广州市华附奥校数学代数式单元测试卷(解析版)
【10套试卷】广州市华附奥校小升初模拟考试数学精选含答案
2019小学六年级下册数学试题及答案(1)一.选择题(共5小题,满分15分,每小题3分)1.(3分)9.235的计数单位是()A.0.1B.0.01C.0.0012.(3分)下面各比中,能与:6组成比例的是()A.2.5:16B.0.1:C.3:2.4D.:43.(3分)袋子里共有10个球,这些球除颜色外,其他特点都相同.任意摸一个球,记录颜色后放回袋里搅匀.共摸20次,摸到红球12次,白球8次.那么,红球的数量()比白球多.A.可能B.一定C.不可能D.以上都不对4.(3分)a、b、c都是大于1的自然数.根据a×=×b=c÷的等式判断,最大的是()A.a B.b C.c D.一样大5.(3分)某班男生28人,女生比男生少4人,求女生是男生的百分之几?正确算式是()A.4÷28B.(28﹣4)÷28C.4÷(24﹣4)D.28÷(24﹣4)二.判断题(共5小题,满分10分,每小题2分)6.(2分)一种商品,先降价10%,再涨价10%,价格不变..(判断对错)7.(2分)一个自然数如果有约数2,这个数一定是合数.(判断对错)8.(2分)亮亮用10个珠子在简易“计数器”上摆了一个三位数,如图左所示:如果还用这些珠子,那么,在计数器上能摆出的最大三位数是,最小数是.9.(2分)圆柱的侧面展开是正方形时,这个圆柱的高和它的底面周长相等.(判断对错)10.(2分)把5:9的前项增加6,后项也增加6,比值不变.(判断对错)三.填空题(共10小题,满分23分)11.(2分)5.9867保留一位小数约等于;保留三位小数约等于.12.(3分)如果a ×=b ÷=c ÷=d ×,且a 、b 、c 、d 均不等于0.这四个数中最大的是 ,最小的是 .A .aB .bC .cD .d .13.(2分)虾条包装袋上标着:净重(260±5克),那么这种虾条标准的质量是 ,实际每袋最多不超过 ,最少必须不少于 .14.(2分)用含有字母的式子或方程表示下面的数量关系.5减x 的差除以3160减5个ax 的3倍等于57x 除以5等于1.615.(2分)在一幅比例尺是1:5000000的地图上,量得天津到南京的距离是19cm ,天津到南京的实际距离是 千米.16.(4分)把一条20米长的绳子剪成两段,两段的长度如下表:第一段的米数和第二段的米数这两种量 比例.17.(2分)有红、黄、蓝、绿四个不同颜色的小球,把它们放在三个盒子中,不管怎么放,至少有一个盒子中有 个小球.18.(2分)把一个底面半径为3cm ,高5cm 的圆柱切开后拼成近似的长方体(如图),拼成的这个长方体的长是 cm ,宽是 cm ,原来圆柱的体积是 cm 3.19.(2分)某工程队修建一条铁路隧道,当完成任务的时,工程队采用新设备,使修建速度提高了20%,同时为了保养新设备,每天工作时间缩短为原来的,前后共用185天完工,由以上条件可推知,如果不采用新设备,完工共需 天.20.(2分)如图,长方形ABCD的面积是1,E是BC边的中点,F是CD边的中点.那么阴影部分AFCE的面积等于.四.计算题(共1小题,满分10分,每小题10分)21.(10分)计算.1.5+5=4﹣0.9=4÷0.8=100×1%=25×0.7×4=×=0÷=÷=1﹣=2﹣2÷3=五.计算题(共1小题,满分8分,每小题8分)22.(8分)用递等式计算.(1)105×11﹣1890÷18(2)×0.25×28(3)4.8×3.9+6.1×4(4)1﹣(0.2+)×(5)(+)×12+六.计算题(共1小题,满分8分,每小题8分)23.(8分)求未知数xχ:=:4=x+x=421.25:0.25=七.计算题(共1小题,满分8分,每小题8分)24.(8分)脱式计算下列各题(1)(2)()×()(3)(1﹣)+(4)30÷[()×] 八.计算题(共2小题,满分18分)25.(6分)计算下面图形中阴影部分的面积.26.(12分)按要求画出图形.(1)把小旗子向右平移6格.(2)把小旗绕O 点逆时针旋转90°.参考答案与试题解析一.选择题(共5小题,满分15分,每小题3分)1.【解答】解:9.235的计数单位是0.001.故选:C .2.【解答】解::6=÷6=;A 、2.5:16=2.5÷16=;B 、0.1:=0.1=;C 、3:2.4=3÷2.4=;D 、:4=÷4=;所以能与:6组成比例的是:4;故选:D .3.【解答】解:袋子里共有10个球,这些球除颜色外,其他特点都相同.任意摸一个球,记录颜色后放回袋里搅匀.共摸20次,摸到红球12次,白球8次.那么,红球的数量可能比白球多;故选:A .4.【解答】解:c ÷=c ×a ×=×b =c ×因为>>所以:a >c >b ,最大的是a .故选:A .5.【解答】解:女生是男生的百分之几可以表示为:(28﹣4)÷28故选:B .二.判断题(共5小题,满分10分,每小题2分)6.【解答】解:(1﹣10%)×(1+10%)=0.9×1.1=99%;99%<1;所以现价比原价降低了,原题说法错误.故答案为:×.7.【解答】解:比如:2的最大约数是它本身,2是最小的质数,因此一个自然数如果有约数2,这个数一定是合数这种说法是错误的.故答案为:×.8.【解答】解:根据分析,可得如果还用这些珠子,那么,在计数器上能摆出的最大三位数是910,最小数是109. 故答案为:910、109.9.【解答】解:如果圆柱的侧面展开是一个正方形,那么这个圆柱的底面周长和高相等. 所以题干说法正确.故答案为:√.10.【解答】解:比的前项增加6,后项也要增加6,比值不变,此说法不符合比的性质的内容,所以说法是错误的;故答案为:×.三.填空题(共10小题,满分23分)11.【解答】解:5.9867保留一位小数约等于 6.0;保留三位小数约等于 5.987. 故答案为:6.0; 5.987.12.【解答】解:令a ×=b ÷=c ÷=d ×=1,a ×=1 a =;b ÷=1 b =;c ÷=1,c =;d ×=1,d =;且>>>,即d >a >c >b ,所以最大的数是d ,最小的数是b .故选:D 、B .13.【解答】解:260﹣5=255(克),260+5=265(克).答:这种虾条标准的质量是260克,实际每袋最多不超过265克,最少必须不少于255克.故答案为:260克,265克,255克.14.【解答】解:5减x的差除以3,(5﹣x)÷3160减5个a,160﹣5ax的3倍等于57,3x=57x除以5等于1.6x÷5=1.6故答案为:(5﹣x)÷3,160﹣5a,3x=57,x÷5=1.6.15.【解答】解:19÷=95000000(厘米)95000000厘米=950千米答:天津到南京的实际距离是950千米.故答案为:950.16.【解答】解:第一段与第二段是两个相关联的量,这个相关联的量既不是积一定,也不是商(比值)一定,只是和一定,第一段的米数和第二段的米数这两种量不成比例.故答案为:不成.17.【解答】解:4÷3=1…1(个),1+1=2(个);答:至少有一个盒子中有2个小球.故答案为:2.18.【解答】解:3.14×3×2÷2=3.14×3=9.42(cm)9.42×3×5=141.3(cm3)答:拼成的这个长方体的长是9.42cm,宽是3cm,原来圆柱的体积是141.3cm3.故答案为:9.42,3,141.3.19.【解答】解:设不采取新设备,完工共需x天,根据题意列方程为:×=1(185﹣)×××=(185﹣)×=72×(185﹣)=50x13320﹣24x=50x74x=13320x=180答:不采取新设备共需180天.故答案为:180.20.【解答】解:如图连结AC,∵E、F分别是BC、DC的中点,∴BE=EC,DF=FC.由于在△ADF与△AFC中,它们的底DF=FC,高均为AD,所以这两个三角形的面积相等;均为长方形的;+S 同理,△ABE与△AEC的面积也相等,均为长方形的,阴影部分AFCE的面积=S△AFC=+=.△AEC四.计算题(共1小题,满分10分,每小题10分)21.【解答】解:1.5+5=6.54﹣0.9=3.14÷0.8=5100×1%=125×0.7×4=70×=0÷=0÷=1﹣=2﹣2÷3=1五.计算题(共1小题,满分8分,每小题8分)22.【解答】解:(1)105×11﹣1890÷18=1155﹣105=1050(2)×0.25×28=××28=×28=(3)4.8×3.9+6.1×4=4.8×3.9+6.1×4.8=4.8×(3.9+6.1)=4.8×10=48(4)1﹣(0.2+)×=1﹣()×=1﹣×=1﹣=(5)(+)×12+=×12×12=5+=5+()=5+1=6 六.计算题(共1小题,满分8分,每小题8分)23.【解答】解:(1)x :=:44x =×4x =4x ÷4=÷4x =(2)= 4.5x =0.8×94.5x =7.24.5x ÷4.5=7.2÷4.5x =1.6(3)x +x =42x =42x ×=42×x =36(4)1.25:0.25=0.25X =1.25×1.60.25X =20.25X ×4=2×4X =8七.计算题(共1小题,满分8分,每小题8分)24.【解答】解:(1)==;(2)()×()=×=;(3)(1﹣)+=(1﹣)+=+=;(4)30÷[()×]=30÷[×]=30÷=75.八.计算题(共2小题,满分18分)25.【解答】解:(1)12×7﹣(12×7÷2)=82﹣42=42(平方厘米)答:阴影部分的面积是42平方厘 2019小学六年级下册数学试题及答案(1)一.选择题(共5小题,满分15分,每小题3分)1.(3分)9.235的计数单位是( )A.0.1B.0.01C.0.0012.(3分)下面各比中,能与:6组成比例的是()A.2.5:16B.0.1:C.3:2.4D.:43.(3分)袋子里共有10个球,这些球除颜色外,其他特点都相同.任意摸一个球,记录颜色后放回袋里搅匀.共摸20次,摸到红球12次,白球8次.那么,红球的数量()比白球多.A.可能B.一定C.不可能D.以上都不对4.(3分)a、b、c都是大于1的自然数.根据a×=×b=c÷的等式判断,最大的是()A.a B.b C.c D.一样大5.(3分)某班男生28人,女生比男生少4人,求女生是男生的百分之几?正确算式是()A.4÷28B.(28﹣4)÷28C.4÷(24﹣4)D.28÷(24﹣4)二.判断题(共5小题,满分10分,每小题2分)6.(2分)一种商品,先降价10%,再涨价10%,价格不变..(判断对错)7.(2分)一个自然数如果有约数2,这个数一定是合数.(判断对错)8.(2分)亮亮用10个珠子在简易“计数器”上摆了一个三位数,如图左所示:如果还用这些珠子,那么,在计数器上能摆出的最大三位数是,最小数是.9.(2分)圆柱的侧面展开是正方形时,这个圆柱的高和它的底面周长相等.(判断对错)10.(2分)把5:9的前项增加6,后项也增加6,比值不变.(判断对错)三.填空题(共10小题,满分23分)11.(2分)5.9867保留一位小数约等于;保留三位小数约等于.12.(3分)如果a×=b÷=c÷=d×,且a、b、c、d均不等于0.这四个数中最大的是,最小的是.A .aB .bC .cD .d .13.(2分)虾条包装袋上标着:净重(260±5克),那么这种虾条标准的质量是 ,实际每袋最多不超过 ,最少必须不少于 .14.(2分)用含有字母的式子或方程表示下面的数量关系.5减x 的差除以3160减5个ax 的3倍等于57x 除以5等于1.615.(2分)在一幅比例尺是1:5000000的地图上,量得天津到南京的距离是19cm ,天津到南京的实际距离是 千米.16.(4分)把一条20米长的绳子剪成两段,两段的长度如下表:第一段的米数和第二段的米数这两种量比例.17.(2分)有红、黄、蓝、绿四个不同颜色的小球,把它们放在三个盒子中,不管怎么放,至少有一个盒子中有 个小球.18.(2分)把一个底面半径为3cm ,高5cm 的圆柱切开后拼成近似的长方体(如图),拼成的这个长方体的长是 cm ,宽是 cm ,原来圆柱的体积是 cm 3.19.(2分)某工程队修建一条铁路隧道,当完成任务的时,工程队采用新设备,使修建速度提高了20%,同时为了保养新设备,每天工作时间缩短为原来的,前后共用185天完工,由以上条件可推知,如果不采用新设备,完工共需 天.20.(2分)如图,长方形ABCD 的面积是1,E 是BC 边的中点,F 是CD 边的中点.那么阴影部分AFCE 的面积等于 .四.计算题(共1小题,满分10分,每小题10分)21.(10分)计算.1.5+5=4﹣0.9=4÷0.8=100×1%=25×0.7×4=×=0÷=÷=1﹣=2﹣2÷3=五.计算题(共1小题,满分8分,每小题8分)22.(8分)用递等式计算.(1)105×11﹣1890÷18(2)×0.25×28(3)4.8×3.9+6.1×4(4)1﹣(0.2+)×(5)(+)×12+六.计算题(共1小题,满分8分,每小题8分)23.(8分)求未知数xχ:=:4=x+x=421.25:0.25=七.计算题(共1小题,满分8分,每小题8分)24.(8分)脱式计算下列各题(1)(2)()×()(3)(1﹣)+(4)30÷[()×]八.计算题(共2小题,满分18分)25.(6分)计算下面图形中阴影部分的面积.26.(12分)按要求画出图形.(1)把小旗子向右平移6格.(2)把小旗绕O点逆时针旋转90°.参考答案与试题解析一.选择题(共5小题,满分15分,每小题3分)1.【解答】解:9.235的计数单位是0.001.故选:C .2.【解答】解::6=÷6=;A 、2.5:16=2.5÷16=;B 、0.1:=0.1=;C 、3:2.4=3÷2.4=;D 、:4=÷4=;所以能与:6组成比例的是:4;故选:D .3.【解答】解:袋子里共有10个球,这些球除颜色外,其他特点都相同.任意摸一个球,记录颜色后放回袋里搅匀.共摸20次,摸到红球12次,白球8次.那么,红球的数量可能比白球多;故选:A .4.【解答】解:c ÷=c ×a ×=×b =c ×因为>>所以:a >c >b ,最大的是a .故选:A .5.【解答】解:女生是男生的百分之几可以表示为:(28﹣4)÷28故选:B .二.判断题(共5小题,满分10分,每小题2分)6.【解答】解:(1﹣10%)×(1+10%)=0.9×1.1=99%;99%<1;所以现价比原价降低了,原题说法错误.故答案为:×.7.【解答】解:比如:2的最大约数是它本身,2是最小的质数,因此一个自然数如果有约数2,这个数一定是合数这种说法是错误的.故答案为:×.8.【解答】解:根据分析,可得如果还用这些珠子,那么,在计数器上能摆出的最大三位数是910,最小数是109. 故答案为:910、109.9.【解答】解:如果圆柱的侧面展开是一个正方形,那么这个圆柱的底面周长和高相等. 所以题干说法正确.故答案为:√.10.【解答】解:比的前项增加6,后项也要增加6,比值不变,此说法不符合比的性质的内容,所以说法是错误的;故答案为:×.三.填空题(共10小题,满分23分)11.【解答】解:5.9867保留一位小数约等于 6.0;保留三位小数约等于 5.987. 故答案为:6.0; 5.987.12.【解答】解:令a ×=b ÷=c ÷=d ×=1,a ×=1 a =;b ÷=1 b =;c ÷=1,c =;d ×=1,d =;且>>>,即d >a >c >b ,所以最大的数是d ,最小的数是b .故选:D 、B .13.【解答】解:260﹣5=255(克),260+5=265(克).答:这种虾条标准的质量是260克,实际每袋最多不超过265克,最少必须不少于255克.故答案为:260克,265克,255克.14.【解答】解:5减x的差除以3,(5﹣x)÷3160减5个a,160﹣5ax的3倍等于57,3x=57x除以5等于1.6x÷5=1.6故答案为:(5﹣x)÷3,160﹣5a,3x=57,x÷5=1.6.15.【解答】解:19÷=95000000(厘米)95000000厘米=950千米答:天津到南京的实际距离是950千米.故答案为:950.16.【解答】解:第一段与第二段是两个相关联的量,这个相关联的量既不是积一定,也不是商(比值)一定,只是和一定,第一段的米数和第二段的米数这两种量不成比例.故答案为:不成.17.【解答】解:4÷3=1…1(个),1+1=2(个);答:至少有一个盒子中有2个小球.故答案为:2.18.【解答】解:3.14×3×2÷2=3.14×3=9.42(cm)9.42×3×5=141.3(cm3)答:拼成的这个长方体的长是9.42cm,宽是3cm,原来圆柱的体积是141.3cm3.故答案为:9.42,3,141.3.19.【解答】解:设不采取新设备,完工共需x天,根据题意列方程为:×=1(185﹣)×××=(185﹣)×=72×(185﹣)=50x13320﹣24x=50x74x=13320x=180答:不采取新设备共需180天.故答案为:180.20.【解答】解:如图连结AC,∵E、F分别是BC、DC的中点,∴BE=EC,DF=FC.由于在△ADF与△AFC中,它们的底DF=FC,高均为AD,所以这两个三角形的面积相等;均为长方形的;+S 同理,△ABE与△AEC的面积也相等,均为长方形的,阴影部分AFCE的面积=S△AFC=+=.△AEC四.计算题(共1小题,满分10分,每小题10分)21.【解答】解:1.5+5=6.54﹣0.9=3.14÷0.8=5100×1%=125×0.7×4=70×=0÷=0÷=1﹣=2﹣2÷3=1五.计算题(共1小题,满分8分,每小题8分)22.【解答】解:(1)105×11﹣1890÷18=1155﹣105=1050(2)×0.25×28=××28=×28=(3)4.8×3.9+6.1×4=4.8×3.9+6.1×4.8=4.8×(3.9+6.1)=4.8×10=48(4)1﹣(0.2+)×=1﹣()×=1﹣×=1﹣=(5)(+)×12+=×12×12=5+=5+()=5+1=6 六.计算题(共1小题,满分8分,每小题8分)23.【解答】解:(1)x :=:44x =×4x =4x ÷4=÷4x =(2)= 4.5x =0.8×94.5x =7.24.5x ÷4.5=7.2÷4.5x =1.6(3)x +x =42x =42x ×=42×x =36(4)1.25:0.25=0.25X =1.25×1.60.25X =20.25X ×4=2×4X =8七.计算题(共1小题,满分8分,每小题8分)24.【解答】解:(1)==;(2)()×()=×=;(3)(1﹣)+=(1﹣)+=+=;(4)30÷[()×]=30÷[×]=30÷=75.八.计算题(共2小题,满分18分)25.【解答】解:(1)12×7﹣(12×7÷2)=82﹣42=42(平方厘米)答:阴影部分的面积是42平方厘 最新小学六年级下册数学试题及答案一、细心琢磨·正确填空1.填上适当的数.(1)________ =1.3(2)8.3 =________2.在3.5,,+4,-15,0,- ,16,-3.2这些数中自然数有________,小数有________,正数有________,负数有________,分数有________。
【3套打包】广州市华附奥校最新七年级下册数学期末考试试题(含答案)
最新七年级(下)数学期末考试题及答案一、选择题:(本大题共12个小题,每小题3分,满分36分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确选项的字母代号填涂在答题卡相应位置上.)1.9的算术平方根是( )A .±3B .3C .±⎷ 3D .⎷ 32.在下列方程组中,不是二元一次方程组的是( )A .222x y y ⎨⎩--⎧==B .1531x y +⎨⎩+-⎧==C .34x y x y ⎪⎩-⎧⎪⎨==D .27325x y x y +-⎩-⎧⎨==3.如图,一扇窗户打开后,用窗钩AB 可将其固定,这里所运用的几何原理是( )A .垂线段最短B .两点之间线段最短C .两点确定一条直线D .三角形的稳定性A .4个B .3个C .2个D .1个5.下面说法正确的是( )A .检测一批进口食品的质量应采用全面调查B .从5万名考生的成绩中抽取300名考生的成绩作为样本,样本容量是5万C .反应你本学年数学成绩的变化情况宜采用扇形统计图D .一组数据的样本容量是100,最大值是141,最小值是60,取组距为10,可分为9组6.如图,在A 、B 两座工厂之间要修建一条笔直的公路,从A 地测得B 地的走向是南偏东52°,现A 、B 两地要同时开工,若干天后公路准确对接,则B 地所修公路的走向应该是( )A .北偏西52°B .南偏东52°C .西偏北52°D .北偏西38°7.若一个多边形的内角和为1080°,则这个多边形的边数为( ) A .6B .7C .8D .98.a ,b 为实数,且a >b ,则下列不等式的变形正确的是( )A .a+b <b+xB .-a+2>-b+2C .3a >3bD .22ab <9.如图,在△ABC 中,AD 是角平分线,DE ⊥AB 于点E ,△ABC 的面积为28,AB=8,DE=4,则AC 的长是( )A .8B .6C .5D .410.如图所示,给出下列条件:①∠B+∠BCD=180°:②∠1=∠2:③∠3=∠4,④∠B=∠5;⑤∠B=∠D .其中,一定能判定AB ∥CD 的条件的个数有( )A.5个B.4个C.3个D.2个11.若不等式组231xx a⎩-≤⎧⎨>的整数解共有4个,则a的取值范围是()A.6≤a<7 B.6<a≤7C.6<a<7 D.6≤a≤712.如图,在平面直角坐标系中,一动点从原点O出发,按向上、向右、向下、向右的方向依次不断地移动,每次移动一个单位,得到点A1(0,1)、A2(1,1)、A3(1,0)、A4(2,0),…,那么点A2019的坐标为()A.(1008,1)B.(1009,1)C.(1009,0)D.(1010,0)二、填空题(本大题共4小题,每小题4分,满分16分.不需写出解答过程,请将答案直接写在答题卡相应位置上.)13.已知点A在第三象限,到x轴的距离是2,到y轴的距离是1,那么点A的坐标是.14.已知(m+2)x|m|-1+3>0是关于x的一元一次不等式,则m的值为.15.三角形一边长为4,另一边长为7,且第三边长为奇数,则第三边的长为.16.如图,已知AB∥CD,直线MN分别交AB,CD于点M,B,NG平分∠MND 交AB于点G,若∠1=110°,则∠2的度数.18.某地为了解青少年视力情况,现随机抽查了若干名初中学生进行视力情况统计,分为视力正常、轻度近视、重度近视三种情况,并绘成如图所示的条形统计图和扇形统计图(不完整).请你根据图中信息解答下列问题:(1)求这次被抽查的学生一共有多少人?(2)求被抽查的学生中轻度近视的学生人数,并将条形统计图补充完整;(3)若某地有4万名初中生,请估计视力不正常(包括轻度近视、重度近视)的学生共有多少人?19.如图,△ABC在平面直角坐标系xOy中.(1)请直接写出点A、B两点的坐标:A ;B .(2)若把△ABC向上平移3个单位,再向右平移2个单位得△ABC,请在右图中画出△A′B′C′,并写出点C′的坐标;(3)求△ABC的面积是多少?20.如图,在△ABC中,AD是高,AE,BF分别是∠BAC,∠ABC的角平分线,它们相交于点O,∠BAC=50°,∠C=∠BAC+20°,求∠DAC和∠BOA的度数.21.如图1,AB∥CD,点E是直线AB、CD之间的一点,连接EA、EC.(1)问题发现:①若∠A=15°,∠C=45°,则∠AEC= .②猜想图1中∠EAB、∠ECD、∠AEC的数量关系,并证明你的结论.(2)如图2,AB∥CD,线段MN把ABDC这个封闭区域分为Ⅰ、Ⅱ两部分(不含边界),点E是位于这两个区域内的任意一点,请直接写出∠EMB、∠END、∠MEN的数量关系.22.随着气温的升高,空调的需求量大增某家电超市对每台进价分别为2000元、1700元的A、B两种型号的空调,近两周的销售情况统计如下:(1(2)若该家电超市准备用不多于54000的资金,采购这两种型号的空调30台,求A种型号的空调最多能采购多少台?(3)在(2)的条件下,该家电超市售完这30台空调能否实现利润不低于15800元的目标?若能,请给出采购方案.若不能,请说明理由.参考答案与试题解析1.【分析】根据开方运算,可得算术平方根.【解答】解:9的算术平方根是3,故选:B.【点评】本题考查了算术平方根,注意一个正数只有一个算术平方根.2.【分析】二元一次方程组的定义的三要点:1、只有两个未知数;2、未知数的项最高次数都应是一次;3、都是整式方程.【解答】解:选项C中的第二个方程是分式方程,所以它不是二元一次方程组.故选:C.【点评】考查了二元一次方程组的应用.要紧扣二元一次方程组的定义的三要点:1、只有两个未知数;2、未知数的项最高次数都应是一次;3、都是整式方程.3.【分析】根据三角形的性质,可得答案.【解答】解:一扇窗户打开后,用窗钩AB可将其固定,这里所运用的几何原理是三角形的稳定性,故选:D .【点评】本题考查了三角形的稳定性,利用三角形的稳定性是解题关键. 4. 【分析】根据无理数、有理数的定义即可判定选择项.【解答】-1,∴3.14、0.13是无理数.故选:D .【点评】此题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.如π0.8080080008…(每两个8之间依次多1个0)等形式.5. 【分析】根据统计中各个统计量的意义以及全面调查、抽样调查、样本容量、扇形统计图的特点等知识逐个进行判断.【解答】解:检测一批进口食品的质量不适合全面调查,数量极大,适合抽样调查,因此A 选项不正确; B 中样本容量是300,不是5万,B 选项不正确,反应数学成绩的变化情况适合使用折线统计图,不是扇形统计图,因此C 选项不正确, 因此D 选项正确, 故选:D .【点评】考查统计中,全面调查、抽样调查、样本、样本容量、扇形统计图等知识,理解各个概念和相应的知识是解决问题的关键.6. 【分析】方向角一般是指以观测者的位置为中心,将正北或正南方向作为起始方向旋转到目标的方向线所成的角(一般指锐角),通常表达成北(南)偏东(西)××度.根据方位角的概念,画图正确表示出方位角,即可求解.【解答】解:北偏西52°. 故选:A .【点评】解答此类题需要从运动的角度,正确画出方位角,找准中心是做这类题的关键.7. 【分析】首先设这个多边形的边数为n ,由n 边形的内角和等于180°(n -2),即可得方程180(n -2)=1080,解此方程即可求得答案.【解答】解:设这个多边形的边数为n , 根据题意得:180(n -2)=1080, 解得:n=8. 故选:C .【点评】此题考查了多边形的内角和公式.此题比较简单,注意熟记公式是准确求解此题的关键,注意方程思想的应用.8. 【分析】根据不等式的性质1,可判断A ,根据不等式的性质3、1可判断B ,根据不等式的性质2,可判断C 、D .【解答】解:A、不等式的两边都加或都减同一个整式,不等号的方向不变,故A错误;B、不等式两边先同乘以-1,再加上2,不等式的两边都乘或除以同一个负数,不等号的方向改变,故B错误;C、不等式的两边都乘以或除以同一个正数,不等号的方向不变,故C正确;D、不等式的两边都乘以或除以同一个正数,不等号的方向不变,故D错误;故选:C.【点评】本题考查了不等式的性质,不等式的两边都乘或除以同一个负数,不等号的方向改变.9.【分析】过点D作DF⊥AC于F,然后利用△ABC的面积公式列式计算即可得解.【解答】解:过点D作DF⊥AC于F,∵AD是△ABC的角平分线,DE⊥AB,∴DE=DF=4,∴S△ABC=12×8×4+12AC×4=28,解得AC=6.故选:B.【点评】本题考查了角平分线上的点到角的两边距离相等的性质,三角形的面积,熟记性质并利用三角形的面积列出方程是解题的关键.10.【分析】根据平行线的判定方法:同旁内角互补,两直线平行可得①能判定AB∥CD;根据内错角相等,两直线平行可得③能判定AB∥CD;根据同位角相等,两直线平行可得④能判定AB∥CD.【解答】解:①∵∠B+∠BCD=180°,∴AB∥CD;②∵∠1=∠2,∴AD∥CB;③∵∠3=∠4,∴AB∥CD;④∵∠B=∠5,∴AB∥CD,⑤由∠B=∠D,不能判定AB∥CD;∴一定能判定AB∥CD的条件为:①③④.故选:C.【点评】此题主要考查了平行线的判定,关键是熟练掌握平行线的判定定理.11.【分析】首先确定不等式组的解集,利用含a的式子表示,根据整数解的个数就可以确定有哪些整数解,根据解的情况可以得到关于a的不等式,从而求出a的范围.【解答】解:解不等式2x-3>1,得:x>2,∴不等式解集为:2<x≤a.∵不等式组的整数解有4个,∴不等式组的4个整数解为3、4、5,6.则6≤a<7,故选:A.【点评】本题考查了一元一次不等式组的整数解,求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.解题关键是分析得出整数解的值,进一步确定字母的取值范围.12.【分析】动点O在平面直角坐标系中按向上、向右、向下、向右的方向依次不断地移动,只要求出前几个坐标,然后根据坐标找规律.【解答】解:根据题意和图的坐标可知:每次都移动一个单位长度,中按向上、向右、向下、向右的方向依次不断地移动A1(0,1)、A2(1,1)、A3(1,0)、A4(2,0),A5(2,1)、A6(3,1)、A7(3,0)…∴坐标变体的规律:每移动4次,它的纵坐标都为1,而横坐标向右移动了2个单位长度,也就是移动次数的一半;∴2019÷4=504 (3)∴A2019纵坐标是A3的纵坐标0;∴A2019横坐标是0+2×504+1=1009那么点A2019的坐标为(1009,0)故选:C.【点评】主要考查学生找规律能力和数形结合的能力,解题的思路:结合图形找出坐标的移动规律,从移动规律中计算其纵坐标和横坐标的变化,从而计算点A2019的坐标.13.【分析】根据第三象限点的横坐标与纵坐标都是负数,点到x轴的距离等于纵坐标的长度,到y轴的距离等于横坐标的长度解答即可.【解答】解:∵点A在第三象限内,点A到x轴的距离是2,到y轴的距离是1,∴点A的横坐标为-1,纵坐标为-2,∴点A的坐标为(-1,-2).故答案为:(-1,-2).【点评】本题考查了点的坐标,熟记点到x轴的距离等于纵坐标的长度,到y轴的距离等于横坐标的长度是解题的关键.14.【分析】利用一元一次不等式的定义判断即可确定出m的值.【解答】解:依题意得:|m|-1=1=1且m+2≠0,解得m=2.故答案是:2.【点评】此题考查了一元一次不等式的定义,熟练掌握一元一次不等式的定义是解本题的关键.15.【分析】根据三角形的三边关系:两边之和大于第三边,两边之差小于第三边.即可求解.【解答】解:第三边的取值范围是大于3而小于11,又第三边长为奇数,故第三边的长为5,7,9.故答案为:5,7,9.【点评】考查了三角形的三边关系:两边之和大于第三边,两边之差小于第三边.还要注意第三边长为奇数这一条件.16【分析】先求得∠AMN的度数,再根据平行线的性质得出∠AMN=∠MND,∠2=∠GND,再由角平分线的定义即可得出结论.【解答】解:∵∠1=110°,∴∠AMN=70°,∵AB∥CD,∴∠AMN=∠MND=70°,∠2=∠GND.∵NG平分∠MND,∴∠GND=12∠MND=35°,∴∠2=∠GND=35°.故答案为:35°.【点评】本题考查的是平行线的性质的运用,解题时注意:两直线平行,同位角相等,内错角相等.17.【分析】(1)利用加减消元法求解可得;(2)分别求出各不等式的解集,再根据“大小小大中间找”求出其公共解集.【解答】解:(1)410 3235 x yx y+-⎧⎨⎩=①=②①×2,得8x+2y=20.③③+②,得11x=55,解得,x=5,将x=5代入①,得4×5+y=10,解得,y=-10,所以这个方程组的解是:510 xy-⎧⎨⎩==.(2)解:()2151422x x -⎪+⎨⎪⎩-⎧>①<②,解不等式①,得2x >-4 解得,x >-2解不等式②,得x+4<4 解得x <0.所以这个不等式组的解集是: -2<x <0.【点评】此题主要考查了二元一次方程组,一元一次不等式(组)的解法,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变. 18. 【分析】(1)用正常的人数除以对应的百分比即可;(2)用总人数减去正常和重度的人数就是轻度的人数,据数据补全统计图. (3)全校总人数乘以不正常的百分比即可.【解答】解:(1)4÷10%=40(人)答:这次被抽查的学生一共是40名; (2)被抽查的学生中轻度近视的学生人数:40-4-24=12(人), 补全统计图如图所示;(3)4×(1-10%)=3.6万答:某地4万名初中生,估计视力不正常(包括轻度近视、重度近视)的学生共有3.6万人. 【点评】本题主要考查了条形统计图,用样本估计总体及扇形统计图,弄清题意是解本题的关键. 19. 