代数式单元测试
人教版七年级数学上册《第三章代数式》单元测试卷及答案

人教版七年级数学上册《第三章代数式》单元测试卷及答案【主干体系建】思维导图扫描考点【中考层级练】真题链接实战演练基础知识的应用1.用代数式表示:a与3的差的2倍.下列表示正确的是( )A.2a-3B.2a+3C.2(a-3)D.2(a+3)2.(2023·泰州中考)若2a-b+3=0,则2(2a+b)-4b的值为.3.为了丰富班级的课余活动,班级预购置5副羽毛球拍和20个羽毛球,一家文具店刚好有促销活动:买一副球拍送2个羽毛球,已知球拍每副a元,羽毛球每个b元.经过还价,在原有的促销基础上羽毛球拍每副降价20%,其他不变,最后一共要花元.基本技能(方法)、基本思想的应用4.(2023·常德中考)若a2+3a-4=0,则2a2+6a-3= ( )A.5B.1C.-1D.05.(2023·牡丹江中考)观察下面两行数:1,5,11,19,29,…;1,3,6,10,15,….取每行数的第7个数,计算这两个数的和是( )A.92B.87C.83D.786.(2023·重庆中考)用长度相同的木棍按如图所示的规律拼图案,其中第①个图案用了9根木棍,第②个图案用了14根木棍,第③个图案用了19根木棍,第④个图案用了24根木棍,…,按此规律排列下去,则第⑧个图案用的木棍根数是 ( )A .39B .44C .49D .547.(2023·娄底中考)从n 个不同元素中取出m (m ≤n )个元素的所有组合的个数,称从n 个不同元素中取出m 个元素的组合数,用符号C n m 表示,C n m =n(n -1)(n -2)…(n -m+1)m(m -1)…1(n ≥m ,n ,m 为正整数);例如:C 52=5×42×1,C 83=8×7×63×2×1,则C 94+C 95= ( )A .C 96B .C 104 C .C 105D .C 106 8. (2023·广元中考)在我国南宋数学家杨辉所著的《详解九章算法》(1261年)一书中,用如图的三角形解释二项和的乘方规律,因此我们称这个三角形为“杨辉三角”,根据规律第八行从左到右第三个数为 .实际生活生产中的应用9.(2024·潍坊期末)某商店去年12月份利润为a 元,今年1月份利润预计比去年12月份增加50%还多1 000元,则今年1月份利润预计为 ( )A .50%(a +1 000)元B .(50%a +1 000)元C .(150%a +1 000)元D .150%(a +1 000)元10.(2024·贵阳南明区期末)吕阿姨买了一套新房,她准备将地面全铺上地板砖,这套新房的平面图如图所示(单位:m),请解答下列问题:(1)用含a ,b 的代数式表示这套新房的面积;(2)若每铺1 m 2地板砖的费用为90元,当a =5,b =6时,求这套新房铺地板砖所需的总费用.参考答案【中考层级练】真题链接实战演练基础知识的应用1.用代数式表示:a与3的差的2倍.下列表示正确的是(C)A.2a-3B.2a+3C.2(a-3)D.2(a+3)2.(2023·泰州中考)若2a-b+3=0,则2(2a+b)-4b的值为-6.3.为了丰富班级的课余活动,班级预购置5副羽毛球拍和20个羽毛球,一家文具店刚好有促销活动:买一副球拍送2个羽毛球,已知球拍每副a元,羽毛球每个b元.经过还价,在原有的促销基础上羽毛球拍每副降价20%,其他不变,最后一共要花(4a+10b)元.基本技能(方法)、基本思想的应用4.(2023·常德中考)若a2+3a-4=0,则2a2+6a-3= (A)A.5B.1C.-1D.05.(2023·牡丹江中考)观察下面两行数:1,5,11,19,29,…;1,3,6,10,15,….取每行数的第7个数,计算这两个数的和是(C)A.92B.87C.83D.786.(2023·重庆中考)用长度相同的木棍按如图所示的规律拼图案,其中第①个图案用了9根木棍,第②个图案用了14根木棍,第③个图案用了19根木棍,第④个图案用了24根木棍,…,按此规律排列下去,则第⑧个图案用的木棍根数是 (B)A .39B .44C .49D .547.(2023·娄底中考)从n 个不同元素中取出m (m ≤n )个元素的所有组合的个数,称从n 个不同元素中取出m 个元素的组合数,用符号C n m 表示,C n m =n(n -1)(n -2)…(n -m+1)m(m -1)…1(n ≥m ,n ,m 为正整数);例如:C 52=5×42×1,C 83=8×7×63×2×1,则C 94+C 95= (C)A .C 96B .C 104 C .C 105D .C 106 8. (2023·广元中考)在我国南宋数学家杨辉所著的《详解九章算法》(1261年)一书中,用如图的三角形解释二项和的乘方规律,因此我们称这个三角形为“杨辉三角”,根据规律第八行从左到右第三个数为 21 .实际生活生产中的应用9.(2024·潍坊期末)某商店去年12月份利润为a 元,今年1月份利润预计比去年12月份增加50%还多1 000元,则今年1月份利润预计为 (C)A .50%(a +1 000)元B .(50%a +1 000)元C .(150%a +1 000)元D .150%(a +1 000)元10.(2024·贵阳南明区期末)吕阿姨买了一套新房,她准备将地面全铺上地板砖,这套新房的平面图如图所示(单位:m),请解答下列问题:(1)用含a ,b 的代数式表示这套新房的面积;(2)若每铺1 m 2地板砖的费用为90元,当a =5,b =6时,求这套新房铺地板砖所需的总费用.【解析】(1)由题图可得,新房的面积为(a2+2a+4b)m2. (2)当a=5,b=6时a2+2a+4b=52+2×5+4×6=25+10+24=59(m2)所以这套新房铺地板砖所需的总费用为59×90=5 310(元).。
专题2.9第3章代数式单元测试

