sinA = 0.6,cosA = 0.8,那么tanA的值为()A. 0.75B. 0.75C. 0.75D. 0.752. 在直角三角形ABC中,∠C = 90°,若sinB = 3/5,则cosA 的值为()A. 4/5B. 3/4C. 4/3D. 3/43. 若0°<θ<90°,且cosθ = 4/5,则sin(90° θ)的值为()A. 3/5B. 4/5C. 3/4D. 4/34. 已知tanα = 1,则sinα和cosα的值分别为()A. 1, 1B. 1, 0C. 1, 1D. 1, 05. 在直角坐标系中,点P(3, 4)位于()A. 第一象限B. 第二象限C. 第三象限D. 第四象限6. 若sinθ = 0.5,则θ的终边可能位于()A. 第一象限B. 第二象限C. 第三象限D. 第四象限7. 已知sinα = √3/2,且α为锐角,则cosα的值为()A. 1/2B. √3/2C. 1/√2D. 1/28. 若0°<θ<180°,且cosθ = 1/2,则sinθ的值为()A. √3/2B. √3/2C. 1/2D. 1/29. 在直角三角形中,若一个锐角的正弦值为1/2,则这个锐角的度数为()A. 30°B. 45°C. 60°D. 90°A. sinAB. cosAC. tan(90° A)D. cotA二、判断题:1. 若一个角的正弦值等于它的余弦值,则这个角为45°。

()2. 在直角三角形中,锐角的正弦值随着角度的增大而增大。

()3. 若sinA = 0,则A为90°。

()4. 对于任意锐角α,sinα和cosα的值都在0到1之间。

()5. 在直角坐标系中,第二象限的点的横坐标为正,纵坐标为负。

初中三角函数大题专项练习(含答案)

初中三角函数大题专项练习(含答案)

初中三角函数大题专项练习(含答案)三角函数专项练习(含答案)1、已知向量a =(sinx x x x,cos ), b =(cos) ,函数f (x ) =⋅. 3333(1)求函数f (x ) 的单调递增区间;(2)如果△ABC 的三边a 、b 、c 满足b =ac ,且边b 所对的角为x ,试求x 的范围及函数f (x ) 的值域.2、在∆ABC 中,角A , B , C 的对边分别为a 、b 、c,已知B = (1)求sin C 的值;(2)求∆ABC 的面积.3、已知函数f (x ) =sin x +cos x ,f '(x ) 是f (x ) 的导函数.(1)求出f '(x ) ,及函数y=f '(x ) 的最小正周期;(2)当x ∈[0,2π3,cos A =4, b = 5π2]时,函数F (x ) =f (x ) f '(x ) +f 2(x ) 的值域.4、已知向量=(sin 2x +2, cos x ), =(1, 2cos x ) ,设函数f (x ) =m ⋅n 。

(1)求f (x ) 的最小正周期与单调递减区间;(2)在∆ABC 中,a 、b 、c 分别是角A 、B 、C 的对边,若f (A ) =4, b =1, ∆ABC 的面积为,求a 的值. 25、已知向量a =(,113sin x +cos x ) 与=(1, y ) 共线,且有函数y =f (x ) . 222(1)求函数y =f (x ) 的周期与最大值;(2)已知锐角∆ABC 的三个内角分别是A 、B 、C ,若有f (A -π3) =,边BC =7,sin B =21,求AC 的长. 76、已知角α的顶点在原点,始边与x轴的正半轴重合,终边经过点P (-.(1)求sin 2α-tan α的值;(2)若函数f (x ) =cos(x -α)cos α-sin(x -α)sin α,求函数y =(7、在∆ABC 中,a 、b 、c 分别是三内角A 、B 、C 的对应的三边,已知b +c =a +bc .(1)求角A 的大小;(2)若2sin2π22π⎤上的取值范围.-2x ) -2f 2(x ) 在区间⎡0⎢⎥⎣3⎦222B C+2sin 2=1,判断∆ABC 的形状. 22三角函数专项练习参考答案x x x x1、解:(1)f (x ) =⋅=sin cos +cos cos333312x 2x 2x π=sin +cos +=+) +. 232323322x ππ5ππ+≤2k π+,解得,3k π-≤x ≤3k π+, (k ∈Z ) .2332445ππ, 3k π+],(k ∈Z ) .…………(7分) 故函数f (x ) 的单调递增区间为[3k π-44a 2+c 2-b 2a 2+c 2-ac 2ac -ac 12b =ac ,cos x ==≥=.2ac 2ac 2ac 21ππ2x π5π∴≤cos x2x ππ2x π,≤1+∴sin3333322即f (x ) 的值域为(3, 1+].2π综上所述,x ∈(0, ],f (x ) 的值域为(, 1+]..…………………(14分)π42π3-A ,sin A =.2、解:(1)因为A , B , C 为∆ABC 的内角,B =,cos A =,所以C = 3535(2)令2k π-π≤所以sin C =sin(2π13+-A ) =A +sin A =………………7分 3221033+,sin C =510b sin A 6=. sin B 5(2)由(1),知sin A =因为B =π3, b =∆ABC 中,a =所以∆ABC 的面积S =113+36+ab sin C ==……14分 2210503、解:(1)∵f '(x ) =cos x -sin x ,…………………………3分∴ f '(x ) =cos x -sin x ==x +4) ,………5分所以y =f '(x ) 的最小正周期为T =2π.………7分22(2)F (x ) =cos x -sin x +1+2sin x cos x =1+sin 2x +cos 2x =1x +) .π4∵x ∈[0,π2],∴2x +ππ5ππ∈[, ],∴sin(2x +) ∈[. 4444∴函数F (x) 的值域为⎡0,1+.……………………………………………14分⎣4、解:(1) m =(sin 2x +2, cos x ), n =(1, 2cos x ) ,∴f (x ) =m ∙n =sin 2x +2+2cos 2x =sin 2x +cos 2x +3=2sin(2x +∴T =π6) +3 ……………………………………4分2π=π ………………………………………5分 2π2ππ3π(k ∈Z ) ∴k π+≤x ≤k π+π(k ∈Z ) 令2k π+≤2x +≤2k π+63262π2∴f (x ) 的单调递减区间为[k π+, k π+π],k ∈Z .………………………7分 63(2)由f (A ) =4得 f (A ) =2sin(2A +π6) +3=4∴sin(2A +1……………………………………………………………………8分62ππ13ππ5π又 A 为∆ABC 的内角,∴66666) =π∴A =π3…………………………………………………………………………………10分S ∆ABC =1,∴c =2……………………………12分 , b =1,∴bc sin A =1=3,∴a =…………………14分 5、2∴a 2=b 2+c 2-2bc cos A =4+1-2⨯2⨯1⨯解:由//得11y -(sin x +cos x ) =0, 222即y =f (x ) =2sin(x +π3) .---------------------------------------------------------------(5分)(1)函数y =f (x ) 的周期为2π,函数的最大值为2.-------------------------------------(7分)(2)由f (A -π3) =,得2sin(A -π3+π3) =3,即sin A =3, 2∵∆ABC 是锐角三角形,∴A =3.---------------------------------------------------(10分)由正弦定理BC AC 21=及边BC =7,sin B =,得AC =2.---------(14分) sin A sin B 76、解:(1)因为角α终边经过点P (-,所以sin α=1,cos α=,tan α=.2 ∴sin 2α-tan α=2sin αcos α-tan α=(2).---------6分 +=f (x ) =cos(x -α)cos α-sin(x -α)sin α=cos x ,x ∈R .∴y =-2x ) -2cos 2x =2x -1-cos 2x =2sin(2x -) -1.26ππ0≤x ≤2π4πππ7π, ∴0≤2x ≤, ∴-≤2x -≤. 33666∴-1ππ≤sin(2x -) ≤1,∴-2≤2sin(2x -) -1≤1. 266故函数y =π⎡2π⎤(-2x ) -2f 2(x ) 在区间⎢0⎥上的取值范围是[-2,1].---14分23⎣⎦2222227、解:(1)在∆ABC 中,b +c -a =2bc cos A ,又b +c =a +bc . 1π, A =. 23C 2B +2sin 2=1,∴1-cos B +1-cos C =1.(2)∵2sin222π-B ) =1,∴cos B +cos C =1,cos B +cos(32π2πcos B +sin sin B =1.∴cos B +cos 33∴cos A = ∴π1B +cos B =1,∴sin(B +) =1.622∵0π3, C =π3.。