【分析】(1)依据点A 、B 两点的位置,即可得到其坐标;(2)依据△ABC 向上平移3个单位,再向右平移2个单位得△ABC ,即可得到△A′B′C′; (3)依据割补法进行计算,即可得到△ABC 的面积.【解答】解:(1)点A 的坐标为:(-1,-1);点B 的坐标为:(4,2); 故答案为:(-1,-1);(4,2);(2)如图所示:△A′B′C′即为所求,点C′的坐标为:(3,6);故答案为:(3,6);(3)△ABC的面积是:4×5-12×2×4-12×1×3-12×3×5=7.【点评】本题主要考查了利用平移变换作图,作图时要先找到图形的关键点,分别把这几个关键点按照平移的方向和距离确定对应点后,再顺次连接对应点即可得到平移后的图形.20.【分析】求出∠C,根据三角形内角和定理求出∠ABC,根据角平分线的定义求出∠BAE和∠ABF,根据高求出∠ADC,根据三角形内角和定理求出即可.【解答】解:∠BAC=50°,∠C=∠BAC+20°,∴∠C=70°,∵AD⊥BC,∴∠ADC=90°,∴∠CAD=180°-∠C-∠ADC=20°;∵∠BAC=50°,∠C=70°,∴∠ABC=180°-∠BAC-∠C=60°,∵AE、BF分别是∠BAC、∠ABC的角平分线,∴∠BAE=12∠BAC=25°,∠ABF=12∠ABC=30°,∴∠BOA=180°-∠BAE-∠ABF=180°-25°-30°=125°,所以∠DAC=20°,∠BOA=125°.【点评】本题考查了角平分线的定义,高的定义和三角形的内角和定理,能求出各个角的度数是解此题的关键.21.【分析】(1)①过点E作EF∥CD,依据平行线的性质,即可得出∠AEC的度数;②过点E作EF∥CD,依据平行线的性质,即可得出∠AEC=∠EAB+∠ECD.(2)分两种情况讨论:当点E位于区域Ⅰ时,∠EMB+∠END+∠MEN=360°;当点E位于区域Ⅱ时,∠EMB+∠END=∠MEN.【解答】解:(1)①如图1,过点E作EF∥CD,∵AB∥DC∴EF∥AB(平行于同一条直线的两直线平行),∴∠1=∠EAB,∠2=∠ECD(两直线平行,内错角相等),∴∠AEC=∠1+∠2=∠EAB+∠ECD=60°.故答案为:60°;②猜想:∠AEC=∠EAB+∠ECD.理由:如图1,过点E作EF∥CD,∵AB∥DC∴EF∥AB(平行于同一条直线的两直线平行),∴∠1=∠EAB,∠2=∠ECD(两直线平行,内错角相等),∴∠AEC=∠1+∠2=∠EAB+∠ECD.(2)如图2,当点E位于区域Ⅰ时,∠EMB+∠END+∠MEN=360°;如图3,当点E位于区域Ⅱ时,∠EMB+∠END=∠MEN.【点评】本题主要考查了平行线的性质,解决问题的关键是作平行线,利用平行线的性质得出结论.22.【分析】(1)设A种型号的空调的销售价为x元,B种型号的空调的销售价为y元,根据总价=单价×数量结合近两周的销售情况统计表,即可得出关于x,y的二元一次方程组,解之即可得出结论;(2)设采购A种型号新人教版七年级(下)期末模拟数学试卷(含答案)一.选择题(本大题共10个小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项符合题目要求.)1.已知实数a ,b 满足a+1>b+1,则下列选项错误的为( )A .a >bB .a+2>b+2C .-a <-bD .2a >3b2.如图,图中∠1与∠2的内错角是( )A .a 和bB .b 和cC .c 和dD .b 和dAB .面积为12CD 4.二元一次方程组632x y x y +-⎩-⎧⎨==的解是( )A .51x y ⎧⎨⎩==B .42x y ⎧⎨⎩==C .51x y -⎩-⎧⎨==D .42x y -⎩-⎧⎨==5.在平面直角坐标系中,点P (m-3,4-2m )不可能在( )A .第一象限B .第二象限C .第三象限D .第四象限6.下面调查方式中,合适的是( )A .调查你所在班级同学的身高,采用抽样调查方式B .调查大汶河的水质情况,采用抽样调查的方式C.调查CCTV-5《NBA 总决赛》栏目在我市的收视率,采用普查的方式D.要了解全市初中学生的业余爱好,采用普查的方式A.B.C.DA.x+5<0 B.2x>10 C.3x-15<0 D.-x-5>09.某商场为了解本商场的服务质量,随机调查了本商场的100名顾客,调查的结果如图所示.根据图中给出的信息,这100名顾客中对该商场的服务质量表示不满意的有()A.46人B.38人C.9人D.7人10.定义:直线l1与l2相交于点O,对于平面内任意一点M,点M到直线l1、l2的距离分别为p、q,则称有序实数对(p,q)是点M的“距离坐标”,根据上述定义,“距离坐标”是(1,2)的点的个数是()A.2 B.3 C.4 D.5二.填空题(本大题共5个小题,每小题3分,共15分)11.16的算术平方根是12.如图,将面积为5的△ABC沿BC方向平移至△DEF的位置,平移的距离是边BC长的两倍,那么图中的四边形ACED的面积为13.在大课间活动中,同学们积极参加体育锻炼,小红在全校随机抽取一部分同学就“一分钟跳绳”进行测试,并以测试数据为样本绘制如图所示的部分频数分布直方图(从左到右依次分为六个小组,每小组含最小值,不含最大值)和扇形统计图,若“一分钟跳绳”次数不低于130次的成绩为优秀,全校共有1200名学生,根据图中提供的信息,估计该校学生“一分钟跳绳”成绩优秀的人数为人.22x y-⎧=(1)请在如图所示的网格平面内画出平面直角坐标系;(2)请把三角形ABC先向右平移5个单位长度,再向下平移3个单位长度得到三角形A′B′C′,在图中画出三角形A′B′C′;(3)求三角形ABC的面积.19.某地某月1~20日中午12时的气温(单位:℃)如下:22 31 25 15 18 23 21 20 27 1720 12 18 21 21 16 20 24 26 19(1)将下列频数分布表补充完整:(2)补全频数分布直方图;(3)根据频数分布表或频数分布直方图,分析数据的分布情况.20.食品安全是老百姓关注的话题,在食品中添加过量的添加剂对人体有害,但适量的添加剂对人体无害且有利于食品的储存和运输.某饮料加工厂生产的A、B两种饮料均需加入同种添加剂,A饮料每瓶需加该添加剂0.2克,B饮料每瓶需加该添加剂0.3克,已知54克该添加剂恰好生产了A、B两种饮料共200瓶,问A、B两种饮料各生产了多少瓶?21.某公交公司有A,B型两种客车,它们的载客量和租金如下表:某中学根据实际情况,计划租用A,B型客车共5辆,同时送七年级师生到基地校参加社会实践活动.设租用A型客车x辆,根据要求回答下列问题:(1)用含x的式子填写下表:(2)若要保证租车费用不超过1900元,求x的最大值.22.已知:ABC中,点D为射线CB上一点,且不与点B,点C重合,DE∥AB交直线AC于点E,DF∥AC交直线AB于点F.(1)画出符合题意的图;(2)猜想∠EDF与∠BAC的数量关系,并证明你的结论.23.如图,已知AM∥BN,∠A=60°,点P是射线AM上一动点(与A不重合),BC、BD分别平分∠ABP和∠PBN,交射线AM于C、D,(推理时不需要写出每一步的理由)(1)求∠CBD的度数.(2)当点P运动时,那么∠APB:∠ADB的度数比值是否随之发生变化?若不变,请求出这个比值;若变化,请找出变化规律.(3)当点P运动到使∠ACB=∠ABD时,求∠ABC的度数.参考答案与试题解析1.【分析】根据不等式的性质即可得到a>b,a+2>b+2,-a<-b.【解答】解:由不等式的性质得a>b,a+2>b+2,-a<-b.故选:D.【点评】本题考查了不等式的性质,属于基础题.2.【分析】根据内错角的定义找出即可.【解答】解:由内错角的定义可得b,d中∠1与∠2是内错角.故选:D.【点评】本题考查了同位角、内错角、同旁内角,熟记内错角的定义是解题的关键.3.【分析】根据无理数的定义:无理数是开方开不尽的实数或者无限不循环小数或π;由此即可判定选择项.【解答】解:AB、面积为12CD故选:A.【点评】本题主要考查了实数,有理数,无理数的定义,要求掌握实数,有理数,无理数的范围以及分类方法.4.【分析】用加减消元法解方程组即可.【解答】解:①-②得到y=2,把y=2代入①得到x=4,∴42 xy⎧⎨⎩==,故选:B.【点评】本题考查解二元一次方程组,解题的关键是熟练掌握加减消元法或代入消元法解方程组,属于中考常考题型.5.【分析】分点P的横坐标是正数和负数两种情况讨论求解.【解答】解:①m-3>0,即m>3时,-2m<-6,4-2m<-2,所以,点P(m-3,4-2m)在第四象限,不可能在第一象限;②m-3<0,即m<3时,-2m>-6,4-2m>-2,点P(m-3,4-2m)可以在第二或三象限,综上所述,点P不可能在第一象限.故选:A.【点评】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).6.【分析】根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似判断即可.【解答】解:A、调查你所在班级同学的身高,采用普查,故A不符合题意;B、调查大汶河的水质情况,采用抽样调查的方式,故B符合题意;C、调查CCTV-5《NBA 总决赛》栏目在我市的收视率,采用抽样调查,故C不符合题意;D、要了解全市初中学生的业余爱好,采用抽样调查,故D不符合题意;故选:B.【点评】本题考查的是抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.7.【分析】首先可以求出线段BC的长度,然后利用中点的性质即可解答.【解答】解:∵表示2C,B,∴2,∵点C是AB的中点,则设点A的坐标是x,则x=4∴点A表示的数是4故选:C.【点评】本题主要考查了数轴上两点之间x1,x2的中点的计算方法.8.【分析】首先计算出不等式5x>8+2x的解集,再根据不等式的解集确定方法:大小小大中间找可确定另一个不等式的解集,进而选出答案.【解答】解:5x>8+2x,解得:x>83,根据大小小大中间找可得另一个不等式的解集一定是x<5,故选:C.【点评】此题主要考查了不等式的解集,关键是正确理解不等式组解集的确定方法:大大取大,小小取小,大小小大中间找,大大小小找不着.9.【分析】根据扇形统计图的定义,各部分占总体的百分比之和为1,由统计图先求出顾客中对商场的服务质量表示不满意的占总体的百分比,再用总人数100乘这个百分比即可.【解答】解:因为顾客中对商场的服务质量表示不满意的占总体的百分比为:1-9%-46%-38%=7%,所以100名顾客中对商场的服务质量不满意的有100×7%=7人.故选:D.【点评】本题考查扇形统计图的意义.扇形统计图能直接反映部分占总体的百分比大小.10.【分析】“距离坐标”是(1,2)的点表示的含义是该点到直线l1、l2的距离分别为1、2.由于到直线l1的距离是1的点在与直线l1平行且与l1的距离是1的两条平行线a1、a2上,到直线l2的距离是2的点在与直线l2平行且与l2的距离是2的两条平行线b1、b2上,它们有4个交点,即为所求.【解答】解:如图,∵到直线l1的距离是1的点在与直线l1平行且与l1的距离是1的两条平行线a1、a2上,到直线l2的距离是2的点在与直线l2平行且与l2的距离是2的两条平行线b1、b2上,∴“距离坐标”是(1,2)的点是M1、M2、M3、M4,一共4个.故选:C.【点评】本题考查了点到直线的距离,两平行线之间的距离的定义,理解新定义,掌握到一条直线的距离等于定长k的点在与已知直线相距k的两条平行线上是解题的关键.11.【分析】根据算术平方根的定义即可求出结果.【解答】解:∵42=16,.故答案为:4.【点评】此题主要考查了算术平方根的定义.一个正数的算术平方根就是其正的平方根.12.【分析】设点A到BC的距离为h,根据平移的性质用BC表示出AD、CE,然后根据三角形的面积公式与梯形的面积公式列式进行计算即可得解.【解答】解:设点A到BC的距离为h,则S△ABC=12BC•h=5,∵平移的距离是BC的长的2倍,∴AD=2BC,CE=BC,∴四边形ACED的面积=12(AD+CE)•h=12(2BC+BC)•h=3×12BC•h=3×5=15.故答案为:15.【点评】本题考查了平移的性质,三角形的面积,主要用了对应点间的距离等于平移的距离的性质.13.【分析】首先由第二小组有10人,占20%,可求得总人数,再根据各小组频数之和等于数据总数求得第四小组的人数,利用总人数260乘以样本中“一分钟跳绳”成绩为优秀的人数所占的比例即可求解.【解答】解:总人数是:10÷20%=50(人),第四小组的人数是:50-4-10-16-6-4=10,所以该校九年级女生“一分钟跳绳”成绩为优秀的人数是:106450++×1200=480, 故答案为:480. 【点评】本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.14. 【分析】可设小强同学生日的月数为x ,日数为y ,根据等量关系:①强同学生日的月数减去日数为2,②月数的两倍和日数相加为31,列出方程组求解即可.【解答】解:设小强同学生日的月数为x ,日数为y ,依题意有2231x y x y -+⎧⎨⎩==, 解得119x y ⎧⎨⎩==,11+9=20.答:小强同学生日的月数和日数的和为20.故答案为:20.【点评】考查了二元一次方程组的应用,分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.15. 【分析】根据二次根式的性质和已知得出即可.【解答】∴a=7,b=10或a=28,b=40,因为当a=7,b=10时,原式=2是整数;当a=28,b=40时,原式=1是整数;即满足条件的有序数对(a ,b )为(7,10)或(28,40),故答案为:(7,10)或(28,40).【点评】本题考查了二次根式的性质和二次根式的运算,估算无理数的大小的应用,题目比较好,有一定的难度.16. 【分析】先分别求出各不等式的解集,再求出其公共解集并在数轴上表示出来即可.【解答】解:121139x x x x --+≤⎧⎪⎨⎪⎩>①② 由①得,x <-1,由②得,x≤2,故此不等式组的解集为:x <-1。
广州市华附奥校数学全等三角形单元测试卷(解析版)
广州市华附奥校数学全等三角形单元测试卷(解析版)一、八年级数学轴对称三角形填空题(难)1.如图,在菱形ABCD中,∠ABC=120°,AB=10cm,点P是这个菱形内部或边上的一点.若以P,B,C为顶点的三角形是等腰三角形,则P,A(P,A两点不重合)两点间的最短距离为______cm.-【答案】10310【解析】解:连接BD,在菱形ABCD中,∵∠ABC=120°,AB=BC=AD=CD=10,∴∠A=∠C=60°,∴△ABD,△BCD都是等边三角形,分三种情况讨论:①若以边BC为底,则BC垂直平分线上(在菱形的边及其内部)的点满足题意,此时就转化为了“直线外一点与直线上所有点连线的线段中垂线段最短”,即当点P与点D重合时,PA最小,最小值PA=10;②若以边PB为底,∠PCB为顶角时,以点C为圆心,BC长为半径作圆,与AC相交于一点,则弧BD(除点B外)上的所有点都满足△PBC是等腰三角形,当点P在AC上时,AP-;最小,最小值为10310③若以边PC为底,∠PBC为顶角,以点B为圆心,BC为半径作圆,则弧AC上的点A与点D均满足△PBC为等腰三角形,当点P与点A重合时,PA最小,显然不满足题意,故此种情况不存在;-(cm).综上所述,PA的最小值为10310-.故答案为:10310点睛:本题考查菱形的性质、等边三角形的性质,解题的关键是学会用分类讨论的思想思考问题,属于中考常考题型.2.在Rt△ABC中,∠ABC=90°,AB=3,BC=4,点E,F分别在边AB,AC上,将△AEF沿直线EF 翻折,点A 落在点P 处,且点P 在直线BC 上.则线段CP 长的取值范围是____.【答案】15CP ≤≤【解析】【分析】根据点E 、F 在边AB 、AC 上,可知当点E 与点B 重合时,CP 有最小值,当点F 与点C 重合时CP 有最大值,根据分析画出符合条件的图形即可得.【详解】如图,当点E 与点B 重合时,CP 的值最小,此时BP=AB=3,所以PC=BC-BP=4-3=1,如图,当点F 与点C 重合时,CP 的值最大,此时CP=AC ,Rt △ABC 中,∠ABC=90°,AB=3,BC=4,根据勾股定理可得AC=5,所以CP 的最大值为5, 所以线段CP 长的取值范围是1≤CP≤5,故答案为1≤CP≤5.【点睛】本题考查了折叠问题,能根据点E 、F 分别在线段AB 、AC 上,点P 在直线BC 上确定出点E 、F 位于什么位置时PC 有最大(小)值是解题的关键.3.如图,在四边形ABCD 中,BC CD = ,对角线BD 平分ADC ∠,连接AC ,2ACB DBC ∠=∠,若4AB =,10BD =,则ABC S =_________________.【答案】10【解析】【分析】由等腰三角形的性质和角平分线的性质可推出AD ∥BC ,然后根据平行线的性质和已知条件可推出CA=CD ,可得CB=CA=CD ,过点C 作CE ⊥BD 于点E ,CF ⊥AB 于点F ,如图,根据等腰三角形的性质和已知条件可得DE 的长和BCF CDE ∠=∠,然后即可根据AAS 证明△BCF ≌△CDE ,可得CF=DE ,再根据三角形的面积公式计算即得结果.【详解】解:∵BC CD =,∴∠CBD =∠CDB ,∵BD 平分ADC ∠,∴∠ADB =∠CDB ,∴∠CBD =∠ADB ,∴AD ∥BC ,∴∠CAD =∠ACB ,∵2ACB DBC ∠=∠,2ADC BDC ∠=∠,∠CBD =∠CDB ,∴ACB ADC ∠=∠,∴CAD ADC ∠=∠,∴CA=CD ,∴CB=CA=CD ,过点C 作CE ⊥BD 于点E ,CF ⊥AB 于点F ,如图,则152DE BD ==,12BCF ACB ∠=∠, ∵12BDC ADC ∠=∠,ACB ADC ∠=∠,∴BCF CDE ∠=∠, 在△BCF 和△CDE 中,∵BCF CDE ∠=∠,∠BFC =∠CED =90°,CB=CD ,∴△BCF ≌△CDE (AAS ),∴CF=DE =5,∴11451022ABC S AB CF =⋅=⨯⨯=. 故答案为:10.【点睛】本题考查了等腰三角形的判定和性质、平行线的判定和性质、角平分线的定义以及全等三角形的判定和性质等知识,涉及的知识点多、综合性强、具有一定的难度,正确添加辅助线、熟练掌握上述知识是解题的关键.4.如图,已知等边ABC∆的边长为8,E是中线AD上一点,以CE为一边在CE下方作等边CEF∆,连接BF并延长至点,N M为BN上一点,且5CM CN==,则MN的长为_________.【答案】6【解析】【分析】作CG⊥MN于G,证△ACE≌△BCF,求出∠CBF=∠CAE=30°,则可以得出124CG BC==,在Rt△CMG中,由勾股定理求出MG,即可得到MN的长.【详解】解:如图示:作CG⊥MN于G,∵△ABC和△CEF是等边三角形,∴AC=BC,CE=CF,∠ACB=∠ECF=60°,∴∠ACB-∠BCE=∠ECF-∠BCE,即∠ACE=∠BCF,在△ACE与△BCF中AC BCACE BCFCE CF=⎧⎪∠=∠⎨⎪=⎩∴△ACE≌△BCF(SAS),又∵AD是三角形△ABC的中线∴∠CBF=∠CAE=30°,∴124CG BC ==,在Rt △CMG 中,3MG ==,∴MN=2MG=6,故答案为:6.【点睛】本题考查了勾股定理,等边三角形的性质,全等三角形的性质和判定的应用,解此题的关键是推出△ACF ≌△BCF .5.在ABC ∆中,边AB 、AC 的垂直平分线分别交边BC 于点D 、点E ,20DAE ∠=︒,则BAC ∠=______°.【答案】80或100【解析】【分析】根据题意,点D 和点E 的位置不确定,需分析谁靠近B 点,则有如下图(图见解析)两种情况:(1)图1中,点E 距离点B 近,根据垂直平分线性质可知,,BD AD AE CE ==,从而有1,2B DAE C DAE ∠=∠+∠∠=∠+∠,再根据三角形的内角和定理可得180B C BAC ∠+∠+∠=︒,联立即可求得;(2)图2中,点D 距离点B 近,根据垂直平分线性质可知,,BD AD AE CE ==,从而有3,4B C ∠=∠∠=∠,由三角形的内角和定理得180B C BAC ∠+∠+∠=︒,联立即可求得.【详解】由题意可分如下两种情况:(1)图1中,根据垂直平分线性质可知,,BD AD AE CE ==,1,2B DAE C DAE ∴∠=∠+∠∠=∠+∠(等边对等角),两式相加得12B C DAE DAE ∠+∠=∠+∠+∠+∠,又12DAE BAC ∠+∠+∠=∠20B C BAC DAE BAC ∴∠+∠=∠+∠=∠+︒,由三角形内角和定理得180B C BAC ∠+∠+∠=︒,20180BAC BAC ∴∠+︒+∠=︒,80BAC ∴∠=︒;(2)图2中,根据垂直平分线性质可知,,BD AD AE CE ==,3,4B C ∴∠=∠∠=∠(等边对等角),两式相加得34B C ∠+∠=∠+∠,又34DAE BAC ∠+∠+∠=∠,3420BAC DAE BAC ∴∠+∠=∠-∠=∠-︒,20B C BAC ∴∠+∠=∠-︒由三角形内角和定理得180B C BAC ∠+∠+∠=︒,20180BAC BAC ∴∠-︒+∠=︒,100BAC ∴∠=︒.故答案为80或100.【点睛】本题考查了垂直平分线的性质(垂直平分线上的点到线段两端点的距离相等)、等腰三角形的定义和性质(等边对等角)、以及三角形内角和定理,本题的难点在于容易漏掉第二种情况,出现漏解.6.等腰三角形一边长等于4,一边长等于9,它的周长是__.【答案】22【解析】【分析】等腰三角形有两条边长为4和9,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形;【详解】解:因为4+4=8<9,0<4<9+9=18,∴腰的不应为4,而应为9,∴等腰三角形的周长=4+9+9=22.故答案为22.【点睛】本题主要考查了等腰三角形的性质和三角形的三边关系;求三角形的周长,不能盲目地将三边长相加起来,而应养成检验三边长能否组成三角形的好习惯,把不符合题意的舍去.7.如图,在平面直角坐标系中,点 A,B 的坐标分别是(1,5)、(5,1),若点 C 在 x 轴上,且 A,B,C 三点构成的三角形是等腰三角形,则这样的 C 点共有_____________个【答案】5【解析】【分析】分别以A、B为圆心,AB为半径画圆,及作AB的垂直平分线,数出在x轴上的点C的数量即可【详解】解:由图可知:点 C 在 x 轴上,且 A,B,C 三点构成的三角形是等腰三角形,则这样的 C 点共有5个故答案为:5【点睛】本题考查了等腰三角形的存在性问题,掌握“两圆一线”找等腰三角形是解题的关键8.已知等边△ABC中,点D为射线BA上一点,作DE=DC,交直线BC于点E,∠ABC的平分线BF交CD于点F,过点A作AH⊥CD于H,当EDC=30 ,CF=43,则DH=______.【答案】2 3【解析】连接AF.∵△ABC是等边三角形,∴AB=BC,∠ABC=∠ACB=∠BAC=60°.∵DE=DC,∠EDC=30°,∴∠DEC=∠DCE=75°,∴∠ACF=75°-60°=15°.∵BF平分∠ABC,∴∠ABF=∠CBF.在△ABF和△CBF中,AB BCABF CBFBF BF⎧⎪∠∠⎨⎪⎩===,∴△ABF≌△CBF,∴AF=CF,∴∠FAC=∠ACF=15°,∴∠AFH=15°+15°=30°.∵AH⊥CD,∴AH=12AF=12CF=23.∵∠DEC=∠ABC+∠BDE,∴∠BDE=75°-60°=15°,∴∠ADH=15°+30°=45°,∴∠DAH=∠ADH=45°,∴DH=AH=23.故答案为23.点睛:本题考查了全等三角形的判定与性质;证明三角形全等是解决问题的关键,注意辅助线的作法.9.如图,∠BOC=60°,点A是BO延长线上的一点,OA=10cm,动点P从点A出发沿AB 以2cm/s的速度移动,动点Q从点O出发沿OC以1cm/s的速度移动,如果点P、Q同时出发,用t(s)表示移动的时间,当t=_____s时,△POQ是等腰三角形.【答案】103或10【解析】【分析】根据△POQ是等腰三角形,分两种情况进行讨论:点P在AO上,点P在BO上,分别计算,即可得解.【详解】当PO=QO时,△POQ是等腰三角形,如图1所示当点P在AO上时,∵PO=AO-AP=10-2t,OQ=t当PO=QO时,102t t-=解得103 t=当PO=QO时,△POQ是等腰三角形,如图2所示当点P在BO上时∵PO=AP-AO=2t-10,OQ=t当PO=QO时,210t t-=解得10t=故答案为:103或10 【点睛】 本题考查等腰三角形的性质及动点问题,熟练掌握等腰三角形的性质以及分类讨论思想是解题关键.10.如图,D 为ABC ∆内一点,CD 平分ACB ∠,BD CD ⊥,A ABD ∠=∠,若8AC =,5BC =,则BD 的长为_______.【答案】1.5【解析】【分析】延长BD 交AC 边于点E ,根据BD⊥CD,CD 平分∠ACB,得到三角形全等,由此求出AE 的长,再根据A ABD ∠=∠,求出BE 的长即可求得BD.【详解】延长BD 交AC 于点E ,∵BD⊥CD,∴∠BDC=∠EDC=900,∵CD 平分∠ACB,∴∠BCD=∠ECD又∵CD=CD∴△BCD≌△ECD∴BD=ED,CE=BC=5,∴AE=AC -CE=8-5=3,∵A ABD ∠=∠,∴BE=AE=3,∴BD=1.5【点睛】此题考察等腰三角形的性质,延长BD 构建全等三角形是证明此题的关键.二、八年级数学轴对称三角形选择题(难)11.如图,在△ABC中,分别以点A和点B为圆心,大于12AB的长为半径画弧,两弧相交于点M、N,作直线MN,交BC于点D,连接AD,若△ADC的周长为14,BC=8,则AC 的长为A.5 B.6 C.7 D.8【答案】A【解析】【分析】根据题意可得MN是直线AB的中点,所以可得AD=BD,BC=BD+CD,而△ADC为AC+CD+AD=14,即AC+CD+BD=14,因此可得AC+BC=14,已知BC即可求出AC.【详解】根据题意可得MN是直线AB的中点AD BD∴=ADC的周长为14AC CD AD++=14AC CD BD++=∴BC BD CD=+14AC BC=∴+已知8BD=6AC∴=,故选B【点睛】本题主要考查几何中的等量替换,关键在于MN是直线AB的中点,这样所有的问题就解决了.12.某平原有一条很直的小河和两个村庄,要在此小河边的某处修建一个水泵站向这两个村庄供水. 某同学用直线(虛线)l表示小河,,P Q两点表示村庄,线段(实线)表示铺设的管道,画出了如下四个示意图,则所需管道最短的是().A.B.C.D.【答案】C【解析】【分析】根据轴对称分析即可得到答案.【详解】根据题意,所需管道最短,应过点P或点Q作对称点,再连接另一点,与直线l的交点即为水泵站M,故选项A、B、D均错误,选项C正确,故选:C.【点睛】此题考查最短路径问题,应作对称点,使三点的连线在同一直线上,这是此类问题的解题目标,把握此目标即可正确解题.13.如图,四边形ABCD中,∠BAD=120°,∠B=∠D=90°,在BC、CD上分别找一点M、N,使△AMN周长最小时,则∠AMN+∠ANM的度数为()A.130°B.120°C.110°D.100°【答案】B【解析】根据要使△AMN的周长最小,即利用点的对称,让三角形的三边在同一直线上,作出A关于BC和ED的对称点A′,A″,即可得出∠AA′M+∠A″=∠HAA′=60°,进而得出∠AMN+∠ANM=2(∠AA′M+∠A″)即可得出答案:如图,作A关于BC和ED的对称点A′,A″,连接A′A″,交BC于M,交CD于N,则A′A″即为△AMN的周长最小值.作DA延长线AH.∵∠BAD=120°,∴∠HAA′=60°.∴∠AA′M+∠A″=∠HAA′=60°.∵∠MA′A=∠MAA′,∠NAD=∠A″,且∠MA′A+∠MAA′=∠AMN,∠NAD+∠A″=∠ANM,∴∠AMN+∠ANM=∠MA′A+∠MAA′+∠NAD+∠A″=2(∠AA′M+∠A″)=2×60°=120°.故选B.14.如图,在锐角△ABC中,AC=10,S△ABC=25,∠BAC的平分线交BC于点D,点M,N分别是AD和AB上的动点,则BM+MN的最小值是()A.4 B.245C.5 D.6【答案】C【解析】试题解析:如图,∵AD是∠BAC的平分线,∴点B关于AD的对称点B′在AC上,过点B′作B′N⊥AB于N交AD于M,由轴对称确定最短路线问题,点M即为使BM+MN最小的点,B′N=BM+MN,过点B作BE⊥AC于E,∵AC=10,S△ABC=25,∴12×10•BE=25,解得BE=5,∵AD是∠BAC的平分线,B′与B关于AD对称,∴AB=AB′,∴△ABB′是等腰三角形,∴B′N=BE=5,即BM+MN的最小值是5.故选C.15.如图,已知AD为ABC∆的高线,AD BC=,以AB为底边作等腰Rt ABE∆,连接ED,EC,延长CE交AD于F点,下列结论:①DAE CBE∠=∠;②CE DE⊥;③BD AF=;④AED∆为等腰三角形;⑤BDE ACES S∆∆=,其中正确的有( )A.①③B.①②④C.①③④D.①②③⑤【答案】D【解析】【分析】①根据等腰直角三角形的性质即可证明∠CBE=∠DAE,再得到△ADE≌△BCE;②根据①结论可得∠AEC=∠DEB,即可求得∠AED=∠BEG,即可解题;③证明△AEF≌△BED即可;④根据△AEF≌△BED得到DE=EF, 又DE⊥CF,故可判断;⑤易证△FDC是等腰直角三角形,则CE=EF,S△AEF=S△ACE,由△AEF≌△BED,可知S△BDE =S△ACE,所以S△BDE=S△ACE.【详解】①∵AD为△ABC的高线,∴CBE+∠ABE+∠BAD=90°,∵Rt△ABE是等腰直角三角形,∴∠ABE=∠BAE=∠BAD+∠DAE=45°,AE=BE,∴∠CBE+∠BAD=45°,∴∠DAE=∠CBE,故①正确;在△DAE和△CBE中,AE BEDAE CBEAD BC⎧⎪∠∠⎨⎪⎩===,∴△ADE≌△BCE(SAS);②∵△ADE≌△BCE,∴∠EDA=∠ECB,∵∠ADE+∠EDC=90°,∴∠EDC+∠ECB=90°,∴∠DEC=90°,∴CE⊥DE;故②正确;③∵∠BDE=∠ADB+∠ADE,∠AFE=∠ADC+∠ECD,∴∠BDE=∠AFE,∵∠BED+∠BEF=∠AEF+∠BEF=90°,∴∠BED=∠AEF,在△AEF和△BED中,BDE AFEBED AEFAE BE∠∠⎧⎪∠∠⎨⎪⎩===,∴△AEF≌△BED(AAS),∴BD=AF故③正确;∵△AEF≌△BED∴DE=EF, 又DE⊥CF,∴△DEF为等腰直角三角形,故④错误;④∵AD=BC,BD=AF,∴CD=DF,∵AD⊥BC,∴△FDC是等腰直角三角形,∵DE⊥CE,∴EF=CE,∴S△AEF=S△ACE,∵△AEF≌△BED,∴S△AEF=S△BED,∴S△BDE=S△ACE.故④正确;故选:D.【点睛】本题考查了全等三角形的判定,考查了全等三角形对应边相等的性质,本题中求证△BFE≌△CDE是解题的关键.16.如图所示,在等边△ABC中,E是AC边的中点,AD是BC边上的中线,P是AD上的动点,若AD=3,则EP+CP的最小值为()A .2B .3C .4D .5【答案】B【解析】 由等边三角形的性质得,点B ,C 关于AD 对称,连接BE 交AD 于点P ,则EP+CP=BE 最小,又BE=AD ,所以EP+CP 的最小值是3.故选B.点睛:本题主要考查了等边三角形的性质和轴对称的性质,求一条定直线上的一个动点到定直线的同旁的两个定点的距离的最小值,常用的方法是,①确定两个定点中的一个关于定直线的对称点;②连接另一个定点与对称点,与定直线的交点就是两线段和的值最小时,动点的位置.17.如图,Rt ABC ∆中,90ACB ∠=,3AC =,4BC =,5AB =,将边AC 沿CE 翻折,使点A 落在AB 上的点D 处;再将边BC 沿CF 翻折,使点B 落在CD 的延长线上的点B ′处,两条折痕与斜边AB 分别交于点E 、F ,则线段EF 的长为( )A .52B .125C .4D .53【答案】B【解析】【分析】先利用折叠的性质证明出△ECF 是一个等腰直角三角形,因此EF=CE ,然后再根据文中条件综合得出S △ABC =12AC∙BC=12AB∙CE ,求出CE 进而得出答案即可. 【详解】根据折叠性质可知:CD=AC=3,BC=B C '=4,∠ACE=∠DCE ,∠BCF=∠B 'CF ,CE ⊥AB , ∴∠DCE+∠B 'CF=∠ACE+∠BCF ,∵∠ACB=90°,∴∠ECF=45°,又∵CE ⊥AB ,∴△ECF 是等腰直角三角形,∴EF=CE , 又∵S △ABC =12AC∙BC=12AB∙CE , ∴AC∙BC=AB∙CE , ∵3AC =,4BC =,5AB =,∴125CE =, ∴EF 125=. 所以答案为B 选项.【点睛】本题主要考查了直角三角形与等腰三角形性质的综合运用,熟练掌握相关概念是解题关键.18.如图,已知:∠MON =30°,点A 1、A 2、A 3 ···在射线ON 上,点1B 、2B 、3B ···在射线OM 上,△112A B A 、△223A B A 、△334A B A …均为等边三角形,若112OA =,则△667A B A 的边长为( )A .6B .12C .16D .32【答案】C【解析】【分析】 根据等腰三角形与等边三角形性质以及直角三角形中30°角所对应的直角边等于斜边的一半111OA A B =,112122321122A B A B A B A B ===…以此类推得出答案即可 【详解】∵△112A B A 是等边三角形,∴∠112A B A =∠112B A A =60°又∵∠MON =30°∴∠11OB A =30°∴∠12OB A =∠212A B B =90°,1112112A B OA A B ===又∵△223A B A 是等边三角形∴22A B ∥11A B∴∠22OB A =∠11OB A =30°∴在Rt△212A B B 中,22A B =212A B =1以此类推,得出△667A B A 的边长=1222222⋅⋅⋅⋅⋅=16 所以答案为C 选项【点睛】本题主要考查了等腰三角形与等边三角形性质以及30°角的直角三角形的性质,熟练掌握相关概念通过题目发现规律是解题关键19.如果一个三角形能被一条线段分割成两个等腰三角形,那么称这个三角形为特异三角形.若△ABC 是特异三角形,∠A=30°,∠B 为钝角,则符合条件的∠B 有( )个. A .1B .2C .3D .4【答案】B【解析】【分析】【详解】如下图,当30°角为等腰三角形的底角时有两种情况:∠B=135°或90°,当30°角为等腰三角形的顶角时有一种情况:∠B=112.5°,所以符合条件的∠B 有三个.又因为∠B 为钝角,则符合答案的有两个,故本题应选B.点睛:因为不确定这个等腰三角形的底边,所以应当以点A 为一个确定点进行分类讨论:①当以B 为顶点时,即以B 为圆心,AB 长为半径画弧交AC 于点D ,构成等腰△BAD ;②当以点A 为顶点时,即以点A 为圆心,AB 长为半径画弧,交AC 于点D ,构成等腰△ABD ;或作线段AB 的垂直平分线交AC 于点D 构成等腰△DAB.20.如图,在ABC △中,2B C ∠=∠,AH BC ⊥,AE 平分BAC ∠,M 是 BC 中点,则下列结论正确的个数为( )(1)AB BE AC += (2)2AB BH BC += (3)2AB HM = (4)CH EH AC +=A .1B .2C .3D .4【答案】D【解析】【分析】(1)延长AB 取BD=BE ,连接DE ,由∠D=∠BED ,2ABC C ∠=∠,得到∠D=∠C ,在△ADE 和△ACE 中,利用AAS 证明ADE ACE ≌,可得AC=AD=AB+BE ;(2)在HC 上截取HF=BH,连接AF ,可知△ABF 为等腰三角形,再根据2ABC AFB C ∠=∠=∠,可得出△AFC 为等腰三角形,所以FC+BH+HF=AB+2BH=BC ; (3)HM=BM-BH ,所以2HM=2BM-2BH=BC-2BH ,再结合(2)中结论,可得2AB HM =;(4)结合(1)(2)的结论,BC 2BH BE BC BH BE BH CH EH AC AB BE =+=-+=-+-=+.【详解】解:①延长AB 取BD=BE ,连接DE ,∴∠D=∠BED ,∠ABC=∠D+∠BED=2∠D,∵2ABC C ∠=∠,∴∠D=∠C ,在△ADE 和△ACE 中,DAE CAE D C AE AE ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴ADE ACE ≌∴AC=AD=AB+BE ,故(1)正确;②在HC 上截取HF=BH,连接AF ,∵AH BC ⊥,∴△ABF 为等腰三角形,∴AB=AF ,∠ABF=∠AFB ,∵2ABC C ∠=∠,∴∠AFB=2∠C=∠C+∠CAF ,∴FC=AF=AB ,∴FC+BH+HF=AB+2BH=BC ,故(2)正确;③∵HM=BM-BH ,∴2HM=2BM-2BH=BC-2BH ,由②可知BC-2BH=AB ,∴2AB HM =④根据①②结论,可得:BC 2BH BE BC BH BE BH CH EH AC AB BE =+=-+=-+-=+,故(4)正确;故选D.【点睛】本题主要考查了等腰三角形的判定和性质、三角形的外角以及全等三角形的判定和性质,结合实际问题作出合适辅助线是解题关键.。