2022-2023学年七年级数学上学期复习备考高分秘籍【苏科版】专题2.9第3章代数式单元测试(培优提升卷)注意事项:本试卷满分120分,试题共27题,其中选择8道、填空10道、解答9道.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一、选择题(本大题共8小题,每小题2分,共16分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.(2022·江苏·泰州市姜堰区第四中学七年级)代数式-0.3x 2y ,0,x 12,13x 2,13ab 2,-12,-2a 2b 3c 中单项式有( )A .7个B .4个C .5个D .6个2.(2022·江苏·七年级阶段练习)用代数式表示“a 的3倍与b 的差的平方”,正确的是( )A .3(a ﹣b )2B .(3a ﹣b )2C .3a ﹣b 2D .(a ﹣3b )2【答案】B【分析】因为a 的3倍为3a ,与b 的差是3a ﹣b ,所以再把它们的差平方即可.【详解】解:∵a 的3倍与b 的差为3a ﹣b ,∴差的平方为(3a ﹣b )2.故选:B .【点睛】本题考查列代数式,找到所求式子的等量关系是解决问题的关键.本题的易错点是得到被减式.列代数式的关键是正确理解题中给出的文字语言关键词,比如题干中的“倍”、“平方的差”,尤其要弄清“平方的差”和“差的平方”的区别.3.(2021·江苏·无锡市华庄中学七年级期中)下列运算正确的是( )A .3m ―2m =1B .m +m 2=m 3C.5m2―m2=4m4D.3m2+4m2=7m2【答案】D【分析】根据合并同类项法则逐项计算,即可求解.【详解】解:A选项,3m―2m=m,故本选项不合题意;B选项,m与m2不是同类项,所以不能合并,故本选项不合题意;C选项,5m2―m2=4m2,故本选项不合题意;D选项,3m2+4m2=7m2,故本选项符合题意.故选D.【点睛】本题考查合并同类项,掌握合并同类项法则是解题的关键.合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变.4.(2021·江苏·盐城市大丰区实验初级中学七年级阶段练习)如果2xay与x2yb是同类项,那么a+b的值是( )A.12B.32C.2D.35.(2021·江苏·盐城市大丰区实验初级中学七年级阶段练习)已知代数式M=2x2﹣1,N=x2﹣2,则无论x 取何值,它们的大小关系是( )A.M>N B.M=NC.M<N D.M,N的大小关系与x的取值有关【答案】A【分析】用作差法比较大小.【详解】解:M―N=2x2―1―(x2―2)=2x2―1―x2+2=x2+1∵x2≥0,∴x2+1>0,∴M>N,故选:A.【点睛】本题考查整式的加减,理解偶次幂的非负性,明白比较两个整式的大小常常用作差比较是解题关键.6.(2020·江苏·苏州市吴江区青云中学七年级阶段练习)若多项式2x3﹣8x2+x﹣1与多项式3x3+2mx2﹣5x+3的差不含二次项,则m等于()A.2B.﹣2C.4D.﹣4【答案】D【分析】直接利用整式的加减运算法则得出8+2m=0,进而得出答案.【详解】解:∵多项式2x3﹣8x2+x﹣1与多项式3x3+2mx2﹣5x+3的差不含二次项,∴2x3﹣8x2+x﹣1﹣(3x3+2mx2﹣5x+3)=﹣x3﹣(8+2m)x2+6x﹣4,∴8+2m=0,解得:m=﹣4,故D正确.故选:D.【点睛】此题主要考查了整式的加减,正确合并同类项是解题关键.7.(2022·江苏扬州·七年级阶段练习)找出图形变化的规律,则第2022个图形中黑色正方形的数量是()A.2019B.2020C.3032D.3033【答案】D【分析】仔细观察图形并从中找到规律,然后利用找到的规律即可得到答案.【详解】解:观察图形可知:第1个图形中黑色正方形的数量是2,第2个图形中黑色正方形的数量是3,第3个图形中黑色正方形的数量是5,…发现规律:8.(2020·江苏·镇江市丹徒区江心实验学校七年级阶段练习)把四张形状大小完全相同的小长方形卡片(如图①)不重叠地放在一个底面为长方形(长为m,宽为n)的盒子底部(如图②),盒子底面未被卡片覆盖的部分用阴影表示,则图②中两块阴影部分的周长和是()A.4m B.4n C.2(m+n)D.4(m-n)【答案】B【分析】本题需先设小长方形卡片的长为a,宽为b,再结合图形得出上面的阴影周长和下面的阴影周长,再把它们加起来即可求出答案.【详解】解:设小长方形卡片的长为a,宽为b,∴L上面的阴影=2(n-a+m-a),L下面的阴影=2(m-2b+n-2b),∴L总的阴影=L上面的阴影+L下面的阴影=2(n-a+m-a)+2(m-2b+n-2b)=4m+4n-4(a+2b),又∵a+2b=m,∴4m+4n-4(a+2b)=4n,故选:B.【点睛】本题主要考查了整式的加减运算,在解题时要根据题意结合图形得出答案是解题的关键.第II卷(非选择题)二、填空题9.(2022·江苏·七年级专题练习)多项式3x2y2﹣2xy2―1xy的二次项系数为_____.310.(2022·江苏·七年级专题练习)若b﹣a=3,ab=1,则3a﹣3b(a+1)=_____.【答案】―12【分析】所求式子去括号整理后,将b―a=3,ab=1代入计算即可求出值.【详解】解:∵b―a=3,ab=1∴3a―3b(a+1)=3a―3ab―3b=―3(b―a)―3ab=―3×3―3×1=―9―3=―12故答案为:―12.【点睛】本题考查了整式的加减、化简求值,熟练掌握去括号法则,合并同类项法则是解题的关键.11.(2022·江苏·七年级)已知关于x,y的多项式x4+(m+2)xny﹣xy2+3,其中n为正整数.当m,n为__时,它是五次四项式.【答案】n=4,m≠﹣2【分析】根据多项式的概念解答即可;【详解】解:∵多项式x4+(m+2)x n y﹣xy2+3是五次四项式,∴n+1=5,m+2≠0,解得,n=4,m≠﹣2,故答案为:n=4,m≠﹣2.【点睛】本题考查的是多项式的概念,几个单项式的和叫做多项式,每个单项式叫做多项式的项,其中不含字母的项叫做常数项,多项式中次数最高的项的次数叫做多项式的次数,解题关键是掌握基本概念.12.(2022·江苏·七年级专题练习)若代数式﹣2xay4与5x²y2+b可以合并同类项,则ab=__.【答案】4【分析】根据同类项的定义,所含字母相同,相同字母的指数也相同,进行计算即可解答.【详解】解:∵代数式―2x a y4与5x2y2+b可以合并同类项,∴a=2,2+b=4,∴a=2,b=2,∴ab=22=4,故答案为:4.【点睛】本题考查了合并同类项,熟练掌握同类项的定义是解题的关键.13.(2022·江苏·文林中学七年级阶段练习)若a,b互为相反数,c,d互为倒数,m的绝对值等于2,则(a +b)+c×d+m=_______.【答案】3或-1##-1或3【分析】由题意可知:a+b=0,cd=1,|m|=2,代入代数式后即可求出答案.【详解】解:由题意可知:a+b=0,cd=1,|m|=2,∴m=±2,当m=2时,∴(a+b)+c×d+m=1+2=3,当m=-2时,∴(a+b)+c×d+m=1-2=-1.故答案为:3或-1.【点睛】本题考查代数式求值问题,涉及相反数,倒数,绝对值等知识,属于基础题型.14.(2020·江苏·无锡市太湖格致中学七年级期中)若代数式2x2+ax―y+6―2bx2―3x+5y―1的值a3―2b2―3―3b2=______.与字母x所取的值无关,代数式13##-1.25【答案】―54【分析】先化简代数式,根据题意可知含x项的系数为0,进而求得a,b的值,代入代数式即可求解.【详解】解:∵2x2+ax―y+6―2bx2―3x+5y―1=2x2+ax―y+6―2bx2+3x―5y+1=2(1―b)x2―(a+3)x―6y+7∵代数式2x2+ax―y+6―2bx2―3x+5y―1的值与字母x所取的值无关,∴2(1―b)=0,a+3=015.(2022·江苏·七年级专题练习)某同学做作业时把代数式化简后的结果5(a―3)错抄成了5a―3,抄错后代入a的值答案为y,正确答案应为x,则x―y的值为__.【答案】-12【分析】根据题意x=5(a―3),y=5a―3,将两式相减即可【详解】解:x-y=5(a―3)―(5a―3)=-15+3=-12.故答案为:―12.【点睛】本题考查了代数式的化简求值,确定x、y对应的式子是解题的关键16.(2022·江苏扬州·七年级阶段练习)如图,在数轴上,A1、P两点表示的数分别为1、2,A1、A2关于O 对称,A2、A3关于点P对称,A3、A4关于点O对称,A4、A5关于点P对称…依此规律,则点A2019表示的数是_______.【答案】4037【分析】根据题意可以写出前几个数,然后即可发现当n为奇数时,A n点表示的数为2n-1,从而可以求得点A2019表示的数.【详解】解:由题意可得,A1点表示的数为1,A2点表示的数为−1,A3点表示的数为5,A4点表示的数为-5,A5点表示的数为9,A6点表示的数为-9,…,∴当n为奇数时,A n点表示的数为2n-1;当n为偶数时,A n点表示的数为A n-1的相反数;∴点A2019表示的数是:2×2019-1=4037,故答案为:4037.【点睛】本题考查了规律型—数字的变化类、数轴,解答本题的关键是明确题意,发现数字的变化特点,写出相应的数据.17.(2022·江苏·靖江市实验学校七年级阶段练习)若规定[a]表示不超过a的最大整数,例如[4.3]=4,若m=[π],n=[-2.1]-m的值为____.18.(2022·江苏盐城·七年级阶段练习)国庆节,广场上要设计一排灯笼增强气氛,其中有一个设计由如图所示图案逐步演变而成,其中圆圈代表灯笼,n代表第n次演变过程,s代表第n次演变后的灯笼的个数.仔细观察下列演变过程,当n=6时,s=__________.【答案】94【分析】根据图形的变化规律,结合数字规律列出式子求解即可.【详解】解:∵S1=1,S2=S1+3=4=3×(2-1)+1,S3=S2+6=10=3×(22-1)+1,S4=S3+6=22=3×(23-1)+1,…,S n=3×(2n-1-1)+1∴当n=6时,S6=3×(26-1-1)+1=94,故答案为:94.【点睛】本题考查了图形和数字规律,解题的关键是找到合适的规律列出代数式.三、解答题19.(2022·江苏·七年级单元测试)计算(1)(4a3b―10b3)+(―3a2b2+10b3);(2)3x2―5x――3+2x2.20.(2021·江苏·泰州中学附属初中七年级阶段练习)化简求值:7a2b+2(2a2b﹣3ab2)﹣3(4a2b+ab2),其)2=0.中a,b满足|a+2|+(b﹣1221.(2017·江苏·句容市后白中学七年级期中)(1)试计算a、b取不同数值时,a2-b2及(a+b)(a-b)的值,填入下表:a、b的值当a=3,b=2时当a=-2,b=-5时a2-b2(a+b)(a-b)(2)我的发现:.(3)请用你发现的规律计算:68.52-31.52.(3)68.52―31.52=(68.5+31.5)(68.5―31.5)=100×37=3700.22.(2017·江苏扬州·七年级期中)已知a2+ab=3,ab―b2=―2,求下列代数式的值.(1)a2+b2 (2)a2+2ab―b2【答案】(1)5;(2)1.【分析】观察两式,可以发现a2+ab+(ab-b2)=a2+2ab-b2,a2+ab-(ab-b2)=a2+b2,则可求解.【详解】解:(1)a2+ab-(ab-b2)=a2+b2=3-(-2)=5;(2)a2+ab+(ab-b2)=a2+2ab-b2=3+(-2)=1.【点睛】考核知识点:整式加减法.23.(2021·江苏扬州·七年级期中)小明做一道题:“已知两个多项式A、B,其中A=3a2﹣3ab+3,计算:A﹣2B.”他将A﹣2B误写成2A﹣B,结果答案是4a2﹣3ab+8.(1)求多项式B;(2)求A﹣2B的正确结果;(3)比较A、B的大小.【答案】(1)B=2a2―3ab―2;(2)A―2B=―a2+3ab+7;(3)A>B【分析】(1)根据已知结合去括号法则以及合并同类项,即可得出答案;(2)直接去括号,进而合并同类项,即可得出答案;(3)利用A﹣B,结合非负数的性质得出答案.【详解】解:(1)由题意得,2(3a2﹣3ab+3)﹣B=4a2﹣3ab+8,∴B=2(3a2﹣3ab+3)﹣(4a2﹣3ab+8)=2a2﹣3ab﹣2;(2)A﹣2B=3a2﹣3ab+3﹣2(2a2﹣3ab﹣2)=3a2﹣3ab+3﹣4a2+6ab+4=﹣a2+3ab+7;(3)A﹣B=(3a2﹣3ab+3)﹣(2a2﹣3ab﹣2)=a2+5>0,∴A>B.【点睛】本题主要考查了整式的加减,正确去括号、合并同类项是解答此题的关键.24.(2021·江苏常州·七年级期中)如图,用三种大小不同的六个正方形和一个缺角的长方形拼成大长方形ABCD,其中GH =1,HM =3,设BF=a(1)用含a的代数式表示CN= cm,DN= cm(2)用含a的代数式表示大长方形ABCD的周长【答案】(1)(a+1),3a;(2)18a+8【分析】(1)根据正方形的性质和线段的和差关系即可得出CN和DN,(2)先求出长方形ABCD的长和宽,再用2×(长+宽)即可得出长方形ABCD的周长.【详解】(1)CN=BF+HG=a+1,DN=MN=NH-MH=3NC-MH=3×(a+1)-3=3a;(2)DC=CN+DN=a+1+3a=4a+1BC=a×2+(a+1)×3=2a+3a+3=5a+3C长ABCD=(4a+1+5a+3)×2=18a+8.【点睛】此题考查了列代数式和整式的加减,主要是能够用不同的方法表示同一个长方形的宽,注意各个正方形的边长之间的数量关系.25.(2021·江苏扬州·七年级期中)规定一种运算|a b c d|=ad―bc,如|2345|=2×5-4×3=-2,|x124|=4x―2,按照这种规定,请解答下列问题:(1)计算:|60.5412|= ;|―34―25|= ;|2―3x3―5x|= ;(2)当|x+1|=0时,求|―4x2+2x3―2x2+3x2|的值(要求写出计算过程).26.(2019·江苏·七年级期中)某服装厂生产一种夹克和T恤,夹克每件定价180元,T恤每件定价60元,厂家在开展促销活动期间,向顾客提供了两种优惠方案:①买一件夹克送一件T恤;②夹克和T恤都按定价的80%付款;现在某客户要到该厂购买夹克30件,T恤x件(x>30).(1)若该客户按方案①购买付款元(用含x的式子表示);若该客户按方案②购买付款元(用含x的式子表示).(2)当x=50时,通过计算说明方案①、方案②哪种方案购买较为合算?(3)当x=50时,你能给出更为省钱的购买方案吗?试写出你的购买方法.【答案】(1)(40x+1800),(32x+2400);(2)按方案1购买较为合算;(3)先利用方案1购买30件夹克会送30件T恤,再利用方案2购买T恤20件.【分析】(1)按照两种优惠方案分别表示两种方案的付款数;列代数式即可解决问题;(2)把x=50代入(1)求出的式子,再进行比较即可;(3)分两次购买比较省钱:先利用方案1购买30件夹克,再利用方案2购买T恤10件.【详解】解:(1)该客户按方案1购买,夹克需付款30×180=5400(元),T恤需付款60(x―30),夹克和T恤共需付款:30×180+60(x―30)=60x+3600(元);若该客户按方案2购买,夹克和T恤共需付款:30×180×80%+60×80%x=48x+4320(元),故答案为(40x+1800),(32x+2400);(2)当x=50时,按方案1购买所需费用=60×50+3600=6600(元);按方案2购买所需费用=48×50+4320=6720(元),所以按方案1购买较为合算.(3)当x=50时,30×180+20×60×80%=6360;∴最为省钱的购买方案是:先利用方案1购买30件夹克会送30件T恤,再利用方案2购买T恤20件.【点睛】本题考查了列代数式,解决问题的关键是读懂题意,找到所求的量之间关系.27.(2021·江苏·七年级专题练习)阅读材料:“整体思想”是中学数学解题中的一种重要的思想方法,如把某个多项式看成一个整体进行合理变形,它在多项式的化简与求值中应用极为广泛.例:化简4(a+b)―2(a+b)+(a+b).解:原式=(4―2+1)(a+b)=3(a+b).参照本题阅读材料的做法解答:(1)把(a―b)6看成一个整体,合并3(a―b)6―5(a―b)6+7(a―b)6的结果是.(2)已知x2―2y=1,求3x2―6y―2021的值.(3)已知a―2b=2,2b―c=―5,c―d=9,求(a―c)+(2b―d)―(2b―c)的值.【答案】(1)5(a―b)2;(2)―2018;(3)6【分析】(1)利用合并同类项进行计算即可;(2)把3x2-6y-2021的前两项提公因式3,再代入求值即可;(3)利用已知条件求出a-c,2b-d的值,再代入计算即可.【详解】解:(1)3(a-b)2-5(a-b)2+7(a-b)2=(3-5+7)(a-b)2=5(a-b)2,故答案为:5(a-b)2.(2)∵x2―2y=1∴3x2―6y―2021=3(x2―2y)―2021=3×1―2021=―2018(3)∵a―2b=2,2b―c=―5,c―d=9∴a―2b+2b―c=a―c=2―5=―32b―c+c―d=2b―d=―5+9=4则(a―c)+(2b―d)―(2b―c)=―3+4―(―5)=―3+4+5=6【点睛】此题主要考查了整式的加减--化简求值,关键是掌握整体思想,注意去括号时符号的变化.。
代数式单元测试卷(初中数学)附答案

代数式单元测试卷一.选择题(共10小题共20分)1.计算-3(x -2y )+4(x -2y )的结果是( )A .x -2yB .x+2yC .-x-2yD .-x+2y2.若2y m+5x n+3与-3x 2y 3是同类项,则m n =( )A .21B .21- C .1 D .-2 3.下列各式中,是3a 2b 的同类项的是( )A .2x 2yB .-2ab 2C .a 2bD .3ab4.若-x 3y m 与x n y 是同类项,则m+n 的值为( )A .1B .2C .3D .45.下列计算正确的是( )A .3a -2a =1B .x 2y-2xy 2=-xy 2C .3a 2+5a 2=8a 4D .3ax-2xa=ax6.若单项式2x n y m-n 与单项式3x 3y 2n 的和是5x n y 2n ,则m 与n 的值分别是( )A .m =3,n =9B .m =9,n =9C .m =9,n =3D .m =3,n =37.下列判断错误的是( )A .若x <y ,则x +2010<y +2010B .单项式7432y x -的系数是-4 C .若|x -1|+(y -3)2=0,则x =1,y =3 D .一个有理数不是整数就是分数8.化简m-n-(m+n )的结果是( )A .0B .2mC .-2nD .2m -2n 9.已知a ,b 两数在数轴上对应的点的位置如图所示,则化简代数式|a+b|-|a-2|+|b+2|的结果是( )A .2a+2bB .2b +3C .2a -3D .-110.若x-y =2,x-z =3,则(y-z )2-3(z-y )+9的值为( )A .13B .11C .5D .7 二.填空题(共10小题共30分)11.如果单项式-xy b+1与21x a-2y 3是同类项,那么(a-b )2015= . 12.若单项式2x 2y m 与331y x n -的和仍为单项式,则m+n 的值是 .13.若-2x 2y m 与6x 2n y 3是同类项,则mn = .14.单项式-4x 2y 3的系数是 ,次数 .15.单项式322y x -的系数与次数之积为 . 16.多项式 与m 2+m-2的和是m 2-2m .17.多项式-2m 2+3m -21的各项系数之积为 . 18.在代数式3xy 2,m ,6a 2-a +3,12,22514xy yz x -,ab 32中,单项式有 个,多项式有 个.19.单项式-2πa 2bc 的系数是 .20.观察一列单项式:x ,3x 2,5x 3,7x ,9x 2,11x 3…,则第2013个单项式是 .三.解答题(共6小题共70分21题每小题4分、每题6分、27与28题各8分21.(每小题4分)合并同类项①3a-2b-5a+2b②(2m+3n-5)-(2m-n-5)③2(x 2y+3xy 2)-3(2xy 2-4x 2y )22.(每小题4分)化简:(1)16x-5x+10x(2)7x-y+5x-3y+3(3)a 2+(2a 2-b 2)+b 2(4)6a 2b+(2a+1)-2(3a 2b-a )23.(6分)已知|a-2|+(b+1)2=0,求5ab2-[2a2b-(4ab2-2a2b)]的值。
人教版七年级数学上册《第三章代数式》单元测试卷-附答案