初中三角函数试题及答案

初中三角函数试题及答案

初中三角函数试题及答案一、选择题(每题3分,共30分)1. 若sinA=1/2,则cosA的值为:A. 1/2B. √3/2C. -√3/2D. -1/22. 已知一个角的正弦值为0.6,那么这个角的余弦值的范围是:A. (0,1)B. (-1,0)C. (0,1)D. (-1,1)3. 函数y=sin(x)的周期是:A. 2πB. πC. 2D. 14. 函数y=cos(x)的图像关于:A. y轴对称B. x轴对称C. 原点对称D. 以上都不对5. 已知tanA=2,那么sinA/cosA的值为:A. 2B. 1/2C. -2D. -1/26. 函数y=sin(x)+cos(x)的最大值是:A. 1B. √2C. 2D. √37. 如果一个角的余弦值为-1,则这个角的度数是:A. 0°B. 90°C. 180°D. 270°8. 函数y=sin(x)在区间[0,π]上是:A. 增函数B. 减函数C. 先增后减D. 先减后增9. 函数y=cos(x)的图像在x=π/2处的切线斜率是:A. 0B. 1C. -1D. 不存在10. 已知sin(A+B)=sinAcosB+cosAsinB,那么cos(A+B)的表达式是:A. cosAcosB-sinAsinBB. cosAcosB+sinAsinBC. -cosAcosB-sinAsinBD. -cosAcosB+sinAsinB二、填空题(每题3分,共30分)1. 若sinA=3/5,且A为锐角,则cosA=______。

2. 函数y=cos(x-π/3)的图像关于点______对称。

3. 函数y=tan(x)的周期是______。

4. 如果一个角的正弦值为1/2,则这个角的余弦值可以是______。

5. 函数y=sin(x)在x=π/2处的值是______。

6. 函数y=cos(x)在x=0处的值是______。

初中三角函数专项练习题及答案

初中三角函数专项练习题及答案

、认真答一答1计算:sin cos cot tan tan 3060456030︒+︒-︒-︒⋅︒2计算:22459044211(cos sin )()()︒-︒+-︒+--π3. 甲、乙两楼相距45米,从甲楼顶部观测乙楼顶部的俯角为30°,观测乙楼的底部的俯角为45°,试求两楼的高.4. 从A 处观测铁塔顶部的仰角是30°,向前走100米到达B 处,观测铁塔的顶部的仰角是45°,求铁塔高.5 如图,一条渔船某时刻在位置A 观测灯塔B 、C(灯塔B 距离A 处较近),两个灯塔恰好在北偏东60′的方向上, 渔船向正东方向航行l 小时45分钟之后到达D 点,观测到灯塔B 恰好在正北方向上,已知两个灯塔之间的距离是12海里,渔船的速度是16海里/时,又知在灯塔C 周围18.6海里内有暗礁,问这条渔船按原来的方向继续航行,有没有触礁的危险?3045DCBAEACBD北东300450ArE D B C6、如图,A 城气象台测得台风中心在A 城的正西方300千米处,以每小时107 千米的速度向北偏东60º的BF 方向移动,距台风中心200千米的范围内是受这次台风影响的区域。

(1)问A 城是否会受到这次台风的影响?为什么?(2)若A 城受到这次台风的影响,那么A 城遭受这次台风影响的时间有多长?13. 人民海关缉私巡逻艇在东海海域执行巡逻任务时,发现在其所处位置O 点的正北方向10海里处的A 点有一涉嫌走私船只正以24海里/小时的速度向正东方向航行。

为迅速实验检查,巡逻艇调整好航向,以26海里/小时的速度追赶,在涉嫌船只不改变航向和航速的前提下,问(1)需要几小时才能追上?(点B 为追上时的位置)(2)确定巡逻艇的追赶方向(精确到01.︒)参考数据: sin ..cos ..sin ..cos ..sin ..cos ..sin ..cos ..6680919166803939674092316740384668409298684036817060943270603322︒≈︒≈︒≈︒≈︒≈︒≈︒≈︒≈,,,,14. 公路MN 和公路PQ 在点P 处交汇,且∠=︒QPN 30,点A 处有一所中学,AP=160m ,一辆拖拉机以3.6km/h 的速度在公路MN 上沿PN 方向行驶,假设拖拉机行驶时,周围100m 以内会受噪声影响,那么,学校是否会受到噪声影响?如果不受影响,请说明理由;如果受影响,会受影响几分钟?NP A Q M15、如图,在某建筑物AC 上,挂着“多彩云南”的宣传条幅BC ,小明站在点F 处,看条幅顶端B ,测的仰角为30,再往条幅方向前行20米到达点E 处,看到条幅顶端B ,测的仰角为60,求宣传条幅BC的长,(小明的身高不计,结果精确到0.1米)16、一艘轮船自西向东航行,在A 处测得东偏北21.3°方向有一座小岛C ,继续向东航行60海里到达B 处,测得小岛C 此时在轮船的东偏北63.5°方向上.之后,轮船继续向东航行多少海里,距离小岛C 最近?(参考数据:sin21.3°≈925,tan21.3°≈25, sin63.5°≈910,tan63.5°≈2)ABC北东20 某学校体育场看台的侧面如图阴影部分所示,看台有四级高度相等的小台阶.已知看台高为l.6米,现要做一个不锈钢的扶手AB及两根与FG垂直且长为l米的不锈钢架杆AD 和BC(杆子的底端分别为D,C),且∠DAB=66. 5°.(1)求点D与点C的高度差DH;(2)求所用不锈钢材料的总长度l(即AD+AB+BC,结果精确到0.1米).(参考数据:sin66.5°≈0.92,cos66.5°≈0.40,tan66.5°≈2.30)。