2024届广东省广州市华南师大附属中学高一数学第二学期期末综合测试模拟试题含解析
2024届广东省广州市华南师大附属中学高一数学第二学期期末综合测试模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
2.答题时请按要求用笔。
3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题:本大题共10小题,每小题5分,共50分。
在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知向量m ,n ,若1m =,22m n -=,则m n n -+的最大值为( )A .BC .4D .52.A 为三角形ABC 的一个内角,若12sin cos 25A A +=,则这个三角形的形状为 ( ) A .锐角三角形B .钝角三角形C .等腰直角三角形D .等腰三角形3.若向量(4,3)a =,(1,2)b =--,则b 在a 方向上的投影为( )A .-2B .2C .-D .4.已知函数21()cos sin 2f x x x =++,下列结论错误..的是( ) A .()f x 既不是奇函数也不是偶函数 B .()f x 在[],0π-上恰有一个零点 C .()f x 是周期函数D .()f x 在5,26ππ⎛⎫⎪⎝⎭上是增函数 5.已知幂函数()y f x =过点(4,2),令(1)()n a f n f n =++,n +∈N ,记数列1n a ⎧⎫⎨⎬⎩⎭的前n 项和为n S ,则10n S =时,n 的值是( ) A .10B .120C .130D .1406.已知(1,)P t -在角α终边上,若sin 5α=,则t =( ) A .12B .-2C .2D .2±7.已知x ,y ∈R ,且x >y >0,则( )A .11x y x y->- B .cos cos 0x y -<C .110x y-> D .ln x +ln y >08.在ABC ∆中,点D 满足3BC BD =,则( ) A .1233AD AB AC =- B .1233AD AB AC =+ C .2133AD AB AC =- D .2133AD AB AC =+ 9.某校有高一学生400人,高二学生380人,高三学生220人,现教育局督导组欲用分层抽样的方法抽取50名学生进行问卷调查,则下列判断正确的是() A .高一学生被抽到的可能性最大 B .高二学生被抽到的可能性最大 C .高三学生被抽到的可能性最大D .每位学生被抽到的可能性相等10.已知ABC ∆三个内角A 、B 、C 的对边分别是a b c 、、,若2sin b a B =,则A 等于( ) A .30B .60C .60120或D .30150或二、填空题:本大题共6小题,每小题5分,共30分。
广州市华附奥校【精品】初三数学九年级上册期末试题和解析
广州市华附奥校【精品】初三数学九年级上册期末试题和解析一、选择题1.如图,OA 是⊙O 的半径,弦BC ⊥OA ,D 是优弧BC 上一点,如果∠AOB =58º,那么∠ADC 的度数为( )A .32ºB .29ºC .58ºD .116º2.分别写有数字0,﹣1,﹣2,1,3的五张卡片,除数字不同外其他均相同,从中任抽一张,那么抽到负数的概率是( ) A .15B .25C .35D .453.如图,在△ABC 中,D 、E 分别是AB 、AC 的中点,下列说法中不正确...的是( )A .12DE BC = B .AD AEAB AC= C .△ADE ∽△ABCD .:1:2ADEABCS S=4.下列说法中,不正确的是( ) A .圆既是轴对称图形又是中心对称图形 B .圆有无数条对称轴 C .圆的每一条直径都是它的对称轴 D .圆的对称中心是它的圆心5.分别写有数字﹣4,0,﹣1,6,9,2的六张卡片,除数字外其它均相同,从中任抽一张,则抽到偶数的概率是( ) A .16B .13C .12D .236.如图,在Rt ABC ∆中,90C CD AB ∠=︒⊥,,垂足为点D ,一直角三角板的直角顶点与点D 重合,这块三角板饶点D 旋转,两条直角边始终与AC BC 、边分别相交于G H 、,则在运动过程中,ADG ∆与CDH ∆的关系是( )A .一定相似B .一定全等C .不一定相似D .无法判断7.已知⊙O 的半径为4,点P 到圆心O 的距离为4.5,则点P 与⊙O 的位置关系是( ) A .P 在圆内B .P 在圆上C .P 在圆外D .无法确定8.方程2210x x --=的两根之和是( ) A .2-B .1-C .12D .12-9.如图,△ABC 中,∠BAC=90°,AB=3,AC=4,点D 是BC 的中点,将△ABD 沿AD 翻折得到△AED ,连CE ,则线段CE 的长等于( )A .2B .54C .53D .7510.如图,BC 是O 的直径,A ,D 是O 上的两点,连接AB ,AD ,BD ,若70ADB ︒∠=,则ABC ∠的度数是( )A .20︒B .70︒C .30︒D .90︒11.如图,BC 是A 的内接正十边形的一边,BD 平分ABC ∠交AC 于点D ,则下列结论正确的有( )①BC BD AD ==;②2BC DC AC =⋅;③2AB AD =;④512BC AC -=.A .1个B .2个C .3个D .4个12.如图物体由两个圆锥组成,其主视图中,90,105A ABC ︒︒∠=∠=.若上面圆锥的侧面积为1,则下面圆锥的侧面积为( )A .2B 3C .32D 213.2的相反数是( ) A .12-B .12C .2D .2-14.如图,□ABCD 中,点E 是边AD 的中点,EC 交对角线BD 于点F ,则EF:FC 等于( )A .3:2B .3:1C .1:1D .1:2 15.一组数据10,9,10,12,9的平均数是( )A .11B .12C .9D .10二、填空题16.二次函数y=x 2−4x+5的图象的顶点坐标为 .17.将抛物线y=﹣2x 2+1向左平移三个单位,再向下平移两个单位得到抛物线________; 18.如图,在Rt △ABC 中,∠ACB=90°,AC=4,BC=3,D 是以点A 为圆心2为半径的圆上一点,连接BD ,M 为BD 的中点,则线段CM 长度的最小值为__________.19.如图,由边长为1的小正方形组成的网格中,点,,,A B C D 为格点(即小正方形的顶点),AB 与CD 相交于点O ,则AO 的长为_________.20.已知实数,,a b c 满足0a ≠,且0a b c -+=,930a b c ++=,则抛物线2y ax bx c =++图象上的一点(2,4)-关于抛物线对称轴对称的点为__________.21.一个扇形的圆心角是120°.它的半径是3cm .则扇形的弧长为__________cm . 22.已知一个圆锥底面圆的半径为6cm ,高为8cm ,则圆锥的侧面积为_____cm 2.(结果保留π)23.关于x 的方程220kx x --=的一个根为2,则k =______.24.已知关于x 的方程230x mx m ++=的一个根为-2,则方程另一个根为__________. 25.二次函数2y ax bx c =++的图象如图所示,若点()11,A y ,()23,B y 是图象上的两点,则1y ____2y (填“>”、“<”、“=”).26.一种药品经过两次降价,药价从每盒80元下调至45元,平均每次降价的百分率是__.27.甲、乙两同学近期6次数学单元测试成绩的平均分相同,甲同学成绩的方差S 甲2=6.5分2,乙同学成绩的方差S 乙2=3.1分2,则他们的数学测试成绩较稳定的是____(填“甲”或“乙”).28.已知二次函数2(0)y ax bx c a =++≠,y 与x 的部分对应值如下表所示:x… -1 0 1 2 3 4 … y…61-2-3-2m…下面有四个论断:①抛物线2(0)y ax bx c a =++≠的顶点为(23)-,; ②240b ac -=;③关于x 的方程2=2ax bx c ++-的解为12=13x x =,; ④=3m -.其中,正确的有___________________.29.如图,圆形纸片⊙O 半径为 52,先在其内剪出一个最大正方形,再在剩余部分剪出 4个最大的小正方形,则 4 个小正方形的面积和为_______.30.如果三角形有一边上的中线长恰好等于这边的长,那么称这个三角形为“好玩三角形”,在△ABC 中,AB=AC ,若△ABC 是“好玩三角形”,则tanB____________。
2020-2021广州市华附奥校初三数学下期中第一次模拟试卷(附答案)
2020-2021广州市华附奥校初三数学下期中第一次模拟试卷(附答案)一、选择题1.若点A (x 1,y 1)、B (x 2,y 2)、C (x 3,y 3)都在反比例函数1y x=-的图象上,并且x 1<0<x 2<x 3,则下列各式中正确的是( )A .y 1<y 2<y 3B .y 2<y 3<y 1C .y 1<y 3<y 2D .y 3<y 1<y 2 2.已知4A 纸的宽度为21cm ,如图对折后所得的两个矩形都和原来的矩形相似,则4A 纸的高度约为( )A .29.7cmB .26.7cmC .24.8cmD .无法确定3.如图,△ABC 的三个顶点A(1,2)、B(2,2)、C(2,1).以原点O 为位似中心,将△ABC 扩大得到△A 1B 1C 1,且△ABC 与△A 1B 1C 1的位似比为1 :3.则下列结论错误的是 ( )A .△ABC ∽△A 1B 1C 1B .△A 1B 1C 1的周长为6+32 C .△A 1B 1C 1的面积为3D .点B 1的坐标可能是(6,6) 4.如图,用放大镜看△ABC ,若边BC 的长度变为原来的2倍,那么下列说法中,不正确的是( ).A .边AB 的长度也变为原来的2倍;B .∠BAC 的度数也变为原来的2倍; C .△ABC 的周长变为原来的2倍;D .△ABC 的面积变为原来的4倍;5.用放大镜观察一个五边形时,不变的量是( )A .各边的长度B .各内角的度数C .五边形的周长D .五边形的面积6.如图,菱形OABC 的顶点A 的坐标为(3,4),顶点C 在x 轴的正半轴上,反比例函数y=k x (x >0)的图象经过顶点B ,则反比例函数的表达式为( )A .y=12xB .y=24xC .y=32xD .y=40x7.如图,D 是△ABC 的边BC 上一点,已知AB=4,AD=2.∠DAC=∠B ,若△ABD 的面积为a ,则△ACD 的面积为( )A .aB .aC .aD .a8.如图,△ABC 中,AD 是中线,BC =8,∠B =∠DAC ,则线段 AC 的长为( )A .3B .2C .6D .4 9.如果两个相似三角形对应边之比是1:3,那么它们的对应中线之比是( )A .1:3B .1:4C .1:6D .1:9 10.在ABC V 中,点D ,E 分别在边AB ,AC 上,:1:2AD BD =,那么下列条件中能够判断//DE BC 的是( )A .12DE BC =B .31DE BC = C .12AE AC =D .31AE AC = 11.《孙子算经》是中国古代重要的数学著作,成书于约一千五百年前,其中有首歌谣:今有竿不知其长,量得影长一丈五尺,立一标杆,长一尺五寸,影长五寸,问竿长几何?意即:有一根竹竿不知道有多长,量出它在太阳下的影子长一丈五尺,同时立一根一尺五寸的小标杆,它的影长五寸(提示:1丈=10尺,1尺=10寸),则竹竿的长为( )A .五丈B .四丈五尺C .一丈D .五尺 12.如图,在平行四边形中,点在边上, 与相交于点,且,则与的周长之比为( )A .1 : 2B .1 : 3C .2 : 3D .4 : 9二、填空题13.小刚身高1.7m ,测得他站立在阳光下的影子长为0.85m ,紧接着他把手臂竖直举起,测得影子长为1.1m ,那么小刚举起的手臂超出头顶的高度为________m .14.一个4米高的电线杆的影长是6米,它临近的一个建筑物的影长是36米.则这个建筑的高度是_____m .15.如图,在直角坐标系中,正方形的中心在原点O ,且正方形的一组对边与x 轴平行,点P (3a ,a )是反比例函数k y x =(k >0)的图象上与正方形的一个交点.若图中阴影部分的面积等于9,则这个反比例函数的解析式为 ▲ . 16.已知AB ∥CD ,AD 与BC 相交于点O.若BO OC =23,AD =10,则AO =____.17.在ABC ∆中,若45B ∠=o ,102AB =,55AC =ABC ∆的面积是______.18.把边长分别为1和2的两个正方形按如图所示的方式放置,则图中阴影部分的面积是_____.19.如图所示的网格是正方形网格,点P 到射线OA 的距离为m ,点P 到射线OB 的距离为n ,则m __________ n .(填“>”,“=”或“<”)20.如图,在平行四边形ABCD 中,点E 在边BC 上,2EC BE =,联结AE 交BD 于点F ,若BFE ∆的面积为2,则AFD ∆的面积为______.三、解答题21.如图,AB 是⊙O 直径,BC ⊥AB 于点B ,点C 是射线BC 上任意一点,过点C 作CD 切⊙O 于点D ,连接AD .(1)求证:BC =CD ;(2)若∠C =60°,BC =3,求AD 的长.22.实验数据显示,一般成人喝半斤低度白酒后,1.5小时内其血液中酒精含量y (毫克/百毫升)与时间x (时)成正比例;1.5小时后(包括1.5小时)y 与x 成反比例.根据图中提供的信息,解答下列问题:(1)写出一般成人喝半斤低度白酒后,y 与x 之间的函数关系式及相应的自变量取值范围;(2)按国家规定,车辆驾驶人员血液中的酒精含量大于或等于20毫克/百毫升时属于“酒后驾驶”,不能驾车上路.参照上述数学模型,假设某驾驶员晚上21:00在家喝完半斤低度白酒,第二天早上7:00能否驾车去上班?请说明理由.23.如图,锐角三角形ABC 中,CD ,BE 分别是AB ,AC 边上的高,垂足为D ,E .(1)证明:ACD ABE V V ∽.(2)若将D ,E 连接起来,则AED V 与ABC V 能相似吗?说说你的理由.24.如图,已知O 是原点,,B C 两点的坐标分别为()3,1-,()2,1.(1)以点O 为位似中心,在y 轴的左侧将OBC V 扩大为原来的两倍(即新图与原图的相似比为2),画出图形,并写出点,B C 的对应点的坐标;(2)如果OBC V 内部一点M 的坐标为(),x y ,写出点M 的对应点M '的坐标.25.如图,在△ABC 中,D 、E 分别是边AC 、BC 的中点,F 是BC 延长线上一点,∠F =∠B .(1)若AB =10,求FD 的长;(2)若AC =BC ,求证:△CDE ∽△DFE .【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】先根据反比例函数的解析式判断出函数图象所在的象限,再根据x 1<0<x 2<x 3即可得出结论.【详解】∵反比例函数y =﹣1x中k =﹣1<0,∴函数图象的两个分支分别位于二、四象限,且在每一象限内,y 随x 的增大而增大.∵x 1<0<x 2<x 3,∴B 、C 两点在第四象限,A 点在第二象限,∴y 2<y 3<y 1.故选B .【点睛】 本题考查了反比例函数图象上点的坐标特点,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.本题也可以通过图象法求解.2.A解析:A【解析】【分析】设A4纸的高度为xcm ,对折后的矩形高度为2x cm ,然后根据相似多边形的对应边成比例列方程求解.【详解】 设A4纸的高度为xcm ,则对折后的矩形高度为2x cm , ∵对折后所得的两个矩形都和原来的矩形相似, ∴21=212x x解得29.7=≈x故选A.【点睛】本题考查相似多边形的性质,熟记相似多边形对应边成比例,找到对应边列出方程是关键. 3.C解析:C【解析】【分析】根据位似图的性质可知,位似图形也是相似图形,周长比等于位似比,面积比等于位似比的平方,对应边之比等于位似比,据此判断即可.【详解】A. △ABC∽△A1B1C1,故A正确;B. 由图可知,AB=2-1=1,BC=2-1=1,,所以△ABC的周长为,由周长比等于位似比可得△A1B1C1的周长为△ABC周长的3倍,即6+B正确;C. S△ABC=1111=22⨯⨯,由面积比等于位似比的平方,可得△A1B1C1的面积为△ABC周长的9倍,即19=4.52⨯,故C错误;D. 在第一象限内作△A1B1C1时,B1点的横纵坐标均为B的3倍,此时B1的坐标为(6,6),故D正确;故选C.【点睛】本题考查位似三角形的性质,熟练掌握位似的定义,以及位似三角形与相似三角形的关系是解题的关键.4.B解析:B【解析】【分析】根据相似三角形的判定和性质,可得出这两个三角形相似,相似三角形的周长之比等于相似比,面积之比等于相似比的平方.【详解】解:∵用放大镜看△ABC,若边BC的长度变为原来的2倍,∴放大镜内的三角形与原三角形相似,且相似比为2∴边AB的长度也变为原来的2倍,故A正确;∴∠BAC的度数与原来的角相等,故B错误;∴△ABC的周长变为原来的2倍,故C正确;∴△ABC的面积变为原来的4倍,故D正确;故选B【点睛】本题考查了相似三角形的性质,相似三角形的周长之比等于相似比,面积之比等于相似比的平方.5.B解析:B【解析】解:∵用一个放大镜去观察一个三角形,∴放大后的三角形与原三角形相似,∵相似三角形的对应边成比例,∴各边长都变大,故此选项错误;∵相似三角形的对应角相等,∴对应角大小不变,故选项B正确;.∵相似三角形的面积比等于相似比的平方,∴C选项错误;∵相似三角形的周长得比等于相似比,∴D 选项错误.故选B .点睛:此题考查了相似三角形的性质.注意相似三角形的对应边成比例,相似三角形的对应角相等,相似三角形的面积比等于相似比的平方,相似三角形的周长得比等于相似比.6.C解析:C【解析】【分析】过A 作AM ⊥x 轴于M ,过B 作BN ⊥x 轴于N ,根据菱形性质得出OA=BC=AB=OC ,AB ∥OC ,OA ∥BC ,求出∠AOM=∠BCN ,OM=3,AM=4,OC=OA=AB=BC=5,证△AOM ≌△BCN ,求出BN=AM=4,CN=OM=3,ON=8,求出B 点的坐标,把B 的坐标代入y=kx 求出k 即可.【详解】过A 作AM ⊥x 轴于M ,过B 作BN ⊥x 轴于N ,则∠AMO=∠BNC=90°,∵四边形AOCB 是菱形,∴OA=BC=AB=OC,AB ∥OC,OA ∥BC ,∴∠AOM=∠BCN ,∵A(3,4),∴OM=3,AM=4,由勾股定理得:OA=5,即OC=OA=AB=BC=5,在△AOM 和△BCN 中AMO BNC AOM BCN OA BC ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△AOM ≌△BCN(AAS),∴BN=AM=4,CN=OM=3,∴ON=5+3=8,即B 点的坐标是(8,4),把B 的坐标代入y=kx 得:k=32,即y=32x,故答案选C.【点睛】本题考查了菱形的性质,解题的关键是熟练的掌握菱形的性质.7.C解析:C【解析】【分析】【详解】解:∵∠DAC=∠B ,∠C=∠C ,∴△ACD ∽△BCA ,∵AB=4,AD=2,∴△ACD 的面积:△ABC 的面积为1:4,∴△ACD 的面积:△ABD 的面积=1:3,∵△ABD 的面积为a ,∴△ACD 的面积为a ,故选C .【点睛】本题考查相似三角形的判定与性质,掌握相关性质是本题的解题关键.8.B解析:B【解析】【分析】由已知条件可得ABC DAC ~V V ,可得出AC BC DC AC =,可求出AC 的长. 【详解】解:由题意得:∠B =∠DAC ,∠ACB =∠ACD,所以ABC DAC ~V V ,根据“相似三角形对应边成比例”,得AC BC DC AC=,又AD 是中线,BC =8,得DC=4,代入可得AC=42 故选B.【点睛】本题主要考查相似三角形的判定与性质.灵活运用相似的性质可得出解答. 9.A解析:A【解析】∵两个相似三角形对应边之比是1:3,∴它们的对应中线之比为1:3.故选A.点睛: 本题考查相似三角形的性质,相似三角形的对应边、对应周长,对应高、中线、角平分线的比,都等于相似比,掌握相似三角形的性质及灵活运用它是解题的关键. 10.D解析:D【解析】【分析】可先假设DE∥BC,由平行得出其对应线段成比例,进而可得出结论.【详解】如图,可假设DE∥BC,则可得12AD AEDB EC==,13AD AEAB AC==,但若只有13DE ADBC AB==,并不能得出线段DE∥BC.故选D.【点睛】本题主要考查了由平行线分线段成比例来判定两条直线是平行线的问题,能够熟练掌握并运用.11.B解析:B【解析】【分析】根据同一时刻物高与影长成正比可得出结论.【详解】设竹竿的长度为x尺,∵竹竿的影长=一丈五尺=15尺,标杆长=一尺五寸=1.5尺,影长五寸=0.5尺,∴1.5 150.5x=,解得x=45(尺),故选B.【点睛】本题考查了相似三角形的应用举例,熟知同一时刻物髙与影长成正比是解答此题的关键.12.C解析:C【解析】【分析】根据已知可得到相似三角形,从而可得到其相似比,再根据相似三角形的周长比等于相似比就可得到答案.【详解】∵四边形ABCD是平行四边形,∴DC∥AB,CD=AB.∴△DFE∽△BFA,∵DE:EC=1:2,∴EC:DC=CE:AB=2:3,∴C△CEF:C△ABF=2:3.故选C.二、填空题13.5【解析】【分析】根据同一时刻身长和影长成比例求出举起手臂之后的身高与身高做差即可解题【详解】解:设举起手臂之后的身高为x由题可得:17:0 85=x:11解得x=22则小刚举起的手臂超出头顶的高度为解析:5【解析】【分析】根据同一时刻身长和影长成比例,求出举起手臂之后的身高,与身高做差即可解题.【详解】解:设举起手臂之后的身高为x由题可得:1.7:0.85=x:1.1,解得x=2.2,则小刚举起的手臂超出头顶的高度为2.2-1.7=0.5m【点睛】本题考查了比例尺的实际应用,属于简单题,明确同一时刻的升高和影长是成比例的是解题关键.14.24米【解析】【分析】先设建筑物的高为h米再根据同一时刻物高与影长成正比列出关系式求出h的值即可【详解】设建筑物的高为h米由题意可得:则4:6=h:36解得:h=24(米)故答案为24米【点睛】本题解析:24米.【解析】【分析】先设建筑物的高为h米,再根据同一时刻物高与影长成正比列出关系式求出h的值即可.【详解】设建筑物的高为h米,由题意可得:则4:6=h:36,解得:h=24(米).故答案为24米.【点睛】本题考查的是相似三角形的应用,熟知同一时刻物高与影长成正比是解答此题的关键.15.【解析】待定系数法曲线上点的坐标与方程的关系反比例函数图象的对称性正方形的性质【分析】由反比例函数的对称性可知阴影部分的面积和正好为小正方形面积的设小正方形的边长为b 图中阴影部分的面积等于9可求出b 解析:3y x=. 【解析】待定系数法,曲线上点的坐标与方程的关系,反比例函数图象的对称性,正方形的性质.【分析】由反比例函数的对称性可知阴影部分的面积和正好为小正方形面积的,设小正方形的边长为b ,图中阴影部分的面积等于9可求出b 的值,从而可得出直线AB 的表达式,再根据点P (3a ,a )在直线AB 上可求出a 的值,从而得出反比例函数的解析式: ∵反比例函数的图象关于原点对称,∴阴影部分的面积和正好为小正方形的面积. 设正方形的边长为b ,则b 2=9,解得b=6.∵正方形的中心在原点O ,∴直线AB 的解析式为:x=3.∵点P (3a ,a )在直线AB 上,∴3a=3,解得a=1.∴P (3,1).∵点P 在反比例函数3y x=(k >0)的图象上,∴k=3×1=3. ∴此反比例函数的解析式为:. 16.【解析】∵AB ∥CD 解得AO=4故答案是:4【点睛】运用了平行线分线段成比例定理灵活运用定理找准对应关系是解题的关键解析:【解析】∵AB ∥CD ,223103AO BO AO OD OC AO ∴===-,即, 解得,AO=4,故答案是:4.【点睛】运用了平行线分线段成比例定理,灵活运用定理、找准对应关系是解题的关键. 17.75或25【解析】【分析】过点作于点通过解直角三角形及勾股定理可求出的长进而可得出的长再利用三角形的面积公式即可求出的面积【详解】解:过点作垂足为如图所示在中;在中∴∴或∴或25故答案为:75或25解析:75或25【解析】【分析】过点A 作AD BC ⊥于点D ,通过解直角三角形及勾股定理可求出AD ,BD ,CD 的长,进而可得出BC 的长,再利用三角形的面积公式即可求出ABC ∆的面积.【详解】解:过点A 作AD BC ⊥,垂足为D ,如图所示.在Rt ABD ∆中,sin 10AD AB B =⋅=,cos 10BD AB B =⋅=;在Rt ACD ∆中,10AD =,55AC =,∴225CD AC AD =-=,∴15BC BD CD =+=或5BC BD CD =-=,∴1752ABC S BC AD ∆=⋅=或25. 故答案为:75或25.【点睛】本题考查了解直角三角形、勾股定理以及三角形的面积,通过解直角三角形及勾股定理,求出AD ,BC 的长度是解题的关键.18.【解析】【分析】由正方形的性质易证△ABC∽△FEC 可设BC=x 只需求出BC 即可求出图中阴影部分的面积【详解】如图所示:设BC =x 则CE =1﹣x∵AB∥EF∴△ABC∽△FEC∴=∴=解得x =∴阴影解析:16【解析】【分析】由正方形的性质易证△ABC ∽△FEC ,可设BC=x ,只需求出BC 即可求出图中阴影部分的面积.【详解】如图所示:设BC =x ,则CE =1﹣x ,∵AB ∥EF ,∴△ABC ∽△FEC ∴AB EF =BC CE , ∴12=x 1x - 解得x =13, ∴阴影部分面积为:S △ABC =12×13×1=16, 故答案为:16. 【点睛】 本题主要考查正方形的性质及三角形的相似,本题要充分利用正方形的特殊性质.利用比例的性质,直角三角形的性质等知识点的理解即可解答. 19.>【解析】【分析】由图像可知在射线上有一个特殊点点到射线的距离点到射线的距离于是可知利用锐角三角函数即可判断出【详解】由题意可知:找到特殊点如图所示:设点到射线的距离点到射线的距离由图可知【点睛】本 解析:>【解析】【分析】由图像可知在射线OP 上有一个特殊点Q ,点Q 到射线OA 的距离2QD =,点Q 到射线OB 的距离1QC =,于是可知AOP BOP ∠>∠ ,利用锐角三角函数sin sin AOP BOP ∠>∠ ,即可判断出m n >【详解】由题意可知:找到特殊点Q ,如图所示:设点Q 到射线OA 的距离QD ,点Q 到射线OB 的距离QC由图可知2QD =1QC =∴ 2sin QD AOP OP OP∠== ,1sin QC BOP OP OP ∠== ∴sin sin AOP BOP ∠>∠,∴m n OP OP> ∴m n >【点睛】本题考查了点到线的距离,熟知在直角三角形中利用三角函数来解角和边的关系是解题关键.20.18【解析】【分析】根据求得BC=3BE 再由平行四边形得到AD ∥BC 判定△AD F ∽△EBF 再根据相似三角形的面积的比等于相似比的平方求得结果【详解】∵∴BC=3BE ∵四边形ABCD 是平行四边形∴AD解析:18【解析】【分析】根据2EC BE =求得BC=3BE,再由平行四边形ABCD 得到AD ∥BC,判定△ADF ∽△EBF,再根据相似三角形的面积的比等于相似比的平方求得结果.【详解】∵2EC BE =,∴BC=3BE,∵四边形ABCD 是平行四边形,∴AD ∥BC,AD=BC,∴△ADF ∽△EBF,∴AD=3BE,∴AFD ∆的面积=9S △EBF =18,【点睛】此题考查相似三角形的判定与性质,由平行四边形ABCD 得到AD ∥BC,判定△ADF ∽△EBF 是解题的关键,再求得对应边的关系AD=3BE,即可求得AFD ∆的面积.三、解答题21.(1)证明见解析;【解析】【分析】(1)根据切线的判定定理得到BC 是⊙O 的切线,再利用切线长定理证明即可;(2)根据含30°的直角三角形的性质、正切的定义计算即可.【详解】(1)∵AB 是⊙O 直径,BC ⊥AB ,∴BC 是⊙O 的切线,∵CD 切⊙O 于点D ,∴BC =CD ;(2)连接BD ,∵BC=CD,∠C=60°,∴△BCD是等边三角形,∴BD=BC=3,∠CBD=60°,∴∠ABD=30°,∵AB是⊙O直径,∴∠ADB=90°,∴AD=BD•tan∠ABD=3.【点睛】本题考查了切线的性质、直角三角形的性质、圆周角定理,掌握圆的切线垂直于经过切点的半径是解题的关键.22.(1)100(0 1.5)225( 1.5)x xyxx⎧⎪=⎨⎪⎩剟…;(2)第二天早上7:00不能驾车去上班,见解析.【解析】【分析】(1)直接利用待定系数法分别求出反比例函数以及一次函数的解析式得出答案;(2)根据题意得出x=10时y的值进而得出答案.【详解】(1)由题意可得:当0≤x≤1.5时,设函数关系式为:y=kx,则150=1.5k,解得:k=100,故y=100x,当1.5≤x时,设函数关系式为:yax=,则a=150×1.5=225,解得:a=225,故y225x=(x≥1.5).综上所述:y与x之间的两个函数关系式为:y()()1000 1.52251.5x xxx⎧≤≤⎪=⎨≥⎪⎩;(2)第二天早上7:00不能驾车去上班.理由如下:∵晚上21:00到第二天早上7:00,有10小时,∴x=10时,y22510==22.5>20,∴第二天早上7:00不能驾车去上班.【点睛】本题考查了反比例函数的应用、一次函数的应用等知识,解题的关键是灵活掌握待定系数法确定函数解析式,学会利用函数解决实际问题,属于中考常考题型.23.(1)见解析;(2)能,理由见解析.【解析】【分析】(1)根据已知利用有两个角相等的三角形相似判定即可;(2)根据第一问可得到AD :AE=AC :AB ,有一组公共角∠A ,则可根据两组对应边的比相等且相应的夹角相等的两个三角形相似进行判定.【详解】()1证明:ACD ABE V V ∽.证明:∵CD ,BE 分别是AB ,AC 边上的高,∴90ADC AEB ∠=∠=o .∵A A ∠=∠,∴ACD ABE V V ∽.()2若将D ,E 连接起来,则AED V 与ABC V 能相似吗?说说你的理由.∵ACD ABE V V ∽,∴::AD AE AC AB =.∴AD:AC=AE:AB∵A A ∠=∠,∴AED ABC V V ∽.【点睛】考查相似三角形的判定与性质,掌握相似三角形的判定定理是解题的关键.24.(1)如图,OB C ''△即为所求,见解析;点B 的对应点的坐标为()6,2-,点C 的对应点的坐标为()4,2--;(2)点(),M x y 的对应点M '的坐标为()2,2x y --.【解析】【分析】(1)延长BO ,CO 到B′、C′,使OB′、OC′的长度是OB 、OC 的2倍.顺次连接三点即可;(2)从这两个相似三角形坐标位置关系来看,对应点的坐标正好是原坐标乘以-2的坐标,所以M 的坐标为(x ,y ),写出M 的对应点M′的坐标为(-2x ,-2y ).【详解】(1)如图,OB C ''△即为所求,点B 的对应点的坐标为()6,2-,点C 的对应点的坐标为()4,2--.(2)从这两个相似三角形坐标位置关系来看,对应点的坐标正好是原坐标乘以-2的坐标,所以M的坐标为(x,y),写出M的对应点M′的坐标为(-2x,-2y).【点睛】考查了直角坐标系和相似三角形的有关知识,注意做这类题时,性质是关键,看图也是关键.很多信息是需要从图上看出来的.25.(1) FD=5; (2)证明见解析.【解析】【分析】(1)利用三角形中位线的性质得出DE∥AB,进而得出∠DEC =∠B,即可得出FD=DE,即可得出答案;(2)利用等腰三角形的性质和平行线的性质得出∠B=∠A=∠CED=∠CDE,即可得出∠CDE=∠F,即可得出△CDE∽△DFE.【详解】解:(1)∵D、E分别是AC、BC的中点,∴DE//AB,DE=12AB=5又∵DE//AB,∴∠DEC= ∠B.而∠F= ∠B,∴∠DEC =∠B,∴FD=DE=5;(2)∵AC=BC,∴∠A=∠B.又∠CDE=∠A,∠CED= ∠B,∴∠CDE=∠B.而∠B=∠F,∴∠CDE=∠F,∠CED=∠DEF,∴△CDE∽△DFE.【点睛】此题主要考查了相似三角形的判定与性质以及等腰三角形的性质和平行线的性质等知识,熟练利用相关性质是解题关键.。