人教版七年级数学上册《第三章代数式》单元测试卷-附答案一、单选题1.下列各式中,符合代数式书写规则的是( )A .5x ⨯B .112xy C .2.5t D .1x y -÷2.当2m =-,5n =时,代数式()3m n -+的值是( )A .6B .6-C .9D .9-3.代数式()55y -的正确含义是( )A .5乘y 减5B .y 的5倍减去5C .y 与5的差的5倍D .5与y 的积减去54.小明家距离学校m p ,小明从家出发骑车h t 可到学校,若要提前1h 到校(1t >),则每小时需行驶( )A .1m p t ⎛⎫+ ⎪⎝⎭B .1m pt ⎛⎫- ⎪⎝⎭ C .m 1pt - D .m 1pt +5.已知5x =,2y =且x y x y +=--,则x y -的值为( )A .3±B .3±或7±C .3-或7D .3-或7-6.当2x =时,代数式31px qx ++的值为2024,则当2x =-时,代数式31px qx ++的值为( ) A .2022 B .2022- C .2021 D .2021-7.按如图所示的运算程序,能使运算输出的结果为1的是( )A .3x = 4y =B .=1x - 1y =-C .2x = 1y =-D .2x =- 3y =8.已知x ,y ()22310x y --=,则下列式子的值最大的是( ).A .x y +B .x y -C .xyD .y x9.如图所示的正方形是由四个等腰直角三角形拼成的,则阴影部分的面积为( )A .22m n +B .22m n -C .2mnD .4mn10.已知四个不同的整数a b c d 、、、满足等式()()()()2015122479a b c d ----=,则+++a b c d 的值为( )A .0B .2015C .2058D .2067二、填空题11.小明买单价p 元的商品3件,给卖家q 元,应找回 元.12.设a b 、互为相反数,、c d 互为倒数,则()2024a b cd +-值是 .13.学校买来20个足球,每个a 元,又买来b 个篮球,每个58元.2058a b +表示 ;当45a = 10b = 则2058a b += 元.14.如图,一个瓶身为圆柱体的玻璃瓶内装有高a 厘米的墨水,将瓶盖盖好后倒置,墨水水面高为h 厘米,则瓶内的墨水的体积约占玻璃瓶容积的 .三、解答题15.线段AB 上有一点C ,AC 的长度是BC 的3倍少2,若BC 的长度用x 表示,则表示出AB 的长度.16.已知有理数a ,b ,c ,d ,e 其中a ,b 互为倒数,c ,d 互为相反数,e 的绝对值为2,求1325c d ab e +++的值.17.若||2a =,b 既不是正数也不是负数,c 是最大的负整数.(1)分别求出a 、b 、c 的值;(2)求2022a b c +-的值.18.如图,是由长方形、正方形、三角形及圆组成的图形(长度单位:m ).(1)用式子表示图中阴影部分的面积:(2)按照图所示的尺寸设计并画出一个新的图形,使其面积等于参考答案1.C2.D3.C4.C5.D6.B7.D8.A9.C10.C11.()3q p -12.1-13. 买20个足球和b 个篮球一共的价钱 1480 14.a a b +/a b a + 15.42x -16.162或152- 17.(1)2a =± 0b = 1c =-;(2)3或1 18.(1)(2)。
新人教版初中数学七年级上册第三单元《代数式》单元测试卷(解析版)

新⼈教版初中数学七年级上册第三单元《代数式》单元测试卷(解析版)⼀⼆三四总分⼀、选择题(每题3分,共30分)(共10题;共30分)1.(3分)(2024七上·曲阳期末)代数式a−b2的意义表述正确的是( )A.a减去b的平方的差B.a与b差的平方C.a、b平方的差D.a的平方与b的平方的差2.(3分)(2023七上·槐荫期中)下列各式符合代数式书写规范的是( )A.a9B.x﹣3元C.st D.227x3.(3分)(2021七上·永州月考)下列式子不是代数式的是( )A.xy+4B.a+bx C.-8+2=-6D.1x+54.(3分)(2023七上·雁峰月考)按如图所示的程序计算,若开始输入的值为x=3,则最后输出的结果是( )A.156B.231C.6D.215.(3分)(2023九上·大埔期末)十八世纪伟大的数学家欧拉最先用记号f(x)的形式来表示关于x的多项式,把x等于某数n时一的多项式的值用f(n)来表示.例如x=1时,多项式f(x)=2x2−x+3的值可以记为f(1),即f(1)=4.我们定义f(x)=ax3+3x2−2bx−5.若f(3)=18,则f(−3)的值为( )A.−18B.−22C.26D.326.(3分)(2023七上·高州期中)按如图所示的运算程序,若开始输入x的值为343,则第2023次输出的结果为( )A.7B.1C.343D.497.(3分)(2023八上·开州期中)若x+2y=6,则多项式2x+4y−5的值为( )A.5B.6C.7D.88.(3分)(2019七上·高县期中)“a与b两数平方的和”的代数式是( )A.a2+b2;B.a+b2;C.a2+b;D.(a+b)2;9.(3分)﹣|﹣a|是一个( )A.正数B.正数或零C.负数D.负数或零10.(3分)(2024·常州模拟)当x=2时,代数式ax3+bx+1的值为6,那么当x=−2时,这个代数式的值是( )A.1B.−5C.6D.−4⼆、填空题(每题3分,共15分)(共5题;共15分)11.(3分)(2017七上·黄陂期中)笔记本每本a元,圆珠笔每本b元,买5本笔记本和8支圆珠笔共需 元12.(3分)(2022七上·江油月考)若x−1与2−y互为相反数,则(x−y)2022= .13.(3分)父亲的年龄比儿子大28岁.如果用×表示儿子现在的年龄,那么父亲现在的年龄为 岁.14.(3分)(2024八下·兴国期末)当x=1 .15.(3分)一组按规律排列的代数式:a+2b,a2−2b3,a3+2b5,a4−2b7,⋯,则第n个代数式为 .三、解答题(共5题,共37分)(共5题;共37分)16.(6分)若x+y=1,求x3+y3+3xy的值.17.(6分)(2020七上·增城期中)已知a,b互为相反数,c,d互为倒数,|m|=6,求a+b3﹣5cd+m的值.18.(6分)(2024七下·西城期末)将非负实数x“四舍五入”到个位的值记为x,当n为非负整数时,①若n−12≤x<n+12,则x=n:②若x=n,则n−12≤x<n+12.如0=0.49=0,0.64=1.49=1,2=2.(1)(1分)π=;(2)(1分)若t+1=32t,则满足条件的实数t的值是.18.(6分)如果四个不同的整数a,b,c,d满足(10-a)×(10-b)×(10-c)×(10-d)= 121,求a+b+c+d的值.19.(13分)(2023七下·顺义期中)已知x−y=3,求代数式(−x+y)(−x−y)+(y−1)2−x(x−2)的值.四、实践探究题(共3题,共38分)(共3题;共13分)21.(2分)(2024七下·陕西期中)在“趣味数学”的社团活动课上,学生小白给大家分享了一个自己发现的关于8的倍数和最近学习的平方差公式之间的有趣关系.小白同学的具体探究过程如下,请你根据小白同学的探究思路,解决下面的问题:(1)(4分)观察下列各式并填空:8×1=32−12;8×2=52−32;8×3=72−52;8×4=92−72;8×5= −92;8× =132−112;…(2)(4分)通过观察、归纳,请你用含字母n(n为正整数)的等式表示上述各式所反映的规律;(3)(4分)请验证(2)中你所写的规律是否正确.22.(9分)(2023七上·安吉期中)探索代数式a2-2ab+b2与代数式(a-b)2的关系.(1)(4.5分)当a=2,b=1时分别计算两个代数式的值.(2)(4.5分)当a=3,b=-2时分别计算两个代数式的值.(3)(1分)你发现了什么规律?(4)(1分)利用你发现的规律计算:20232-2×2023×2022+20222.23.(2分)(2023七上·宁江期中)某中学附近的水果超市新进了一批百香果,为了促销这种百香果,特推出两种销售方式方式一:购买不超过5斤百香果,每斤12元,超出5斤的部分,每斤打8折;方式二:每斤售价10元.(1)(4.5分)顾客买a(a>5)斤百香果,则按照方式一购买需要 元;按照方式二购买需要 元(请用含a的代数式表示).(2)(4.5分)于老师决定买35斤百香果,通过计算说明用哪种方式购买更省钱.答案解析部分1.【答案】A【知识点】代数式的实际意义2.【答案】C【知识点】代数式的书写规范【解析】【解答】A:a9 应写成9a,选项错误,不合题意;B:x-3元应写成(x-3)元,选项错误,不合题意;C:st符合代数式书写要求,选项正确,符合题意;D:227x中带分数应写成假分数,选项错误,不合题意;故答案为:C.【分析】本题考查代数式的书写要求:(1)数与字母,字母与字母相乘,乘号可以省略,也可写成“.”;(2)数字要写在前面;(3)带分数一定要写成假分数;(4)在含有字母的除法中,一般不用“÷”号,而写成分数的形式;(5)式子后面有单位时,和差形式的代数式要在单位前把代数式括起来。
七年级上册数学 第三章 代数式 单元测试卷

七年级上册数学第三章代数式单元测试卷一.选择题1.下列代数式符合规范书写要求的是()A.-1x B.116xy C.0.8÷x D.−72a2.“m与n差的3倍”用代数式可以表示成()A.3m−n B.m−3n C.3(n−m)D.3(m−n)3.若a+3b−2=0,则代数式1+2a+6b的值是()A.5B.4C.3D.24.某校购进价格a元的排球100个,价格b元的篮球50个,则该校一共需支付()元.A.100a+50b B.100a−50b C.50a−100b D.50a+100b5.一个两位数,十位上的数为a,个位上的数为b,若把这个两位数的十位上的数和个位上的数交换位置,计算所得的数和原数的和,用a,b可以表示为()A.11a+11b B.11ab C.10a+10b D.10ab6.已知a1=3,a2=11−a1,a3=11−a2,a4=11−a3,⋅⋅⋅,依此类推,则a2024等于()A.−12B.12C.23D.33,则输出的数为()A.−16B.92C.−92D.1168.如果a=2,b2=9,且a<b,那么a−b的值为()A.1或5B.1或−5C.−1或−5D.−1或5二.填空题9.用已知3m2−2m=1,则代数式9m2−6m−5的值是.10.代数式表示“x的2倍与y的差”为.11.某种商品原价每件a元,现打6折出售,这时的售价是元.12.已知a2=4,|b|=5,ab>0,那么a+b=.13.2023长春马拉松于5月21日在南岭体场鸣枪开跑,某同学参加了7.5公里健康跑项目.他从起点开始以平均每分钟x公里的速度跑了10分钟,此时他离健康跑终点的路程为公里.(用含x的代数式表示)三.计算题14.当a=6,b=-2时,求下列代数式的值.(1)a2+2ab+b2(2)2ab四.解答题15.按如图所示方式摆放桌子和椅子,照这样的方式继续排列桌子,摆4张桌子可坐多少人?摆n张桌子呢?摆100张桌子呢?16.已知a和b互为相反数,c与d互为倒数,m的绝对值为2023,求代数式|a+b|m−cd−m的值.17.某医药公司有一种药品共300箱,将其分配给批发部和零售部销售,批发部经理对零售部经理说:“如果把你们分到的药品让我们卖,可卖得3500元”零售部经理对批发部经理说:“如果把你们分到的药品让我们卖,可卖得7500元”若假设零售部分到的药品是a箱,则:(1)该药品的零售价和批发价分别是每箱多少元?(2)若a=100,则这批药品一共能卖多少元?。
第3章 代数式 单元检测(原卷版)