初中数学锐角三角函数练习、解直角三角形练习及详细解答

初中数学锐角三角函数练习、解直角三角形练习及详细解答

初中三角函数练习及解答1.锐角三角函数1.比较下列各组三角函数值的大小:(1)sin19︒与cos70︒;(2)cot 65︒与cos40︒;(3)cos1︒,tan 46︒,sin88︒和cot 38︒.2.化简求值:(1)tan1tan 2tan3tan89︒⋅︒⋅︒⋅⋅︒ ;(2sin83︒;(3)2222tan sin tan sin αααα⋅-;(4cos 79sin 79-︒-︒;3.若tan 3α=求2sin sin 13sin cos αααα-+的值.4.下列四个数中哪个最大:A .tan 48cot 48︒+︒B .sin 48cos48︒+︒C .tan 48cos48︒+︒D .cot 48sin 48︒+︒5.设x 为锐角,且满足sin 3cos x x =,求sin cos x x .6.已知sin cos αα+=,求sin cos αα的值.7.已知m 为实数,且sin α、cos α是关于x 的方程2310x mx -+=的两根.求44sin cos αα+的值.8.设A 、B 是一个直角三角形的两个锐角,满足2sin sin 2A B -=.求sin A 及sin B 的值.9.已知关于x 的一元二次方程()()22211120m x m x +--+=的两个根是一个直角三角形的两个锐角的正弦,求实数m 的值.10.已知方程2450x x k -+=的两根是直角三角形的两个锐角的正弦,求k .11.若直角三角形中的两个锐角A 、B 的正弦是方程20x px q ++=的两个根;(1)那么,实数p 、q 应满足哪些条件?(2)如果p 、q 满足这些条件,方程20x px q ++=的两个根是否等于直角三角形的两个锐角A 、B 的正弦?12.已知方程()24210x m x m -++=的两个根恰好是一个直角三角形的两个锐角的余弦,试求m 的值.13.不查表,求15︒的四种三角函数值.14.求22.5︒角的正切值(不查表,不借助计算器).15.求sin18︒的值.16.若x 、y 为实数,221x y +=,α为锐角,求证:sin cos x y αα+的绝对值不大于1.2解直角三角形1.如图,在直角三角形ABC 中,90C ∠=︒,AD 是A ∠的平分线,且CD =,DB =求ABC △的三边长.2.在Rt ABC △中(如图),D 、E 是斜边AB 的三等分点,已知sin CD x =,()cos 090CE x x =︒<<︒.试求AB 的长.3.如图,ABC △中,90C ∠=︒,10AB =,6AC =,AD 是BAC ∠的平分线,求点B 到直线AD 的距离BH .4.已知ABC △是非等腰直角三角形,90BAC ∠=︒,在BC 所在直线上取两点D 、E 使DB BC CE ==,连结AD 、AE .已知45BAD ∠=︒.求tan CAE ∠的值.5.设有一张矩形纸片ABCD (如图),3AB =,4BC =.现将纸片折叠,使C 点与A 点重合,试求折痕EF 的长.6.已知三角形两边之和是10,这两边的夹角为30︒,面积为254,求证:此三角形为等腰三角形.7.在ABC △中,90C ∠=︒,其周长为2+,且已知斜边上的中线长为1.如果BC AC >,求tan A的值.8.已知a 、b 、c 分别是ABC △中A ∠、B ∠,C ∠的对边,且a 、b 是关于x 的一元二次方程()()2 424x c c x ++=+的两个根.(1)判断ABC △的形状;(2)若3tan 4A =求a 、b 、c .9.在Rt ABC △中,90C ∠=︒,12ABC S m =△,且两直角边长满足条件32a b m +=.(1)证明:24m ≥;(2)当m 取最小值时,求ABC △中最小内角的正切值.10.如图所示.90A BEF EBC ECD ∠=∠=∠=∠=︒,30ABF ∠=︒,45BFE ∠=︒,60ECB ∠=︒且2AB CD =.求tan CDE ∠的值.11.如图所示.在锐角ABC △中,4sin 5B =,tan 2C =,且10ABC S =△.求BC .12.如图所示.在ACD △中,45A ∠=︒,5CB =,7CD =,3BD =.求CBD ∠及AC .13.如图,已知ABC △中,1AB =,D 是AB 的中点,90DCA ∠=︒,45DCB ∠=︒.求BC 的长.14.如图,ABC △中,90ACB ∠=︒,CD AB ⊥于D ,DE AC ⊥于E ,DF BC ⊥于F .求证:33AE AC BF BC =.15.如图,在ABC △中,90A ∠=︒,AB AC =,M 是AC 边的中点,AD 垂直于BM 且交BC 于D .求证:AMB CMD ∠=∠.16.如图(a ),正方形ABCD 的边长E 、F 分别是AB 、BC 的中点,AF 分别交DE 、DB 于点M 、N ,求DMN △的面积.17.已知a 、b 、c 是ABC △三边的长,其中b a c >=,且方程20ax c +=两根的差的绝对值等.求ABC △中最大角的度数.18.如图,AB 是圆的直径,弦CD AB ∥,AC 与BD 相交于E ,已知AED θ∠=,试求:CDE ABE S S △△.19.如图所示,已知电线杆AB 直立于地面上,它的影子恰好照在土坡的坡面CD 和地面BC 上.如果CD与地面成45︒,60A ∠=︒,4m CD =,(m BC =-,求电线杆AB 的长(精确到0.1m ).20.如图,某岛S 周围42海里内存在着大量的暗礁.现在一轮船自西向东以每小时15海里的速度航行,在、A 处测得S 在北偏东60︒,2小时后在B 处测得S 在正东北方向,试问轮船是否需要改变航行方向行驶,才能避免触礁危险,说明理由.21.如图,某污水处理站计划砌一段截面为等腰梯形的排污渠,如果渠深为h ,截面积为S ,试求当倾角θ为多少时造价最小?1.锐角三角函数(详细解答)1.比较下列各组三角函数值的大小:(1)sin19︒与cos70︒;(2)cot 65︒与cos40︒;(3)cos1︒,tan 46︒,sin88︒和cot 38︒.解析(1)利用互余角的三角函数关系式,将cos70︒化sin 20︒,再与sin19︒比大小.因为()cos70cos 9020sin 20︒=︒-︒=︒,而sin19sin 20︒<︒,所以sin19cos70︒<︒.(2)余切函数与余弦函数无法化为同名函数,但是可以利用某些特殊的三角函数值,间接比较它们的大小.32cot 60cos 4532︒=<︒=,再将cot 65︒,cos40︒分别与cot 60︒,cos45︒比大小.因为cot 65cot 60︒<︒=,cos 40cos 45︒>︒>,所以cot 60cos45︒<︒,所以cot 65cos40︒<︒.(3)tan 451︒=,显然cos1︒,sin88︒均小于1,而tan 46︒,cot 38︒均大于1.再分别比较cos1︒与sin88︒,以及tan 46︒与cot 38︒的大小即可.因为()cos38cot 9052tan52︒=︒-︒=︒,所以tan52tan 46tan 451︒>︒>︒=.因为()cos1cos 9089sin89︒=︒-︒=︒,所以sin88sin891︒<︒<,所以cot 38tan 46cos1sin88︒>︒>︒>︒.评注比较三角函数值的大小,一般分为三种类型:(1)同名的两个锐角三角函数值,可直接利用三角函数值随角变化的规律,通过比较角的大小来确定三角函数值的大小.(2)互为余函数的两锐角三角函数值,可利用互余角的三角函数关系式化为同名三角函数,比较其大小.(3)不能化为同名的两个三角函数,可通过与某些“标准量”比大小,间接判断它们的大小关系,常选择的标准量有:0,1以及其他一些特殊角如30︒,45︒,60︒的三角函数值.2.化简求值:(1)tan1tan 2tan3tan89︒⋅︒⋅︒⋅⋅︒ ;(2sin83︒;(3)2222tan sin tan sin αααα⋅-;(4cos 79sin 79-︒-︒;解析(1)原式=tan1tan 2tan3tan 44tan 45cot 44cot 43cot 3cot 2cot1︒⋅︒⋅︒⋅⋅︒⋅︒⋅︒⋅︒⋅⋅︒⋅︒⋅︒ ()()()tan1cot1tan 2cot 2tan 44cot 44tan 45=︒⋅︒⋅︒⋅︒⋅⋅︒⋅︒⋅︒ 1111=⋅⋅⋅= .(2)原式1cos7cos71cos7=︒=⋅︒=︒.(3)原式()22442242222sin sin sin sin cos 1sin sin sin 1cos sin cos ααααααααααα⋅====--.(4)原式sin11cos11sin11cos11sin11cos110-︒-︒=︒-︒-︒-︒=.3.若tan 3α=求2sin sin 13sin cos αααα-+的值.原式2222sin cos sin sin cos sin 13sin cos sin cos 3sin cos αααααααααααα--==+++2222tan tan 336tan 13tan 313319αααα--===-++++⨯.4.