广州市华附奥校选修三第一单元《计数原理》检测(答案解析)
一、选择题1.已知()272901291(21)(1)(1)(1)()x x a a x a x a x x R +-=+-+-++-∈.则1a =( ) A .-30B .30C .-40D .402.261(12)()x x x+-的展开式中,含2x 的项的系数是( ) A .40-B .25-C .25D .553.有5名同学从左到右站成一排照相,其中中间位置只能排甲或乙,最右边不能排甲,则不同的排法共有( ) A .42种B .48种C .60种D .72种4.已知8a x x ⎛⎫+ ⎪⎝⎭展开式中4x 项的系数为112,其中a R ∈,则此二项式展开式中各项系数之和是( ) A .83B .1或83C .82D .1或825.二项式2()nx x-的展开式中,第3项的二项式系数比第2项的二项式系数大9,则该展开式中的常数项为( ) A .160-B .80-C .80D .1606.将甲、乙、丙、丁四人分配到A 、B 、C 三所学校任教,每所学校至少安排1人,则甲不去A 学校的不同分配方法有( ) A .18种B .24种C .32种D .36种7.已知10件产品有2件是次品.为保证使2件次品全部检验出的概率超过0.6,至少应抽取作检验的产品件数为() A .6B .7C .8D .98.已知67017(1)()...x a x a a x a x +-=+++,若017...0a a a +++=,则3a =( )A .5-B .20-C .15D .359.从5种主料中选2种,8种辅料中选3种来烹饪一道菜,烹饪方式有5种,那么最多可以烹饪出不同的菜的种数为 A .18B .200C .2800D .3360010.如图,用6种不同的颜色把图中A,B,C,D 四块区域涂色分开,若相邻区域不能涂同一种颜色,则不同涂法的种数为( )A .400B .460C .480D .49611.1231261823n nn n n n C C C C -+++⋯+⨯=( )A.21 23n+B.()2413n-C.123n-⨯D .()2313n-12.将编号为1,2,3,4,5,6,7的小球放入编号为1,2,3,4,5,6,7的七个盒子中,每盒放一球,若有且只有三个盒子的编号与放入的小球的编号相同,则不同的放法种数为()A.315 B.640 C.840 D.5040二、填空题13.有2个不同的红球和3个不同的黄球,将这5个球放入4个不同的盒子中,要求每个盒子至少放一个球,且同色球不能放在同一个盒子中,则不同的放置方法有________种.(用数字作答)14.市扶贫工作组从4男3女共7名成员中选出队长1人,副队长1人,普通队员2人组成4人工作小组下乡,要求工作组中至少有1名女同志,且队长和副队长不能都是女同志,共有______种安排方法.15.若423401234(37)x a a x a x a x a x+=++++,则2202413()()a a a a a++-+的值为____.16.二项式61(2x)x-的展开式中常数项为______(用数字表示).17.622xx⎛-⎪⎝⎭的展开式中3x的系数为__________.(用数字作答)18.已知()nx y+的展开式中,只有第七项的系数最大,则n=___________19.如图所示,在杨辉三角中,斜线AB上方箭头所示的数组成一个锯齿形的数列:1,2,3,3,6,4,10,…,记这个数列的前n项和为S(n),则S(16)的值为_____.20.设S为一个非空有限集合,记||S为集合S中元素的个数,若集合S的两个子集A、B满足:||A B k=并且A B S=,则称子集{,}A B为集合S的一个“k—覆盖”(其中0||k S≤≤),若||S n=,则S的“k—覆盖”个数为________三、解答题21.已知4nxx的二项展开式的各二项式系数的和与各项系数的和均为256.(1)求展开式中有理项的个数;(2)求展开式中系数最大的项.22.已知n的展开式的各项系数之和等于5⎛⎝展开式中的常数项,求n展开式中含1a -的项的二项式系数. 23.有7本不同的书:(1)全部分给6个人,每人至少一本,有多少种不同的分法? (2)全部分给5个人,每人至少一本,有多少种不同的分法?.24.(1)求91x ⎛- ⎝的展开式的常数项;(2)若1nx ⎛ ⎝的展开的第6项与第7项的系数互为相反数,求展开式的各项系数的绝对值之和.25.已知()23*23n n A C n N =∈.(1)求n 的值;(2)求12nx x ⎛⎫- ⎪⎝⎭展开式中2x 项的系数. 26.已知二项式()23nx x +.(1)若它的二项式系数之和为128.求展开式中二项式系数最大的项; (2)若3,2016x n ==,求二项式的值被7除的余数.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】令1t x =-,得29012927(22)(21)()a a t t t t a t a t x R =++++++∈+,进而得含t 的项为767722(2)tC C t +,从而得解.【详解】令1t x =-,则有:27290129[(1)1][2(1)1]()t t a a t a t a t x R +++-=++++∈,即29012927(22)(21)()a a t t t t a t a t x R =++++++∈+,7(21)t +展开式的通项公式为:77(2)r r C t -,所以29012927(22)(21)()a a t t t t a t a t x R =++++++∈+中含t 的项为:767722(2)30tC C t t +=.故选:B. 【点睛】关键点点睛:本题解题的关键是令1t x =-,转化为求27(22)(21)t t t +++的展开中含t 的项.2.B解析:B 【分析】写出二项式61()x x-的展开式中的通项,然后观察含2x 项有两种构成,一种是()212x+中的1与61()x x-中的二次项相乘得到,一种是()212x+中的22x 与61()x x-中的常数项相乘得到,将系数相加即可得出结果. 【详解】二项式61()x x-的展开式中的通项662166()1C (1)C k kk k k k k T x x x--+=-=-,含2x 的项的系数为223366(1)2(1)25C C -+⨯-=- 故选B. 【点睛】本题主要考查二项式定理的应用,二项展开式的通项公式,二项式系数的性质,属于基础题.3.A解析:A 【分析】根据题意,分2种情况讨论:①甲在最中间,将剩余的4人全排列,②乙在中间,分析可得此时的排法数目,由加法原理计算可得答案. 【详解】根据题意,中间只能排甲或乙,分2种情况讨论:①甲在中间将剩余的4人全排列,有4424A =种情况,②乙在中间,甲不能在最右端,有3种情况,将剩余的3人全排列,安排在剩下的三个位置,此时有33318A ⨯=种情况,则一共有241842+=种排法。
2020-2021广州市华附奥校初一数学上期中第一次模拟试卷(附答案)
2020-2021广州市华附奥校初一数学上期中第一次模拟试卷(附答案)一、选择题1.下面四个代数式中,不能表示图中阴影部分面积的是( )A .()()322x x x ++-B .25x x +C .()232x x ++D .()36x x ++2.小王利用计算机设计了一个程序,输入和输出的数据如下表: 输入 (1)2345… 输出…12 25 310 417 526…那么,当输入数据8时,输出的数据是( ) A .861B .863C .865D .8673.若一个角的两边与另一个角的两边分别平行,则这两个角( ) A .相等B .互补C .相等或互补D .不能确定4.我国古代《易经》一书中记载,远古时期,人们通过在绳子上打结来记录数量,即“结绳计数”.如图,一位母亲在从右到左依次排列的绳子上打结,满七进一,用来记录孩子自出生后的天数,由图可知,孩子自出生后的天数是( )A .81B .508C .928D .13245.2019的倒数的相反数是( ) A .-2019B .12019-C .12019D .20196.据科学家估计,地球的年龄大约是4600000000年,将4600000000用科学记数法表示为( )A .84.610⨯B .84610⨯C .94.6D .94.610⨯7.如图,长方形ABCD沿AE折叠,使D点落在BC边上的F点处,∠BAF=600,那么∠DAE等于()A.45°B.30 °C.15°D.60°8.如图,用火柴棒摆出一列正方形图案,第①个图案用了 4 根,第②个图案用了 12 根,第③个图案用了 24 根,按照这种方式摆下去,摆出第⑥个图案用火柴棒的根数是()A.84B.81C.78D.769.十九大报告指出,我国目前经济保持了中高速增长,在世界主要国家中名列前茅,国内生产总值从54万亿元增长80万亿元,稳居世界第二,其中80万亿用科学记数法表示为( ) A.8×1012B.8×1013C.8×1014D.0.8×101310.某正方体的每个面上都有一个汉字,如图是它的一种展开图,那么在原正方体中,与“国”字所在面相对的面上的汉字是()A.厉B.害C.了D.我11.下列说法:①﹣a一定是负数;②|﹣a|一定是正数;③倒数等于它本身的数是±1;④绝对值等于它本身的数是1;⑤平方等于它本身的数是1.其中正确的个数是()A.1个B.2个C.3个D.4个12.我县人口约为530060人,用科学记数法可表示为( )A.53006×10人B.5.3006×105人C.53×104人D.0.53×106人二、填空题13.两根木条,一根长60cm,另一根长80cm,将它们的一端重合,放在同一直线上,此时两根木条的中点间的距离是cm.14.若代数式5x-5与2x-9的值互为相反数,则x=________.15.填在下列各图形中的三个数之间都有相同的规律,根据此规律,a的值是____.16.将一列有理数-1,2,-3,4,-5,6,……,如图所示有序排列.根据图中的排列规律可知,“峰1”中峰顶的位置(C 的位置)是有理数4,那么,“峰6”中C 的位置是有理数______,-2017应排在A 、B 、C 、D 、E 中_______的位置.17.30万=42.3010⨯ ,则2.30中“0”在原数中的百位,故近似数2.30万精确到百位.18.某公园划船项目收费标准如下: 船型 两人船 (限乘两人) 四人船 (限乘四人) 六人船 (限乘六人) 八人船 (限乘八人) 每船租金 (元/小时)90100130150某班18名同学一起去该公园划船,若每人划船的时间均为1小时,则租船的总费用最低为________元.19.一副三角板按如下图方式摆放,若2136'α∠=︒,则β∠的度数为__________.只用度表示α∠的补角为__________.20.用黑白两色的正方形纸片,按黑色纸片数逐渐加1的规律拼成一列图案:则第n 个图案中有白色纸片________张.三、解答题21.今年秋季,长白山土特产喜获丰收,某土特产公司组织10辆汽车装运甲、乙、丙三种土特产去外地销售,按计划10辆车都要装运,每辆汽车只能装运同一种土特产,且必须装满.设装运甲种土特产的汽车有x 辆,装运乙种土特产的汽车有y 辆,根据下表提供的信息,解答以下问题.(1)装运丙种土特产的车辆数为(用含x 、y 的式子表示); (2)用含x 、y 的式子表示这10辆汽车共装运土特产的吨数;(3)求销售完装运的这批土特产后所获得的总利润(用含x 、y 的式子表示). 22.学校餐厅中,一张桌子可坐6人,现有以下两种摆放方式: (1)当有5张桌子时,第一种方式能坐 人,第二种方式能坐 人. (2)当有n 张桌子时,第一种方式能坐 人,第二种方式能坐 人.(3)新学期有200人在学校就餐,但餐厅只有60张这样的餐桌,若你是老师,你打算选择以下哪种方式来摆放餐桌?为什么?23.如图,∠AOB=90°,∠BOC=2∠BOD ,OD 平分∠AOC ,求∠BOD 的度数.24.如图,直线AB 、CD 相交于点O ,OE 平分AOD ∠,FOC ∠=90°,∠1=40°.求∠2和∠3的度数.25.用正方形硬纸板做三棱柱盒子,每个盒子由3个矩形侧面和2个正三角形底面组成。
2024届广东省广州市华南师范大学附属中学高三综合测试(三)数学试题(含答案)
华南师范大学附属中学2024届高三综合测试数 学一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 若,其中为虚数单位,则复数z 在复平面内对应的点位于( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限2. 已知,则“”是“角为第一或第四象限角”的( )A. 既不充分又不必要条件B. 充分不必要条件C. 必要不充分条件D. 充要条件3. 一组样本数据删除一个数后,得到一组新数据:10,21,25,35,36,40.若这两组数据的中位数相等,则删除的数为( )A. 25B. 30C. 35D. 404. 等边的边长为3,若,,则( )A.B.C.D.5. 某制药企业为了响应并落实国家污水减排政策,加装了污水过滤排放设备,在过滤过程中,污染物含量M (单位:mg/L )与时间t (单位:h )之间的关系为:(其中,k 是正常数).已知经过1h ,设备可以过滤掉20%的污染物,则过滤一半的污染物需要的时间最接近( )(参考数据:)A. 3hB. 4hC. 5hD. 6h6. 将一副三角板拼接成平面四边形ABCD (如图),,将其沿BD 折起,使得面面BCD ,若三棱锥的顶点都在球O 的球面上,则球O 的表面积为()A. B.C.D. 7. 函数和函数的图象相交于A 、B 两点,O 为坐标原点,则的面积为( )A.B.C.D.()2i i z +=i θ∈R cos 0θ>θABC △2AD DC =BF FD =AF= 0e kt M M -=0M lg 20.3010=1BC =BCD △ABD ⊥A BCD -2π7π38π33π()2cos 0πy x x =<<3tan y x =OAB △8. 为样本空间,随机事件A 、B 满足,,则有( )A. B. C. D. 二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9. 设a ,b 为两条不同的直线,,为两个不同的平面,则下列结论不正确的是( )A. 若,,则B. 若,,,则C. 若,,,则D. 若,,则10. 已知函数的零点为,的零点为,则( )A. B. C. D. 11. 已知定圆M :,点A 是圆M 所在平面内一定点,点P 是圆M 上的动点,若线段PA 的中垂线交直线PM 于点Q ,则点Q 的轨迹可能为( )A. 圆B. 椭圆C. 双曲线D. 抛物线三、填空题:本题共3个小题,每小题5分,共15分.12. 如图,一系列由正三角形构成的图案称为谢尔宾斯基三角形,图1三角形边长为2,则第n 个图中阴影部分的面积为______.13. 已知的展开式中各项系数和为243,则展开式中常数项为______.14. 设实数x 、y 、z 、t 满足不等式,则的最小值为______.四、解答题:本题共5小题,共77分.解答应写出文字说明,证明过程或演算步骤.15.(13分)已知函数.(Ⅰ)若,求的值;(Ⅱ)若在区间上单调递减,,求的值.Ω()()12P A P B ==()1P A B = A B =Ω()1P A B = AB =∅()1P A B =αβa b ∥b α∥a α∥a b ∥a α∥b β∥a β∥a b ⊥a α⊥b β∥αβ⊥a α⊥b α∥a b⊥e xy x =+1x ln y x x =+2x 120x x +>120x x <12e ln 0xx +=12121x x x x -+>()22116x y -+=322nx x ⎛⎫+ ⎪⎝⎭1100x y z t ≤≤≤≤≤x zy t+()()21cos sin 02f x x x x ωωωω=-+>2ω=π6f ⎛⎫⎪⎝⎭()f x ππ,62⎡⎤⎢⎥⎣⎦π012f ⎛⎫-= ⎪⎝⎭ω16.(15分)如图,边长为4的两个正三角形ABC ,BCD 所在平面互相垂直,E ,F 分别为BC ,CD 的中点,点G 在棱AD 上,,直线AB 与平面EFG 相交于点H .(1)证明:;(2)求直线BD 与平面EFG 的距离.17.(15分)最新研发的某产品每次试验结果为成功或不成功,且试验成功的概率为.现对该产品进行独立重复试验,若试验成功,试验结束;若试验不成功,则继续试验,且最多试验10次.记X 为试验结束时所进行的试验次数,且每次试验的成本为元.(1)①写出X 的分布列;②证明:;(2)某公司有意向投资该产品.若,且试验成功则获利5a 元,则该公司如何决策投资,并说明理由.18.(17分)已知函数.(1)若在单调递减,求实数a 的取值范围;(2)证明:对任意整数a ,至多有1个零点.19.(17分)已知抛物线:,过点的直线l 交C 于P ,Q 两点,当PQ 与x 轴平行时,的面积为16,其中O 为坐标原点.(1)求的方程;(2)已知点,,()为抛物线上任意三点,记面积为,分别在点A 、B 、C 处作抛物线的切线、、,与的交点为D ,与的交点为E ,与的交点为F ,记面积为,是否存在实数,使得?若存在,求出的值,若不存在,请说明理由.华南师范大学附属中学2024届高三综合测试2AG GD =BD GH ∥()01p p <<()0a a >()1E X p<0.25p =()esin xf x a x x -=+-()f x ()0,2π()f x Γ()220x py p =>()0,4OPQ △Γ()11,A x y ()22,B x y ()33,C x y 123x x x <<ΓABC △1S Γ1l 2l 3l 1l 2l 1l 3l 2l 3l DEF △2S λ12S S λ=λ数学参考答案一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. A2. C3. B4. D5. A6. C7. D8. B二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9. ABC 10. BC 11. ABC三、填空题:本题共3个小题,每小题5分,共15分.12.13. 80 14.四、解答题:本题共5小题,共77分.解答应写出文字说明,证明过程或演算步骤.15. 解:因为……2分(每用对一个公式给1分)……3分……4分(Ⅰ)当时,,……5分所以;……6分(Ⅱ)若在区间上单调递减,则,……8分所以,……9分因为,所以,……10分因为,134n -⎛⎫ ⎪⎝⎭15()21cos sin 2f x x x x ωωω=-+1cos 21222x x ωω-=-+12cos 22x x ωω=+πsin 26x ω⎛⎫=+ ⎪⎝⎭2ω=()πsin 46f x x ⎛⎫=+⎪⎝⎭π5π1sin 662f ⎛⎫==⎪⎝⎭()f x ππ,62⎡⎤⎢⎥⎣⎦1πππ2263T ≥-=1ππ23ω⨯≥0ω>302ω<≤π012f ⎛⎫-= ⎪⎝⎭所以,,……11分所以,,……12分故.经检验,满足题意……13分16.(1)证明:因为E ,F 分别为BC ,CD 的中点,所以,……1分又平面EFGH ,……2分平面EFGH ,……3分所以平面EFGH ,……4分因为平面ABD ,平面平面,……5分所以.……6分(2)解:由(1)知,平面EFGH ,知点B 到平面EFG 的距离即为直线BD 与平面EFG 的距离,……7分连接EA ,ED ,因为与均为正三角形,且E 是BC 的中点,所以,,……8分又平面平面BCD ,平面平面,,平面ABC ,所以平面BCD ,……9分因为平面BCD ,所以,故以E 为坐标原点,EB ,ED ,EA 所在直线分别为x ,y ,z 轴建立如图所示的空间直角坐标系,则,,,……10分所以,,,……11分设平面EFG 的法向量为,πππ66k ω-+=k ∈Z 61k ω=-+k ∈Z 1ω=1ω=EF BD ∥EF ⊂BD ⊄BD ∥BD ⊂ABD EFGH GH =BD GH ∥BD ∥ABC △BCD △EA BC ⊥ED BC ⊥ABC ⊥ABC BCD BC =EA BC ⊥EA ⊂EA ⊥ED ⊂EA ED ⊥()2,0,0B ()F-G ⎛ ⎝()2,0,0EB =()EF =-EG ⎛= ⎝(),,n x y z =则,……12分令,则,所以,……13分所以点B 到平面EFG,……14分故直线BD与平面EFG……15分17. 解:(1)①由题意可得,,故,,,故X 的分布列如下:X 12345P p X 678910P……6分(第一问共6分,分布列表格1分,即求解了所有概率,但是没有画表格,则扣1分,分布列表格内有错误这一分也扣掉;写对随机变量可能的取值给1分;写错概率扣1分,其余的概率值每写对两个给1分)②证明:,……7分记,……8分,……9分00n EF x n EG y z ⎧⋅=-=⎪⎨⋅=+=⎪⎩1y =x =2z =-)2n =-1,2,3,,10X =⋅⋅⋅()()11k P X k p p -==-1,2,,9k =⋅⋅⋅()()9101P X p ==-()1p p -()21p p -()31p p -()41p p -()51p p -()61p p -()71p p -()81p p -()91p p -10X =()()()()()()012891213191101E X p p p p p p p p p =-+-+-+⋅⋅⋅+-+-()()()()01281213191S p p p p =-+-+-+⋅⋅⋅+-()()()()()123911213191p S p p p p -=-+-+-++-两式作差可得,,……10分故……12分,即得证.……13分(2)当时,由(1)可知,,……14分故试验成本的期望小于4a ,又获利5a 大于成本的期望,则应该投资.……15分18.【解答】解法一:(1)……1分【当时,显然成立,……无持续求解,只写这个结论给1分,到这一步共2分】在单调递减对,恒有,恒有,……2分令,……3分则,……4分令,解得(或,或)……5分则当时,,单调递减;当时,,单调递增,……6分又,所以当时,,所以……7分(2)令,则,所以单调递减,……8分又因为,()()()()()01289111191pS p p p p p =-+-+-+⋅⋅⋅+---()()991191p p p--=--()()9101E X pS p =+-()()()()91099111191101p p p p pp----=--+-=()()()()1010911111101p p E X pS p pp p p---=+-==-<0.25p =()14E X p<=()e cos 1xf x a x -=-+-'0a ≥()0f x '≤()f x ()0,2π⇔()0,2πx ∈()0f x '≤()0,2πx ⇔∈()e cos 1x a x ≥-()()[]()e cos 10,2πx g x x x =-∈()()πecos 1sin e 14xx g x x x x ⎫⎛⎫=--=--+ ⎪⎝⎭'⎪⎭()0g x '=3π2x =0x =2πx =3π0,2x ⎛⎫∈ ⎪⎝⎭()0g x '<()g x 3π,2π2x ⎛⎫∈⎪⎝⎭()0g x '>()g x ()()02π0g g ==()0,2πx ∈()max 0g x =0a ≥()sin x x x ϕ=-()cos 10x x ϕ=-'≤()x ϕ()00ϕ=所以当时,;当时,,……9分令,则与零点一致……10分当时,,所以在单调递减,,……11分当时,有,……12分令,因为,在递增,……13分所以,……14分故,……15分综上,当时,当时,有唯一的零点,当时,恒大于0,不存在零点;当时,,不存在零点;……16分即对任意整数a ,至多有1个零点,所以至多有1个零点……17分解法二:(1)同解法一(2)当时,恒成立,在上单调递减,所以至多有1个零点……8分令,则,所以单调递减,又因为,当时,;0x ≥()sin 0x x x ϕ=-≤0x <()sin 0x x x ϕ=->()()esin xF x a x x =+-()F x ()f x 0x ≥()()()()e sin cos 10xF x x x x =-+-≤'()F x ()0,+∞()()0F x F a ≤=0x <()()esin e 1xx a a x x a x <+-≤+-()()()e 10xG x a x x =+-<()e 0xG x x '=->()G x (),0-∞()()()00e 101G x G a a <=+-=+()1a F x a <<+0a ≥0x ≥()F x 0x <()F x ()F x 1a ≤-()10F x a <+≤()F x ()F x ()f x 0a ≥()()ecos 10xf x a x -=-+-≤'()f x R ()f x ()sin x x x ϕ=-()cos 10x x ϕ=-'≤()x ϕ()00ϕ=0x ≥()sin 0x x x ϕ=-≤当时,,……9分当时,……10分令,当时,……11分当时,,……12分所以在单调递减,此时,……13分所以在单调递增,……14分所以;……15分所以,当时,,所以,故此时无零点;……16分综上所述,对任意的整数a ,函数至多1个零点……17分19. 解:(1)当PQ 与x 轴平行时,,因为P ,Q 两点均在抛物线C 上,所以,即,……1分因为的面积为16,所以,……2分解得,……3分则的方程为;……4分(2)直线AC 的斜率为:,则:,……5分直线与的交点为T ,0x <()sin 0x x x ϕ=->1a ≤-()e sin e sin xx f x a x x x x --=+-≤-+-()esin xh x x x -=-+-0x ≥()e sin sin 0xh x x x x x -=-+-<-≤0x <()ecos 1xh x x -=+-'()e sin 1sin 0x h x x x -=--≤--'≤'()h x '(),0-∞()()01h x h ''>=()h x (),0-∞()()01h x h ≤=-1a ≤-()10h x ≤-<()()0f x h x ≤<()f x ()f x 4P Q y y ==p Q x x ==PQ =OPQ △14162⨯=2p =Γ24x y =1313AC y y k x x -=-AC l ()131113y y y y x x x x --=--2x x =AC l则点T 为,……6分所以……7分……(∗)……(∗∗)……8分所以:……9分点A 处切线方程:,令,则的斜率,……10分则有:,即:,……11分同理::,:,……12分与相交得:,得:;……13分同理可得:,;……14分将点,,代入(∗∗)得()()13212113,y y x x x y x x ⎛⎫--+ ⎪-⎝⎭()()132112131312ABC y y x x S y y x x x x --=+-⨯--△()()()()1321121312y y x x y y x x =--+--()()()32121313212y y x y y x y y x =-+-+-222222321321112312444x x x x x x S x x x ---=⨯+⨯+⨯()()()22232113221318x x x x x x x x x =-+-+-12y x '=1x x =1l 1112k x =()2111142x y x x x -=-1l 21124x x y x =-2l 22224x x y x =-3l 22224x x y x =-1l 2l 2112222424x x y x x x y x ⎧=-⎪⎪⎨⎪=-⎪⎩1212,24x x x x D +⎛⎫⎪⎝⎭1313,24x x x x E +⎛⎫⎪⎝⎭2323,24x x x x F +⎛⎫⎪⎝⎭1212,24x x x x D +⎛⎫⎪⎝⎭1313,24x x x x E +⎛⎫ ⎪⎝⎭2323,24x x x x F +⎛⎫ ⎪⎝⎭11……15分……16分所以,所以存在,使得……17分注:(1)若直接用已知三点求三角形面积公式:……8分点处,则5~8的步骤分没有,用这个公式代入计算,有适当的化简过程,依照后面的步骤给分;(2)若直接用已知三点求三角形面积公式的行列式形式:的绝对值.则不给推导公式的步骤分,若有展示将行列式展开,并代入相关点计算,则按照后续步骤给分;(2)若直接用已知三点求三角形面积公式,强行得到两个三角形面积关系,不管是否得到正确结果,均不给分.231313232331121212212442442442x x x x x x x x x x x x x x x x x x S +++⎛⎫⎛⎫⎛⎫=-+-+- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭()()()()()()21123232131331212424242x x x x x x x x x x x x x x x -+-+-+=++()()()222222321132213116x x x x x x x x x =-+-+-122S S =2λ=122S S =()()()32121313212ABC S y y x y y x y y x =-+-+-△11213311121ABC x y S x y x y =△。