第三章 代数式 单元检测一、单选题1.(22-23六年级上·山东泰安·阶段练习)下列各式中,符合整式书写要求的是( )A .5x ⋅B .4m n ⨯C .1x -D .12ab - 2.(23-24七年级上·湖北恩施·期中)下列整式中,当3a =-时,值为正数的是( )A .4a --B .23a -+C .21a -D .29a -3.(23-24七年级上·河北唐山·期末)代数式()32a b -的意义表述正确的是( )A .3乘以a 减2bB .a 的3倍与2b 的差C .a 与2b 的差的3倍D .3与a 的差与2b 的积4.(23-24七年级上·山东青岛·期中)“微信”、“支付宝”,“银行卡”、“云闪付”等移动支付由于快捷便利已成为大家平时生活中非常普遍的支付方式.小明妈妈上月的移动支付账单为a 元,本月参加线上购物节活动,比上月支出的3倍还多20元,那么本月的支出可表示为( )A .()320a +元B .()320a -元C .()320a -元D .()320a +元5.(22-23七年级上·江苏宿迁·期末)三个连续偶数中最小的一个为2n ,则这三个偶数中最大的可表示为( ) A .22n + B .23n + C .24n + D .26n +6.(21-22六年级下·黑龙江绥化·期末)如表,如果x 和y 成反比例关系,那么“?”处应填( )A .10B .3.6C .2.5D .2 7.(23-24六年级下·山东滨州·期末)以下各个实际问题中的两种量,成反比例关系的是( ) A .总路程一定,已行驶的路程和剩下的路程B .圆锥的底面积一定,圆锥的体积与高C .全班人数一定,出勤人数与出勤率D .完成总时间一定,每个零件所需的时间与所做零件的个数8.(2024·河南信阳·一模)某商场出售一件商品,在原标价基础上实行以下四种调价方案,其中调价后售价最低的是( )A .先打九五折,再打九五折B .先提价10%,再打八折C .先提价30%,再降价35%D .先打七五折,再提价10%2 / 49.(23-24七年级上·安徽·单元测试)若53a b ==,,且0ab >,则a b -的值是( ) A .2-或8 B .2-或8- C .2或2- D .2或8-10.(23-24七年级上·湖南娄底·期末)有若干个数,第一个数记为1a ,规定运算:234512*********,1,1,1,,1n n a a a a a a a a a a -=-=-=-=-=-按上述方法计算,当123a =时,2023a 的值等于( ) A .12- B .23 C .2 D .3二、填空题11.(23-24七年级上·新疆乌鲁木齐·期末)列式表示a 与b 的和的平方与a 与b 的平方和的差 . 12.(23-24七年级上·湖南衡阳·阶段练习)在下列各式:①π3-;①ab ba =:①x ;①210m ->;①+-x y x y,①()228x y +中,代数式的有 个. 13.(22-23七年级上·江苏扬州·阶段练习)已知22a b -=-,则424a b -+的值为 .14.(11-12七年级上·江苏盐城·期中)设a 是最小的正整数,b 是最大的负整数,c 是绝对值最小的有理数,则a b c ++= .15.(22-23七年级上·江苏南通·阶段练习)若2630x y -++=,则x y= . 16.(23-24七年级上·云南德宏·期末)若a ,b 互为相反数,c ,d 互为倒数,m 的绝对值是0,则()3a b cd m +-+的值为 . 17.(23-24九年级上·广西崇左·期末)已知y 与x 成反比例, 并且当2x =时, 3y =-,则当1x =时,y = . 18.(2024七年级上·全国·专题练习)观察以下等式:第1个等式:231122-=;第2个等式352263-=;第3个等式4733124-=;第4个等式5944205-=;……;按照以上规律,解决下列问题: (1)写出第6个等式 ;(2)写出你猜想的第n 个等式 (用含n 的等式表示).三、解答题19.(23-24七年级上·山东菏泽·期末)用代数式表示(1)a 的平方的3倍与5的差(2)比a 的倒数与b 的倒数的和大1的数(3)a 、b 两数的平方和减去它们乘积的2倍(4)a 、b 两数的平方差除以a 、b 两数的和的平方所得的商.20.(21-22七年级上·浙江湖州·期中)当a=6,b=﹣2时,求下列代数式的值.(1)2ab;(2)a2+2ab+b2.21.(23-24六年级下·黑龙江大庆·期末)某物流公司将一批货物运往一家加工厂,且要一次性把所有货物全部运出,车辆的载质量与所需车辆的数量如表所示.(1)车辆的载质量和所需车辆的数量成什么比例?如果用载质量为6t的车来运,那么一共需要多少辆?(2)如果用15辆车来运,那么每辆车要运多少吨?22.(2023七年级上·全国·专题练习)如图是一个简单的数值运算程序.(1)用含x的代数式表示出运算过程;(2)当输入的x值为1 时,输出的值是多少?23.(23-24七年级上·福建漳州·期中)A、B两地果园分别有苹果30吨和40吨,C、D两地分别需要苹果20吨和50吨.已知从A地、B地到C地、D地的运价如下表:4 / 4(1)若从A 地果园运到C 地的苹果为10吨,则从A 地果园运到D 地的苹果为______吨,从B 地果园运到C 地的苹果为______吨,从B 地果园运到D 地的苹果为______吨,总运输费用为______元.(2)若从A 地果园运到C 地的苹果为x 吨,分别用含x 的代数式表示从A 地果园运到D 地的苹果的吨数以及从A 地果园将苹果运到D 地的运输费用.(3)在(2)的条件下,用含x 的代数式表示出总运输费用.24.(23-24七年级上·湖南衡阳·期末)某商场销售一种微波炉和电磁炉,微波炉每台定价700元,电磁炉每台定价200元.“双11”期间商场决定开展促销活动,活动期间向客户提供两种优惠方案.方案一:买一台微波炉送一台电磁炉;方案二:微波炉和电磁炉都按定价的80%付款.现某客户要到该卖场购买微波炉20台,电磁炉x 台()20x >.(1)若该客户按方案一购买,需付款____________元(用含x 的代数式表示),若该客户按方案二购买,需付款____________元(用含x 的代数式表示).(2)若40x =,通过计算说明,此时按哪种方案购买较为合算?(3)当40x =时,你能给出一种更为省钱的购买方案吗?试写出你的购买方法,并计算出购买总金额.。
七年级数学上册第三章 代数式 单元测试卷(人教版 2024年秋)

七年级数学上册第三章代数式单元测试卷(人教版2024年秋)一、选择题(每题3分,共30分)1.下列代数式书写规范的是()A.b×12B.4÷(a+b)C.225xD.3n 2.[母题教材P71例2]用语言叙述式子“a-12b”所表示的数量关系,下列说法正确的是()A.a与b的差的12B.a与b的一半的积C.a与b的12的差D.a比b大123.[2024·成都武侯区期末]某商店举办促销活动.促销的方法是将原价为x元/-7元/-7的含义的描述正确的是()A.原价打8折后再减去7元B.原价减去7元后再打8折C.原价减去7元后再打2折D.原价打2折后再减去7元4.当a=-1,b=3时,式子2a2+ab+b的值是()A.-5B.-2C.2D.65.[母题教材P75练习T2]下列各说法中的两个量之间的关系属于反比例关系的有()①当路程一定时,汽车行驶的平均速度与行驶时间之间的关系;②当商品的进价一定时,利润与售价之间的关系;③当长方形的面积一定时,长方形的长与宽之间的关系;④计划从A地到B地铺设一段2400米长的铁轨,每日铺设长度与铺设天数之间的关系.A.1个B.2个C.3个D.4个6.某商品原来的价格为a元,前期在销售时连续两次降价10%.后期由于成本价格上涨,商店决定在两次降价的基础上提价20%,提价后商品的价格为()A.a元B.0.918a元C.0.972a元D.0.96a元7.[2023·雅安]若m2+2m-1=0,则2m2+4m-3的值是()A.-1B.-5C.5D.-38.学校礼堂的房间窗户装饰物如图所示,该装饰物由两个四分之一圆组成(半径相同),则窗户中能射进阳光的部分的面积为()A.ab-π16b2B.ab-π8b2C.ab-π4b2D.ab-π2b29.[新视角·2023·济宁改编·规律探究题]已知一列均不为1的数a1,a2,a3,…,a n满足如下关系:a2=1+11-1,a3=1+21-2,a4=1+31-3,…,a n+1=1+1-,若a1=2,则a2025的值是()A.-12B.13C.-3D.210.如图,下面图形是用棋子按照一定规律摆成的,按照这种摆法,第n个图形中共有棋子()A.2n枚B.(n2+1)枚C.n(n-1)枚D.n(n+1)枚二、填空题(每题3分,共18分)11.下列各式中,是代数式的是.(填序号)①2x-1;②a=1;③S=πR2;④π;⑤72m;⑥12>13. 12.[新视角·2024·北京丰台区期末·结论开放题]对于式子“m+n”可以赋予其实际意义:一个篮球的价格是m元,一个足球的价格是n 元,体育老师购买一个篮球和一个足球共需要付款(m+n)元,请你给式子“2a”赋予一个实际意义:.13.[情境题生活应用]房间面积一定时,每块砖的面积和铺砖的块数(填“满足”或“不满足”)反比例关系.14.把一个两位数m放在一个三位数n的前面,组成一个五位数,这个五位数可表示为.15.[2024·南京期末]如果|m|=2,那么代数式1-m+2m2的值为.16.将长为30cm的长方形白纸,按如图所示的方法黏合起来,黏合部分的宽为2cm.(1)3张白纸黏合后的总长度为cm;(2)x张白纸黏合后的总长度为cm.(用含x的代数式表示)三、解答题(共72分)17.(6分)用代数式表示:(1)m的3倍与n的一半的和;(2)比a与b的积的2倍小5的数;(3)x,y两数的平方和减去它们积的2倍.18.(8分)已知a,b互为相反数,c,d互为倒数,m的绝对值等于3,求+2+cd-m的值.19.(10分)列式表示并求值.(1)超市购进一批上衣,标价为a元/件,后降价20%进行销售,小明购买了2件该上衣,一共花费了多少元?当a=120时,小明一共花费了多少元?(2)甲、乙两地相距b km,一辆汽车以v km/h的速度从甲地向乙地行驶,行驶t h后,汽车与乙地之间的距离为多少千米?当b=200,v=80,t=1.5时,汽车与乙地之间的距离为多少千米?20.(10分)一个水池内原有水500升,现在以20升/分钟的速度向水池内注水,35分钟可注满水池.(1)水池的容积是多少升?(2)若水池为空的,用Q(单位:升/分钟)表示注水的速度,用T表示注满水池需要的时间,用式子表示T与Q的关系,T与Q成什么比例关系?21.(12分)[2024·扬州江都区期中]如图,在一块长为3x,宽为y(3x >y)的长方形铁皮的四个角上,分别截去半径都为2的圆的14.(1)试计算剩余铁皮的面积(阴影部分面积).(2)当x=4,y=8时,剩余铁皮的面积是多少?(π取3)22.(12分)某种杯子的高度是15cm,两个以及三个这样的杯子叠放时的高度如图所示.(1)n个这样的杯子叠放在一起的高度是cm.(用含n的式子表示)(2)20个这样的杯子叠放在一起的高度是多少?23.(14分)[立德树人节约资源]为了加强公民的节水意识,合理利用水资源,某市采用价格调控的手段达到节水的目的.该市自来水收费的价目表如下(注:水费按月份结算):每月用水量单价不超出6m3的部分2元/m3超出6m3不超出10m3的部分4元/m3超出10m3的部分8元/m3已知李老师家某月用水量为x m3.(1)若6<x≤10,则李老师当月应交水费多少元?(用含x的式子表示,并化简)(2)若x>10,则李老师当月应交水费多少元?(用含x的式子表示,并化简)答案一、1.D 2.C 3.A4.C 【点拨】因为a =-1,b =3,所以2a 2+ab +b =2×(-1)2+(-1)×3+3=2.5.C6.C 【点拨】由题意得提价后商品的价格为a (1-10%)×(1-10%)(1+20%)=a ×0.9×0.9×1.2=0.972a (元).7.A 【点拨】因为m 2+2m -1=0,所以m 2+2m =1.所以2m 2+4m =2.所以2m 2+4m -3=2-3=-1.8.B 【点拨】由题意得窗户中能射进阳光的部分的面积为ab -2×14π×=ab -π8b 2.9.D 【点拨】因为a 1=2,所以a 2=1+21-2=-3,所以a 3=1-31+3=-12,所以a 4=1-121+12=13a 5=1+131-13=2,…,由此可得这列数按2,-3,-12,13循环出现.因为2025÷4=506……1,所以a 2025=a 1=2.10.D 【点拨】第1个图形中有2枚棋子,2=1×2;第2个图形中有6枚棋子,6=2×3;第3个图形中有12枚棋子,12=3×4;第4个图形中有20枚棋子,20=4×5;…,所以第n 个图形中有n (n +1)枚棋子.二、11.①④⑤12.一个篮球的价格是a 元,购买2个篮球共需付款2a 元(答案不唯一)13.满足14.1000m+n15.7或11【点拨】因为|m|=2,所以m=±2.当m=2时,1-m+2m2=1-2+2×22=7;当m=-2时,1-m+2m2=1-(-2)+2×(-2)2=11.综上所述,代数式1-m+2m2的值为7或11.16.(1)86(2)(28x+2)三、17.【解】(1)3m+12n.(2)2ab-5.(3)x2+y2-2xy.18.【解】根据题意,得a+b=0,cd=1,m=±3,当m=3时,+2+cd-m=032+1-3=-2,当m=-3时,+2+cd-m=0(−3)2+1-(-3)=4.综上,+2+cd-m的值为-2或4.19.【解】(1)一共花费了2a(1-20%)=1.6a(元).当a=120时,1.6a=1.6×120=192.故当a=120时,小明一共花费了192元.(2)汽车与乙地之间的距离为(b-vt)km.当b=200,v=80,t=1.5时,b-vt=200-80×1.5=80.故当b=200,v=80,t=1.5时,汽车与乙地之间的距离为80km.20.【解】(1)水池的容积是500+20×35=1200(升).(2)依题意得TQ=1200或T=1200,T与Q成反比例关系.21.【解】(1)由题意可知S阴影=3xy-=3xy-π4y2,所以剩余铁皮的面积是3xy-π4y2.(2)当x=4,y=8时,S阴影=3×4×8-34×82=48.答:当x=4,y=8时,剩余铁皮的面积是48.22.【解】(1)(3n+12)(2)当n=20时,3n+12=3×20+12=72.答:20个这样的杯子叠放在一起的高度是72cm.23.【解】(1)若6<x≤10,则李老师当月应交水费2×6+(x-6)×4=12+4(x-6)=4x-12(元).(2)若x>10,则李老师当月应交水费2×6+4×(10-6)+(x-10)×8=12+16+8(x-10)=28+8(x-10)=8x-52(元).。
代数式单元测试卷