下列四个数中哪个最大:A .tan 48cot 48︒+︒B .sin 48cos48︒+︒C .tan 48cos48︒+︒D .cot 48sin 48︒+︒解析显然0sin 481<︒<,0cos481<︒<0<cos48°<1.因此有:sin 48sin 48tan 48cos 48︒︒<=︒︒,cos 48cos 48cot 48sin 48︒︒<=︒︒所以A 最大.5.设x 为锐角,且满足sin 3cos x x =,求sin cos x x .解析我们将sin 3cos x x =代入22sin cos 1x x +=,得到210cos 1x =,并且x 是锐角,因此cos x=所以sin x =.因此3sin cos 10x x =.6.已知sin cos αα+=,求sin cos αα的值.解析由sin cos αα+=两边平方得()22sin cos αα+=.又22sin cos 1αα+=,所以12sin cos 2αα+=,得1sin cos 2αα=.7.已知m 为实数,且sin α、cos α是关于x 的方程2310x mx -+=的两根.求44sin cos αα+的值.解析由根与系数的关系知1sin cos 3αα=.则有()()2244227sin cos sin cos 2sin cos 9αααααα+=+-=.8.设A 、B 是一个直角三角形的两个锐角,满足2sin sin 2A B -=.求sin A 及sin B 的值.解析由于90A B +=︒,故由互余关系得()sin sin 90cos B A A =︒-=.因此条件即为sin cos A A -=,①将上式平方,得221sin cos 2sin cos 2A A A A +-=,由正、余弦的平方关系,即有12sin cos 2A A =,所以()2223sin cos sin cos 2sin cos 12sin cos 2A A A A A A A A +=++=+=,因sin A 、cos A 均为正数,故sin cos 0A A +>.因此由上式得sin cos A A +=,②由①、②得sin A =,cos A =sin B =9.已知关于x 的一元二次方程()()22211120m x m x +--+=的两个根是一个直角三角形的两个锐角的正弦,求实数m 的值.解析设方程的两个实根1x 、2x 分别是直角三角形ABC 的锐角A 、B 的正弦.则()22222212sin sin sin cos 190x x A B A A A B +=+=+=+=︒,又122112m x x m -+=+,12122x x m =+,所以()2222111212211242122m x x x x x x m m -⎛⎫+=+-=-= ⎪++⎝⎭.化简得224230m m -+=,解得1m =或23.检验,当1m =时,()()22114820m m =--+<△;当23m =时,()()22114820m m =--+△≥.所以23m =.评注本题是三角函数与一元二次方程的综合,基本解法是利用韦达定理和22sin cos 1αα+=列方程求解.要注意最后检验方程有无实数根.10.已知方程2450x x k -+=的两根是直角三角形的两个锐角的正弦,求k .解析根据韦达定理,有12125 , 4.4x x k x x ⎧+=-⎪⎪⎨⎪=⎪⎩并且由于其两根是直角三角形的两个锐角的正弦,所以又有22121x x +=.于是有()2222121212512244k x x x x x x ⎛⎫=+=+-=--⨯ ⎪⎝⎭.解得98k =.11.若直角三角形中的两个锐角A 、B 的正弦是方程20x px q ++=的两个根;(1)那么,实数p 、q 应满足哪些条件?(2)如果p 、q 满足这些条件,方程20x px q ++=的两个根是否等于直角三角形的两个锐角A 、B 的正弦?解析(1)设A 、B 是某个直角三角形两个锐角,sin A 、sin B 是方程20x px q ++=的两个根,则有240p q =-△≥.①由韦达定理,sin sin A B p +=-,sin sin A B q =.又sin 0A >,sin 0B >,于是0p <,0q >.由于()sin sin 90cos B A A =︒-=.所以sin cos A A p +=-,sin cos A A q =,所以()()22sin cos 1sin cos 12p A A A A q -=+=+=+,即221p q -=.由①得21240q p q -=-≥,则12q ≤.故所求条件是0p <,102p <≤,221p q -=.②(2)设条件②成立,则24120p q q -=-≥,故方程有两个实根:α==,β==.由②知p -=p <=-,所以0p p <--+,故0βα>≥.又()2222221p q αβαβαβ+=+-=-=,故01αβ<<≤.12.已知方程()24210x m x m -++=的两个根恰好是一个直角三角形的两个锐角的余弦,试求m 的值.解析设题中所述的两个锐角为A 及B ,由题设得()241160 , 1cos cos , 2cos cos .4m m m A B m A B ⎧=+-⎪⎪+⎪+=⎨⎪⎪=⎪⎩△≥因为cos sin B A =,故()2, 1cos sin , 2cos sin , 410m A A m A m m A ++==⎧=-⇒⎪⎪⎪⎨⎪⎪⎪⎩可△≥取任意实数①②①式两边平方,并利用恒等式22sin cos 1A A +=,得()()221cos sin 12sin cos 4m A A A A ++=+=.再由②得()21124m m ++=,解得m =.由cos 0A >,sin 0A >及②知0m >.所以m =.13.不查表,求15︒的四种三角函数值.解析30︒、45︒、60︒这些特殊角的三角函数值,我们可以利用含有这些特殊角的直角三角形的几何性质及勾股定理直接推出.同样,15︒角的三角函数值,也可以利用直角三角形的性质将其推出.如图所示.在ABC △中,90C ∠=︒,30ABC ∠=︒,延长CB 到D ,使BD BA =,则1152D BAD ABC ∠=∠=∠=︒.设1AC =,则2AB =,3BC =2BD =,所以 23CD CB BD =+=+所以()()())2222123843242323123162AD AC CD =++++++=+=+.所以162sin15462AC AD -︒===+,2362cos15462CD AD ++︒===+1tan152323AC CD ︒===-+cot1523CDAC︒==.评注将15︒角的三角函数求值问题,通过构造适当的三角形,将它转化为30︒角的三角函数问题,这种将新的未知问题通过一定途径转化为旧的已解决了的问题的方法,是我们研究解决新问题的重要方法.根据互余三角函数关系式,我们很容易得到75︒角的四种三角函数值.14.求22.5︒角的正切值(不查表,不借助计算器).解析4522.52︒︒=,所以设法构造一个含22.5︒角的直角三角形,用定义求值.如图,Rt ABC △中,90C ∠=︒,45B ∠=︒,延长CB 到D ,使BD BA =,则122.52D B ∠=∠=︒.设AC b =,有222AB b b b =+=,()21DC DB BC b =+=+.故()tan 22.52121ACDCb︒==+.15.求sin18︒的值.解析构造一个顶角A 为36︒的等腰ABC △,AB AC =,如图,作内角平分线则36ABD DBC ∠=∠=︒,设1AC =,BC x =.由于36DBA DAB ∠=∠=︒,72BDC BCD ∠=∠=︒,故CB BD DA x ===,而CAB △∽CBD △(36CAB CBD ∠=∠=︒),故AC BC BC DC =,故11xx x=-,有512x -=(舍去512-).再作AH BC ⊥于H ,则18CAH ∠=︒,514CH -=.所以1sin184-︒=.评注本题所构造的等腰三角形是圆内接正十边形的相邻顶点与圆心确定的三角形,利用它可以求出半径为R 的圆内接正十边形的边长.16.若x 、y 为实数,221x y +=,α为锐角,求证:sin cos x y αα+的绝对值不大于1.解析由221x y +=,22sin cos 1αα+=,得()()2222sin cos 1x y αα++=,即22222222sin cos cos sin 1x y x y αααα+++=,加一项减一项,得22222222sin 2sin cos cos cos 2cos sin sin 1x xy y x xy y αααααααα+++-+=.即()()2sin cos cos sin 1x y x y αααα2++-=,因为()2cos sin 0x y αα-≥,所以()2sin cos 1x y αα+≤,故sin cos 1x y αα+≤.2解直角三角形(详细解答)1.如图,在直角三角形ABC 中,90C ∠=︒,AD 是A ∠的平分线,且CD =,DB =求ABC △的三边长.解析由角平分线想到对称性,考虑过D 作DE AB ⊥,交AB 于E ,则由90C ∠=︒得CD DE ==.