广东华南师范大学附属中学数学代数式单元复习练习(Word版 含答案)
一、初一数学代数式解答题压轴题精选(难)1.如图所示,在边长为a米的正方形草坪上修建两条宽为b米的道路.(1)为了求得剩余草坪的面积,小明同学想出了两种办法,结果分别如下:方法①:________ 方法②:________请你从小明的两种求面积的方法中,直接写出含有字母a,b代数式的等式是:________(2)根据(1)中的等式,解决如下问题:①已知:,求的值;②己知:,求的值.【答案】(1)(a-b)2;a2-2ab+b2;(a-b)2=a2-2ab+b2(2)解:①把代入∴,∴②原式可化为:∴∴∴【解析】【解答】解:(1)方法①:草坪的面积=(a-b)(a-b)= .方法②:草坪的面积= ;等式为:故答案为:,;【分析】(1)方法①是根据已知条件先表示出矩形的长和宽,再根据矩形的面积公式即可得出答案;方法②是正方形的面积减去两条道路的面积,即可得出剩余草坪的面积;根据(1)得出的结论可得出;(2)①分别把的值和的值代入(1)中等式,即可得到答案;②根据题意,把(x-2018)和(x-2020)变成(x-2019)的形式,然后计算完全平方公式,展开后即可得到答案.2.民谚有云:“不到庐山辜负目,不食螃蟹辜负腹.”,又到了食蟹的好季节啦!某经销商去水产批发市场采购太湖蟹,他看中了A、B两家的某种品质相近的太湖蟹.零售价都为60元/千克,批发价各不相同.A家规定:批发数量不超过100千克,按零售价的92%优惠;批发数量超过100千克但不超过200千克,按零售价的90%优惠;超过200千克的按零售价的88%优惠.B家的规定如下表:________元;(2)如果他批发x千克太湖蟹(150<x<200),则他在A家批发需要________元,在B 家批发需要________元(用含x的代数式表示);(3)现在他要批发170千克太湖蟹,你能帮助他选择在哪家批发更优惠吗?请说明理由.【答案】(1)4968;4890(2)54x;45x+1200(3)解:当x=170时,54x=54×170=9180,45x+1200=45×170+1200=8850,因为9180>8850,所以他选择在B家批发更优惠【解析】【解答】解:(1)A:90×60×92%=4968(元),B:50×60×95%+40×60×85%=4890(元)。
广东华南师范大学附属中学数学代数式单元复习练习(Word版 含答案)
一、初一数学代数式解答题压轴题精选(难)1.双11购物节期间,某运动户外专营店推出满500送50元券,满800送100元券活动,先领券,再购物。
某校准备到此专营店购买羽毛球拍和羽毛球若干.已知羽毛球拍60元1个,羽毛球3元一个,买一个羽毛球拍送3个羽毛球.(1)如果要购买羽毛球拍8个,羽毛球50个,要付多少钱?(2)如果购买羽毛球拍x个(不超过16个),羽毛球50个,要付多少钱?用含x的代数式表示.(3)该校买了羽毛球50个若干个羽毛球拍,共花费712元,请问他们买了几个羽毛球拍.【答案】(1)解:60×8+(50-8×3)×3-50=508(元)(2)解:x≤6时,60x+(50-3x)×3=150+51x; 7≤x≤12时,60x+(50-3x)×3-50=100+51x; 13≤x≤16时,60x+(50-3x)×3-100=50+51x(3)解:设共买了x个羽毛球拍,根据题意得,60x+(50-3x)×3-50=712,解得,x=12. 答:共买了12个羽毛球拍.【解析】【分析】(1)根据题意直接列式计算。
(2)根据满500送50元券,满800送100元券活动,分三种情况讨论:x≤6时;7≤x≤12时;13≤x≤16时,分别用含x的代数式表示出要付的费用。
(3)根据一共花费712元,列方程求解即可。
2.已知整式P=x2+x﹣1,Q=x2﹣x+1,R=﹣x2+x+1,若一个次数不高于二次的整式可以表示为aP+bQ+cR(其中a,b,c为常数).则可以进行如下分类①若a≠0,b=c=0,则称该整式为P类整式;②若a≠0,b≠0,c=0,则称该整式为PQ类整式;③若a≠0,b≠0,c≠0.则称该整式为PQR类整式;(1)模仿上面的分类方式,请给出R类整式和QR类整式的定义,若,则称该整式为“R类整式”,若,则称该整式为“QR类整式”;(2)说明整式x2﹣5x+5为“PQ类整式;(3)x2+x+1是哪一类整式?说明理由.【答案】(1)解:若a=b=0,c≠0,则称该整式为“R类整式”.若a=0,b≠0,c≠0,则称该整式为“QR类整式”.故答案是:a=b=0,c≠0;a=0,b≠0,c≠0(2)解:因为﹣2P+3Q=﹣2(x2+x﹣1)+3(x2﹣x+1)=﹣2x2﹣2x+2+3x2﹣3x+3=x2﹣5x+5.即x2﹣5x+5=﹣2P+3Q,所以x2﹣5x+5是“PQ类整式”(3)解:∵x2+x+1=(x2+x﹣1)+(x2﹣x+1)+(﹣x2+x+1),∴该整式为PQR类整式.【解析】【分析】(1)根据题干条件,可得若a=b=0,c≠0,则称该整式为“R类整式”;若a=0,b≠0,c≠0,则称该整式为“QR类整式”.(2)根据"PQ类整式"定义,由x2﹣5x+5=﹣2(x2+x﹣1)+3(x2﹣x+1) = ﹣2P+3Q,据此求出结论.(3)由x2+x+1=(x2+x﹣1)+(x2﹣x+1)+(﹣x2+x+1)= PQR,据此判断即可.3.根据数轴和绝对值的知识回答下列问题(1)一般地,数轴上表示数m和数n两点之间的距离我们可用│m-n│表示。
广州市华附奥校必修一第三单元《指数函数和对数函数》检测(答案解析)
一、选择题1.高斯是德国著名的数学家,近代数学奠基者之一,享有“数学王子”的称号,他和阿基米德、牛顿并列为世界三大数学家,用其名字命名的“高斯函数”为:设x ∈R ,用[]x 表示不超过x 的最大整数,则[]y x =称为高斯函数,例如:35]4[--.=,[]2.12=,已知函数21()12x xe f x e =++,()[()]g x f x =,则下列叙述正确的是( ) A .()g x 是偶函数 B .()f x 在R 上是增函数 C .()f x 的值域是1,2⎛⎫-+∞ ⎪⎝⎭D .()g x 的值域是{1,0,1}-2.若x ,y ,z 是正实数,满足2x =3y =5z ,试比较3x ,4y ,6z 大小( ) A .3x >4y >6z B .3x >6z >4y C .4y >6z >3x D .6z >4y >3x3.函数()()221lg 21xxx f x -=+的部分图象大致为( )A .B .C .D .4.集合{}1002,x x x x R =∈的真子集的个数为( )A .2B .4C .6D .75.已知函数||()2x f x =,记131(())4a f =,37(log )2b f =,13(log 5)c f =,则a ,b,c 的大小关系为( )A .c b a >>B .b a c >>C .a b c >>D .c a b >>6.已知函数()()()2331log 6log 1y x a a x x =--++在[]0,1x ∈内恒为正值,则实数a 的取值范围是( ) A .133a <<B .3a >C .3133a <<D .33a >7.设0.34()5a =,0.254b ⎛⎫= ⎪⎝⎭,125log 4c =,则a ,b ,c 的大小关系为( )A .b a c >>B .c a b >>C .c b a >>D .b c a >>8.函数()log (2)a f x ax =-(0a >且1a ≠)在[]0,3上为增函数,则实数a 的取值范围是( ) A .2,13⎛⎫⎪⎝⎭B .(0,1)C .20,3⎛⎫ ⎪⎝⎭D .[)3,+∞ 9.已知函数()2,01,0x x f x x x >⎧=⎨+≤⎩,若()()10f a f +=,则实数a 的值等于( )A .-3B .-1C .1D .310.设0.512a ⎛⎫= ⎪⎝⎭,0.50.3b =,0.3log 0.2c =,则a 、b 、c 的大小关系( ). A .b a c << B .a b c <<C .a b c >>D .a c b <<11.已知1()44x f x x -=+-e ,若正实数a 满足3(log )14a f <,则a 的取值范围为( )A .34a >B .304a <<或43a >C .304a <<或1a > D .1a >12.已知函数()()213log f x x ax a =--对任意两个不相等的实数1x 、21,2x ⎛⎫∈-∞- ⎪⎝⎭,都满足不等式()()21210f x f x x x ->-,则实数a 的取值范围是( ) A .[)1,-+∞B .(],1-∞-C .11,2⎡⎤-⎢⎥⎣⎦D .11,2⎡⎫-⎪⎢⎣⎭二、填空题13.已知(5)3,1()log ,1a a x a x f x x x --<⎧=⎨≥⎩是(),-∞+∞上的增函数,则a 的取值范围为_________14.已知()(3),1log ,1aa x a x f x x x --<⎧=⎨≥⎩的值域为R ,那么实数a 的取值范围是_________.15.()()2lg 45f x x x =--+的单调递增区间为______.16.函数1()a x f x x a -=+(0a >,且1a ≠)的图像恒过定点,其坐标为_____________. 17.已知函数()4sin 22xx f x π=++,则122019101010101010f f f ⎛⎫⎛⎫⎛⎫+++= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭______.18.设log c a 、log c b 是方程2530x x +-=的两个实根,则log b ac =______.19.如果()231log 2log 9log 64x x x f x =-+-,则使()0f x <的x 的取值范围是______.20.若函数1log 12a y x ⎛⎫=+ ⎪⎝⎭在区间3,62⎡⎤-⎢⎥⎣⎦有最小值-2,则实数a =_______. 三、解答题21.已知函数()log (1)log (1)a a f x x x =+--,(0a >且1a ≠) (1)求()f x 的定义域;(2)判断()f x 的奇偶性,并予以证明; (3)求使()0f x >的x 取值范围. 22.已知函数2()46f x ax x =-+.(1)若函数2log ()y f x =的值域为R ,求实数a 的取值范围;(2)若函数log ()a y f x =在区间(1,3)上单调递增,求实数a 的取值范围. 23.计算: (1)1ln 224()9e-+; (2)()223lg 2lg5lg 20log 3log 4+⋅+⋅. 24.已知函数()()()lg 2lg 2f x x x =+--.(1)求()f x 的定义域; (2)判断()f x 的奇偶性并予以证明; (3)求不等式()1f x >的解集.25.已知函数()log [(1)(1)]a f x x x =+-(其中0a >且1a ≠) (1)求函数()f x 的定义域,并判断它的奇偶性;(2)若2a =,当12x ⎡⎤∈⎢⎥⎣⎦时,求函数()f x 的值域. 26.已知函数121()log 1axf x x -=-的图象关于原点对称,其中0a <. (1)当(1,)x ∈+∞时,12()log (1)f x x m +-<恒成立,求实数m 的取值范围;(2)若关于x 的方程12()log ()f x x k =+在[]2,3上有解,求k的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】计算(2),(2)g g -得出()()22g g ≠-判断选项A 不正确;通过分离常数结合复合函数的单调性,可得出()f x 在R 上是增函数,判断选项B 正确;由xy e =的范围,利用不等式的关系,可求出15()22f x <<,进而判断选项CD 不正确,即可求得结果. 【详解】对于A ,根据题意知,2152()1221x x xe f x e e=+=-++. ∵252(2)[(2)]221g f e ⎡⎤==-=⎢⎥+⎣⎦, 2222121(2)[(2)]01212e g f e e --⎡⎤⎡⎤-=-=+=+=⎢⎥⎢⎥++⎣⎦⎣⎦, (2)(2)g g ∴≠-,∴函数()g x 不是偶函数,故A 错误;对于B ,1x y e =+在R 上是增函数,则21xy e=+在R 上是减函数,则52()21x f x e=-+在R 上是增函数,故B 正确;对于C ,0x e >,11x e ∴+>,2202,20,11x x e e <<-<-<++ 15()22f x ∴<<,即()f x 的值域是15,22⎛⎫⎪⎝⎭,故C 错误; 对于D ,()f x 的值域是15,22⎛⎫⎪⎝⎭,则()g x 的值域是{0,1,2},故D 错误. 故选:B. 【点睛】本题要注意对函数的新定义的理解,研究函数的单调性和值域常用分离常数,属于较难题.2.B解析:B 【分析】令235x y z t ===,则1t >,lg lg 2t x =,lg lg 3t y =,lg lg 5tz =,利用作差法能求出结果. 【详解】∵x 、y 、z 均为正数,且235x y z ==, 令235x y z t ===,则1t >, 故2lg log lg 2t x t ==,3lg log lg 3t y t ==,5lg log lg 5tz t ==, ∴()3lg lg5lg 4lg 2lg 3630lg 2lg5lg 2lg5t t t x z -⎛⎫-=-=>⎪⋅⎝⎭,即36x z >; ()2lg lg 27lg 253lg 2lg 6420lg5lg3lg3lg5t t t z y -⎛⎫-=-=> ⎪⋅⎝⎭,即64z y >, 即364x z y >>成立,故选:B. 【点睛】 关键点点睛:(1)将指数式转化为对数式; (2)利用作差法比较大小.3.B解析:B 【分析】求出函数()f x 的定义域,分析函数()f x 的奇偶性及其在区间()0,1上的函数值符号,进而可得出合适的选项. 【详解】 函数()()221lg 21xxx f x -=+的定义域为{}0x x ≠,()()()()()()()22221lg 221lg 12lg 2112221x x x xxxxxx x x f x f x ---------====-+++,函数()f x 为奇函数,当01x <<时,201x <<,则2lg 0x <,210x ->,210x +>,()0f x ∴<.因此,函数()f x 的图象如B 选项中的图象. 故选:B. 【点睛】函数图象的辨识可从以下方面入手: (1)从函数的定义域,判断图象的左右位置; (2)从函数的值域,判断图象的上下位置. (3)从函数的单调性,判断图象的变化趋势; (4)从函数的奇偶性,判断图象的对称性; (5)从函数的特征点,排除不合要求的图象.4.D解析:D 【分析】分析指数函数2xy =与幂函数100y x=的图像增长趋势,当0x <时,有1个交点;当0x >时,有2个交点;即集合{}1002,x x x x R =∈有3个元素,所以真子集个数为3217-=【详解】分析指数函数2xy =与幂函数100y x =的图像增长趋势,当0x <时,显然有一个交点;当0x >时,当1x =时,110021>;当2x =时,210022<;故()1,2x ∈时,有一个交点;分析数据发现,当x 较小时,100y x=比2x y =增长的快;当x 较大时,2xy =比100y x =增长的快,即2x y =是爆炸式增长,所以还有一个交点.即2xy =与100y x=的图像有三个交点,即集合{}1002,x x xx R =∈有3个元素,所以真子集个数为3217-= 故选:D. 【点睛】结论点睛:本题考查集合的子集个数,集合A 中含有n 个元素,则集合A 的子集有2n 个,真子集有()21n-个,非空真子集有()22n-个.5.A解析:A【分析】首先判断函数()f x 的性质,再比较133317,log ,log 542⎛⎫ ⎪⎝⎭的大小关系,从而利用单调性比较a ,b ,c 的大小关系. 【详解】()2xf x =是偶函数,并且当0x >时,2x y =是增函数,()133log 5log 5c f f ⎛⎫== ⎪⎝⎭,因为1310()14<<,3371log log 52<<,即1333170log log 542⎛⎫<<< ⎪⎝⎭ 又因为()y f x =在()0,∞+是增函数,所以a b c <<. 故选:A. 【点睛】关键点点睛:本题考查利用函数的单调性和奇偶性比较函数值的大小,本题的关键是判断函数()2xf x =的性质,后面的问题迎刃而解.6.C解析:C 【分析】令()()()22333log 6log 11log g x a a x a ⎡⎤=-++-⎣⎦,由题意得出()()0010g g ⎧>⎪⎨>⎪⎩,可得出关于实数a 的不等式组,由此可解得实数a 的取值范围.【详解】令()()()22333log 6log 11log g x a a x a ⎡⎤=-++-⎣⎦, 由题意可得()()()()23301log 0126log 0g a g a ⎧=->⎪⎨=->⎪⎩,可得311log 3a -<<,解得13a <<故选:C. 【点睛】思路点睛:求解一次函数不等式在区间上恒成立,一般限制一次函数在区间上的端点函数值符号即可,即可得出关于参数的不等式,求解即可.7.A解析:A 【分析】根据指数函数、对数函数的 性质结合中间值0和1比较. 【详解】由指数函数性质得0.34015⎛⎫<< ⎪⎝⎭,0.2514⎛⎫> ⎪⎝⎭,由对数函数性质得125log 04<, ∴b a c >>. 故选:A . 【点睛】本题考查比较幂与对数的,掌握指数函数与对数函数的性质是解题关键.解题方法是借助中间值比较大小.8.C解析:C 【分析】根据对数函数性质与复合函数的单调性求解. 【详解】因为0a >且1a ≠,令2t ax =-,所以函数2t ax =-在[]0,3上为减函数, 所以函数log a y t =应是减函数,()f x 才可能是增函数, ∴01a <<,因为函数()f x 在[]0,3上为增函数, 由对数函数性质知230a ->,即23<a , 综上023a <<. 故选:C . 【点睛】本题考查复合函数的单调性,掌握对数函数性质是解题关键,考查逻辑思维能力和计算能力,属于常考题.9.A解析:A 【分析】先求得()1f 的值,然后根据()f a 的值,求得a 的值. 【详解】由于()1212f =⨯=,所以()()20,2f a f a +==-,22a =-在()0,∞+上无解,由12a +=-解得3a =-,故选A.【点睛】本小题主要考查分段函数求函数值,考查已知分段函数值求自变量,属于基础题.10.A解析:A 【分析】利用对数函数,幂函数的单调性比较大小即可. 【详解】解:因为12y x =在[0,)+∞上单调递增,110.32>>所以0.50.50.5110.32⎛⎫> ⎪⎝⎭>,即0.50.5110.32⎛⎫>> ⎪⎝⎭因为0.30.3log 0.2log 0.31>= 所以b a c << 故选:A 【点睛】本题主要考查了利用对数函数,幂函数的单调性比较大小,是中档题.11.C解析:C 【分析】 先判断1()44x f x x -=+-e 是R 上的增函数,原不等式等价于3log 14a <,分类讨论,利用对数函数的单调性求解即可. 【详解】 因为1x y e -=与44y x =-都是R 上的增函数,所以1()44x f x x -=+-e 是R 上的增函数,又因为11(1)441f e -=+-=所以()3(log )114af f <=等价于3log 14a <, 由1log a a =,知3log log 4a a a <,当01a <<时,log a y x =在()0,∞+上单调递减,故34a <,从而304a <<; 当1a >时,log ay x =在()0,∞+上单调递增,故34a >,从而1a >, 综上所述, a 的取值范围是304a <<或1a >,故选C. 【点睛】解决抽象不等式()()f a f b <时,切勿将自变量代入函数解析式进行求解,首先应该注意考查函数()f x 的单调性.若函数()f x 为增函数,则a b <;若函数()f x 为减函数,则a b >.12.C解析:C 【分析】由题意可知,函数()()213log f x x ax a =--在区间1,2⎛⎫-∞- ⎪⎝⎭上单调递增,利用复合函数的单调性可知,内层函数2u x ax a =--在区间1,2⎛⎫-∞-⎪⎝⎭上单调递减,且0>u 对任意的1,2x ⎛⎫∈-∞- ⎪⎝⎭恒成立,进而可得出关于实数a 的不等式组,由此可解得实数a 的取值范围. 【详解】 因为()()21210f x f x x x ->-,所以()()213f x log x ax a =--在1,2⎛⎫-∞- ⎪⎝⎭上是增函数,令2u x ax a =--,而13log y u =是减函数,所以2u x ax a =--在1,2⎛⎫-∞- ⎪⎝⎭上单调递减,且20u x ax a =-->在1,2⎛⎫-∞- ⎪⎝⎭上恒成立,所以212211022aa a ⎧≥-⎪⎪⎨⎛⎫⎛⎫⎪----≥ ⎪ ⎪⎪⎝⎭⎝⎭⎩,解得112a -≤≤. 故选:C. 【点睛】本题考查利用对数型复合函数在区间上的单调性求参数,解题时还应注意真数要恒为正数,考查分析问题和解决问题的能力,属于中等题.二、填空题13.【分析】根据在上单调递增列出不等式组求解即可【详解】解:在上单调递增即解得:即故答案为:【点睛】易错点点睛:在解决分段函数的单调性问题时要注意上下段端点值的问题解析:5,54⎡⎫⎪⎢⎣⎭【分析】根据()f x 在R 上单调递增,列出不等式组,求解即可. 【详解】解:(5)3,1()log ,1aa x a x f x x x --<⎧=⎨≥⎩在R 上单调递增,即50153log 1a a a a a ->⎧⎪>⎨⎪--≤⎩, 解得:554a ≤<, 即5,54a ⎡⎫∈⎪⎢⎣⎭, 故答案为:5,54⎡⎫⎪⎢⎣⎭. 【点睛】易错点点睛:在解决分段函数的单调性问题时,要注意上下段端点值的问题.14.【分析】分类讨论和结合已知和对数函数及一次函数的单调性得a 的不等式组求解即可【详解】解:若当时当时此时的值域不为R 不符合题意;若当时当时要使函数的值域为R 需使解得综上所述故答案为:【点睛】本题考查分解析:31,2⎛⎤⎥⎝⎦【分析】分类讨论01a <<和1a >,结合已知和对数函数及一次函数的单调性,得a 的不等式组求解即可. 【详解】 解:若01a <<, 当1≥x 时,log 0a x ≤,当1x <时,()3332a x a a a a --<--=-,此时f x ()的值域不为R ,不符合题意;若1a >,当1≥x 时,log 0a x ≥,当1x <时,要使函数f x ()的值域为R ,需使30log 13a a a a ->⎧⎨≤--⎩,解得332a a <⎧⎪⎨≤⎪⎩,312a ∴<≤, 综上所述,312a <≤,故答案为:31,2⎛⎤ ⎥⎝⎦.【点睛】本题考查分段函数的值域及对数函数的性质,考查分类讨论思想与数学运算能力,是中档题.15.【分析】由复合函数的单调性只需求出的增区间即可【详解】令则由与复合而成因为在上单调递增且在上单调递增所以由复合函数的单调性知在上单调递增故答案为:【点睛】本题主要考查了复合函数的单调性对数函数的单调 解析:(]5,2--【分析】由复合函数的单调性,只需求出245t x x =--+的增区间即可. 【详解】令245t x x =--+,则()()2lg 45f x x x =--+由lg y t =与245t x x =--+复合而成,因为lg y t =在(0,)t ∈+∞上单调递增,且245(0)t x x t =--+>在(5,2]x ∈--上单调递增,所以由复合函数的单调性知,()()2lg 45f x x x =--+在(5,2]x ∈--上单调递增.故答案为:(]5,2-- 【点睛】本题主要考查了复合函数的单调性,对数函数的单调性,二次函数的单调性,属于中档题.16.(12)【分析】根据幂函数以及指数函数性质直接缺定点坐标【详解】因为所以当时即恒过定点(12)故答案为:(12)【点睛】本题考查根据幂函数以及指数函数性质求定点考查基本分析求解能力属基础题解析:(1,2) 【分析】根据幂函数以及指数函数性质,直接缺定点坐标. 【详解】因为0=111=a a ,,所以当1x =时(1)2f =,即()f x 恒过定点(1,2) 故答案为:(1,2) 【点睛】本题考查根据幂函数以及指数函数性质求定点,考查基本分析求解能力,属基础题.17.2019【分析】观察的特点探究得再利用倒序相加法求解【详解】因为所以故答案为:2019【点睛】本题主要考查了函数求值中的倒序相加法还考查了抽象概括的能力属于中档题解析:2019【分析】 观察122019101010101010⎛⎫⎛⎫⎛⎫+++⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭f f f 的特点,探究得()(2)2+-=f x f x ,再利用倒序相加法求解. 【详解】因为()()()2442sin sin 222222x x f x f x x x πππ-+-=+++-=++ 所以1220192[]101010101010⎛⎫⎛⎫⎛⎫+++⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭f f f12019120191010101010101010f f f f ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=++++ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭22019=⨯122019************1010f f f ⎛⎫⎛⎫⎛⎫∴+++= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭故答案为:2019.【点睛】本题主要考查了函数求值中的倒序相加法,还考查了抽象概括的能力,属于中档题.18.【分析】根据题意由韦达定理得进而得再结合换底公式得【详解】解:因为、是方程的两个实根所以由韦达定理得所以所以所以故答案为:【点睛】本题解题的关键在于根据韦达定理与换底公式进行计算其中两个公式的转化是解析: 【分析】根据题意由韦达定理得log log 5c c a b +=-,log log 3c c a b ⋅=-,进而得()2log log 37c c a b -=,再结合换底公式得1log 37log b acc b a==±【详解】解:因为log c a 、log c b 是方程2530x x +-=的两个实根, 所以由韦达定理得log log 5c c a b +=-,log log 3c c a b ⋅=-, 所以()()22log log loglog 4log log 37c c c c c c a b a b a b -=+-⋅=, 所以log log c c b a -=所以11log log log log b c c acc b b a a===-故答案为:37± 【点睛】本题解题的关键在于根据韦达定理与换底公式进行计算,其中()()22log log log log 4log log c c c c c c a b a b a b -=+-⋅,1log log b acc b a=两个公式的转化是核心,考查运算求解能力,是中档题.19.【分析】可结合对数化简式将化简为再解对数不等式即可【详解】由由得即当时故;当时无解综上所述故答案为:【点睛】本题考查对数化简公式的应用分类讨论求解对数型不等式属于中档题解析:81,3⎛⎫⎪⎝⎭【分析】可结合对数化简式将()f x 化简为()1log 2log 3log 4x x x f x =-+-,再解对数不等式即可 【详解】由()2323231log 2log 9log 641log 2log 3log 4x x x x x x f x =-+-=-+-31log 2log 3log 41log 8x x x x =-+-=+,由()0f x <得81log 03x -<,即8log log 3xx x >, 当1x >时,83x <,故81,3x ⎛⎫∈ ⎪⎝⎭;当()0,1x ∈时,83x >,无解 综上所述,81,3x ⎛⎫∈ ⎪⎝⎭故答案为:81,3⎛⎫ ⎪⎝⎭【点睛】本题考查对数化简公式的应用,分类讨论求解对数型不等式,属于中档题20.或2【分析】根据复合函数的单调性及对数的性质即可求出的值【详解】当时在为增函数求得即;当时在为减函数求得即故答案为:或【点睛】本题考查复合函数单调性对数方程的解法难度一般解析:12或2 【分析】根据复合函数的单调性及对数的性质即可求出a 的值.【详解】当1a >时, 1log 12a y x ⎛⎫=+ ⎪⎝⎭在3,62⎡⎤-⎢⎥⎣⎦为增函数,min 33log 1-224a y f ⎛⎫⎛⎫=-=-+= ⎪ ⎪⎝⎭⎝⎭,求得-214a =,即=2a ; 当01a <<时, 1log 12a y x ⎛⎫=+ ⎪⎝⎭在3,62⎡⎤-⎢⎥⎣⎦为减函数,()()min 6log 31-2a y f ==+=,求得-24a =,即1=2a . 故答案为:12或2. 【点睛】本题考查复合函数单调性,对数方程的解法,难度一般.三、解答题21.(1){|11}x x -<<;(2)函数()f x 是奇函数,证明见解析;(3)当1a >时,01x <<;当01a <<时,10x -<<【分析】(1)根据对数的真数为正数列式可解得结果; (2)函数()f x 是奇函数,根据奇函数的定义证明即可;(3)不等式化为log (1)log (1)a a x x +>-后,分类讨论底数a ,根据对数函数的单调性可解得结果. 【详解】(1)要使函数数()f x 有意义,则必有1010x x +>⎧⎨->⎩,解得11x -<<,所以函数()f x 的定义域是{|11}x x -<< . (2)函数()f x 是奇函数,证明如下: ∵(1,1)x ∈-,(1,1)x -∈-,()log (1)log (1)a a f x x x -=--+[]log (1)log (1)a a x x =-+-- ()f x =-,∴函数()f x 是奇函数(3)使()0f x >,即log (1)log (1)a a x x +>-当1a >时,有111010x xx x +>-⎧⎪->⎨⎪+>⎩,解得01x <<,当01a <<时,有111010x x x x +<-⎧⎪->⎨⎪+>⎩,解得10x -<<.综上所述:当1a >时,01x <<;当01a <<时,10x -<<. 【点睛】方法点睛:已知函数解析式,求函数定义域的方法: 有分式时:分母不为0;有根号时:开奇次方,根号下为任意实数,开偶次方,根号下大于或等于0; 有指数时:当指数为0时,底数一定不能为0;有根号与分式结合时,根号开偶次方在分母上时:根号下大于0; 有指数函数形式时:底数和指数都含有x ,指数底数大于0且不等于1;有对数函数形式时,自变量只出现在真数上时,只需满足真数上所有式子大于0,自变量同时出现在底数和真数上时,要同时满足真数大于0,底数要大0且不等于1. 22.(1)20,3⎡⎤⎢⎥⎣⎦;(2)[)2,+∞.【分析】(1)根据条件分析出2()46f x ax x =-+的值域包含()0,∞+,由此根据a 与0的关系分类讨论,求解出结果;(2)根据1,01a a ><<两种情况结合复合函数单调性的判断方法进行分类讨论,然后求解出a 的取值范围. 