代数式单元测试卷一、选择题(每题3分,共30分)1. 下列式子中,是代数式的是()A. x + y = 5B. 4>3C. 0D. a^2+b^2≠ 02. 用代数式表示“a的3倍与b的差的平方”,正确的是()A. (3a - b)^2B. 3(a - b)^2C. 3a - b^2D. (a - 3b)^23. 当a = 2,b=-1时,代数式a^2+2ab + b^2的值是()A. 1B. -1C. 9D. 44. 代数式2x - (1)/(3)的系数是()A. 2B. -(1)/(3)C. 2xD. -15. 下列代数式中,单项式有()个。
3x^2y,(1)/(2)xy^2,-5,a,(2)/(x),x + yA. 3B. 4C. 5D. 66. 单项式-frac{3π x^2y}{5}的次数是()A. 1B. 2C. 3D. 47. 多项式3x^2-2x - 1的各项分别是()A. 3x^2,2x,1B. 3x^2,-2x,-1C. -3x^2,2x,1D. -3x^2,-2x,-18. 若A = 3x^2-2x + 1,B = 5x^2-3x + 2,则A - B等于()A. -2x^2+x - 1B. 2x^2-x + 1C. -2x^2-x - 1D. 2x^2+x + 19. 一个两位数,个位数字是a,十位数字是b,这个两位数可表示为()A. abB. 10a + bC. 10b + aD. a + b10. 已知m - n = 1,则(m - n)^2-2m + 2n的值是()A. -1B. 1C. 2D. 3二、填空题(每题3分,共18分)11. 用代数式表示:比a的(2)/(3)大1的数是_(2)/(3)a + 1_。
12. 单项式-frac{2x^3y^2}{5}的系数是_-\frac{2}{5}_,次数是_5_。
13. 多项式2x^3-3x^2+4x - 1是_三_次_四_项式。
人教版数学七年级上册 第三章 代数式 单元测试

人教版数学七年级上册第三章代数式单元测试一、单选题1.如图是一个简单的运算程序,如果输入的x值为﹣2,则输出的结果为()A.6B.﹣6C.14D.﹣142.下列说法中,正确的是()A.0是最小的有理数B.任一个有理数的绝对值都是正数C.-a是负数D.0的相反数是它本身3.已知x,y满足方程组,则的值为()A.B.0C.1D.54.在中,代数式有几个()A.3个B.4个C.5个D.6个5.若,则()A.B.C.3D.6.已知,与,都是方程的解,则和的值分别为()A.,B.,C.,D.,7.若时,则代数式的值为()A.17B.11C.D.108.若代数式y2-2y+1的值是5,则代数式2y2-4y-5的值是()A.-3B.25C.-25D.39.将正方形①,正方形②,长方形③,长方形④按如图所示放入长方形ABCD中(相邻的长方形,正方形之间既无重叠,又无空隙),且BE=DP.若已知长方形ABCD的周长,则不能确定周长的图形是()A.正方形①B.正方形②C.长方形③D.长方形④10.如图,正方形OABC的顶点A,C在坐标轴上,将正方形绕点O第1次逆时针旋转45°得到正方形,依此方式,连续旋转至第2023次得到正方形.若点A的坐标为,则点的坐标为()A.B.C.D.二、填空题11.如图,这是一个简单的数值运算程序,当输入的值为3时,输出的结果为.12.若有理数满足,则的值为.13.已知,则的值是.14.若,则的值为.15.若,,则.16.已知:,,代数式.17.若,则=.18.观察下列等式,,,将以上三个等式两边分别相加得:.(1)猜想并写出:;(2)直接写出下列各式的计算结果:;(3)探究并计算:.三、解答题19.如图,一个花坛由两个半圆和一个长方形组成,半圆的半径为,长方形的长为(1)求花坛的面积S;(2)当,时,计算花坛的面积.(取3)20.已知整式.(1)当,求整式的值;(2)若整式比整式大,求整式.21.昨天,小明把老师布置的作业题忘记了,只记得式子是.小军告诉小明,已知是最大的负整数,互为相反数,负数的绝对值是2,请你帮小明解答下列问题.求的值.22.已知x=1,求代数式3x+2的值.23.如图,某小区有一块长为米,宽为米的长方形地块,物业公司计划在小区内修一条平行四边形小路,小路的底边宽为米,将阴影部分进行绿化.(1)用含有、的式子表示绿化的总面积;(2)若,,求出此时绿化的总面积.24.如果互为相反数,互为倒数,没有倒数,的绝对值等于2,求代数式的值.25.水果商贩小王到水果批发市场进货,他了解到草莓的批发价格是每箱60元,苹果的批发价格是每箱40元.小王购得草莓和苹果共60箱,刚好花费3100元.(1)问草莓、苹果各购买了多少箱?(2)小王有甲、乙两家店铺,每售出一箱草莓和苹果,甲店分别获利15元和20元,乙店分别获利12元和16元.设老徐将购进的60箱水果分配给甲店草莓a箱,苹果b箱,其余均分配给乙店.由于他口碑良好,两家店都很快卖完了这批水果.①若小王在甲店获利600元,则他在乙店获利多少元?②若小王希望获得总利润为1000元,则__▲_.(直接写出答案)答案解析部分1.【答案】C2.【答案】D【解析】【解答】解:A、因为没有最小的有理数,所以A选项错误;B、因为0的绝对值是0,不是正数,所以B选项错误;C、因为当a为负数时,-a是正数,所以C选项错误;D、因为0的相反数就是0,所以D选项正确.故答案为:D.【分析】由没有最小的有理数;0的绝对值是0;当a为负数时,-a是正数;0的相反数就是0,逐个判断即可得到说法正确的选项.3.【答案】D4.【答案】C【解析】【解答】解:属于代数式的有:1,,共5个故答案为:C.【分析】用基本的运算符号(加、减、乘、除、乘方、开方、括号等)把数、表示数的字母连结而成的式子就是代数式,单独的一个数或字母也是代数式,从而即可一一判断得出答案.5.【答案】D6.【答案】D【解析】【解答】解:∵,与,都是方程的解,∴代入得:,解得:,,故答案为:D.【分析】将,与,分别代入方程中,可得关于k、b 的方程组,解之即可.7.【答案】A【解析】【解答】因为3-2x+10y=3+2(5y-x),又5y-x=7,所以3-2x+10y=3+2×7=17.故答案为:A.【分析】把代数式3-2x+10y变形为3+2(5y-x)后,再整体代入求解.8.【答案】D【解析】【解答】解:∵y2-2y+1=5,∴y2-2y=4,∴原式=2(y2-2y)-5=2×4-5=8-5=3.故答案为:D.【分析】由题意可求y2-2y=4,将原式变形为2(y2-2y)-5,然后代入计算即可.9.【答案】B【解析】【解答】解:设长方形ABCD的周长为C,AE=x,DP=y,则C=2(AD+AB)=2[(AE+BE)+(AG+GD)]=2[(AE+DP)+(AE+PQ)=2[(AE+DP)+(AE+AE-DP)]=2[(x+y)+(x+x-y)]=6x.所以.正方形①的周长=4AE=,故能确定周长;长方形③的周长=2(GD+DP)=2(PQ+PD)=2(AE-DP+DP)=2AE=,故能确定周长;长方形④的周长=2(BC+BE)=2(AE+AE-DP+DP)=4AE=,故能确定周长.故A、C、D均不符合.故答案为:B.【分析】分别计算四个图形的周长,看是否能用长方形ABCD的周长表示,找出不能的即可. 10.【答案】C【解析】【解答】解:∵点A的坐标为(1,0),∴OA=1,∵四边形OABC是正方形,∴∠OAB=90°,AB=OA=1,∴点B的坐标为(1,1),连接OB,如图所示:由勾股定理可得:OB=,由旋转的性质可得:OB=OB1=OB2=OB3=,∵将正方形OABC绕点O逆时针旋转45°后得到正方形OA1B1C1,相当于将线段OB绕点O逆时针旋转45°,依次得到∠AOB=∠BOB1=∠B1OB2=45°,∴B1(0,),B2(-1,1),B3(,0),B4(-1,-1),B5(0,),B6(1,-1),B7(,0),……,∴点B的坐标是按8次一循环的规律进行,∵2023÷8=252……7,∴点的坐标为,故答案为:C.【分析】先求出点B的坐标,连接OB,再求出OB=OB1=OB2=OB3=,再利用旋转的性质求出B1(0,),B2(-1,1),B3(,0),B4(-1,-1),B5(0,),B6(1,-1),B7(,0),……,点B的坐标是按8次一循环的规律进行,再结合2023÷8=252……7,求出点的坐标为即可.11.【答案】34112.【答案】202813.【答案】14.【答案】15.【答案】1【解析】【解答】∵abc<0,∴a、b、c有1个负数或3个负数.∵a+b+c=0,∴a、b、c只有1个负数,不妨设a为负数,∴b+c=﹣a,a+c=﹣b,a+b=﹣c,∴++=﹣1+1+1=1.故答案为1.【分析】先求出a、b、c有1个负数或3个负数,再求出b+c=﹣a,a+c=﹣b,a+b=﹣c,最后计算求解即可。
代数式整式的加减单元测试

代数式整式的加减单元测试一、单项选择题1. 已知代数式和整式如下,求其和并化简:2a^2b - 3ab^2 + ab + 6a - 4b + 3A. 2a^2b - 3ab^2 + ab + 6a - 4b + 3B. 2a^2b - 3ab^2 + ab + 6a - 4bC. 2a^2b - 3ab^2 + ab + 6a - 4b - 3D. 2a^2b - 3ab^2 + ab + 6a - 4b + 62. 求下列代数式的差:2x^3 - 4x^2 + 3x - 5 和 -3x^3 + 2x^2 + 4x + 9 的差是:A. 3x^3 + 6x^2 - x - 14B. -5x^3 - 6x^2 - x + 14C. 5x^3 - 6x^2 - 7x + 14D. 5x^3 - 6x^2 + 7x - 143. 已知整式 x^2 - 2x + 3 和 y^2 - 3y - 1,求其和的平方和差式:A. x^4 + 2x^2y^2 + y^4 - 12x^2 - 12y^2 + 10B. x^4 + 2x^2y^2 - y^4 - 4x^2 - 4y^2 + 4C. x^4 + 2x^2y^2 - y^4 - 12x^2 - 12y^2 + 10D. x^4 + 2x^2y^2 + y^4 - 4x^2 - 4y^2 + 10二、填空题1. 化简代数式 5x^3 - 4x^2 + 2x + 3 的结果为 _________。
2. 求解方程式 3x^2 - 5x + 2 = 0 的解为 x = _________。
三、应用题1. 小明的年龄比爸爸的年龄少 20 年,爸爸的年龄比妈妈的年龄大 14 年。
妈妈今年 42 岁,求小明今年的年龄。
2. 甲、乙、丙三个人共有 n 本书,其中甲有 a 本书,乙有 b 本书,丙有多少本书?以上是代数式整式的加减单元测试题。
希望同学们能认真思考,准确回答。
【培优版】浙教版(2024)七上第四章 代数式 单元测试(含解析)