在直角三角形BDE 中,1sin 2DE B DB ==,则60B ∠=︒,所以3tan3AC BC B ==+⋅=,2sin ACAB AC B===,BC CD DB =+=.故ABC △的三边长分别为,.2.在Rt ABC △中(如图),D 、E 是斜边AB 的三等分点,已知sin CD x =,()cos 090CE x x =︒<<︒.试求AB 的长.解析作DF AC ⊥于F ,EG AC ⊥于G ;DP BC ⊥于P ,EQ BC ⊥于Q .令BP PQ QC a ===,AG GF FC b ===.则2DF a =,EG a =.在Rt CDF △和Rt CEG △中,由勾股定理,得()2222sin a b x +=,及()2222cos a b x +=,两式相加得()2251a b +=,2215a b +=.所以35AB BD ===.3.如图,ABC △中,90C ∠=︒,10AB =,6AC =,AD 是BAC ∠的平分线,求点B 到直线AD 的距离BH .解析已知Rt ABH △中,10AB =,要求BH ,可求出BAH ∠的正弦值,而BAH CAD ∠=∠,因而可先求出DC 的长.作DE AB ⊥于E ,有6AE AC ==,ED CD =.设3DC k =,由三角形内角平分线性质有106BD DC =,则5BD k =.Rt BDE △中,222DE BE BD +=,即()()()22231065k k +-=,得1k =.33CD k ==,AD ==sin10BHDAC ∠==,故BH =.4.已知ABC △是非等腰直角三角形,90BAC ∠=︒,在BC 所在直线上取两点D 、E 使DB BC CE ==,连结AD 、AE .已知45BAD ∠=︒.求tan CAE ∠的值.解析如图,过B 、C 两点作BM AC ∥、CN AB ∥分别交AD 、AE 于M 、N .易知2AC BM =,2AB CN =,tan BM BAD AB ∠=,tan CNCAE AC∠=,从而,1tan tan 4BAD CAE ∠∠=.因为tan 1BAD ∠=,则1tan 4CAE ∠=.5.设有一张矩形纸片ABCD (如图),3AB =,4BC =.现将纸片折叠,使C 点与A 点重合,试求折痕EF 的长.解析设O 是矩形对角线AC 的中点.连结CF ,由折叠知CF AF =,故FO AC ⊥,即EF AC ⊥.由3AB =,4BC =,得5AC =,从而1522AO AC ==.在Rt AOF △中,90AOF ∠=︒,故tan OF AO FAO =⋅∠.又由Rt ADC △得3tan tan 4DC FAO DAC AD ∠=∠==,所以5315248OF =⋅=,1524EF OF ==.7.已知三角形两边之和是10,这两边的夹角为30︒,面积为254,求证:此三角形为等腰三角形.解析由题意可设10a b +=,30α=︒,则125sin 24S ab α==△,即1125224ab ⋅=,得25ab =.于是,由10a b +=,25ab =,得a 、b 是方程210250x x -+=的两个根.而此方程有两个相等的根,所以5a b ==,即此三角形为等腰三角形.评注也可以直接由()()2240a b a b ab -=+-=,得a b =.7.在ABC △中,90C ∠=︒,其周长为2+,且已知斜边上的中线长为1.如果BC AC >,求tan A的值.解析由于斜边长是斜边上中线长的2倍,故2AB c ==.于是,由题设及勾股定理,得224. a b a b ⎧++==⎪⎨⎪⎩①②把①式两边平方,得2226a ab b ++=.再由②得1ab =.③由①、③知,a 、b 分别是二次方程210u +=的两根,解得622u ±=.因为BC AC >(即a b >),故12BC =,12AC =,所以tan 2BC A AC ===+.8.已知a 、b 、c 分别是ABC △中A ∠、B ∠,C ∠的对边,且a 、b 是关于x 的一元二次方程()()2 424x c c x ++=+的两个根.(1)判断ABC △的形状;(2)若3tan 4A =求a 、b 、c .解析(1)根据题意,尝试从边来判断.因为4a b c +=+,()42ab c =+,所以()2222a b a b ab +=+-()()224242c c c =+-⨯+=,从而知ABC △是直角三角形,90C ∠=︒.(2)由90C ∠=︒,3tan 4A ∠=,得34a b =.令3a =,()40b k k =>,则5c k =,于是754k k =+,得2k =,从而有6a =,8b =,10c =.9.在Rt ABC △中,90C ∠=︒,12ABC S m =△,且两直角边长满足条件32a b m +=.(1)证明:24m ≥;(2)当m 取最小值时,求ABC △中最小内角的正切值.解析(1)由题设得 , 32.ab m a b m =⎧⎨+=⎩消去b ,得32m a a m -⎛⎫= ⎪⎝⎭,故实数a 满足二次方程2320x mx m -+=.①所以()224240m m m m =-=-△≥.因为0m >,所以24m ≥.10.如图所示.90A BEF EBC ECD ∠=∠=∠=∠=︒,30ABF ∠=︒,45BFE ∠=︒,60ECB ∠=︒且2AB CD =.求tan CDE ∠的值.解析因为tan CECDE CD∠=,已知2AB CD =,因此,只需求出AB 与CE 的比值即可.不妨设1CD =,则2AB =.在Rt ABF △中,90A ∠=︒,30ABF ∠=︒,所以cos30AB BF ==︒.在Rt BEF △中,90BEF ∠=︒,45BFE ∠=︒,所以2cos 452BE BF =︒==在Rt BEC △中,90EBC ∠=︒,60ECB ∠=︒,42sin 603BE CE ===︒,所以42tan 3CE CDE CD ∠==.11.如图所示.在锐角ABC △中,4sin 5B =,tan 2C =,且10ABC S =△.求BC.解析作AD BC ⊥于D ,设AD x =,在Rt ABD △中,因为4sin 5B =,所以3cos 5B ==,所以sin 4tan cos 3B B B ==,所以43AD BD =,34BD x =.在Rt ADC △中,因为tan 2AD C DC ==,所以22AD x CD ==,所以35424x BC BD CD x x =+=+=.①因为1102ABC S BC AD =⨯=△,所以151024x x ⨯⋅=,所以4x =.由①知5454BC =⨯=.评注在一般三角形中,在适当位置作高线,将其转化为直角三角形求解,这是解斜三角形常采用的方法.12.如图所示.在ACD △中,45A ∠=︒,5CB =,7CD =,3BD =.求CBD ∠及AC.解析作CE AD ⊥于E ,设CE x =,BE y =,则有()2222225 , 37. x y x y ⎧+=⎪⎨++=⎪⎩①②②-①得22697524y +=-=,所以52y =.因为2x =,所以512cos 52BE CBE CB ∠===,所以60CBE ∠=︒,18060120CBD ∠=︒-︒=︒,所以5356sin 4522CE AC ==︒.13.如图,已知ABC △中,1AB =,D 是AB 的中点,90DCA ∠=︒,45DCB ∠=︒.求BC 的长.解析作BE AC ⊥B ,交AC 的延长线于E ,设BC x =.则sin 45BE BC =⨯︒=,cos 45CE BC =⋅︒=由DC BE ∥,D 是AB 的中点,知2AE EC ==.而222AE BE AB +=,得221+=.即x =,所以BC =.评注通过构造直角三角形,使用三角函数、勾股定理等知识将边角联系起来是求线段长的常用方法.14.如图,ABC △中,90ACB ∠=︒,CD AB ⊥于D ,DE AC ⊥于E ,DF BC ⊥于F .求证:33AE AC BF BC =.解析ADE ACD B ∠=∠=∠,而tan AE ADE DE ∠=,tan ED ACD EC ∠=,tan DFB BF=,所以tan AE ED DFB DE EC FB===,又DF EC =,所以3tan AE ED EC B DE EC BF ⋅⋅=,所以3tan AEB BF=.又tan ACB BC=,所以33AE AC BF BC =.15.如图,在ABC △中,90A ∠=︒,AB AC =,M 是AC 边的中点,AD 垂直于BM 且交BC 于D .求证:AMB CMD ∠=∠.解析作DF AC ⊥于F ,不妨设3AB =,因AD BM ⊥,90BAM ∠=︒,所以DAF ABM ∠=∠.又112tan 2AC MA ABM AB AB ∠===.1tan 2DF DAF FA ∠==.又90BAC ∠=︒,AB AC =,45C ∠=︒,而90DFC ∠=︒,故FC FD =.由于12FC FA =,而3FC FA +=,1FC =,2FA =,而32MC =,31122FM =-=,1FD =,即1tan 212FD CMD FM ∠===,又tan 2AB AMB AM ∠==,AMB ∠,CMD ∠是锐角.因此AMB CMD ∠=∠.16.