【详解】(1)因为()22log 46y ax x =-+的值域为R ,所以246y ax x =-+的值域包含()0,∞+,当0a =时,246y ax x =-+即46y x =-+,此时46y x =-+的值域为R ,满足; 当0a ≠时,则有016240a a >⎧⎨∆=-≥⎩,所以203a <≤,综上可知:20,3a ⎡⎤∈⎢⎥⎣⎦;(2)当1a >时,log a y x =在()0+∞,上单调递增,所以2()46f x ax x =-+在()1,3上递增,所以()2110a f ⎧≤⎪⎨⎪>⎩,所以2a ≥,当01a <<时,log a y x =在()0+∞,上单调递减,所以2()46f x ax x =-+在()1,3上递减,所以()2330a f ⎧≥⎪⎨⎪>⎩,此时a 无解,综上可知:[)2,a ∈+∞. 【点睛】思路点睛:形如()()()2lg 0f x ax bx ca =++≠的函数,若函数的定义域为R ,则有00a >⎧⎨∆<⎩; 若函数的值域为R ,则有00a >⎧⎨∆≥⎩. 23.(1)32;(2)3. 【分析】(1)利用指对数运算对数恒等式直接得解 (2)利用对数运算及换底公式得解. 【详解】 (1)1ln 22433()22922e -++=+-=, (2)223(lg 2)lg 5lg 20log 3log 4+⋅+⋅.22(lg 2)lg 5(1lg 2)log 4(lg 2)(lg 2lg 5)lg 52=+⋅++=+++lg 2lg523=++=【点睛】解决对数运算问题的常用方法(1)将真数化为底数的指数幂的形式进行化简. (2)将同底对数的和、差、倍合并.(3)利用换底公式将不同底的对数式转化成同底的对数式,要注意换底公式的正用、逆用及变形应用.(4)利用常用对数中的lg 2lg51+= 24.(1)()2,2-.(2)见解析;(3)18,211⎛⎫⎪⎝⎭. 【详解】试题分析:(1)根据对数函数的定义,列出关于自变量x 的不等式组,求出()f x 的定义域; (2)由函数奇偶性的定义,判定()f x 在定义域上的奇偶性;(3)化简()f x ,根据对数函数的单调性以及定义域,求出不等式()f x >1的解集.试题(1)要使函数()f x 有意义.则20{20x x +>->,解得22x -<<.故所求函数()f x 的定义域为()2,2-.(2)由(1)知()f x 的定义域为()2,2-,设()2,2x ∀∈-,则()2,2x -∈-. 且()()()()lg 2lg 2f x x x f x -=-+-+=-, 故()f x 为奇函数. (3)因为()f x 在定义域()2,2-内是增函数, 因为()1f x >,所以2102x x+>-,解得1811x >. 所以不等式()1f x >的解集是18,211⎛⎫⎪⎝⎭. 25.(1)(1,1)-,()f x 在(1,1)-内为偶函数;(2)[2,0]-. 【分析】(1)由对数真数大于0可得定义域,由奇偶性定义判断奇偶性;(2)确定函数在1,22⎡⎤-⎢⎥⎣⎦的单调性可得最大值和最小值,从而得值域. 【详解】(1)由题意知:(1)(1)0x x +->,解得11x -<<, 所以函数()f x 的定义域为(1,1)-由()log [(1)(1)]()a f x x x f x -=-+=,所以函数()f x 在(1,1)-内为偶函数. (2)由2a =,有()222()log [(1)(1)]log 1f x x x x=-+=-又因为122x ⎡⎤∈-⎢⎥⎣⎦,所以()f x 在2⎡⎤-⎢⎥⎣⎦上为增函数,在10,2⎡⎤⎢⎥⎣⎦上为减函数,所以min21()log 24f x f ⎛===- ⎝⎭,max 2()(0)log 10f x f ===,所以函数()f x 在12⎡⎤⎢⎥⎣⎦内值域为[2,0]-. 【点睛】本题考查对数型复合函数的定义域,奇偶性,单调性,值域.掌握对数函数的性质是解题关键.本题还需掌握复合函数的单调性的判断:同增异减. 26.(1)[)1,-+∞;(2)[]1,1-. 【分析】(1)根据函数的奇偶性,求出a 的值,求出1122()log (1)log (1)f x x x +-=+,根据函数的单调性求出m 的范围即可;(2)问题转化为211k x x =-+-在[]2,3上有解,即2()11g x x x =-+-在[]2,3上递减,根据函数的单调性求出()g x 的值域,从而求出k 的范围即可. 【详解】(1)∵函数()f x 的图象关于原点对称,∴函数()f x 为奇函数, ∴()()f x f x -=-, 即111222111log log log 111ax ax x x x ax +--=-=----,解得1a =-或1a =(舍),()()()()111122221log 1log log 1log 11xf x x x x x ++-=+-=+-, 当1x >时,()12log 11x +<-,∵当()1,x ∈+∞时,()()12log 1f x x m +-<恒成立,∴1m ≥-,即m 的取值范围为[)1,-+∞;(2)由(1)知,()()12log f x x k =+即()()11221log log 1x f x x k x +==+-, 即11x x k x +=+-,即211k x x =-+-在[]2,3上有解, ()211g x x x =-+-在[]2,3上单调递减, minmax()(3)1,()(2)1g x g g x g ,∴()g x 的值域为[]1,1-,∴[]1,1k ∈-. 【点睛】本题考查函数的单调性与奇偶性的综合应用,注意奇函数的在对称区间上的单调性的性质;对于解抽象函数的不等式问题或者有解析式,如果是直接解不等式非常麻烦的问题,可以考虑研究函数的单调性和奇偶性等,以及函数零点等,直接根据这些性质得到不等式的解集.。
广州市华附奥校九年级数学上册第三单元《旋转》检测(答案解析)
一、选择题1.如图,在ABC 中,15B ∠=︒,将ABC 绕点A 逆时针旋转得到ADE ,当点B ,C ,D 恰好在同一直线上时,50CAD ∠=︒,则E ∠的度数为( )A .50°B .75°C .65°D .60° 2.如图,OAB 绕点O 逆时针旋转80°到OCD 的位置,已知45AOB ∠=︒,则AOD ∠等于( )A .45°B .35°C .25°D .15°3.如图,在Rt ABC 中,90ACB ∠=︒,60B ∠=︒,1BC =,A B C ''由ABC 绕点C 顺时针旋转得到,其中点A '与点A 、点B '与点B 是对应点,连接AB ',且点A 、B '、A '在同一条直线上,则AA '的长为( )A .3B .23C .4D .454.下列图形中,既是轴对称图形又是中心对称图形的是( )A .B .C .D . 5.如图所示,在Rt ABC ∆中,90ACB ∠=︒,将ABC ∆绕顶点C 逆时针旋转得到A B C ∆'',M 是BC 的中点,P 是A B ''的中点,连接PM .若2BC =,30A ∠=︒,则线段PM 长的最大值是( )A .4B .3C .2D .16.如图,O 是正ABC 内一点,3OA =,4OB =,5OC =,将线段BO 以点B 为旋转中心逆时针旋转60︒得到线段BO ',下列结论:①BO A '△可以由BOC 绕点B 逆时针旋转60︒得到;②点O 与O '的距离为4;③150AOB ︒∠=;④633AOBO S '=+四边形.其中正确的结论有( ).A .1个B .2个C .3个D .4个7.如图,在平面直角坐标系中,将正方形OABC 绕点O 逆时针旋转45°后得到正方形111OA B C ,依此方式,绕点O 连续旋转2020次得到正方形202020202020OA B C ,如果点A 的坐标为(1,0),那么点2020B 的坐标为( )A .(﹣1,1)B .(2,C .(﹣1,﹣1)D .(02)-, 8.如图,在平面直角坐标系中,点A 、B 、C 的坐标分别为(1,0),(0,1),()1,0-.一个电动玩具从坐标原点O 出发,第一次跳跃到点1P ,使得点1P 与点O 关于点A 成中心对称;第二次跳跃到点2P ,使得点2P 与点1P 关于点B 成中心对称;第三次跳跃到点3P ,使得点3P 与点2P 关于点C 成中心对称:第四次跳跃到点4P ,使得点4P 与点3P 关于点A 成中心对称;第五次跳跃到点5P ,使得点6P 与点4P 关于点B 成中心对称;…,照此规律重复下去,则点2013P 的坐标为( )A .(2,2)B .()2,2-C .()0,2-D .()2,0- 9.如图:在△ABC 中,∠ACB=90°,∠ABC=30°,AC=1,现将△ABC 绕点C 逆时针旋转至△EFC ,使点E 恰巧落在AB 上,连接BF ,则BF 的长度为( )A .3B .2C .1D .210.如图,△ABC 的顶点坐标分别为A (4,6)、B (5,2)、C (2,1),如果将△ABC 绕点C 按逆时针方向旋转90°,得到△''A B C ,那么点A 的对应点'A 的坐标是( ).A .(-3,3)B .(3,-3)C .(-2,4)D .(1,4) 11.如图,将△ABC 绕点A 逆时针旋转一定角度,得到△ADE ,若∠CAE=65°,∠E=70°,且AD ⊥BC ,∠BAC 的度数为( ).A .60 °B .75°C .85°D .90°12.如图所示的图形中,是中心对称图形的是( )A .B .C .D .二、填空题13.如图,正方形ABCD 的边长为6,点E 在边CD 上.以点A 为中心,把ADE 顺时针旋转90︒至ABF 的位置,若2DE =,则FC =________.14.如图,在ABC 中,AB =2,AC =1,∠BAC =30°,将ABC 绕点A 逆时针旋转60°得到11AB C △,连接BC 1,则BC 1的长为__________ .15.如图,在△ABC 中,∠C =90°,AC =2cm ,AB =3cm ,将△ABC 绕点B 顺时针旋转60°得到△FBE ,则点E 与点C 之间的距离是_________cm .16.如图,在边长为1的正方形网格中,()1,7A ,()5,5B ,()7,5C ,()5,1D .线段AB 与线段CD 存在一种特殊关系,即其中一条线段绕着某点旋转一个角度可以得到另一条线段,则这个旋转中心的坐标为______.17.如图,在平面直角坐标系中,点P (1,1),N (2,0),△MNP 和△M 1N 1P 1的顶点都在格点上,△MNP 与△M 1N 1P 1是关于某一点中心对称,则对称中心的坐标为_____.18.一副直角三角板如图放置,其中90ACB PRQ ∠=∠=,45A ∠=,60Q ∠=,点P 在斜边AB 上,现将三角板PRQ 绕着点P 顺时针旋转,当QR 第一次与AC 平行时,APR ∠的度数是__________.19.如图,△ABC 中,∠BAC =20°,△ABC 绕点A 逆时针旋转至△AED ,连接对应点C 、D ,AE 垂直平分CD 于点F ,则旋转角度是_____°.20.点)1,5A a -与点()2,5B b +-关于原点对称,则(a +b )2 020=____ . 三、解答题21.如图,在平面直角坐标系中有一个直角AOB ,已知90OAC ∠=︒,且点B 的坐为()3,2(1)画出OAB 绕原点O 逆时针旋转90︒后的11OA B ;(2)点1B 关于原点O 对称的点2B 的坐标为________.22.已知ABC 是边长为4的等边三角形,边AB 在射线OM 上,且6OA =,点D 是射线OM 上的动点,当点D 不与点A 重合时,将ACD △绕点C 逆时针方向旋转60°得到BCE ,连接DE .(1)如图1,求证:CDE △是等边三角形.(2)设OD t =,①如图2,当610t <<时,CDE △的周长存在最小值,请求出此最小值;②如图1,若06t <<,直接写出以D 、E 、B 为顶点的三角形是直角三角形时t 的值.23.如图,在边长为1的正方形组成的网格中,每个正方形的顶点称为格点.已知△ABC 的顶点均在格点上,建立如图所示的平面直角坐标系,△ABC 三个顶点的坐标分别为A (1,1),B (4,2),C (3,4).(1)画出△ABC 关于原点对称的△A 1B 1C 1,并直接写出△A 1B 1C 1各顶点的坐标; (2)将线段AB 绕点A 顺时针旋转90 °后得到AB 2,画出旋转后的图形,并直接写出点B 2的坐标;(3)△A 1B 1C 1的面积为 .24.将边长为4的正方形ABCD 与边长为5的正方形AEFG 按图1位置放置,AD 与AE 在同一条直线上,AB 与AG 在同一条直线上.将正方形ABCD 绕点A 逆时针旋转一周,直线EB 与直线DG 交于点P ,(1)DG 与BE 的数量关系:______;DG 与BE 的位置关系:______.(2)如图2,当点B 在线段DG 上时,求ADG 的面积.(3)连结PF ,当42PE =时,求PF 的值.25.如图1,在菱形ABCD 和菱形AEFG 中,60DAB GAE ∠=∠=︒,且4AE =,连接DG 和BE .(1)求证:DG BE =;(2)如图2,将菱形AEFG 绕着点A 旋转,当菱形AEFG 旋转到使点C 落在线段AE 上时(AC AE <),求点F 到AB 的距离.26.如图,在正方形网格中,△ABC 的三个顶点都在格点上,结合所给的平面直角坐标系解答下列问题:(1)将△ABC 以x 轴为对称轴,画出对称后的△A 1B 1C 1;(2)将△ABC 绕点C 逆时针旋转90°,画出旋转后的△A 2B 2C 2.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】由旋转的性质得出AD=AB ,∠E=∠ACB ,由点B ,C ,D 恰好在同一直线上,则△BAD 是底角为15°的等腰三角形,求出∠BAD=150°,可得100BAC ∠=︒,由三角形内角和定理即可得出结果.【详解】解:∵将ABC 绕点A 逆时针旋转得到ADE ,∴AD=AB ,∠E=∠ACB ,∵点B ,C ,D 恰好在同一直线上,∴△BAD 是底角为15°的等腰三角形,∴∠BDA=15B ∠=︒,∴∠BAD=150°,∵50CAD ∠=︒,∴100BAC ∠=︒∴1801001565BCA -∠=︒-=,∴65E ∠=.故选:C【点睛】此题主要考查了旋转的性质、等腰三角形的判定和性质、三角形的内角和定理等知识;判断出三角形ABD 是等腰三角形是解本题的关键.2.B解析:B【分析】本题旋转中心为点O,旋转方向为逆时针,观察对应点与旋转中心的连线的夹角∠BOD即为旋转角,利用角的和差关系求解.【详解】解:根据旋转的性质可知,D和B为对应点,∠DOB为旋转角,即∠DOB=80°,所以∠AOD=∠DOB-∠AOB=80°-45°=35°.故选:B.【点睛】本题考查旋转两相等的性质:即对应点到旋转中心的距离相等以及每一对对应点与旋转中心连线所构成的旋转角相等.3.A解析:A【分析】先利用互余计算出∠BAC=30°,再根据含30度的直角三角形三边的关系得到AB=2BC=2,接着根据旋转的性质得A'B'=AB=2,B'C=BC=1,A'C=AC,∠A'=∠BAC=30°,∠A'B' C=∠B=60°,于是可判断CA A'为等腰三角形,所以∠CA A'=∠A'=30°,再利用三角形外角性质计算出∠B'CA=30°,可得B'A=B'C=1,然后利用A A'=A B'+A'B'进行计算.【详解】解:∵∠ACB=90°,∠B=60°,∴∠BAC=30°,∴AB=2BC=2×1=2,∵ABC绕点C顺时针旋转得到A'B'C,∴A'B'=AB=2,B'C=BC=1,A'C=AC,∠A'=∠BAC=30°,∠A'B'C=∠B=60°,∴CA A'为等腰三角形,∴∠CA A'=∠A'=30°,∵A、B'、A'在同一条直线上,∴∠A'B'C=∠B'AC+∠B'CA,∴∠B'CA=60°﹣30°=30°,∴B'A=B'C=1,∴A A'=A B'+A'B'=2+1=3.故选:A.【点睛】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了含30度的直角三角形三边的关系.4.D解析:D【分析】根据轴对称图形的定义和中心对称图形的定义逐一判断即可.【详解】解:A 选项是轴对称图形,不是中心对称图形,故本选项不符合题意;B 选项不是轴对称图形,是中心对称图形,故本选项不符合题意;C 选项不是轴对称图形,是中心对称图形,故本选项不符合题意;D 选项既是轴对称图形,也是中心对称图形,故本选项符合题意.故选D .【点睛】此题考查的是轴对称图形的识别和中心对称图形的识别,掌握轴对称图形的定义和中心对称图形的定义是解决此题的关键.5.B解析:B【分析】连接PC ,根据直角三角形斜边上的中线等于斜边的一半求出PC ,利用中点求出CM ,再根据三角形两边之和大于第三边即可求得PM 的最大值.【详解】解:如图连接PC .在Rt △ABC 中,∵∠A=30°,BC=2,∴AB=4,根据旋转不变性可知,A′B′=AB=4,''90A CB ACB ∠=∠=︒,∵P 是A B ''的中点,M 是BC 的中点,∴CM=BM=1,PC=12A′B′=2 又∵PM≤PC +CM ,即PM≤3,∴PM 的最大值为3(此时P 、C 、M 共线).故选:B .【点睛】本题考查旋转变换、直角三角形30度角的性质、直角三角形斜边中线定理,三角形的三边关系等知识,解题的关键是学会添加常用辅助线,学会利用三角形的三边关系解决最值问题,属于中考常考题型.6.C解析:C【分析】证明△BO′A ≌△BOC ,又∠OBO′=60°,所以△BO′A 可以由△BOC 绕点B 逆时针旋转60°得到,故结论①正确;由△OBO′是等边三角形,可知结论②正确;在△AOO′中,三边长为3,4,5,这是一组勾股数,故△AOO′是直角三角形;进而求得∠AOB=150°,故结论③正确;S四边形AOBO′=S△AOO′+S△OBO′=12×3×4+34×42=6+43,故结论④错误.【详解】解:如图,由题意可知,∠1+∠2=∠3+∠2=60°,∴∠1=∠3,又∵OB=O′B,AB=BC,∴△BO′A≌△BOC,又∵∠OBO′=60°,∴△BO′A可以由△BOC绕点B逆时针旋转60°得到,故结论①正确;如图,连接OO′,∵OB=O′B,且∠OBO′=60°,∴△OBO′是等边三角形,∴OO′=OB=4.故结论②正确;∵△BO′A≌△BOC,∴O′A=OC=5.在△AOO′中,三边长为3,4,5,这是一组勾股数,∴△AOO′是直角三角形,∠AOO′=90°,∴∠AOB=∠AOO′+∠BOO′=90°+60°=150°,故结论③正确;S四边形AOBO′=S△AOO′+S△OBO′=12323④错误;故选:C.【点睛】本题考查了旋转变换、等边三角形,直角三角形的性质.利用勾股定理的逆定理,判定勾股数3、4、5所构成的三角形是直角三角形,这是本题的要点.7.C解析:C【分析】根据图形可知:点B在以O为圆心,以OB为半径的圆上运动,由旋转可知:将正方形OABC绕点O逆时针旋转45°后得到正方形OA1B1C1,相当于将线段OB绕点O逆时针旋转45°,可得对应点B的坐标,根据规律发现是8次一循环,可得结论.【详解】解:如图,∵四边形OABC是正方形,且OA=1,∴B(1,1),连接OB,由勾股定理得:2,由旋转得:OB=OB1=OB2=OB32,∵将正方形OABC绕点O逆时针旋转45°后得到正方形OA1B1C1,相当于将线段OB绕点O逆时针旋转45°,依次得到∠AOB=∠BOB1=∠B1OB2=…=45°,∴B1(02),B2(-1,1),B3(20),B4(-1,-1),…,发现是8次一循环,所以2020÷8=252…4,∴点B2020的坐标为(-1,-1)故选:C.【点睛】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角.也考查了坐标与图形的变化、规律型:点的坐标等知识,解题的关键是学会从特殊到一般的探究规律的方法,属于中考常考题型.8.C解析:C【分析】计算出前几次跳跃后,点P1,P2,P3,P4,P5,P6,P7的坐标,可得出规律,继而可求出点P2013的坐标.【详解】解:∵点1P与点O关于点A成中心对称,∴P1(2,0),过P2作P2D⊥OB于点D,∵2P 与点1P 关于点B 成中心对称,∴P 1B=P 2B ,在△P 1BO 和△P 2BD 中121212PBO P BD POB P DB PB P B ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△P 1BO ≌△P 2BD ,∴P 2D=P 1O=2,BD=BO=1,∴OD=2,∴P 2(-2,2),同理可求:P 3(0,-2),P 4(2,2),P 5(-2,0),P 6(0,0),P 7(2,0),从而可得出6次一个循环, ∵20136=335…3, ∴点P 2013的坐标为(0,-2).故选C .【点睛】本题考查了中心对称,全等三角形的判定与性质,以及点的坐标的规律变换,解答本题的关键是求出前几次跳跃后点的坐标,总结出一般规律.9.A解析:A【解析】试题分析:由题意可知:∠A=60°,AC=EC ,所以△ACE 是等边三角形,所以∠CEA=∠ECA=60°,由旋转可知,∠CEF=∠A=60°,所以∠FEB=60°,因为∠ECF=∠ACB=90°,所以∠BCF=∠ACE=60°,因为CB=CF ,所以△CBF 是等边三角形,所以∠CBF=60°, ∠FBE=60°+30°=90°, △BEF 是30度角直角三角形,因为AE=AC=1,AB=2AC=2,所以BE=1,EF=2,21213-=A .考点:1.旋转性质;2.直角三角形性质.10.A解析:A【解析】解:△A′B′C的位置如图.A′(-3,3).故选A.11.C解析:C【解析】试题分析:根据旋转的性质知,∠EAC=∠BAD=65°,∠C=∠E=70°.如图,设AD⊥BC于点F.则∠AFB=90°,∴在Rt△ABF中,∠B=90°-∠BAD=25°,∴在△ABC中,∠BAC=180°-∠B-∠C=180°-25°-70°=85°,即∠BAC的度数为85°.故选C.考点: 旋转的性质.12.D解析:D【分析】根据中心对称图形的概念求解.【详解】解:A、不是中心对称图形,不符合题意;B、不是中心对称图形,不符合题意;C、不是中心对称图形,不符合题意;D、是中心对称图形,符合题意.故选D.【点睛】本题考查中心对称图形的概念.中心对称图形是要寻找对称中心,旋转180度后两部分重合.二、填空题13.8【分析】先根据旋转的性质和正方形的性质证明CBF 三点在一条直线上又知BF =DE =2可得FC 的长【详解】∵四边形ABCD 是正方形∴∠ABC =∠D =90°AD =AB 由旋转得:∠ABF =∠D =90°BF解析:8【分析】先根据旋转的性质和正方形的性质证明C 、B 、F 三点在一条直线上,又知BF =DE =2,可得FC 的长.【详解】∵四边形ABCD 是正方形,∴∠ABC =∠D =90°,AD =AB ,由旋转得:∠ABF =∠D =90°,BF =DE =2,∴∠ABF +∠ABC =180°,∴C 、B 、F 三点在一条直线上,∴CF =BC +BF =6+2=8,故答案为:8.【点睛】本题主要考查了正方形的性质、旋转变换的性质,难度适中.由旋转的性质得出BF =DE 是解答本题的关键.14.【分析】先根据旋转的定义和性质可得从而可得再利用勾股定理即可得【详解】由旋转的定义和性质得:在中故答案为:【点睛】本题考查了旋转的定义和性质勾股定理熟练掌握旋转的性质是解题关键【分析】先根据旋转的定义和性质可得111,60A AC C CAC ==∠=︒,从而可得190BAC ∠=︒,再利用勾股定理即可得.【详解】由旋转的定义和性质得:111,60A AC C CAC ==∠=︒,30BAC ∠=︒,1190AC BAC AC B C ∴∠=+=∠∠︒,在1Rt ABC 中,1BC ===,【点睛】本题考查了旋转的定义和性质、勾股定理,熟练掌握旋转的性质是解题关键. 15.【解析】试题【解析】试题连接EC ,即线段EC 的长是点E 与点C 之间的距离,在Rt △ACB 中,由勾股定理得:BC=2222325AB AC -=-=(cm ), ∵将△ABC 绕点B 顺时针旋转60°得到△FBE ,∴BC=BE ,∠CBE=60°,∴△BEC 是等边三角形,∴EC=BE=BC=5cm. 16.或【分析】连接两对对应点分别作出连线的垂直平分线其交点即为所求【详解】解:如图所示旋转中心P 的坐标为(33)或(66)故答案为(33)或(66)【点睛】本题主要考查了利用旋转变换进行作图根据旋转的性 解析:()3,3或()6,6【分析】连接两对对应点,分别作出连线的垂直平分线,其交点即为所求.【详解】解:如图所示,旋转中心P 的坐标为(3,3)或(6,6).故答案为(3,3)或(6,6).【点睛】本题主要考查了利用旋转变换进行作图,根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.17.(21)【分析】观察图形根据中心对称的性质即可解答【详解】∵点P (11)N (20)∴由图形可知M (30)M1(12)N1(22)P1(31)∵关于中心对称的两个图形对应点的连线都经过对称中心并且被对解析:(2,1)【分析】观察图形,根据中心对称的性质即可解答.【详解】∵点P (1,1),N (2,0),∴由图形可知M (3,0),M 1(1,2),N 1(2,2),P 1(3,1),∵关于中心对称的两个图形,对应点的连线都经过对称中心,并且被对称中心平分, ∴对称中心的坐标为(2,1),故答案为(2,1).【点睛】本题考查了中心对称的性质:①关于中心对称的两个图形能够完全重合; ②关于中心对称的两个图形,对应点的连线都经过对称中心,并且被对称中心平分.18.135°【分析】利用平行线的性质即可解决问题【详解】解:根据题意如图:∵QR ∥AC ∴DF ∥BC ∴∠FDB=∠ABC=45°∴故答案为:135°【点睛】本题考查平行线的判定和性质解题的关键是灵活运用所解析:135°【分析】利用平行线的性质即可解决问题.【详解】解:根据题意,如图:∵QR ∥AC ,90ACB PRQ ∠=∠=,∴DF ∥BC ,∴∠FDB=∠ABC=45°,∴18045135APR ∠=︒-︒=︒,故答案为:135°.【点睛】本题考查平行线的判定和性质,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.19.40【分析】根据旋转的性质得出AD =AC ∠DAE =∠BAC =20°求出∠DAE =∠CAE =20°再求出∠DAC 的度数即可【详解】解:∵△ABC 绕点A 逆时针旋转至△AED ∠BAC =20°∴AD =AC ∠解析:40【分析】根据旋转的性质得出AD =AC ,∠DAE =∠BAC =20°,求出∠DAE =∠CAE =20°,再求出∠DAC 的度数即可.【详解】解:∵△ABC 绕点A 逆时针旋转至△AED ,∠BAC =20°,∴AD =AC ,∠DAE =∠BAC =20°,∵AE 垂直平分CD 于点F ,∴∠DAE =∠CAE =20°,∴∠DAC =20°+20°=40°,即旋转角度数是40°,故答案为:40.【点睛】本题主要考查了图像旋转的性质以及垂直平分线的性质,从而得到边相等与角相等的条件.20.【分析】根据关于原点对称的点的横坐标与纵坐标都互为相反数求出ab 的值然后相加计算即可得解【详解】∵点与点关于原点对称∴∴∴故答案为1【点睛】本题考查了关于原点对称的点的坐标关于原点的对称点横纵坐标都 解析:1【分析】根据关于原点对称的点的横坐标与纵坐标都互为相反数求出a 、b 的值,然后相加计算即可得解.【详解】∵点)A与点()2,5B b +-关于原点对称∴2=0b +∴1,2a b ==- ∴()()2 020 2 020211a b =++=- 故答案为1.【点睛】本题考查了关于原点对称的点的坐标,关于原点的对称点,横纵坐标都变成相反数. 三、解答题21.(1)作图见解析;(2)()22,3.B -【分析】(1)利用网格特点和旋转的性质,画出点A 、B 的对称点11,A B ,即可得到11OA B ; (2)先写出1B 点的坐标,然后根据关于原点对称的点的坐标特征写出点2B 的坐标.【详解】解:(1)如图,11OA B 为所作;(2)1B 点的坐标为(-2,3),所以点1B 关于原点O 对称的点2B 的坐标为(2,-3).【点睛】本题考查了作图旋转变换,根据旋转的性质,可以作相等的角,在角的边上截取相等的线段,找到对应点,顺次连接得出旋转后的图形.22.(1)见解析;(2)①63②2【分析】(1)由旋转的性质得到∠DCE=60°,DC=EC ,即可得到结论;(2)①存在,由等边三角形的性质可得△CDE 的周长=3CD ,当CD ⊥AB 时,CD 有最小值,即可求解;②由题意可得∠BED=90°,由直角三角形的性质可求解.【详解】解:(1)∵证明:将ACD △绕点C 逆时针方向旋转60°得到BCE ,∴60DCE ∠=︒,DC EC =,∴CDE △是等边三角形:(2)①∵CDE △是等边三角形,∴CDE △的周长3CD =,当610t <<时,由垂线段最短可知,当CD AB ⊥时,CDE △的周长最小, 此时,23CD =∴CDE △的最小周长33CD ==②存在,当0<t <6时,由旋转可知,∠ABE=60°,∠BDE <60°,∴∠BED=90°,由(1)可知,△CDE是等边三角形,∴∠DEB=60°,∴∠CEB=30°,∵∠CEB=∠CDA,∴∠CDA=30°,∵∠CAB=60°,∴∠ACD=∠ADC=30°,∴DA=CA=4,∴OD=OA-DA=6-4=2,∴t=2.【点睛】本题是几何变换综合题,考查了旋转的性质,等边三角形的性质,直角三角形的性质,垂线段最短等知识,灵活运用这些性质解决问题是本题的关键.23.(1)图见解析;A1(-1,-1),B1(-4,-2),C1(-3,-4);(2)B2(2,-2);(3)3.5【分析】(1)先找到A、B、C关于原点对称的A1、B1、C1,再连线即可;(2)根据网格结构点A、B,找出将线段AB绕点A顺时针旋转90°的对应点B2,然后连接A B2,写出坐标即可;(3)△A1B1C1的面积即为三角形ABC的面积,利用“割补法”即可求得.【详解】解:(1)如图所示,△A1B1C1即为所求:A1(-1,-1),B1(-4,-2),C1(-3,-4);(2)如图所示,A1B2即为所求:B 2(2,-2);(3)S △ABC =11133232113222⨯-⨯⨯-⨯⨯-⨯⨯=3.5, ∴△A 1B 1C 1的面积= S △ABC =3.5,故填:3.5.【点睛】本题考查了坐标与图形变化−旋转与对称,熟练掌握网格结构,准确找出对应点的位置是解题的关键.24.(1)相等;垂直;(2)4234ADG S =+△;(3)7PF =.【分析】(1)由题意可得△DAG ≌△BAE ,从而可得DG=BE ,再利用全等三角形的性质和直角三角形的知识可以得知DG ⊥BE ;(2)连结AC 交DG 于点 O ,则由勾股定理可得OG 的长度,从而得到△ADG 的面积; (3)连结GE 并旋转△PGF 至△HEF ,由勾股定理即可得到正确解答.【详解】(1)在△DAG 与△BAE 中,DA=BA ,∠DAG=∠BAE=90°,AG=AE ,∴△DAG ≌△BAE ,∴DG=BE ,∠DGA=∠BEA ,∴∠BEA+∠GDE=∠DGA+∠GDE=90°,∴∠DPE=90°,∴DG ⊥BE ;(2)如图,当B 在线段DG 上时,连结AC 交DG 于点O ,则22AO =,()2252217OG =-=,2217DG =+()122172242342ADG S =⨯+⨯=+△ (3)如图,连结GE ,以F 为中心旋转△FGP 至△FEH ,则与(1)类似有△DAG ≌△BAE ,∴∠DGA=∠BEA ,∴∠DGE+∠GEP=∠DGA+45°+∠GEP=45°+∠BEA+∠GEP=45°+45°=90°,∴∠GPE=90°, ∴()()2222524232PG GE PE =-=-=,由旋转性质可知∠FEH=∠FGP ,∴∠FEH+∠FEP=∠FGP+∠FEP=360°-(∠GFE+∠GPE )=360°-180°=180°,∴P 、E 、H 三点共线,且PFH △是等腰直角三角形,∵PH=PE+EH=PE+GP=423272=∴(222227298,49PF PH PF ====,PF=7.【点睛】本题考查正方形的综合应用,灵活运用三角形全等的判定与性质、旋转的性质和勾股定理求解是解题关键.25.(1)见解析;(2)6.【分析】(1)根据菱形性质,证明△GAD≌△EAB,然后得到边相等;(2)延长FE交AB于点H,根据题意可分析得到△AEH和△AFH均为含30°的直角三角形,然后计算EH即可.【详解】解:(1)∵四边形ABCD和四边形AEFG为菱形∴GA=EA,OA=BA∵∠DAB=∠GAE=60°∴∠GAD+∠DAE=60°∠DAE+∠EAB=60°∴∠GAD=∠EAB∴△GAD≌△EAB(SAS)∴DG=BE(2)延长FE,AB交于点H∵AC是菱形ABCD对角线∴∠CAB=1∠DAB=30°2∵∠GAE=60°且四边形AEGF是菱形∴GA∥FE∴∠FEA=180°-60°=120°∴∠AEH=180°-120°=60°∵∠EAB=30°∴∠H=90°∵AE=4,在Rt△EAH=30°∴EH=2∴F到AB的距离为4+2=6【点睛】本题主要考查菱形的性质,结合旋转和三角形相关性质是解题的关键.26.(1)见解析;(2)见解析【分析】(1)依据轴对称的性质,即可画出对称后的△A1B1C1;(2)依据旋转变换,即可画出旋转后的△A2B2C2.【详解】解:(1)如图,△A1B1C1为所求的三角形;(2)如图,△A2B2C2为所求的三角形;【点睛】本题考查了利用轴对称变换和旋转变换作图以及勾股定理的运用,解答本题的关键是掌握旋转的性质及轴对称的性质.。