【培优版】浙教版(2024)七上第四章代数式单元测试一、选择题(每题3分,共30分)1.(2024七上·仙居期末)下列计算正确的是( ).A.(−12)3=18B.(−1)3−(−2)2=−3C.x+y=xy D.a2b−2b a2=−a2b2.(2018七上·衢州期中)某公司去年10月份的利润为a万元,11月份比10月份减少5%,12月份比11月份增加了9%,则该公司12月份的利润为( )A.(a-5%)(a+9%)万元B.(a-5%+9%)万元C.a(1-5%+9%)万元D.a(1-5%)(1+9%)万元3.(2024七上·鄞州期末)下列去括号正确的是( )A.a−(−3b+2c)=a−3b+2c B.−(x2+y2)=−x2−y2C.a2+(−b+c)=a2−b−c D.2a−3(b−c)=2a−3b+c4.当x=2时,整式ax3+bx-1的值等于-100,那么当x=-2时,整式ax3+bx-1的值为( )A.100B.-100C.98D.-985.(2024七上·拱墅期末)三张大小不一的正方形纸片按如图1和图2方式分别放置于相同的长方形中,它们既不重叠也无空隙,记图1阴影部分周长之和为m,图2阴影部分周长为n,要求m与n 的差,只需知道一个图形的边长,这个图形是( )A.整个长方形B.图①正方形C.图②正方形D.图③正方形6.(2023七上·瑞安期中)如图是一个计算程序图,若输入x的值为6,则输出的结果的值是( )A.−18B.90C.126D.738 7.(2017七上·乐清期中)有理数a,b在数轴上对应的位置如图所示,那么代数式|a+1|a+1−|a|a+b−a |a−b|−1−b|b−1|的值是( )A .﹣1B .0C .1D .28.(2023七上·义乌月考)如图,7张全等的小长方形纸片(既不重叠也无空隙)放置于矩形ABCD 中,设小长方形的长为a ,宽为b (a >b ),若要求出两块黑色阴影部分的周长和,则只要测出下面哪个数据( )A .aB .bC .a +bD .a−b9.(2023七上·拱墅月考)已知两个完全相同的大长方形,长为a ,各放入四个完全一样的白色小长方形后,得到图(1)、图(2),那么,图(1)阴影部分的周长与图(2)阴影部分的周长的差是(用含a 的代数式表示)( )A .12aB .34aC .aD .54a 10.(2023七上·北仑期中)如图,长为y (cm ),宽为x (cm )的大长方形被分割为7小块,除阴影A ,B 外,其余5块是形状、大小完全相同的小长方形,其较短的边长为2cm ,下列说法中正确的有( )①小长方形的较长边为y−6;②阴影A 的较短边和阴影B 的较短边之和为x−y +2;③若y 为定值,则阴影A 和阴影B 的周长之差为定值;④当y =10时,阴影B 的周长比阴影A 的周长多4cm .A.①③B.①④C.①③④D.①②④二、填空题(每题4分,共24分)11.(2021七上·柯桥月考)若单项式2x2y m与﹣x n y3是同类项,则m+n= .12.(2024七上·仙居期末)若3a−2b=5,则式子6a−4b−5的值为 .13.(2024七上·鄞州月考)三个三位数abb,bab,bba由数字a,b组成,它们的和是2331,则a+b 的最大值是 .14.(2024七上·柯桥期中)若a,b互为倒数,x,y互为相反数,p是最大的负整数,则代数式ab+ x+y2023−p2的值为 .15.某种电视机每台定价为m元,商店在节日期间搞促销活动,这种电视机每台降价20%,促销期间这种电视机每台的实际售价为 元.(用含m的代数式表示)16.(2022七上·鄞州期中)如图,用三个同(1)图的长方形和两个同(2)图的长方形用两种方式去覆盖一个大的长方形ABCD,两种方式未覆盖的部分(阴影部分)的周长一样,那么(1)图中长方形的面积S1与(2)图长方形的面积S2的比是 .三、解答题(共8题,共66分)17.(2024七上·诸暨月考)已知|x|=2,|y|=5,且|x+y|=−x−y,求x−y的值.18.(2024七上·义乌期末)先化简,再求值:﹣3a2b+(4ab2﹣a2b)﹣2(2ab2﹣a2b),其中a=1,b =﹣1.19.(2024七上·杭州月考)七年级(8)班某同学做一道题:“已知两个代数式A,B,A=x2+2x-1,计算A+2B.”他误将A+2B写成了2A+B,结果得到答案x2+5x-6,请你帮助他求出正确的答案.20.(2023七上·杭州月考)已知甲、乙两个油桶中各装有a升油.(1)把甲油桶的油倒出13给乙桶,用含a的代数式表示现在乙桶中所装油的体积.(2)在(1)的前提下,再把乙桶的油倒出14给甲桶,最后甲、乙两个桶中的油一样多吗?请说明理由.21.(2023七上·诸暨期中)已知A−B=7a2−7ab+1,且B=−4a2+6ab+5,(1)求A;(2)若|a+1|+(b−2)2=0,求A+B的值.22.(2023七上·诸暨期中)宁波市中考总分中要加大体育分值,我校为适应新的中考要求,决定为体育组添置一批体育器材.学校准备在网上订购一批某品牌篮球和跳绳,在查阅天猫网店后发现篮球每个定价120元,跳绳每条定价40元.现有甲、乙两家网店均提供包邮服务,并提出了各自的优惠方案.甲网店:买一个篮球送一条跳绳;乙网店:篮球和跳绳都按定价的90%付款.已知要购买篮球60个,跳绳x条(x>60)(1)若在甲网店购买,需付款 元(用含x的代数式表示);若在乙网店购买,需付款 元(用含x的代数式表示);(2)若x=100时,通过计算说明此时在哪家网店购买较为合算?(3)当x=100时,你能给出一种更为省钱的购买方案吗?试写出你的购买方法,并计算需付款多少元?23.(2023七上·杭州期中)数学中,运用整体思想方法在求代数式的值中非常重要,例如:已知,a2 +2a=3,则代数式2a2+4a+1=2(a2+2a)+1=2×3+1=7.请你根据以上材料解答以下问题:(1)若a2−2a=2,则2a2−4a= ;(2)已知a−b=5,b−c=3,求代数式(a−c)2+3a−3c的值;(3)当x=−1,y=2时,代数式a x2y−bx y2−1的值为5,则当x=1,y=−2时,求代数式a x2 y−bx y2−1的值.24.(2020七上·温岭期中)阅读材料:我们知道,4x﹣2x+x=(4﹣2+1)x=3x,类似地,我们把(a+b)看成一个整体,则4(a+b)﹣2(a+b)+(a+b)=(4﹣2+1)(a+b)=3(a+b).“整体思想”是中学教学解题中的一种重要的思想方法,它在多项式的化简与求值中应用极为广泛.尝试应用整体思想解决下列问题:(1)把(a﹣b)2看成一个整体,合并2(a﹣b)2﹣6(a﹣b)2+3(a﹣b)2(2)已知x2﹣2y=4,求6x2﹣12y﹣27的值;(3)已知a﹣2b=3,2b﹣c=﹣5,c﹣d=10,求(a﹣c)+(2b﹣d)﹣(2b﹣c)的值.答案解析部分1.【答案】D【知识点】有理数的减法法则;有理数的乘方法则;合并同类项法则及应用【解析】【解答】解:A.(−12)3=−18≠18,故选项A错误;B.(−1)3−(−2)2=−1−4=−5≠−3,故选项B错误;C.x与y不是同类项,不可以合并,故选项C错误;D.a2b−2b a2=−a2b,故选项D正确;故答案为:D.【分析】根据有理数的乘方法则判断选项A;根据有理数的乘方法则、有理数的减法法则判断选项B;根据合并同类项法则判断选项C、D,即可得解.2.【答案】D【知识点】列式表示数量关系【解析】【解答】解:由题意得:12月份的利润为:a(1-5%)(1+9%)故答案为:D【分析】根据11月份比10月份减少5%,可得出11月份的利润,再求出12月份的利润。
代数式单元测试题及答案

代数式单元测试题及答案
一、选择题(每题2分,共20分)
1. 下列代数式中,不是单项式的是:
A. -3x²
B. 5y
C. 7z
D. xy
2. 代数式 \( a^3b^2 - 2ab^3 + 5 \) 可以分解为:
A. \( a^2b - ab^2 + 5 \)
B. \( a^2b + ab^2 - 5 \)
D. \( 3x(x - 1) - 2 \)
8. 若 \( a = 2 \),\( b = 3 \),代数式 \( a^2 - b \) 的值为:
A. 1
B. 4
C. 5
D. 7
9. 代数式 \( 4x^3 - 27 \) 可以分解为:
A. \( (2x - 3)(2x^2 + 3x + 9) \)
13. 代数式 \( 2x^2 - 5x + 3 \) 的次数是 _________。
14. 代数式 \( 4x^3 - 8x^2 + 6x - 1 \) 的项数是 _________。
15. 若 \( a = -1 \),\( b = 2 \),代数式 \( a^2 - b \) 的值为 _________。
C. \( a^2b - ab^2 - 5 \)
D. \( a^2b + ab^2 + 5 \)
3. 若 \( x = -2 \) 时,代数式 \( 3x - 2 \) 的值为:
A. 4
B. -4
C. 6
D. -6
4. 下列代数式中,是同类项的是:
【提高版】浙教版(2024)七上第四章-代数式-单元测试(含答案)