如图(a ),正方形ABCD的边长E 、F 分别是AB 、BC 的中点,AF 分别交DE 、DB 于点M 、N ,求DMN △的面积.解析记正方形ABCD 的边长为2a .由题设易知BFN △∽DAN △,则有21AD AN DN BF NF BN ===,得2AN NF =,所以23AN AF =.在直角ABF △中,2AB a =,BF a =,则AF ==,于是cos 5AB BAF AF ∠==.由题设可知ADE △≌BAF△,所以AED AFB ∠=∠,18018090AME BAF AED BAF AFB ∠=︒-∠-∠=︒-∠-∠=︒.于是cos AM AE BAF =⋅∠=,23MN AN AM AF AM =-=-=,从而415MND AFD S MN S AF ==△△.又()()212222AFD S a a a =⋅⋅=△,所以2481515MND AFD S S a ==△△.因a =8MND S =△.17.已知a 、b 、c 是ABC △三边的长,其中b a c >=,且方程20ax c +=两根的差的绝对值等.求ABC △中最大角的度数.解析由已知条件b a c >=可知,这是一个等腰三角形,且底边b 最长,则最大角为B ∠,求出ABC △中的底角A (或C )即可.我们可以先求角A (或C )的三角函数值,再确定角的大小,如图所示.由图知2cos 2b AD b A AB c c===,则关键是求出b 与c 的比值.通过一元二次方程中的条件,可得到关于c 、b 的方程,则问题得到解决.因为a c =,所以方程为20cx c +=.设1x 、2x 为方程的两个根,则有122b x x c +=,121x x =.因为12x x -=,()2122x x -=,即()2121242x x x x +-=,所以2242c ⎛⎫-= ⎪ ⎪⎝⎭,c =,b c =,所以cos 22b A c ==,所以30A ∠=︒,所以1803030120B ∠=︒-︒-︒=︒.评注这是一道方程与几何知识的综合题.三角形的边是一元二次方程的系数,利用方程条件导出边的关系,由边的关系再进一步求角的大小.18.如图,AB 是圆的直径,弦CD AB ∥,AC 与BD 相交于E ,已知AED θ∠=,试求:CDE ABE S S △△.解析由AB CD ∥,得CDE △∽ABE △.所以22::CDE ABE S S DE BE =△△.连结AD ,则90ADB ∠=︒.故由Rt ADE △,有cos DE AEθ=,又AE BE =,所以2:cos CDE ABE S S θ=△△.19.如图所示,已知电线杆AB 直立于地面上,它的影子恰好照在土坡的坡面CD 和地面BC 上.如果CD 与地面成45︒,60A ∠=︒,4m CD =,(m BC =-,求电线杆AB 的长(精确到0.1m ).解析如图,延长AD 交地面于点E ,过点D 作DF CE ⊥于点F .因为45DCF ∠=︒,60A ∠=︒,4CD =,所以2sin 4542CF DF CD ==︒=⨯=,tan 60EF DF =︒==.因为3tan 303AB BE =︒=,所以(()8.5m 33AB BE ==++⨯=≈.20.如图,某岛S 周围42海里内存在着大量的暗礁.现在一轮船自西向东以每小时15海里的速度航行,在、A 处测得S 在北偏东60︒,2小时后在B 处测得S 在正东北方向,试问轮船是否需要改变航行方向行驶,才能避免触礁危险,说明理由.解析若设船不改变航向,与小岛S 的最近距离为SC .则有tan 60tan 45152SC SC ︒-︒=⨯,解得1542SC =<.因此需要改变航向,以免触礁.21.如图,某污水处理站计划砌一段截面为等腰梯形的排污渠,如果渠深为h ,截面积为S ,试求当倾角θ为多少时造价最小?解析要使造价最小,只需考虑AD DC CB ++最小,故首先设法用h 、S 、θ表示AD DC CB ++.()()()1122cot cot 22S AB CD h CD h h CD h h θθ=+=+=+.有cot S CD h h θ=-,则2AD DC CB AD CD ++=+2cot sin h S h θθ⎛⎫=+- ⎪⎝⎭()2cos sin h S hθθ-=+.因S 、h 为常数,则要求AD DC CB ++的最小值,只需求2cos sin m θθ-=的最小值.设2cos sin m θθ-=,两边平方整理得()()2221cos 4cos 40m m θθ+---=,cos θ=由上式知()2230m m -≥,解得m m =时,2cos sin θθ-有最小值.当m =时,221cos 12m θ==+,从而得60θ=︒,此时排污渠造价最小.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初中三角函数基础检测题 山岳 得分(一)精心选一选(共36分)1、在直角三角形中,各边都扩大2倍,则锐角A 的正弦值与余弦值都( )A 、缩小2倍B 、扩大2倍C 、不变D 、不能确定2、在Rt △ABC 中,∠C=900,BC=4,sinA=54,则AC=( )A 、3B 、4C 、5D 、63、若∠A 是锐角,且sinA=31,则( )A 、00<∠A<300B 、300<∠A<450C 、450<∠A<600 D 、600<∠A<9004、若cosA=31,则A A A A tan 2sin 4tan sin 3+-=( ) A 、74 B 、31C 、21D 、05、在△ABC中,∠A:∠B:∠C=1:1:2,则a:b:c=()A、1:1:2B、1:1:2C、1:1:3D、1:1:226、在Rt△ABC中,∠C=900,则下列式子成立的是()A、sinA=sinBB、sinA=cosBC、tanA=tanBD、cosA=tanB7.已知Rt△ABC中,∠C=90°,AC=2,BC=3,则下列各式中,正确的是()A.sinB=23B.cosB=23C.tanB=23D.tanB=3 28.点(-sin60°,cos60°)关于y轴对称的点的坐标是()A.(32,12)B.(-32,12)C.(-32,-12)D.(-12,-32)9.每周一学校都要举行庄严的升国旗仪式,让我们感受到了国旗的神圣.•某同学站在离旗杆12米远的地方,当国旗升起到旗杆顶时,他测得视线的仰角为30°,•若这位同学的目高1.6米,则旗杆的高度约为( )A .6.9米B .8.5米C .10.3米D .12.0米10.王英同学从A 地沿北偏西60º方向走100m 到B 地,再从B地向正南方向走200m 到C 地,此时王英同学离A 地 ( )(A )350m (B )100 m(C )150m (D )3100m 11、如图1,在高楼前D 点测得楼顶的仰角为30︒,向高楼前进60米到C 点,又测得仰角为45︒,则该高楼的高度大约为( )A.82米B.163米C.52米D.70米12、一艘轮船由海平面上A 地出发向南偏西40º的方向图1 45︒30︒BA D C行驶40海里到达B 地,再由B地向北偏西10º的方向行驶40海里到达C地,则A、C两地相距().(A)30海里(B)40海里(C)50海里(D)60海里(二)细心填一填(共33分)1.在Rt△ABC中,∠C=90°,AB=5,AC=3,则sinB=_____.2.在△ABC中,若BC=2,AB=7,AC=3,则cosA=________.3.在△ABC中,AB= ,AC=2,∠B=30°,则∠BAC的度数是______.4.如图,如果△APB绕点B按逆时针方向旋转30°后得到△A'P'B,且BP=2,那么PP'的长为____________.(不取近似值. 以下数据供解题使用:sin15°=624-,cos15°=624+)5.如图,在甲、乙两地之间修一条笔直的公路,从甲地测得公路的走向是北偏东48°.甲、乙两地间同时开工,若干天后,公路准确接通,则乙地所修公路的走向是南偏西___________度.6.如图,机器人从A 点,沿着西南方向,行了个42单位,到达B 点后观察到原点O 在它的南偏东60°的方向上,则原来A 的坐标为___________结果保留根 号).7.求值:sin 260°+cos 260°=___________.8.在直角三角形ABC 中,∠A=090,BC=13,AB=12,则tan B =_________.9.根据图中所给的数据,求得避雷针CD 的长约为_______m (结果精确的到0.01m ).(可用计算器求,也可用下列参考数据求:sin43°≈0.6802,sin40°≈0.6428,cos43°≈0.7341,cos40°≈0.7660,tan43°≈0.9325,tan40°≈0.8391)第6题图x O A y B 北 甲 北 乙 第5题图α ACB 第10题图 A 40°52mC D第9题图 B 43第4题图10.如图,自动扶梯AB 段的长度为20米,倾斜角A 为α,高度BC 为___________米(结果用含α的三角比表示).11.如图,太阳光线与地面成60°角,一棵倾斜的大树与地面成30°角,• 这时测得大树在地面上的影子约为10米,则大树的高约为________米。