广州市华附奥校八年级数学下册第二单元《勾股定理》检测(答案解析)
一、选择题1.如图,在ABC 中,D 是BC 边上的中点,连结AD ,把ABD △沿AD 翻折,得到AB D ',连接CB ',若2BD CB '==,3AD =,则AB C '的面积为( )A .332B .23C .3D .22.下列线段不能组成直角三角形的是( )A .6,8,10B .1,2,3C .43,1,53D .2,4,6 3.如图,等腰直角三角形纸片ABC 中,∠C =90°,把纸片沿EF 对折后,点A 恰好落在BC 上的点D 处,点CE =1,AC =4,则下列结论一定正确的个数是( )①BC =2CD ;②BD >CE ;③∠CED +∠DFB =2∠EDF ;④△DCE 与△BDF 的周长相等.A .1个B .2个C .3个D .4个 4.如图,2×2的方格中,小正方形的边长是1,点A 、B 、C 都在格点上,则ABC 中AB边上的高长为( )A 35B 25C 35D 32 5.如图,一圆柱高8cm ,底面周长为12cm ,一只蚂蚁从A 点爬到点B ,要爬行的最短路程是( )A .6cmB .8cmC .10cmD .12cm6.如图,△ABC 中,∠ACB =90°,∠B =60°,CD ⊥AB 于点D ,△ABC 的面积为120,则△BCD 的面积为( )A .20B .24C .30D .407.如图,长方形的长为3,宽为2,对角线为OB ,且OA OB =,则下列各数中与点A 表示的数最接近的是( )A .-3.5B .-3.6C .-3.7D .-3.88.如图,在△ABC 中,∠C=90°,∠B=30°,以A 为圆心,任意长为半径画弧,分别交AB 、AC 于点M 、N ,再分别以M 、N 为圆心,大于12MN 的长为半径画弧,两弧交于点P ,连结AP 并延长交BC 于点D ,下列结论:①AD 是BAC ∠的平分线;②∠ADB=120°;③DB=2CD ;④若CD=4,83AB =,则△DAB 的面积为20.其中正确的结论共有( )A .1个B .2个C .3个D .4个9.若实数m 、n 满足340m n --=,且m 、n 恰好是Rt ABC △的两条边长,则第三条边长为( ).A .5B 7C .57D .以上都不对10.已知ABC ∆的三边a ,b ,c 满足:23|4|10250a b c c -+-+-+=,则c 边上的高为( )A .1.2B .2C .2.4D .4.811.如图,在△ABC 中,∠C =90°,点D 是线段AB 的垂直平分线与BC 的交点,连结AD .若CD =2,BD =4,则AC 的长为( )A .4B .3C .23D .312.在Rt △ABC 中,∠C=90°,CA=CB=4,D 、E 分别为边AC 、BC 上的两点,且AD=CE , 当线段DE 取得最小值时,试在直线AC 或直线BC 上找到一点P ,使得△PDE 是等腰三角形,则满足条件的点P 的个数是( )A .6B .7个C .8个D .以上都不对二、填空题13.如图,数轴上点C 表示的数的平方为______.14.如图,已知A 、B 是线段MN 上的两点,MN=4,MA=1,MB >1.以A 为中心顺时针旋转点M ,以B 为中心逆时针旋转点N ,使M 、N 两点重合成一点C ,构成ABC .设AB=x ,若ABC 为直角三角形,则x=__.15.长方形零件图ABCD 中,2BC AB =,两孔中心M ,N 到边AD 上点P 的距离相等,且MP NP ⊥,相关尺寸如图所示,则两孔中心M ,N 之间的距离为__________mm .16.如图,在四边形ABCD 中,90ABC ADC ∠=∠=︒,分别以四边向外做正方形甲、乙、丙、丁,若甲的面积为30,乙的面积为16,丙的面积为17,则丁的面积为______.17.如图,在等腰ABC 中,13AB AC ==,AD 是ABC 的高,12AD =,10BC =,E 、F 分别是AC 、AD 上一动点,则CF EF +的最小值为______.18.如图,已知正方形ABCD 的面积为4,正方形FHIJ 的面积为3,点D 、C 、G 、J 、I 在同一水平面上,则正方形BEFG 的面积为__________.19.公园3世纪初,中国古代数学家赵爽注《周髀算经》时,创造了“赵爽弦图” .如图,设49a =,小正方形ABCD 的面积是9,则弦c 长为_______.20.如图,在直角三角形ABC 中,3AB =,4AC =,点D 在AC 边上,将DBC △沿着直线BD 对折,使得点C 刚好落在直线AB 上的点E 处,则AD =__.三、解答题21.如图,//,90AD BC A ∠=︒,E 是AB 上的点,且,12AD BE =∠=∠.(1)求证:ADE BEC ≌△△.(2)若30,3AED AE ∠=︒=,求线段CD 的长度.22.细心观察图形,认真分析各式,然后回答问题:OA 12=1;222(1)OA =+1=2;223(2)OA =+1=3 224(3)OA =+1=4;…S 1=12;S 2=22;S 3=32;… 1010(2)直接用含n (n 为正整数)的式子表示OA n 的长和S n 的值;(3)求S 12+S 22+S 32+…+S 102的值.23.如图,长方体的长AB =5cm ,宽BC =4cm ,高AE =6cm ,三只蚂蚁沿长方体的表面同时以相同的速度从点A 出发到点G 处.蚂蚁甲的行走路径S 甲为:翻过棱EH 后到达G 处(即A →P →G ),蚂蚁乙的行走路径S 乙为:翻过棱EF 后到达G 处(即A →M →G ),蚂蚁丙的行走路径S 丙为:翻过棱BF 后到达G 处(即A →N →G ).(1)求三只蚂蚁的行走路径S 甲,S 乙,S 丙的最小值分别是多少?(2)三只蚂蚁都走自己的最短路径,请判断哪只最先到达?哪只最后到达?24.已知:在ABC 中,90BAC ∠=︒,AB AC =,点D 为BC 边上一动点(与点B 不重合),连接AD ,以AD 始边作()0180DAE αα∠=︒<<︒.(1)如图一,当90α=︒且AE AD =时,试说明CE 和BD 的位置关系和数量关系; (2)如图二,当45α=︒且点E 在边BC 上时,求证:222BD CE DE +=.25.在△ABC 中,∠A 、∠B 、∠C 的对边分别用a 、b 、c 来表示,且a 、b 、c 满足关系式:40a -+|a ﹣b +1|+(c ﹣9)2=0,试判断△ABC 的形状,并说明理由.26.如图,在△ABC 中,∠C=90°,若CD=1.5,BD=2.5;(1)∠2=∠B ,求AC 的长;(2)12∠=∠,求AC 的长.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】证明AD ∥CB′,推出S △ACB′=S △CDB′即可解决问题.【详解】∵D 是BC 的中点,∴BD DC =,由翻折的性质可知ADB ADB '∠=∠,DB DB '=,∴2BD CB '==,∴2CD DB CB ''===,∴CDB '是等边三角形, ∴60CDB DCB ''∠=∠=︒,120BDB '∠=︒, ∴120ADB ADB '∠=∠=︒, ∴60ADC CDB '∠=∠=︒, ∴ADC DCB '∠=∠, ∴//AD CB ',∴224ACB CDB S S ''==⨯=△△ 故选:C .【点睛】本题考查了折叠的性质,等边三角形的判定和性质,三角形的面积等知识,解题的关键是学会用转化的思想思考问题.2.D解析:D【分析】直接利用勾股定理的逆定理带入判断即可;【详解】A 、2226810+=,能组成直角三角形;B 、2221+= 能组成直角三角形; C 、22245()1()33+= ,能组成直角三角形;D 、22224+≠ ,不能组成直角三角形.故选:D .【点睛】本题考查了勾股定理逆定理的运算,正确掌握勾股定理的逆运算是解题的关键; 3.D解析:D【分析】利用等腰直角三角形的相关性质结合勾股定理以及对角度关系的推导证明对应选项的结论.【详解】解:∵4AC =,1CE =,∴413AE AC CE =-=-=,∵折叠,∴3DE AE ==,根据勾股定理,CD === ∴BC =,故①正确;4BD CB CD =-=- ∵41->,∴BD CE >,故②正确;∵45A EDF ∠=∠=︒,∴290EDF ∠=︒,∵()()9090451351354590CED CDE CDF CDF DFB DFB ∠=︒-∠=︒-∠-︒=︒-∠=︒-∠+︒=︒-∠,∴902CED DFB EDF ∠+∠=︒=∠,故③正确;∵4DCE C CD CE DE =++=,44BDF C BD DF BF BD AB =++=+=-=,∴DCE BDF C C =,故④正确.故选:D .【点睛】本题考查等腰直角三角形的性质和勾股定理的运用,解题的关键是掌握这些性质定理进行证明求解.4.A解析:A【分析】首先利用大正方形的面积减去周围三个三角形的面积计算出△ABC 的面积和AB 的长,利用三角形面积公式可得答案.【详解】过C 作CD ⊥AB 于D ,如图:∵2111321211122222ABC S =-⨯⨯-⨯⨯-⨯⨯=△, 且12ABC S AB CD =⋅△, ∵22125AB =+=,∴1322AB CD ⋅=, 则355CD ==, 故选:A .【点睛】本题主要考查了勾股定理与网格问题,关键是正确求出三角形面积.5.C解析:C【分析】此题最直接的解法,就是将圆柱展开,然后利用两点之间线段最短解答.【详解】沿着过点A 的高将圆柱侧面展开,再过点B 作高线BC ,如图:则,∠ACB=90°,AC=12⨯12=6(cm ),BC=8cm , 由“两点之间,线段最短”可知:线段AB 的长为蚂蚁爬行的最短路程,在Rt ABC ∆中,()22226810AB AC BC cm =+=+=,故选C .【点睛】本题考查了平面展开图最短路径问题,解题的关键是根据题意画出展开图,表示各线段的长度.6.C解析:C【分析】根据已知条件可知∠A =∠BCD =30°,在Rt △BCD 中设BD =x ,则BC =2x ,由勾股定理求得CD ,在Rt △ACD 中,AC =2BC =,根据△ABC 的面积为120,即11202AC BC ⨯=,求得2x 的值,用三角形的面积公式即可得出△BCD 的面积. 【详解】解:∵△ABC 中,∠ACB =90°,∠B =60°,CD ⊥AB 于点D ,∴在Rt △ABC 中,∠A =30°,在Rt △BCD 中,∠BCD =30°,∴ 设BD =x ,则BC =2BD =2x ,CD ==,∴ 在Rt △ACD 中,∠A =30°,∴AC =2BC =,∵△ABC 的面积为120,∴11212022ABC S AC BC x =⨯⨯=⨯⨯=,解得:2x∵21122BCD S BD CD x =⨯⨯=⨯=, 故选:C .【点睛】本题考查了直角三角形中,30°所对的直角边是斜边的一半和勾股定理.熟练掌握各定理所示解题的关键.7.B解析:B【分析】先根据勾股定理求得A 点坐标,再利用二分法估算即可得出比较接近-3.6.【详解】解:∵长方形的长为3,宽为2, ∴OA OB ==∴A所表示的数为∵23.612.9613=<,23.713.6913=>,∴-3.6和-3.7之间,∵23.6513.322513=>, ∴-3.6,故选:B .【点睛】本题考查勾股定理,算术平方根的估算.掌握二分法估算是解题关键.8.C解析:C【分析】连接PN 、PM .根据题意易证明APM APN ≅,即可证明①正确;根据三角形外角的性质即可求出=120ADB ∠︒,故②正确;由30BAD B ∠=∠=︒,可说明AD=BD ,再由AD=2CD ,即可证明BD=2CD ,故③正确;由④所给条件可求出AC 和DB 的长,即可求出DAB S ④错误.【详解】如图,连接PN 、PM .由题意可知AM=AN ,PM=PN ,AP=AP ,903060BAC ∠=︒-︒=︒.∴APM APN ≅, ∴1302CAD BAD BAC ∠=∠=∠=︒,即AD 是BAC ∠的平分线,故①正确; ∵=ADB C CAD ∠∠+∠,∴=9030=120ADB ∠︒+︒︒,故②正确;在Rt ACD △中,30CAD ∠=︒,∴AD=2CD ,又∵30BAD B ∠=∠=︒,∴AD=BD ,∴BD=2CD .故③正确;在Rt ABC 中,30B ∠=︒,∴12BC AB ==, ∴=1248BD BC CD -=-=,又在Rt ACD △中,30CAD ∠=︒, ∴AC ==,∴11==822DAB S BD AC ⨯⨯④错误.故选:C .【点睛】本题考查三角形全等的判定和性质,三角形外角的性质,等腰三角形的判定和性质,角平分线的判定以及勾股定理.熟练掌握各个知识点是解答本题的关键.9.C解析:C【分析】根据绝对值的非负性及算术平方根的非负性求出m=3,n=4,再分两种情况利用勾股定理求出第三边.【详解】 ∵340m n --=,340m n --≥≥,∴m-3=0,n-4=0,解得m=3,n=4,当3、4都是直角三角形的直角边长时,第三边长2234+;当3是直角边长,4是斜边长时,第三边长22437-=故选:C .【点睛】此题考查绝对值的非负性及算术平方根的非负性,勾股定理,根据绝对值的非负性及算术平方根的非负性求出m=3,n=4是解题的关键.注意:没有明确给出的是直角三角形直角边长还是斜边长时,应分情况求解第三边长.10.C解析:C【分析】先将已知条件配方后,利用非负数和为零,求出a 、b 、c 的值,利用勾股定理确定三角形的形状,设出c 边上的高,利用面积求解即可.【详解】 23|4|10250a b c c -+-+-+=()23|4|50a b c -+-+-=,()23|4|50a b c -+-+-=,30a ∴-=,40b -=,50c -=,解得:3a =,4b =,5c =,22222291653452a b c =+=+=+==,ABC ∆∴是直角三角形,设C 边上的高为h ,由直角三角形ABC 的面积为:1122c h a b =, 整理得3412===2.455a b h c ⨯=, c ∴边上的高为:2.4,故选择:C .【点睛】本题考查非负数的性质,勾股定理的逆定理,三角形面积问题,掌握判断非负数的标准,会利用非负数和求a 、b 、c 的值,会用勾股定理判断三角形的形状,会用多种方法求面积是解题的关键.11.C解析:C【分析】根据线段垂直平分线性质得出AD=BD ,再用勾股定理即可求出AC .【详解】解:∵点D 是线段AB 的垂直平分线与BC 的交点,BD=4,∴AD=BD=4, ∴22224223ACAD CD ; 故选:C .【点睛】本题考查了线段垂直平分线的性质,勾股定理的应用,掌握线段垂直平分线的性质是解题关键. 12.B解析:B【分析】先找出DE 最短时的位置,然后根据等腰三角形的性质,进行分类讨论,即可求出点P 的个数.【详解】解:在Rt △ABC 中,∠C=90°,设AD=CE=x ,则4CD x =-,由勾股定理,得:2222222(4)28162(2)8DE CD CE x x x x x =+=-+=-+=-+, ∴当2x =时,2DE 最小,即DE 最小,∴此时2AD CD CE BE ====,DE ==∵在直线AC 或直线BC 上找到一点P ,使得△PDE 是等腰三角形,则可分为三种情况进行分析:PD=PE ;PD=DE ,PE=DE ;如下图所示:点P共有7个点;故选:B.【点睛】本题考查了等腰三角形的性质,完全平方公式的应用,勾股定理,最短路径问题,解题的关键是熟练掌握所学的知识,正确的确定点P的位置,注意运用数形结合的思想进行解题.二、填空题13.5【分析】由作图痕迹得到图中各线段的长度后根据勾股定理即可得到解答【详解】解:由作图痕迹及题意可知:OB=2AB=1AB⊥OBOC=OA∴由勾股定理可知:故答案为5【点睛】本题考查尺规作图与勾股定理解析:5【分析】由作图痕迹得到图中各线段的长度后根据勾股定理即可得到解答.【详解】解:由作图痕迹及题意可知:OB=2,AB=1,AB⊥OB,OC=OA,∴由勾股定理可知:222222215OC OA OB AB==+=+=,故答案为5.【点睛】本题考查尺规作图与勾股定理的综合运用,熟练掌握常见图形的作图方法及勾股定理的应用是解题关键.14.或【分析】根据三角形的三边关系:两边之和大于第三边即可得到关于x 的不等式组求出x的取值范围再根据勾股定理即可列方程求解【详解】解:∵在△ABC中AC=1AB=xBC=3-x解得1<x<2;①∵1<x解析:43或53【分析】根据三角形的三边关系:两边之和大于第三边,即可得到关于x的不等式组,求出x的取值范围,再根据勾股定理,即可列方程求解.【详解】解:∵在△ABC 中,AC=1,AB=x ,BC=3-x .1313x x x x +>-⎧∴⎨+->⎩, 解得1<x <2;①∵1<x ,∴AC 不能为斜边,②若AB 为斜边,则x 2=(3-x )2+1,解得x=53,满足1<x <2, ③若BC 为斜边,则(3-x )2=1+x 2,解得x=43 ,满足1<x <2, 故x 的值为:43或53, 故答案为:43或53. 【点睛】本题主要考查了三角形的三边关系以及勾股定理,正确理解分类讨论是解题的关键. 15.【分析】作MQ ⊥BCNF ⊥AB 交于点O 作根据AAS 证明△得到由得出从而得出OMON 的长最后由勾股定理可求出MN 【详解】解:作MQ ⊥BCNF ⊥AB 交于点O 作MK ⊥AB 于点K 作∵四边形ABCD 是矩形∴M解析:262【分析】作MQ ⊥BC ,NF ⊥AB 交于点O ,作MM AD '⊥,NN AD '⊥,根据AAS 证明△M PM N NP ''≅∆得到PN MM ''=,NN M P ''=,由2BC AB =得出24NN '=,从而得出OM ,ON 的长,最后由勾股定理可求出MN .【详解】解:作MQ ⊥BC ,NF ⊥AB 交于点O ,作MK ⊥AB 于点K ,作MM AD '⊥,NN AD '⊥,∵四边形ABCD 是矩形,∴MK//AD//BC∴∠90KMM KMQ '=∠=︒∴M '、M 、Q 三点共线,∵∠90MPN =︒,∴∠90M PM N PN ''+∠=︒,∠90N PN PNN ''+∠=︒∴∠M PM PNN ''=∠又∠90PM M PN N ''=∠=︒,MP PN =∴△M PM N NP ''≅∆∴10PN MM ''==,NN M P ''=又∵10ON M P N P N M N M N N ''''+='=+=+则11AB NN '=+,5054104(10)BC ON NN '=+-=-+又∵2BC AB =,即104(10)2(11)NN NN ''-+=+∴24NN '=∴1014OM NN '=-=,1034ON NN '=+=在Rt OMN ∆中,222214341352262()MN ON OM mm =+=+== 故答案为:262.【点睛】此题主要考查了运用勾股定理示线段的长,作辅助线构造直角三角形是解答此题的关键. 16.29【分析】如图(见解析)先根据正方形的面积公式可得再利用勾股定理可得的值由此即可得出答案【详解】如图连接AC 由题意得:在中在中则正方形丁的面积为故答案为:29【点睛】本题考查了勾股定理的应用熟练掌 解析:29【分析】如图(见解析),先根据正方形的面积公式可得22230,16,17AB BC CD ===,再利用勾股定理可得2AD 的值,由此即可得出答案.【详解】如图,连接AC ,由题意得:22230,16,17AB BC CD ===,在ABC 中,90ABC ∠=︒, 22246AC AB BC ∴=+=,在ACD △中,90ADC ∠=︒,22229AD AC CD ∴=-=,则正方形丁的面积为229AD ,故答案为:29.【点睛】本题考查了勾股定理的应用,熟练掌握勾股定理是解题关键.17.【分析】作E关于AD的对称点M连接CM交AD于F连接EF过C作CN⊥AB于N再求出BD的长根据三角形面积公式求出CN根据对称性得CF+EF =CM根据垂线段最短得出CF+EF≥CM即可得出答案【详解】解析:120 13【分析】作E关于AD的对称点M,连接CM交AD于F,连接EF,过C作CN⊥AB于N,再求出BD 的长,根据三角形面积公式求出CN,根据对称性得CF+EF=CM,根据垂线段最短得出CF +EF≥CM,即可得出答案.【详解】作E关于AD的对称点M,连接CM交AD于F,连接EF,过C作CN⊥AB于N,∵AB=AC=13,BC=10,AD是BC边上的高,∴BD=DC=5,AD⊥BC,AD平分∠BAC,∴M在AB上,在Rt△ABD中,AD=12,∴S△ABC=12×BC×AD=12×AB×CN,∴CN=BC×AD÷AB=10×12÷13=12013,∵E关于AD的对称点M,∴EF=FM,∴CF+EF=CF+FM=CM,根据垂线段最短得出:CM≥CN,即CF+EF≥120 13,即CF+EF的最小值是120 13,故答案为:120 13.【点睛】本题考查了轴对称−最短路线问题,关键是画出符合条件的图形,掌握“点与直线上的所有点的连线中,垂线段最短”,是一道比较好的题目.18.7【分析】根据已知利用全等三角形的判定可得到△BCG≌△GJF从而得到正方形BEFG的面积=正方形ABCD的面积+正方形FHIJ的面积【详解】解:∵∠BGC+∠FGJ=90°∠GFJ+∠FGJ=90解析:7【分析】根据已知利用全等三角形的判定可得到△BCG≌△GJF,从而得到正方形BEFG的面积=正方形ABCD的面积+正方形FHIJ的面积.【详解】解:∵∠BGC+∠FGJ=90°,∠GFJ+∠FGJ =90°∴∠BGC =∠GFJ∵∠BCG=∠GJF,BG=GF∴△BCG≌△GJF∴CG=FJ,BC=GJ,∴BG2=BC2+CG2=BC2+FJ2∴正方形DEFG的面积=正方形ABCD的面积+正方形FHIJ的面积=4+3=7.【点睛】本题考查了对勾股定理几何意义的理解能力,根据三角形全等找出相等的量是解答此题的关键.19.【分析】应用勾股定理和正方形的面积公式可求解【详解】解:∵小正方形的面积是9∴AD=CD=3∴a=b-3∵4∴∴∵∴∴故答案为:【点睛】本题运用了勾股定理和正方形的面积公式关键是运用了数形结合的数学358【分析】应用勾股定理和正方形的面积公式可求解.【详解】解:∵小正方形ABCD 的面积是9,∴AD=CD=3,∴a=b-3,∵49a =, ∴94a =, ∴214b =, ∵222+=a bc , ∴222921+=44c ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭,∴c =,故答案为:4. 【点睛】本题运用了勾股定理和正方形的面积公式,关键是运用了数形结合的数学思想. 20.【分析】由勾股定理求出BC=5由折叠的性质得出CD=EDBC=BE 设AD=x 则CD=DE=得出解方程可求出答案【详解】∵直角三角形ABC 中AB=3AC=4∴BC=∵将△DBC 沿着直线BD 对折使得点C 解析:32【分析】由勾股定理求出BC=5,由折叠的性质得出CD=ED ,BC=BE ,设AD=x ,则CD=DE=4x -,得出2222(4)x x +=-,解方程可求出答案.【详解】∵直角三角形ABC 中,AB=3,AC=4,∴5=,∵将△DBC 沿着直线BD 对折,使得点C 刚好落在直线AB 上的点E 处,∴CD=ED ,BC=BE ,∴AE=BE-AB=5-3=2,设AD=x ,则CD=DE=4x -,∵222AD AE DE +=,∴2222(4)x x +=-, 解得:32x =.∴AD 32=. 故答案为:32. 【点睛】本题考查了图形的折叠以及勾股定理的应用,熟练掌握折叠的性质是解题的关键.三、解答题21.(1)证明见详解;(2)【分析】(1)根据已知可得到∠A =∠B =90°,DE =CE ,AD =BE 从而利用HL 判定两三角形全等; (2)由三角形全等可得到对应角相等,对应边相等,由已知可推出∠DEC =90°,由30,3AED AE ∠=︒=,可求得AD 、DE 的长,再利用勾股定理求得CD 的长即可.【详解】(1)∵AD ∥BC ,∠A =90°,∴∠A =∠B =90°,∵∠1=∠2,∴DE =CE .∵AD =BE ,在Rt △ADE 与Rt △BEC 中AD BE DE CE =⎧⎨=⎩, ∴Rt △ADE ≌Rt △BEC (HL )(2)由△ADE ≌△BEC 得∠AED =∠BCE ,AD =BE .DE=CE ,∴∠AED +∠BEC =∠BCE +∠BEC =90°.∴∠DEC =90°.在Rt △ADE 中又∵30,3AED AE ∠=︒=设AD =x ,则DE =2x,由勾股定理222AD AE DE +=,即2294x x +=解得x =∴在Rt △CDE 中由勾股定理,DC 2=DE 2+CE 2∴CD 【点睛】本题主要考查全等三角形的判定与性质的运用,熟练掌握等三角形的判定与性质的运用是解题关键.22.(1)OA 1010S =;(2)n OA =n S =;(3)554【分析】(1)根据前面几个线段的值平方得出规律221n OA n =+=,即可求出10OA 的长,根据前面几个三角形的面积得到规律2n S =10S 的值;(2)根据规律发现221n OA n =+=,2n S =(3)根据(2)中的规律得原式的值为()1123104⨯++++,即可求出结果.【详解】(1)∵22212OA =+=,22313OA =+=,22414OA =+=…,∴2210110OA =+=,∴10OA =∵12S =,22S =,32S =…,∴2n S =10S =;(2)由(1)可知,221n OA n =+=,即n OA =2n S =(3)222212310123104444S S S S ++++=++++()1551231044=⨯++++=. 【点睛】本题考查找规律,解题的关键是总结出题目中式子之间的规律进行计算求解.23.(1)三只蚂蚁的行走路径S 甲,S 乙,S 丙cm ,,cm ;(2)蚂蚁丙最先到达,蚂蚁甲最后到达【分析】(1)将长方体侧面展开,由行走路径最小值确定:路线为线段,根据勾股定理分别求出S甲,S 乙,S 丙的值即可;(2)比较S 甲,S 乙,S 丙的值即可得到答案. 【详解】解:(1)将长方体侧面展开,由行走路径最小值确定:路线为线段,∵长AB =5cm ,宽BC =4cm ,高AE =6cm , ∴EF =AB =5cm ,GF =BC =EH =4cm ,AE =BF =CG =6cm ,∴图1:S 甲=2222()114137AE EF G F '''++=+=(cm ) 图2:S 乙=2222()10555AE EH G H '''++=+=(cm ), 图3:S 丙=2222()96117AB BC C G '''++=+=(cm ),答:三只蚂蚁的行走路径S 甲,S 乙,S 丙的最小值分别是137cm ,55cm ,117cm ;(2)由(1)知,S 甲137cm ),S 乙5125cm ),S 丙117cm ). ∵137125117∴蚂蚁丙最先到达,蚂蚁甲最后到达. 【点睛】此题考查勾股定理的实际应用,立方体的平面展开图,正确理解题意,确定每只蚂蚁所走的路径构建直角三角形是解题的关键.24.(1)CE BD ⊥,CE BD =,理由见解析;(2)见解析 【分析】(1)利用等腰直角三角形的性质证明:ABD △≌ACE △,利用全等三角形的性质可得答案;(2)将AD 绕点A 逆时针旋转90︒,得到AG .连接EG ,CG ,同(1)理证明:90GCB ∠=︒,CG BD =,再证明:ADE ≌AGE ,可得:ED GE =,由勾股定理可得:222CG CE EG +=,等量代换后可得结论.【详解】解:(1)∵90BAC DAE ∠=∠=︒, ∴BAD CAE ∠=∠. 又BA CA =,AD AE =, ∴ABD △≌ACE △(SAS ), ∴CE BD =,45ACE B ∠=∠=︒.90BAC ∠=︒,AB AC =,∴ 45ACB B ∠=∠=︒,∴454590ECB ∠=︒+︒=︒, ∴CE BD ⊥.∴CE 与BD 位置关系是CE BD ⊥,数量关系是CE BD =.(2)将AD 绕点A 逆时针旋转90︒,得到AG .连接EG ,CG ,如图二,同(1)理:可得90GCB ∠=︒,CG BD =. ∵90DAG =︒∠,45DAE ∠=︒, ∴45GAE DAE ∠=∠=︒,∵AD AG =,AE AE =,∴ADE ≌AGE (SAS ). ∴ED GE =,又∵90GCB ∠=︒,∴222CG CE EG +=, ∴222BD EC DE +=. 【点睛】本题考查的是等腰直角三角形的性质,三角形全等的判定与性质,勾股定理的应用,掌握以上知识是解题的关键.25.△ABC 是直角三角形;理由见解析. 【分析】先求出a 、b 、c 的值,再通过计算得到a 2+c 2=b 2,根据勾股定理逆定理即可判断△ABC 是直角三角形. 【详解】解:△ABC 是直角三角形.理由是:据题意得:a ﹣40=0,a ﹣b +1=0,c ﹣9=0, 解得:a =40,c =9,b =41,∵a 2+c 2=402+92=1681, b 2=412=1681, ∴a 2+c 2=b 2,∴△ABC 是直角三角形. 【点睛】本题考查了勾股定理逆定理,算术平方根、绝对值、偶次方的非负性,根据题意求出a 、b 、c 的值是解题关键. 26.(1)2;(2)3.【分析】(1)根据∠2=∠B 可得AD=BD=2.5,再根据勾股定理即可求出AC 的长;(2)过D 作DE ⊥AB ,垂足为E ,由角平分线的性质可知CD=DE ,根据勾股定理可得出BE 的长,再判断出Rt △ACD ≌Rt △AED ,进而可得出AC=AE ,根据勾股定理即可解答. 【详解】解:(1)∵∠2=∠B ,BD=2.5, ∴AD=BD=2.5,在RtACD 中,222AC CD AD +=, ∵CD=1.5, ∴22222.5 1.52AC AD CD =-=-=;(2)过D 作DE ⊥AB ,垂足为E ,∵∠1=∠2, ∴CD=DE=1.5,在Rt △BDE 中,2222= 2.5 1.5BD DE --, ∵CD=DE ,AD=AD , ∴Rt △ACD ≌Rt △AED(HL), ∴AC=AE , ∴AB=AE+BE=AC+2,∴AB 2=AC 2+BC 2,即(AC+2)2=AC 2+(1.5+2.5)2, 解得AC=3. 【点睛】本题主要考查的是角平分线的性质及勾股定理、直角三角形全等的判定定理与性质,熟知角平分线的性质是解答此题的关键,难度适中.。
广州市华附奥校七年级数学上册第三单元《一元一次方程》检测(答案解析)
A.100(1+x)B.100(1+x)2C.100(1+x2)D.100(1+2x)
4.已知 和 是同类项,则式子 的值是()
A. B. C. D.
5.如图所示,直线 、 相交于点 ,“阿基米德曲线”从点 开始生成,如果将该曲线与每条射线的交点依次标记为2,-4,6,-8,10,-12,….那么标记为“-2020”的点在()
故选:A.
【点睛】
本题考查了数字的变化规律,正确理解题意,发现题目中数字的变化规律:每6个数重复出现是解题的关键.
10.C
解析:C
【分析】
根据所给图形得到后面图形比前面图形多的“树枝”的个数用底数为2的幂表示的形式,代入求值即可.
【详解】
∵图A2比图A1多出2个“树枝”,图A3比图A2多出4个“树枝”,图A4比图A3多出8个“树枝”,…,
…
第2020次操作,a2020=|-7+4|-10=-7.
故选:A.
【点睛】
本题考查了绝对值和探索规律.解题的关键是先计算,再观察结果是按照什么规律变化的.探寻规律要认真观察、仔细思考,善用联想来解决这类问题.
3.B
解析:B
【解析】
试题分析:设出四、五月份的平均增长率,则四月份的市场需求量是100(1+x),五月份的产量是100(1+x)2.故答案选B.
(1)第⑤个式子____,第⑩个式子_____;
(2)请用含n(n为正整数)的式子表示上述的规律,并证明.