【提高版】浙教版(2024)七上第四章代数式单元测试一、选择题(每题3分,共30分)1.(2024七上·桐乡市期末)下列运算中,正确的是( )A.3a+2b=5ab B.3a2b−3b a2=0C.2x3+3x2=4x5D.5y2−4y2=1 2.(2024七上·仙居期末)若A=x2y+2x+3,B=−2x2y+4x,则2A−B=( ).A.3B.6C.4x2y+6D.4x2y+3 3.(2024七上·鄞州期末)下列去括号正确的是( )A.a−(−3b+2c)=a−3b+2c B.−(x2+y2)=−x2−y2C.a2+(−b+c)=a2−b−c D.2a−3(b−c)=2a−3b+c4.(2024七上·嘉兴期末)如果代数式a−2b的值为4,那么代数式4b−2a−3的值等于( )A.−11B.−7C.7D.15.(2023七上·苍南期末)图1是由3个相同小长方形拼成的图形其周长为24cm,图2中的长方形ABCD内放置10个相同的小长方形,则长方形ABCD的周长为( )A.32cm B.36cm C.48cm D.60cm 6.(2024七上·苍南期末)按如图所示的流程图操作,若输入x的值是−7,则输出的结果是( )A.0B.7C.14D.497.(2024七上·鹿城期末)关于整式的概念,下列说法正确的是( )A.1是单项式B.52a3b的次数是6C.−a b2+ab−6是五次多项式D.4π3R3的系数是438.(2023七上·杭州月考)整式mx+2n的值随x的取值不同而不同,下表是当x取不同值时整式mx+2n对应的值,则关于x的方程−2mx−4n=4的解为( )x-3-2-1012mx +2n 420-2-4-6A .x =−3B .x =−2C .x =0D .x =19.(2023七上·鄞州期中)如图,小明计划将正方形菜园ABCD 分割成三个长方形①②③和一个正方形④.若长方形②与③的周长和为20m ,则正方形ABCD 与正方形④的周长和为( )A .20mB .30mC .35mD .40m10.(2020七上·杭州期中)已知: m =|a +b|c +2|b +c|a +3|c +a|b,且 abc >0 , a +b +c =0 ,则 m 共有 x 个不同的值,若在这些不同的 m 值中,最小的值为 y ,则 x +y = ( )A .−1B .1C .2D .3二、填空题(每题4分,共24分)11.(2024七上·鄞州月考)若|m |=5,|n |=7,m +n >0, 则m−n 的值是 .12.(2024七上·杭州月考)若|a +1|与|b−2|互为相反数,则a +b 的值为 .13.(2024七上·绍兴期末)按如图所示的程序计算,若输入的a =3,b =4,则输出的结果为 .14.(2024七上·温州期末)一件商品的进价是x 元,提高30%后标价,然后打9折销售,利润为 元.15.(2024七上·宁波期末)已知单项式3a m b 2与−23a 4b n﹣1的和是单项式,那么2m ﹣n= .16.(2022七上·乐清期中) 如果一个两位数a 的个位数字与十位数字都不是零,且互不相同,我们称这个两位数为“英华数”,定义新运算:将一个“英华数”的个位数字与十位数字对调,把这个新两位数与原两位数的和与11的商记ω(a),例如:a=13,对调个位数字与十位数字得到新两位数31,新两位数与原两位数的和,31+13=44,和与11的商44÷11=4,所以ω(13)=4.根据以上定义,回答下列问题:(1)计算:ω(27) .(2)若m,n都是“英华数”,且m+n=100,则ω(m)+ω(n)= .三、解答题(共8题,共66分)17.(2023七上·浙江月考)先化简,再求值:3a2b-[3ab2+3(a2b-2ab2)],其中a=3,b=−1.318.(2024七上·杭州月考)已知m,n互为相反数,p,q互为倒数,且|x|=2,求−2pq+m+npq−x的值.19.(2024七上·婺城期末)A、B、C.D四个车站的位置如图所示,车站B距车站A、D的距离分别为(a+b)km、(5a+36)km,车站C与车站D的距离为(3a+2b)km.其中a,b是不为0的实数.(1)求B、C两站之间的距离(用含a、b的代数式表示).(2)若B、D两个车站之间的距离比A、B两个车站之间的距离长8km,求出B、C两个车站相距多少km?20.(2023七上·龙泉期中)2023年10月26日,“神州十七号”飞船成功出征太空.同学们倍受鼓舞,某同学绘制了如图所示的火箭模型截面图,上面是三角形,中间是长方形,下面是梯形.(1)用含有x,y的代数式表示该截面的面积S;(2)当x=3,y=2时,求这个截面的面积.21.(2024七上·临平月考)放置在水平地面上两个无盖(朝上的面)的长方体纸盒,大小、形状如图.小长方体的长、宽、高分别为:a(cm)、b(cm)、c(cm);大长方体的长、宽、高分别为:1.5a(cm)、2b(cm)、2c(cm).(1)做这两个纸盒共需要材料多少平分厘米?(2)做一个大的纸盒比做一个小的纸盒多多少平分厘米材料22.(2023七上·婺城期末)国庆期间,某超市各个区域都有促销活动,晓琳一家准备去超市购买纸巾,根据以下素材,探索完成任务.揭秘超市促销:送券和打折哪个更优惠素材1纸巾区域推出两种活动: [注:两种活动不能同时参加.]【活动一】:购物满100元送30元券,满200元送60元券,……,上不封顶,送的券当天有效,需一次性用完.【活动二】:所有商品打八折.晓琳家用的两种纸巾的信息(规格与标价):素材2A 品牌规格:每袋6包标价:20元/袋B 品牌规格:每箱12包标价:60元/箱素材3晓琳家平均三天用1包A 品牌纸巾,平均五天用1包B 品牌纸巾;晓琳家还剩1袋A 品牌纸巾,B 品牌纸巾的余量未知.问题解决任务1晓琳家半年(按180天计算)需要消耗A 品牌纸巾多少袋?消耗B 品牌纸巾多少箱?任务2按存半年的用量计算,还需要购买2种纸巾若干,其中B 品牌纸巾需购买x 箱,若选择活动二,则所需的总费用为 元(用含x 的代数式表示).任务3晓琳突然想起家中已没有B 品牌纸巾,按半年所需的用量来购买,请探索送券和打折哪个更优惠,并写出探索过程.23.(2023七上·东阳月考)我们知道:10a +2a−a =(10+2−1)a =11a ,类似地,若我们把(x +y)看成一个整体,则有10(x +y)+2(x +y)−(x +y)=(10+2−1)(x +y)=11(x +y),这种解决问题的方法渗透了数学中的“整体思想”.“整体思想”是中学数学解题中的一种重要的思想方法,其应用极为广泛.请运用“整体思想”解答下面的问题:(1)把(m−n)2看成一个整体,合并3(m−n)2−12(m−n)2+2(m−n)2;(2)已知:x 2+2y =3,求代数式−3x 2−6y +2的值;(3)已知a−2b =3,2b−c =−5,c−d =9,求(a−c)+(2b−d)−(2b−c)的值.24.(2023七上·吴兴期末)我们知道,在数轴上,表示数|a |表示的点到原点的距离,这是绝对值的几何意义,进一步地,如果数轴上两个点A 、B ,分别对应数a ,b ,那么A 、B 两点间的距离为:AB =|a−b |,如图,点A 在数轴上对应的数为a ,点B 对应的数为b ,且a ,b 满足:|a +3|+(b−2)2=0(1)求a ,b 的值;(2)求线段AB 的长;(3)如图,若N 点是B 点右侧一点,NA 的中点为Q ,P 为NB 的三等分点且靠近于B 点,当N 在B 的右侧运动时,请直接判断13NQ−12BP 的值是不变的还是变化的,如果不变,请算出其值.如果是变化的,请说明理由.答案解析部分1.【答案】B【知识点】合并同类项法则及应用2.【答案】C【知识点】整式的加减运算【解析】【解答】解:已知:A=x2y+2x+3,B=−2x2y+4x,∴2A−B=2(x2y+2x+3)−(−2x2y+4x)=2x2y+4x+6+2x2y−4x=(2x2y+2x2y)+(4x−4x)+6=4x2y+6,故答案为:C.【分析】根据整式加减运算,先去括号,再合并同类项,即可得到答案.3.【答案】B【知识点】去括号法则及应用【解析】【解答】解:A、a−(−3b+2c)=a+3b−2c≠a−3b+2c,A错误;B、−(x2+y2)=−x2−y2,B正确;C、a2+(−b+c)=a2−b+c≠a2−b−c,C错误;D、2a−3(b−c)=2a−3b+3c≠2a−3b+c,D错误;故答案为:B.【分析】根据去括号法则:括号前面是加号时,去掉括号,括号内的算式不变;括号前面是减号时,去掉括号,括号内加号变减号,减号变加号,进行计算即可.4.【答案】A【知识点】求代数式的值-整体代入求值【解析】【解答】解:∵a-2b=4∴4b-2a-3=2(2b-a)-3=-2(a-2b)-3=-2×4-3=-11故答案为:A.【分析】根据代数式求值的方法,将所求代数式化简,然后将已知代数式的值代入即可求解. 5.【答案】C【知识点】列式表示数量关系;整式的加减运算【解析】【解答】解:设小长方形的长为x,宽为y,由图1得:4x+4y=24,∴x+y=6,由图2得:长方形ABCD的长AB表示为:3x+y,宽AD表示为x+3y,∴周长为:2(3x+y+x+3y)=8x+8y=48cm故答案为:C.【分析】设小长方形的长为x,宽为y,利用平移的思想,结合图1可得4x+4y=24,即x+y=6;结合图2,用含x、y的式子表示出AB、AD、进而根据矩形的周长计算方法列出式子,根据整式加减法化简后再整体代入计算即可.6.【答案】D【知识点】求代数式的值-程序框图7.【答案】A【知识点】单项式的概念;单项式的次数与系数;多项式的项、系数与次数【解析】【解答】解:A、1是单项式,则本项符合题意,B、52a3b的次数是4,则本项不符合题意,C、−a b2+ab−6是3次多项式,则本项不符合题意,D、4π3R3的系数是4π33,则本项不符合题意,故答案为:A.【分析】根据单项式的定义:由数和字母的积组成的代数式叫做单项式,即可判断A项;根据单项式的次数:单项式中所有字母因数的指数和,单项式的系数:单项式中的数字因数,据此即可判断B项和D项;根据一个多项式中,次数最高的项的次数,叫做这个多项式的次数据此可判断C项. 8.【答案】C【知识点】求代数式的值-整体代入求值【解析】【解答】解:∵-2mx-4n=4,∴mx+2n=-2,由表格可知:当x=0时,mx+2n=-2,∴-2mx-4n=4的解为:x=0.故答案为:C.【分析】由题意先将所求方程变形得mx+2n=-2,然后观察表格中的信息即可求解.9.【答案】D【知识点】整式的加减运算;用代数式表示几何图形的数量关系【解析】【解答】解:如图所示,设长方形②的宽为b,长为a,长方形③的宽为c,则长方形③的长为a,正方形④的边长为a,则2a+2b+2a+2c=20,正方形④的周长为4a,∴2(2a+b+c)=20,即2a+b+c=10,∴正方形ABCD的边长为4(a+b+c)∴正方形ABCD与正方形④的周长和为4a+4(a+b+c)=4(2a+b+c)=40.故答案为:D.【分析】设长方形②的宽为b,长为a,方形③的宽为c,则长方形③的长为a,正方形④的边长为a,则正方形④的周长为4a,由长方形②与③的周长和为20m,可得2a+b+c=10,正方形ABCD的边长为4(a+b+c),根据整式的加减即可求解.10.【答案】A【知识点】绝对值及有理数的绝对值;代数式求值;有理数的除法法则【解析】【解答】解:∵abc>0,∴a,b,c中两个为负数,一个为正数,∵a+b+c=0∴a+b=-c,a+c=-b,b+c=-a∴m=|−c|c+2|−a|a+3|−b|b当a>0,b<0,c<0时,m=-1+2-3=-2;当a<0,b<0,c>0时,m=1-2-3=-4;当a<0,b>0,c<0时,m=-1-2+3=0;∴-4<-2<0∵m共有x个不同的值,若在这些不同的m值中,最小的值为y,∴x=3,y=-4∴x+y=3-4=-1.故答案为:A.【分析】由已知abc>0,可得到a,b,c中两个为负数,一个为正数;a+b+c=0可推出a+b=-c,a+c=-b,b+c=-a,由此可得到m=|−c|c +2|−a|a+3|−b|b;分情况讨论:当a>0,b<0,c<0时;当a<0,b<0,c>0时;当a<0,b>0,c<0时,分别求出m的值,即可得到x,y的值,然后代入求出x+y的值。
七年级数学上册 第3章 代数式 单元测试卷(苏科版 2024年秋)