(保留两个有效数字,2≈1.41,3≈1.73)三、认真答一答(共51分)1计算:sin cos cot tan tan 3060456030︒+︒-︒-︒⋅︒2计算:22459044211(cos sin )()()︒-︒+-︒+--π3 如图,在∆ABC 中,AD 是BC 边上的高,tan cos B DAC =∠。

(1)求证:AC =BD(2)若sin C BC ==121312,,求AD 的长。

4如图,已知∆ABC 中∠=∠C Rt ,AC m BAC =∠=,α,求∆ABC 的面积(用α的三角函数及m 表示)5. 甲、乙两楼相距45米,从甲楼顶部观测乙楼顶部的俯角为30°,观测乙楼的底部的俯角为45°,试求两楼的高.6. 从A 处观测铁塔顶部的仰角是30°,向前走100米到达B处,观测铁塔的顶部的仰角是 45°,求铁塔高.3045 DC B A 30450 Ar E D B C7、如图,一铁路路基横断面为等腰梯形ABCD ,斜坡BC 的坡度为3:2=ι,路基高AE 为3m ,底CD 宽12m ,求路基顶AB 的宽。

BA D C E8.九年级(1)班课外活动小组利用标杆测量学校旗杆的高度,已知标杆高度3m CD =,标杆与旗杆的水平距离15m BD =,人的眼睛与地面的高度 1.6m EF =,人与标杆CD 的水平距离2m DF =,求旗杆AB 的高度.9 如图,一条渔船某时刻在位置A 观测灯塔B 、C(灯塔B 距离A处较近),两个灯塔恰好在北偏东65°45′的方向上, 渔船向正东方向航行l 小时45分钟之后到达D 点,观测到灯塔B 恰好在正北方向上,已知两个EC B 北 E FD C A H B灯塔之间的距离是12海里,渔船的速度是16海里/时,又知在灯塔C周围18.6海里内有暗礁,问这条渔船按原来的方向继续航行,有没有触礁的危险?10、如图,A城气象台测得台风中心在A城的正西方300千米处,以每小时107千米的速度向北偏东60º的BF方向移动,距台风中心200千米的范围内是受这次台风影响的区域。

(1)问A城是否会受到这次台风的影响?为什么?(2)若A城受到这次台风的影响,那么A城遭受这次台风影响的时间有多长?11. 如图,山上有一座铁塔,山脚下有一矩形建筑物ABCD,且建筑物周围没有开阔平整地带,该建筑物顶端宽度AD和高度DC都可直接测得,从A、D、C三点可看到塔顶端H,可供使用的测量工具有皮尺、测倾器。

(1)请你根据现有条件,充分利用矩形建筑物,设计一个测量塔顶端到地面高度HG的方案。

具体要求如下:测量数据尽可能少,在所给图形上,画出你设计的测量平面图,并将应测数据标记在图形上(如果测A、D间距离,用m表示;如果测D、C间距离,用n表示;如果测角,用α、β、γ表示)。