22.观察下列单项式:﹣x,2x2,﹣3x3,…,﹣9x9,10x10,…从中我们可以发现:
广州市华附奥校一年级数学上册第一单元《准备课》单元检测(答案解析)
广州市华附奥校一年级数学上册第一单元《准备课》单元检测(答案解析)一、选择题1.明明比小兰多13个球,也就是小兰比明明少( )个球。
A. 11B. 12C. 132.下列说法正确的是()。
A. 自然数都是整数。
B. 小数的末尾加上0,小数变小。
C. 0.75000比75%小。
3.和()同样多。
A. B. C.4.数一数,图中表示()。
A. 3B. 4C. 55.把364变成三百六十四万,要在4的后面添上()个0A. 5B. 6C. 46.多的是()A. B.7.少的是()A. B.8.少的一组是()A. B.9.多的是()A. B.10.军军和楚楚都有一些气球,军军比楚楚多7个气球,楚楚比军军少( )个气球。
A. 6B. 7C. 无法确定11.数一数,图中表示()。
A. 4B. 5C. 10D. 9 12.数一数,下图中表示数字()。
A. 6B. 9C. 8D. 7二、填空题13.数一数,写一写。
________________________________________14.比一比,填一填。
________比________多。
________比________少。
15.比多________个,比少________个。
16.比多________个,比少________个。
17.下面有________个小朋友,________双手套。
每人发一双手套,结果发现________比________多。
18.多的画“√”,少的画“△”。
________________19.数一数。
________________________20.看图回答(1)从左向右数第4个图上有________个☆。
有5个☆的是从左数第________个图。
(2)第________个图的☆最多,第________个图的☆最少。
(3)从左数第________个图和第________个图的☆的个数合起来是7.(4)从左数第2个图的☆和第4个图的☆合起来是________个。
广州市华附奥校八年级数学上册第四单元《整式的乘法与因式分解》检测(答案解析)
一、选择题1.对于①2(2)(1)2x x x x +-=+-,②4(14)x xy x y -=-,从左到右的变形,表述正确的是( )A .都是因式分解B .都是乘法运算C .①是因式分解,②是乘法运算D .①是乘法运算,②是因式分解2.下列运算中,正确的个数是( )①2352x x x +=;②()326x x =;③03215⨯-=;④538--+= A .1个 B .2个 C .3个 D .4个3.若53x =,52y =,则235-=x y ( )A .34B .1C .23D .984.如图,对一个正方形进行了分割,通过面积相等可以证明下列哪个式子( )A .22()()x y x y x y -=-+B .222()2x y x xy y +=++C .222()2x y x xy y -=-+D .22()()4x y x y xy +=-+ 5.数151025N =⨯是( )A .10位数B .11位数C .12位数D .13位数 6.已知17x x +=1x x -的值为( ) A 3B .2± C .3D 37.已知5a b +=,2ab =-,则a 2+b 2的值为( ) A .21B .23C .25D .29 8.计算()()202020213232 -⨯的结果是( ) A .32- B .23- C .23 D .329.若|m ﹣3n ﹣2019|=1,则(2020﹣m +3n )2的值为( )A .1B .0C .1或2D .0或4 10.若|a |=13,b|=7,且a +b>0,则a -b 的值是( ). A .6或20 B .20 或-20C .6或-6D .-6或20 11.已知21102x y ⎛⎫++-= ⎪⎝⎭,则代数式2xy−(x +y )2=( )A .34B .54- C .12- D .54 12.下列运算正确的是( ) A .428a a a ⋅=B .()23624a a =C .6233()()ab ab a b ÷=D .22()()a b a b a b +-=+二、填空题13.已知210x x +-=,则代数式3222020x x ++的值为________.14.因式分解:316m m -=________.15.如图,把同样大小的黑色棋子摆放在正多边形的边上,按照这样的规律摆下去,则第6个图形需要黑色棋子的个数是______,第n 个图形需要的黑色棋子的个数是______.(n 为正整数)16.计算(7+1)(7﹣1)的结果等于_____.17.已知a +b =5,且ab =3,则a 3+b 3=_____.18.因式分解:(x +3)2-9=________.19.如图:一块直径为+a b 的圆形钢板,从中挖去直径分别为a 与b 的两个半圆,则剩下的钢板面积为______.20.已知22m mn -=,25mn n -=,则22325m mn n +-=________.三、解答题21.化简求值:()()()2262x y x y y y x x ⎡⎤⎣++⎦--÷,其中2,3x y ==-. 22.计算(1)()()()7332233532x x x x x -++⋅ (2)()()()()22223x y x y x x y x y ++--++23.计算:(1)23262x y x y -÷(2)()233221688x y z x y z xy +÷(3)运用乘法公式计算:2123124122-⨯24.先化简,再求值.()()()()22522334b a b a b a b a b +--+---,其中a ,b 满足()2210a b -+-=.25.好学的晓璐同学,在学习多项式乘以多项式时发现:(12x +4)(2x +5)(3x ﹣6)的结果是一个多项式,并且最高次项为:12x •2x •3x =3x 3,常数项为:4×5×(﹣6)=﹣120,那么一次项是多少呢? 根据尝试和总结她发现:一次项就是:12x ×5×(﹣6)+2x ×4×(﹣6)+3x ×4×5=﹣3x . 请你认真领会晓璐同学解决问题的思路、方法,仔细分析上面等式的结构特征,结合自己对多项式乘法法则的理解,解决以下问题:(1)计算(x +2)(3x +1)(5x ﹣3)所得多项式的最高次项为 ,一次项为 ; (2)若计算(x +1)(﹣3x +m )(2x ﹣1)(m 为常数)所得的多项式不含一次项,求m 的值;(3)若(x +1)2021=a 0x 2021+a 1x 2020+a 2x 2019+…+a 2020x +a 2021,则a 2020= .26.已知x 、y 为有理数,现规定一种新运算,满足1x y xy *=+.(1)求24*的值;(2)求(14)(2)*-的值;(3)探索()a b c *+与a b a c *+*的关系,并用等式把它们表达出来.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】根据因式分解的定义(把一个多项式化成几个整式积的形式,叫因式分解,也叫分解因式判断即可.将多项式×多项式变得多项式,是乘法运算.【详解】解:①2(2)(1)2x x x x +-=+-,从左到右的变形是整式的乘法;②4(14)x xy x y -=-,从左到右的变形是因式分解;所以①是乘法运算,②因式分解.故选:D .【点睛】此题考查了因式分解与乘法运算的定义的认识,解题的关键是掌握因式分解及乘法运算的定义.2.A解析:A【分析】①根据同类项的定义判断计算;②根据幂的乘方公式计算;③利用零指数幂和有理数的混合运算法则计算;④根据同类项的定义判断计算.【详解】∵2x 与3x 不是同类项,无法合并,∴①是错误的;∵()326x x =,∴②是正确的; ∵032112-1=1⨯-=⨯,∴③是错误的; ∵53-5+3=-2--+=,∴④是错误的;综上所述,只有一个正确,故选:A.【点睛】本题考查了合并同类项,幂的乘方,零指数幂,绝对值,有理数的混合运算,熟练掌握公式及其运算法则是解题的关键.3.D解析:D【分析】根据幂的乘方的逆运算,同底数幂的除法的逆运算进行计算.【详解】解:()()23232323955555328x y x y x y -=÷=÷=÷=. 故选:D .【点睛】本题考查幂的运算,解题的关键是掌握幂的乘方的逆运算,同底数幂的除法的逆运算. 4.B解析:B【分析】观察图形的面积,从整体看怎么表示,再从分部分来看怎么表示,两者相等,即可得答案.【详解】解:图中大正方形的边长为:x y +,其面积可以表示为:2()x y + 分部分来看:左下角正方形面积为2x ,右上角正方形面积为2y ,其余两个长方形的面积均为xy ,各部分面积相加得:222x xy y ++, 222()2x y x xy y ∴+=++故选:B .【点睛】本题考查了乘法公式的几何背景,明确几何图形面积的表达方式,熟练掌握相关乘法公式,是解题的关键.5.C解析:C【分析】利用同底数幂的乘法和积的乘方的逆运算,将原数改写变形即可得出结论.【详解】()1015105101051011252252253210 3.210N =⨯=⨯⨯=⨯⨯=⨯=⨯,∴N 是12位数,故选:C .【点睛】本题考查同底数幂的乘法和积的乘方的逆运算的应用,灵活运用基本运算法则对原式变形是解题关键. 6.C解析:C【分析】将1x x +=两边平方得出22x 15x +=,再求得21-⎛⎫ ⎪⎝⎭x x 即可得答案. 【详解】解:∵1x x+= ∴217⎛⎫+= ⎪⎝⎭x x ∴22127x x ++= ∴22x 15x += ∴22211-=x -2+=5-2=3x ⎛⎫ ⎪⎝⎭x x∴1=-±x x故选:C【点睛】 本题主要考查了利用完全平方公式的变形求值,熟练掌握完全平方公式是解题的关键 7.D解析:D【分析】根据完全平方公式得()2222a b a b ab +=+-,再整体代入即可求值.【详解】解:∵()2222a b a b ab +=++,∴()2222a b a b ab +=+-, ∵5a b +=,2ab =-,∴原式()252225429=-⨯-=+=. 故选:D .【点睛】本题考查完全平方公式,解题的关键是熟练运用完全平方公式进行计算.8.D解析:D【分析】利用积的乘方的逆运算解答.【详解】()()202020213232 -⨯ =20202020233322⎛⎫⎛⎫-⨯⨯ ⎪ ⎪⎝⎭⎝⎭=2020233322⎛⎫-⨯⨯ ⎪⎝⎭=32. 故选:D .【点睛】此题考查积的乘方的逆运算,掌握积的乘方的计算公式是解题的关键.9.D解析:D【分析】依据绝对值的性质,即可得到m ﹣3n =2020或2018,进而得出m ﹣3n 的值,再根据平方运算,即可得到(2020﹣m +3n )2的值.【详解】∵|m ﹣3n ﹣2019|=1,∴m ﹣3n ﹣2019=±1,即m ﹣3n =2020或2018,∴2020﹣m +3n =2020﹣(m ﹣3n )=0或2,∴(2020﹣m +3n )2的值为0或4,故选:D .本题考查绝对值的性质和代数式求值,利用整体思想求出m ﹣3n 的值且注意去绝对值时的两种情况.10.A解析:A【分析】先求出a b ,的值,根据条件+a b >0,确定=13a ,b=7±,分类代入-a b 求值即可.【详解】|a |=13,=13a ±,|b|=7,b=7±,∵+a b >0,∴=13a ,b=7±,当=13a ,b=7时,=1376a b --=,当=13a ,7b =-时,=13+720a b -=,则6a b -=或20.故选择:A .【点睛】本题考查条件限定求值问题,会根据限定条件求出字母的值,掌握分类思想求代数式的值是解题关键.11.B解析:B【分析】直接利用非负数的性质得出x ,y 的值,进而代入得出答案.【详解】∵|x +1|+(y−12)2=0, ∴x +1=0,y−12=0, 解得:x =−1,y =12, ∵2xy−(x +y )2=2xy−x 2−y 2−2xy =−x 2−y 2,∴当x =−1,y =12时, 原式=−(−1)2−(12)2=−1−14=−54. 故选:B .【点睛】 此题主要考查了非负数的性质,和完全平方公式,正确得出x ,y 的值是解题关键. 12.B解析:B根据同底数幂相乘法则、积的乘方法则、同底数幂除法法则、平方差公式依次计算判断.【详解】A 、426a a a ⋅=,故该项错误;B 、()23624a a =,故该项正确;C 、4624()()ab ab a b ÷=,故该项错误;D 、22()()a b a b a b +-=-,故该项错误;故选:B .【点睛】此题考查整式的计算法则,正确掌握整式的同底数幂相乘法则、积的乘方法则、同底数幂除法法则、平方差公式是解题的关键.二、填空题13.【分析】根据条件转换成x2+x=1后一个代数式化简后将条件代入即可【详解】解:由题意得:x2+x=1∴x3+2x2+2020=x(x2+x)+x2+2020=x+x2+2020=1+2020=202解析:【分析】根据条件转换成x 2+x =1,后一个代数式化简后将条件代入即可.【详解】解:由题意得:x 2+x =1,∴x 3+2x 2+2020=[x (x 2+x )+x 2]+2020=x +x 2+2020=1+2020=2021,故答案为:2021.【点睛】本题考查代数式的整体代入求解,关键在于如何将代数式转换成条件中的整体. 14.m (m+4)(m-4)【分析】原式提取公因式再利用平方差公式分解即可【详解】解:=m (m2-16)=m (m+4)(m-4)故答案为:m (m+4)(m-4)【点睛】此题考查了综合提公因式法和公式法分解解析:m (m+4)(m-4)【分析】原式提取公因式,再利用平方差公式分解即可.【详解】解:316m m -=m (m 2-16)=m (m+4)(m-4),故答案为:m (m+4)(m-4)【点睛】此题考查了综合提公因式法和公式法分解因式,熟练掌握因式分解的方法是解本题的关键.15.【分析】根据题意分析可得第一个图形需要黑色棋子的个数为2×3-3第二个图形需要黑色棋子的个数为3×4-4第三个图形需要黑色棋子的个数为4×5-5依此类推可得第n 个图形需要黑色棋子的个数为计算可得答案解析:()2n n +【分析】根据题意分析可得第一个图形需要黑色棋子的个数为2×3-3,第二个图形需要黑色棋子的个数为3×4-4,第三个图形需要黑色棋子的个数为4×5-5,依此类推可得第n 个图形需要黑色棋子的个数为()()()122n n n ++-+,计算可得答案.【详解】解:观察图形可得:第1个图形是三角形,有3条边,每条边上有2个点,重复了3个点,需要黑色棋子2×3-3个,第2个图形是四边形,有4条边,每条边上有3个点,重复了4个点,需要黑色棋子3×4-4个,第3个图形是五边形,有5条边,每条边上有4个点,重复了5个点,需要黑色棋子4×5-5个,按照这样的规律下去:则第n 个图形需要黑色棋子的个数是()()()()1222n n n n n ++-+=+,∴当n=6时,()26848n n +=⨯=;故答案为48;()2n n +.【点睛】本题主要考查图形规律及整式乘法的应用,关键是根据图形得到一般规律,然后问题可求解.16.6【分析】根据平方差公式计算【详解】(+1)(﹣1)=7-1=6故答案为:6【点睛】此题考查平方差计算公式:熟记公式是解题的关键解析:6【分析】根据平方差公式计算.【详解】﹣1)=7-1=6,故答案为:6.【点睛】此题考查平方差计算公式:22()()a b a b a b +-=-,熟记公式是解题的关键. 17.80【分析】先求出再将a +b =5代入a3+b3公式中计算即可【详解】∵a +b =5且ab =3∴∴∴故答案为:80【点睛】此题考查完全平方公式的变形计算立方和公式正确掌握立方和的计算公式是解题的关键解析:80【分析】先求出2216a b ab +-=,再将a +b =5,2216a b ab +-=代入a 3+b 3公式中计算即可.【详解】∵a +b =5,且ab =3,∴2222()253219a b a b ab +=+-=-⨯=,∴2222()353316a b ab a b ab +-=+-=-⨯=,∴3322()()51680a b a b a ab b +=+-+=⨯=故答案为:80.【点睛】此题考查完全平方公式的变形计算,立方和公式,正确掌握立方和的计算公式是解题的关键.18.x (x+6)【分析】根据平方差公式分解因式【详解】(x +3)2-9=(x+3+3)(x+3-3)=x (x+6)故答案为:x (x+6)【点睛】此题考查多项式的因式分解掌握因式分解的方法:提公因式法和公解析:x (x+6)【分析】根据平方差公式分解因式.【详解】(x +3)2-9=(x+3+3)(x+3-3)=x (x+6),故答案为:x (x+6).【点睛】此题考查多项式的因式分解,掌握因式分解的方法:提公因式法和公式法(平方差公式、完全平方公式)、分组分解法,根据多项式的特点选用恰当的方法分解因式是解题的关键.19.【分析】先求出圆形钢板的面积再减去两个小半圆的面积即可【详解】解:圆形钢板的面积为:直径为a 的半圆面积为:直径为b 的半圆面积为:剩下钢板的面积为:=故答案为:【点睛】本题考查了圆的面积利用面积的差求解析:()2248a b ab π++【分析】 先求出圆形钢板的面积,再减去两个小半圆的面积即可.【详解】 解:圆形钢板的面积为:2()2a b π+,直径为a 的半圆面积为:21()22a π⨯, 直径为b 的半圆面积为:21()22b π⨯, 剩下钢板的面积为:22211()()()22222a b a b πππ+-⨯-⨯, =()2248a b ab π++, 故答案为:()2248a b ab π++.【点睛】 本题考查了圆的面积,利用面积的差求出剩余钢板的面积,注意:圆的面积等于半径的平方乘以π.20.31【分析】由然后把代入求解即可【详解】解:由题意得:∴把代入得:原式=;故答案为31【点睛】本题主要考查代数式的值及整式的加减关键是对于所求代数式进行拆分然后整体代入求解即可解析:31【分析】由()()222232535m mn n m mn mn n+-=-+-,然后把22m mn -=,25mn n -=,代入求解即可.【详解】解:由题意得: ()()222232535m mn n m mn mn n +-=-+-,∴把22m mn -=,25mn n -=代入得:原式=325531⨯+⨯=;故答案为31.【点睛】本题主要考查代数式的值及整式的加减,关键是对于所求代数式进行拆分,然后整体代入求解即可. 三、解答题21.2x-3y ,13【分析】先根据整式的运算法则进行化简,然后将a 与b 的值代入原式即可求出答案.【详解】解:原式()222462x y y xy x =-+-÷()2462x xy x =-÷ 23x y =-当2,3x y ==-时,原式()2233=⨯-⨯-4913=+=.【点睛】本题考查了整式的混合运算和求值,能正确根据整式的运算法则进行化简是解题的关键. 22.(1)96322x x x -++(2)234y xy --【分析】(1)先计算积的乘方、同底数幂的乘法,再合并同类项即可得;(2)根据整式的混合运算顺序和运算法则计算可得.【详解】解:(1)()()()7332233532x x x x x -++⋅ 7963225272=x x x x x -⋅++96392272=5x x x x -++96322=x x x -++(2)()()()()22223x y x y x x y x y ++--++ ()()222224262=x y x xy x xy y -++-++222224262=x y x xy x xy y -++--+234=y xy --【点睛】本题主要考查整式的运算,解题的关键是熟练掌握整式混合运算顺序和运算法则. 23.(1)23y -;(2)22xyz x z +;(3)1【分析】(1)利用单项式除以单项式法则计算;(2)运用多项式除以单项式法则计算;(3)先将124122⨯化为(1231)(1231)+⨯-,利用平方差公式计算,再计算加减法.【详解】解:(1)23262x y x y -÷=23y -;(2)()233221688x y z x y z xy +÷=22xyz x z +;(3)2123124122-⨯=222123(1231)(1231)123(1231)1-+⨯-=--=. 【点睛】此题考查整式的计算法则:单项式除以单项式、多项式除以单项式、平方差公式,熟记法则是解题的关键.24.22315a b +; 27.【分析】根据非负数及整式的运算法则即可求解.【详解】解:∵()2210a b -+-=,∴a-2=0,1-b=0,∴a=2,b=1,∴原式=()2222251062334ab b a ab ab b ba +--+++--=222225054631ab b a a ab b b +--+++=22315a b + ∴当a=2,b=1时,原式=23215121527⨯+=+=.【点睛】本题考查整式的运算,解题的关键是熟练运用整式的运算法则.25.(1)15x 3,﹣11x ;(2)m =-3;(3)2021【分析】(1)求多项式的最高次项,把每个因式的多项式最高次项相乘即可;求一次项,含有一次项的有x ,3x ,5x ,这三个中依次选出其中一个再与另外两项中的常数相乘最终积相加,或者展开所有的式子得出一次项即可.(2)先根据(1)所求方法求出一次项系数,最后用m 表示,列出等式,求出m ; (3)根据前两问的规律可以计算出第(3)问的值.【详解】(1)由题意得:(x +2)(3x +1)(5x ﹣3)所得多项式的最高次项为x ×3x ×5x =15x 3,一次项为:1×1×(﹣3)x +2×3×(﹣3)x +2×1×5x =﹣11x ,故答案为:15x 3,﹣11x ;(2)依题意有:1×m ×(﹣1)+1×(﹣3)×(﹣1)+1×m ×2=0,解得m =﹣3;(3)根据题意可知2020a 即为2021(1)x +所得多项式的一次项系数,∵2021(1)x +展开之后x 的一次项共有2021个,且每一项的系数都为2021(111)1⨯⨯⨯=, ∴20202021202120212021(111)+(111)(111)2021a =⨯⨯⨯⨯⨯⨯++⨯⨯⨯=故答案为:2021.【点睛】本题考查多项式乘多项式以及对多项式中一次项系数的理解,根据题意找出多项式乘多项式所得结果的一次项系数与多项式乘多项式中每个多项式的一次项系数和常数项关系规律是解题关键.26.(1)9;(2)-27;(3)a b a c *+*=()a b c *++1.【分析】(1)根据1x y xy *=+,可以求得所求式子的值;(2)根据1x y xy *=+,可以求得所求式子的值;(3)根据1x y xy *=+,可以得到()a b c *+与a b a c *+*的关系,并用等式把它表达出来.【详解】解:(1)∵1x y xy *=+,∴24=24+1=8+1=9*⨯;(2)1x y xy *=+,∴(14)(2)=14(2)128127*-⨯-+=-+=-;(3))∵1x y xy *=+,∴()()11a b c a b c ab ac *+=++=++1111a b a c ab ac ab ac *+*=+++=+++∴a b a c *+*=()a b c *++1.【点睛】本题考查有理数的混合运算,解答本题的关键理解新定义,代入数据,注意由式子转化为具体数据的时候符号及运算顺序的变化,求出相应式子的值.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、初一数学代数式解答题压轴题精选(难)1.某校要将一块长为a米,宽为b米的长方形空地设计成花园,现有如下两种方案供选择. 方案一:如图1,在空地上横、竖各铺一条宽为4米的石子路,其余空地种植花草.方案二:如图2,在长方形空地中留一个四分之一圆和一个半圆区域种植花草,其余空地铺筑成石子路.(1)分别表示这两种方案中石子路(图中阴影部分)的面积(若结果中含有π,则保留)(2)若a=30,b=20,该校希望多种植物美化校园,请通过计算选择其中一种方案(π取3.14).【答案】(1)解:方案一:∵石子路宽为4,∴S石子路面积=4a+4b-16,方案二:设根据图象可知S石子路面积=S长方形-S四分之一圆-S半圆=ab- πb2- π( b)2=ab- πb2(2)解:已知a=30,b=20,故方案一:S石子路面积=184m2, S植物=600-184=416m2;方案二:S石子路面积=129m2,则S植物=600-129=471m2.故答案为:择方案二,植物面积最大为471m2。
【解析】【分析】(1)方案一:由图形可得S石子路=两条石子路面积-中间重合的正方形的面积;方案二:由题意可得S石子路= S长方形-S四分之一圆-S半圆;(2)把a、b的值的代入(1)中的两种方案计算即可判断求解.2.如图,老王开车从A到D,全程共72千米.其中AB段为平地,车速是30千米/小时,BC段为上山路,车速是22.5千米/小时,CD段为下山路,车速是36千米/小时,已知下山路是上山路的2倍.(1)若AB=6千米,老王开车从A到D共需多少时间?(2)当BC的长度在一定范围内变化时,老王开车从A到D所需时间是否会改变?为什么?(给出计算过程)【答案】(1)解:若AB=6千米,则BC=22千米,CD=44千米,从A到D所需时间为:=2.4(小时)(2)解:从A到D所需时间不变,(答案正确不回答不扣分)设BC=d千米,则CD=2d千米,AB=(72﹣3d)千米,t===2.4(小时)【解析】【分析】(1)根据题意可以求出AB,BC,CD的长,然后根据路程除以速度等于时间,即可分别算出老王开车行三段的时间,再求出其和即可;(2)从A到D所需时间不变,设BC=d千米,则CD=2d千米,AB=(72﹣3d)千米,,然后根据路程除以速度等于时间,即可分别表示出老王开车行三段的时间,再根据异分母分式加法法则求出其和,再整体代入即可得出结论;3.从2022年4月1日起龙岩市实行新的自来水收费阶梯水价,收费标准如下表所示:月用水量不超过15吨的部分超过15吨不超过25吨的部分超过25吨的部分收费标准2.23.34.4(元/吨)(2)某用户8月份用水量为24吨,求该用户8月份应缴水费是多少元.(3)若某用户某月用水量为m吨,请用含m的式子表示该用户该月所缴水费.【答案】(1)解:2.2×10=22元,答:该用户4月份应缴水费是22元,(2)解:15×2.2+(24﹣15)×3.3=62.7元,答:该用户8月份应缴水费是 62.7元(3)解:①当m≤15时,需交水费2.2m元;②当15<m≤25时,需交水费,2.2×15+(m﹣15)×3.3=(3.3m﹣16.5)元,③当m>25时,需交水费2.2×15+10×3.3+(m﹣25)×4.4=(4.4m﹣44)元.【解析】【分析】(1)先根据月用水量确定出收费标准,再进行计算即可;(2) 8月份应缴水费为:不超过15吨的水费+超出的9吨的水费;(3)分①m≤15吨,②15<m≤25吨,③m>25吨三种情况,根据收费标准列式进行计算即可得解。
4.小明是个爱动脑筋的同学,在发现教材中的用方框在月历中移动的规律后,突发奇想,将连续的偶数2,4,6,8,…,排成如表,并用一个十字形框架框住其中的五个数,请你仔细观察十字形框架中的数字的规律,并回答下列问题:(1)十字框中的五个数的和与中间的数16有什么关系?(2)设中间的数为x,用代数式表示十字框中的五个数的和;(3)若将十字框上下左右移动,可框住另外的五个数,其他五个数的和能等于2016吗?如能,写出这五个数,如不能,说明理由.【答案】(1)解:十字框中的五个数的和为6+14+16+18+26=80=16×5,∴十字框中的五个数的和为中间的数16的5倍(2)解:设中间的数为x,则另外四个数分别为x﹣10、x﹣2、x+2、x+10,∴十字框中的五个数的和为(x﹣10)+(x+10)+(x﹣2)+(x+2)+x=5x(3)解:假设能够框出满足条件的五个数,设中间的数为x,根据题意得:5x=2016,解得:x=403.2.∵403.2不是整数,∴假设不成立,∴不能框住五个数,使它们的和等于2016.【解析】【分析】(1)算出十字框中的五个数的和,即可发现是16的5倍;(2)设中间的数为x,则另外四个数分别为x﹣10、x﹣2、x+2、x+10 ,利用整式加法法则即可算出十字框中的五个数的和;(3)假设能够框出满足条件的五个数,设中间的数为x ,根据(2)计算的结果及这五个数的和是2016,,列出方程,求解如解是整数即可,不是整数即不可。
5.已知A,B在数轴上分别表示的数为m、n.(1)对照数轴完成下表:m 5﹣3﹣4﹣4n 2 0 3﹣2A、B两点间的距离________ 3________________(3)已知A,B在数轴上分别表示的数为x和﹣2,则A、B两点的距离d可表示为d=|x+2|,如果d=3,求x的值.(4)若数轴上表示数m的点位于﹣5和3之间,求|m+5|+|m﹣3|的值.【答案】(1)3;7;2(2)解:d=|m﹣n|,文字描述为:数轴上两点间的距离d等于表示两点数之差的绝对值(3)解:d=|x+2|根据题意得出:d=|x﹣(﹣2)|=|x+2|,如果d=3,那么3=|x+2|,解得x=1或﹣5(4)解:根据题意得出:∵﹣5<m<3,∴|m+5|+|m﹣3|=|5+3|=8【解析】【解答】解:(1)填表如下:m 5﹣3﹣4﹣4n 2 0 3﹣23 372A、B两点间的距离【分析】(1)结合数轴,得出两点间的距离公式,即可求解。
若A,B在数轴上分别表示的数为m、n,A,B两点间的距离为d,则d=|m﹣n|,根据此公式即可求解。
(2)根据(1)可得出结论。
(3)将d=3代入d=|x+2|,建立方程求解。
(4)根据已知可知﹣5<m<3,得出m+5>0,m-3<0,则|m+5|=m+5,|m﹣3|=-(m-3),就可得出结果。
6.将连续的偶数2,4,6,8……,排成如下表:(1)十字框中的五个数的和与中间的数16有什么关系?(2)设中间的数为x,用代数式表示十字框中的五个数的和,(3)若将十字框上下左右移动,可框住另外的五个数,其它五个数的和能等于2010吗?如能,写出这五个数,如不能,说明理由.【答案】(1)解:十字框中的五个数的和为6+14+16+18+26=80=16×5,即是16的5倍(2)解:设中间的数为x,则十字框中的五个数的和为:(x﹣10)+(x+10)+(x﹣2)+(x+2)+x=5x,所以五个数的和为5x(3)解:假设能够框出满足条件的五个数,设中间的数为x,由(2)得5x=2010,所以x=402,但402位于第41行的第一个数,在这个数的左边没有数,所以不能框住五个数,使它们的和等于2010【解析】【分析】(1)按有理数的加法法则计算出十字框中的五个数的和,再将这个和除以最中间的数16,即可发现关系;(2)设中间的数为x,则左边的数是(x-2),右边的数是(x+2),上边的数是(x-10),下边的数是(x+10),将这5个数相加,再合并同类项即可得出答案;(3)假设能够框出满足条件的五个数,设中间的数为x,由(2)得这五个数的和是5x,由五个数的和等于2010,列出方程,求解,得出x的值,由于所得的x的值位于第41行的第一个数,在这个数的左边没有数,所以不能框住五个数,使它们的和等于2010。
7.阅读下面材料:点A、B在数轴上分别表示实数a、b,A、B两点之间的距离表示为∣AB∣。
当A、B两点中有一点在原点时,不妨设点A在原点,如图1,∣AB∣=∣OB∣=∣b∣=∣a-b∣;当A、B两点都不在原点时,如图2,点A、B都在原点的右边∣AB∣=∣OB∣-∣OA∣=∣b∣-∣a∣=b-a=∣a-b∣;如图3,点A、B都在原点的左边,∣AB∣=∣OB∣-∣OA∣=∣b∣-∣a∣=-b-(-a)=∣a-b∣;如图4,点A、B在原点的两边,∣AB∣=∣OB∣+∣OA∣=∣a∣+∣b∣= a +(-b)=∣a-b∣;回答下列问题:(1)数轴上表示2和5的两点之间的距离是________,数轴上表示-2和-5的两点之间的距离是________,数轴上表示1和-3的两点之间的距离是________;(2)数轴上表示x和-1的两点A和B之间的距离是________,如果∣AB∣=2,那么x为________(3)当代数式∣x+1∣+∣x-2∣+∣x+3∣取最小值时,相应的x的值是________;此时代数式∣x+1∣+∣x-2∣+∣x+3∣的值是________.【答案】(1)3;3;4(2);1或-3(3)-1;5【解析】【解答】解:(1)数轴上表示2和5的两点之间的距离是|2-5|=3,数轴上表示-2和-5的两点之间的距离是|-2-(-5)|=3.数轴上表示1和-3的两点之间的距离是|1-(-3)|=4.(2)数轴上表示x和-1的两点A和B之间的距离是|x-(-1)|=|x+1|,如果|AB|=2,那么x为1或-3.(3)当代数式∣x+1∣+∣x-2∣+∣x+3∣取最小值时,,∴x+1≥0,x-2≤0,x+3≥0,∴-1≤x≤2.即当x取=-1时为最小值,此时代数式值为5【分析】(1)数轴上表示2和5的两点之间的距离是|2-5|,数轴上表示-2和-5的两点之间的距离是|-2-(-5)|;数轴上表示1和-3的两点之间的距离是|1-(-3)|;(2)数轴上表示x和-1的两点A和B之间的距离是|x-(-1)|=|x+1|,求出x的值;(3)当代数式∣x+1∣+∣x-2∣+∣x+3∣取最小值时,得到-1≤x≤2;求出代数式的值.8.用如图所示的甲、乙、丙木板做一个长、宽、高分别为a厘米,b厘米,h厘米的长方体有盖木箱(a>b),其中甲刚好能做成箱底和一个长侧面,乙刚好能做成一个长侧面和一个短侧面,丙刚好能做成箱盖和一个短侧面。
(1)填空:用含a、b、h的代数式表示以下面积:甲的面积________;乙的面积________;丙的面积________.(2)当h=20cm时,若甲的面积比丙的面积大200cm2,乙的面积为1400cm2,求a和b 的值;(3)现将一张长、宽分别为a厘米、b厘米的长方形纸板(如图①)分割成两个小长方形。