(2)根据你测量的数据,计算塔顶端到地面的高度HG(用字母表示,测倾器高度忽略不计)。

13. 人民海关缉私巡逻艇在东海海域执行巡逻任务时,发现在其所处位置O 点的正北方向10海里处的A 点有一涉嫌走私船只正以24海里/小时的速度向正东方向航行。

为迅速实验检查,巡逻艇调整好航向,以26海里/小时的速度追赶,在涉嫌船只不改变航向和航速的前提下,问(1)需要几小时才能追上?(点B 为追上时的位置)(2)确定巡逻艇的追赶方向(精确到01.︒)参考数据:sin ..cos ..sin ..cos ..sin ..cos ..sin ..cos ..6680919166803939674092316740384668409298684036817060943270603322︒≈︒≈︒≈︒≈︒≈︒≈︒≈︒≈,,,,14. 公路MN和公路PQ在点P处交汇,且∠=︒QPN30,点A 处有一所中学,AP=160m,一辆拖拉机以3.6km/h的速度在公路MN上沿PN方向行驶,假设拖拉机行驶时,周围100m以内会受噪声影响,那么,学校是否会受到噪声影响?如果不受影响,请说明理由;如果受影响,会受影响几分钟?NP A QM.15、如图,在某建筑物AC上,挂着“多彩云南”的宣传条幅BC,小明站在点F处,看条幅顶端B,测的仰角为︒30,再往条幅方向前行20米到达点E处,看到条幅顶端B,测的仰角为︒60,求宣传条幅BC的长,(小明的身高不计,结果精确到0.1米)16、一艘轮船自西向东航行,在A 处测得东偏北21.3°方向有一座小岛C ,继续向东航行60海里到达B 处,测得小岛C 此时在轮船的东偏北63.5°方向上.之后,轮船继续向东航行多少海里,距离小岛C 最近?(参考数据:sin21.3°≈925,tan21.3°≈25, sin63.5°≈910,tan63.5°≈2)17、如图,一条小船从港口A出发,沿北偏东40方向航行20海里后到达B 处,然后又沿北偏西30方向航行10海里后到达C 处.问此时小船距港口A 多少海里?(结果精确到1海里)友情提示:以下数据可以选用:sin 400.6428≈,cos 400.7660≈,tan 400.8391≈,3 1.732≈.A BC北东CQBAP北403018、如图10,一枚运载火箭从地面O处发射,当火箭到达A点时,从地面C处的雷达站测得AC的距离是6km,仰角是43.1s后,火箭到达B点,此时测得BC的距离是6.13km,仰角为45.54,解答下列问题:(1)火箭到达B点时距离发射点有多远(精确到0.01km)?(2)火箭从A点到B点的平均速度是多少(精确到0.1km/s)?图10ABO C19、经过江汉平原的沪蓉(上海—成都)高速铁路即将动工.工程需要测量汉江某一段的宽度.如图①,一测量员在江岸边的A 处测得对岸岸边的一根标杆B 在它的正北方向,测量员从A 点开始沿岸边向正东方向前进100米到达点C 处,测得68=∠ACB .(1)求所测之处江的宽度(.48.268tan ,37.068cos ,93.068sin ≈≈≈ );(2)除(1)的测量方案外,请你再设计一种测量江宽的方案,并在图②中画出图形.图①图②20 某学校体育场看台的侧面如图阴影部分所示,看台有四级高度相等的小台阶.已知看台高为l.6米,现要做一个不锈钢的扶手AB及两根与FG垂直且长为l米的不锈钢架杆AD和BC(杆子的底端分别为D,C),且∠DAB=66.5°.(1)求点D与点C的高度差DH;(2)求所用不锈钢材料的总长度l(即AD+AB+BC,结果精确到0.1米).(参考数据:sin66.5°≈0.92,cos66.5°≈0.40,tan66.5°≈2.30)答案一、选择题1——5、CAADB 6——12、BCABDAB 二、填空题1,352,733,30°(点拨:过点C作AB的垂线CE,构造直角三角形,利用勾股定理CE)4.62-(点拨:连结PP ',过点B 作BD ⊥PP ',因为∠PBP '=30°,所以∠PBD=15°,利用sin15°=624-,先求出PD ,乘以2即得PP ')5.48(点拨:根据两直线平行,内错角相等判断) 6.(0,4433+)(点拨:过点B 作BC ⊥AO ,利用勾股定理或三角函数可分别求得AC 与OC 的长)7.1(点拨:根据公式sin 2α+cos 2α=1)8.125(点拨:先根据勾股定理求得AC=5,再根据tan ACB AB=求出结果)9.4.86(点拨:利用正切函数分别求了BD ,BC 的长) 10.20sin α(点拨:根据sin BCABα=,求得sin BC AB =∙α)11.35三,解答题可求得 1.-1;2. 43.解:(1)在Rt ABD ∆中,有tan B AD BD=,Rt ADC ∆中,有cos ∠=DAC ADACtan cos B DACAD BD ADACAC BD =∠∴==,故 (2)由sin C AD AC==1213;可设AD x AC BD x ===1213,由勾股定理求得DC x =5, BC BD DC x =∴+==121812即x =23∴=⨯=AD 12238 4.解:由tan ∠=BAC BC AC∴=∠=∠=∴=∴=⋅=⋅=BC AC BAC AC m BAC BC m S AC BC m m m ABC tan tan tan tan ,αααα∆12121225解过D 做DE ⊥AB 于E ∵∠MAC=45° ∴∠ACB=45° BC=45在Rt ΔACB 中,BCABtgACB =)(4545米=⋅=∴ tg BC AB30450Ar E D BC在Rt ΔADE 中,∠ADE=30°DEAE tgADE =315334530=⋅=⋅=∴ tg DE AE )(31545米-=-=∴AE AB CD答:甲楼高45米,乙楼高31545-米.6 解:设CD=x在Rt ΔBCD 中,CDBC ctgDBC = ∴BC=x(用x 表示BC)在Rt ΔACD 中,CDACctgDAC = x ctgDAC CD AC 3=⋅=∴ ∵AC-BC=100 1003=-x x 100)13(=-x∴)13(50+=x答:铁塔高)13(50+米.7、解:过B 作BF ⊥CD ,垂足为F BF AE =∴在等腰梯形ABCD 中 AD=BCD C ∠=∠3:2=iBCAE=3m ∴DE=4.5mAD=BC ,D C ∠=∠,︒=∠=∠90DEA CFB ∴∆BCF ≅∆ADE ∴CF=DE=4.5m ∴EF=3m︒=∠=∠90AEF BFE ∴BF//CD ∴四边形ABFE 为平行四边形∴AB=EF=3m8解:CD FB ⊥,AB FB ⊥,CD AB ∴∥CGE AHE ∴△∽△CG EGAH EH∴=,即:CD EF FDAH FD BD-=+ 3 1.62215AH -∴=+,11.9AH ∴= EFDCAHB11.9 1.613.5(m)AB AH HB AH EF ∴=+=+=+=9 解: A 、C 、E 成一直线∠=︒∠=︒∴∠=︒ABD D BED 1455590,,在Rt BED ∆中, cos cos D DEBDDE BD D =∴=⋅, BD =500米,∠=︒D 55︒=∴55cos 500DE 米,所以E 离点D 的距离是500cos55 o10 解:在Rt△ABD 中,716284AD =⨯=(海里),∠BAD=90°-65°45′=24°15′. ∵cos24°15′=AD AB, ∴2830.71cos 24150.9118AD AB ==≈'︒(海里).AC=AB+BC=30.71+12=42.71(海里). 在Rt△ACE 中,sin24°15′=CE AC,∴CE=AC·sin24°15′=42.71×0.4107=17.54(海里). ∵17.54<18.6,∴有触礁危险。

相关文档
最新文档