七年级数学上册 第3章 代数式 单元测试卷(苏科版 2024年秋)一、选择题(每小题3分,共24分)1.下列各式中,符合代数式书写要求的是( )A . x ·5B .-12abC .123xD .4m ×n2.下列计算正确的是( )A .4a -2a =2B .2ab +3ba =5abC . a +a 2=a 3D .5x 2y -3xy 2=2xy3.[2024常州期中]下列去括号正确的是( )A . a -(-3b +2c )=a -3b +2cB .-(x 2+y 2)=-x 2-y 2C . a 2+(-b +c )=a 2-b -cD .2a -3(b -c )=2a -3b +c 4.长方形菜地长a m ,宽b m ,如果长增加x m ,那么新菜地增加的面积为( )A . a (b +x )m 2B . b (a +x )m 2C . ax m 2D . bx m 25.[2023南通]若a 2-4a -12=0,则2a 2-8a -8的值为( )A .24B .20C .18D .166.计算3+3+…+3⏟ m 个3+4×4×…×4⏟ n 个4的结果是( )A .3m +n 4B . m 3+4nC .3m +4nD .3m +4n7.[2024江阴期末]下列说法正确的是( )A .单项式-23πa 2b 的系数是-23 B .单项式-12ah 2的次数是3 C .2x 2+3xy -1是四次三项式D .25与x 5是同类项8.[2024盐城大丰区期中]已知有2个完全相同的边长为a ,b 的小长方形和1个边长为m ,n 的大长方形,小明把这2个小长方形放置在大长方形中,如图,小明经过推理得知,要求出图中阴影部分的周长之和,只需知道a ,b ,m ,n 中的一个量即可,则要知道的那个量是( )A . aB . bC . mD . n二、填空题(每小题3分,共30分) 9.单项式-5πx 2y 6的系数是 .10.多项式3x 2+2xy 2-1的次数是 .11.若一个代数式与-2a +b 的和是a +2b ,则这个代数式是 . 12.若-5x a +1y 4与8x 4y 2b 是同类项,则ab 的值为 .13.[新考法·整体代入法2023·泰州]若2a-b+3=0,则2(2a+b)-4b的值为.14.[2024苏州期末]当k=时,多项式x2+(k-1)xy-3y2-2xy-5中不含xy项.15.[真实情境题体育赛事]2024年4月21日,安阳马拉松赛燃情开跑.为防止选手个人信息泄露,马拉松参赛选手随身穿戴的计时芯片会把选手参赛号码利用公式加密后上传.某选手参赛号码为1 626,如果加密公式为选手参赛号码乘n再加6,则利用公式加密后上传的数据为.16.[新考法定义计算法]对于两个非零数x,y,定义一种新的运算:x*y=ax+by,若1*(-1)=2,则(-3)*3的值为.17.[新考法·程序计算法2024·淮安期末]根据如图的计算程序,若输入x的值为-5,则输出的值为.18.[新视角规律探究题] 如图是一组有规律的图案,它由若干个大小相同的圆片组成.第1个图案中有4个白色圆片,第2个图案中有6个白色圆片,第3个图案中有8个白色圆片,第4个图案中有10个白色圆片,…依此规律,第n个图案中有个白色圆片(用含n的代数式表示).三、解答题(共66分)19.(6分)[母题教材P101复习题T3]化简:(1)2a2+3ab-a2-4ab;(2)(3m2-n2)-2(m2-2n2).20.(5分) [母题教材P101复习题T4]先化简,再求值:3(4a2b-ab2)-2(-ab2+3a2b),其,b=-3.中a=1621.(8分)老师在黑板上写了一个正确的演算过程,随后用手掌捂住了多项式,形式如下:+2(a2+4ab+4b2)=5a2+2b2.(1)求手掌捂住的多项式;|=0,请求出所捂住的多项式的值.(2)若a,b满足(a+1)2+|b-1222.(8分)[2024苏州工业园区期中]如图,从一个长方形中剪下两个大小相同的正方形(有关线段的长如图所示,单位:米),留下一个“T”形图形(阴影部分).(1)用含x,y的代数式表示“T”形图形的周长;(2)若将此图作为某施工图,“T”形图形的周边需围上单价为每米20元的栅栏,原长方形周边的其余部分需围上单价为每米15元的栅栏.若x=1,y=3,请计算整个施工所需的造价.23.(9分)[2024连云港期中]已知代数式A=6x2+3xy+2y,B=3x2-2xy+5x.(1)求A-2B;(2)当x=-3,y=-6时,求A-2B的值;4(3)若A-2B的值与x的取值无关,求y的值.24.(9分)[新考法类比法] 阅读材料:我们知道,5x-x+2x=(5-1+2)x=6x,类似地,我们把(a+b)看成一个整体,则4(a +b)+3(a+b)-5(a+b)=(4+3-5)(a+b)=2(a+b).“整体思想”是中学数学解题中的一种重要的思想方法,它在多项式的化简与求值中应用极为广泛.尝试应用:(1)把(a-b)2看成一个整体,化简3(a-b)2-6(a-b)2+2(a-b)2的结果是;(2)若x2-2y=4,求3x2-6y-23的值;(3)若a-2b=3,2b-c=-5,c-d=10,求(a-c)+(2b-d)-(2b-c)的值.25.(9分)[2024南京雨花台区月考]观察下表回答问题:x…-2 -1 0 1 2 …2x+1 …-3 m 1 3 5 …-x-3 …-1 -2 -3 -4 n…(1)根据表中信息可知m=,n=;(2)表中2x+1的值的变化规律是x的值每增加1,2x+1的值就增加2;类似地,-x-3的值的变化规律是x的值每增加1,-x-3的值就;(3)当x的值从a增加到a+1时,猜想关于x的代数式kx-4(k为一次项的系数,且k≠0)的值会怎样变化,请通过计算加以说明.26.(12分)[2024盐城大丰区期末]如果a+b=10,那么我们称a与b是关于10的“圆满数”.(1)7与是关于10的“圆满数”,8-x与是关于10的“圆满数”(用含x的代数式表示);(2)若a=2x2-4x+3,b=1-2(x2-2x-3),判断a与b是否是关于10的“圆满数”,并说明理由;(3)若c=kx-1,d=5-2x,且c与d是关于10的“圆满数”,x与k都是正整数,求k的值.参考答案一、1.B 2.B 3.B 4.D 5.D 6.D 7.B8.D 点拨:如图,由图和已知可知AB =a ,EF =b ,AC =n -b ,GE =n -a ,所以阴影部分的周长之和=2(AB +AC )+2(GE +EF )=2(a +n -b )+2(n -a +b )=2a +2n -2b +2n -2a +2b =4n ,所以要求出图中阴影部分的周长之和,只需知道n 一个量即可.故选D .二、9.-5π6 10.3 11.3a +b 12.6 13.-6 14.315.1 626n +6 16.-6 17.22 18.2(n +1) 三、19.解:(1)原式=a 2-ab .(2)原式=(3m 2-n 2)-(2m 2-4n 2) =3m 2-n 2-2m 2+4n 2 =m 2+3n 2.20.解:原式=12a 2b -3ab 2+2ab 2-6a 2b =6a 2b -ab 2.当a =16,b =-3时,原式=6×136×(-3)-16×9=-12-32=-2.21.解:(1)根据题意得(5a 2+2b 2)-2(a 2-4ab +4b 2) =5a 2+2b 2-2a 2+8ab -8b 2=3a 2+8ab-6b 2,故手掌捂住的多项式为3a 2+8ab -6b 2.(2)因为(a +1)2+|b -12|=0,所以a +1=0,b -12=0,解得a =-1,b =12.将a =-1,b =12代入3a 2+8ab -6b 2,得3a 2+8ab -6b 2=3-4-32=-2. 5,故手掌捂住的多项式的值为-2.5.22.解:(1)“T”形图形的周长为2×[(2x +y )+(y +y +x )]=6(x +y )米.(2)20×6(x +y )+15×4y =120x +120y +60y =120x +180y . 当x =1,y =3时,原式=120×1+180×3=660. 所以整个施工所需的造价为660元. 23.解:(1)A -2B=6x 2+3xy +2y -2(3x 2-2xy +5x ) =6x 2+3xy +2y -6x 2+4xy -10x =7xy +2y -10x .(2)当x =-34,y =-6时,A -2B =7×(-34)×(-6)+2×(-6)-10×(-34)=632-12+152=27. (3)A -2B =7xy +2y -10x =(7y -10)x +2y .因为A -2B 的值与x 的取值无关,所以7y -10=0. 所以y =107. 24.解:(1)-(a -b )2(2)因为x 2-2y =4, 所以3x 2-6y -23 =3(x 2-2y )-23 =3×4-23 =-11.(3)因为a -2b =3,2b -c =-5,c -d =10, 所以(a -c )+(2b -d )-(2b -c ) =a -c +2b -d -2b +c =(a -2b )+(2b -c )+(c -d ) =3+(-5)+10=8. 25.解:(1)-1;-5 (2)减小1(3)因为k (a +1)-4-(ka -4)=ka +k -4-ka +4=k ,所以当k >0,x 的值从a 增加到a +1时,关于x 的代数式kx -4的值增加k ; 当k <0,x 的值从a 增加到a +1时,关于x 的代数式kx -4的值减少|k |(或减少-k ).26.解:(1)3;2+x(2)a 与b 是关于10的“圆满数”.理由如下: 因为a +b =2x 2-4x +3+1-2(x 2-2x -3) =2x 2-4x +3+1-2x 2+4x +6 =10,所以a 与b 是关于10的“圆满数”. (3)因为c 与d 是关于10的“圆满数”, 所以c +d =10,即kx -1+5-2x =10,整理得(k -2)x =6. 因为x 与k 都是正整数,所以当k =3时,x =6;当k =4时,x =3; 当k =5时,x =2;当k =8时,x =1.所以k的值为3,4,5,8.。
初中数学代数式的认识单元测试

初中数学代数式的认识单元测试一、选择题(共10题,每题2分,共20分)1. 下列代数式中,与4x+7y+2z相等的是:A. 7y+2z+4xB. 2z+7y+4xC. 2z+4x+7yD. 4x+2z+7y2. 如果a=3,b=4,c=2,那么a(b+c)的值是:A. 10B. 18C. 32D. 243. 化简 3(2x-5) - 2(5x-2)的结果是:A. -5x+16B. -4x+16C. 5x+16D. 4x+164. 已知 a= -2,b=3,c=4,求 a(2b-3c) 的值是:A. -16B. -10C. 10D. 165. 化简 4(5x-2) - 3(7x-3)的结果是:A. 4x+1B. x+1C. -4x+1D. -x+16. 如果a=2,b=5,c=3,那么a(b-c)的值是:A. 7B. 16C. 22D. 107. 化简 5(3x-4) - 8(2x-1)的结果是:A. 7x+17B. 3x+17C. -3x+17D. -7x+178. 已知 a= -5,b=2,c=3,求 b(a+2c) 的值是:A. -22B. -16C. 16D. 229. 化简 2(4x-3) - 3(2x-1)的结果是:A. 2x-1B. 4x-1C. -2x-1D. -4x-110. 如果a=3,b=4,c=2,那么b(2a-c)的值是:A. 22B. 10C. 16D. 28二、填空题(共5题,每题3分,共15分)1. 将4x + 3y - 2z + 5x + 2y + 2z化简后得到的结果是_______________.2. 如果a=2,c=3,那么a(c-2)的值是_______________.3. 下列代数式中,与2x + 5y + 6z - x - 2y - 3z相等的是_______________.4. 已知 a= -3,b=4,求 ab 的值是_______________.5. 化简 3(2x-1) - 5(3x-2)得到的结果是_______________.三、解答题(共2题,每题25分,共50分)1. 将 a(2b-3c) + b(c+a) 展开并化简。
代数式单元测试

代数式单元测试# 代数式单元测试测试目标验证代数式处理模块的准确性、稳定性和性能。
测试环境- 编程语言:Python- 测试框架:unittest测试用例1. 测试用例 1:基本运算- 描述:验证基本的加、减、乘、除运算。
- 输入:a = 5, b = 3- 预期结果:a + b = 8, a - b = 2, a * b = 15, a / b = 1.666...2. 测试用例 2:幂运算- 描述:验证幂运算的正确性。
- 输入:a = 2, b = 3- 预期结果:a b = 83. 测试用例 3:括号运算- 描述:验证括号改变运算顺序的正确性。
- 输入:a = 1, b = 2, c = 3- 预期结果:(a + b) * c = 94. 测试用例 4:负数运算- 描述:验证负数参与运算的正确性。
- 输入:a = -5, b = 3- 预期结果:a + b = -2, a - b = -85. 测试用例 5:分数运算- 描述:验证分数运算的正确性。
- 输入:a = 1/2, b = 2/3- 预期结果:a + b = 7/66. 测试用例 6:变量替换- 描述:验证代数式中变量替换的正确性。
- 输入:expression = "x + 2", x = 5- 预期结果:expression(x) = 77. 测试用例 7:函数求值- 描述:验证函数在给定点的求值。
- 输入:f(x) = x^2 - 3x + 2, x = 1- 预期结果:f(1) = 08. 测试用例 8:多项式展开- 描述:验证多项式展开的正确性。
- 输入:polynomial = (x + 1) * (x - 2) - 预期结果:展开后 = x^2 - x - 29. 测试用例 9:代数式简化- 描述:验证代数式简化功能。
- 输入:expression = x^2 + 2x + 1- 预期结果:简化后 = (x + 1)^210. 测试用例 10:极端值测试- 描述:验证代数式在极端值下的表现。
七年级数学上册《第三章代数式》单元测试卷及答案

七年级数学上册《第三章代数式》单元测试卷及答案学校:___________姓名:___________班级:___________考号:___________一、单选题1.下列各式符合代数式书写规范的是( )A .a bB .1a -C .2y x ÷D .3123xy 2.a 是一个两位数,b 是一个三位数,如果把b 放在a 的左边组成一个五位数,这个五位数是( ) A .ba B .b a + C .100b a + D .1000b a +3.一个矩形的周长为30,若矩形的一边长用字母x 表示,则此矩形的面积为( )A .(15)x x -B .(30)x x -C .(302)x x -D .(15)x x +4.c 是a 的16,c 是b 的18,那么a 与b 的比是( ) A .11:68 B .4:3 C .3:4 D .5:75.已知5m +和52n -互为相反数,则2m n +的值为( ) A .5- B .52- C .52 D .06.已知关于y 的多项式237n y y -+与3245my y +-的次数相同,那么25n -的值是( )A .80B .80-C .80-或54-D .45-或20- 7.如果()32a =--,()33b =-和223c ⎛⎫=- ⎪⎝⎭,那么a bc +的值为( ) A .4- B .4C .20D .20-8.如图,将第1个图中的正方形剪开得到第2个图,第2个图中共有4个正方形;将第2个图中一个正方形剪开得到第3个图,第3个图中共有7个正方形;将第3个图中一个正方形剪开得到第4个图,第4个图中共有10个正方形……如此下去,则第2024个图中共有正方形的个数为( )A .2024B .2022C .6069D .60709.某学校楼阶梯教室,第一排有m 个座位,后面每一排都比前面一排多2个座位,则第n 排座位数是( ) A .2m + B .2(1)m n +- C .2(1)n m +- D .2m n +10.根据图中数字的列规律,在第⑥个图中,a b c --的值是( )A .190-B .66-C .62D .34-二、填空题11.a 的15%减去70可以表示为 .12.某淘宝网店去年的营业额为m 万元,今年比去年增加15%,今年的营业额是 万元. 13.从大拇指开始,按照大拇指→食指→中指→无名指→小指→无名指→中指→食指→大拇指→食指……的顺序,依次数整数1,2,3,4,5,6,7,……当数到2022时,对应的手指为 ;当第n 次数到食指时,数到的数是 (用含n 的代数式表示).14.已知||5a =,||3b =且||a b b a -=-,则a b += .15.两船从同一港口同时出发反向而行,甲船顺水,乙船逆水,两船在静水中的速度都是40km/h ,水流速度是km/h a ,则2h 后两船相距 千米.三、解答题16.下列表述中,字母各表示什么?(1)正方形的周长为4a ;(2)买单价为5元的毛巾,花了5a 元钱;(3)某班女生比男生多1人,女生共有(x +1)人.17.已知:()21102a b -++=,c 是最小的自然数,d 是最大负整数. (1)求a ,b ,c ,d 的值:(2)试求代数式()()328b a c d -+-的值.18.渠县同心百货、繁鑫文印两家惠民文具商店出售同样的毛笔和宣纸,毛笔每支20元,宣纸每张4元.为促销,同心百货商店推出的优惠方案是:买1支毛笔送2张宜纸,繁鑫文印商店的优惠方案是:按总价的九折优惠.小丽同学想购买5支毛笔,x 张宜纸()10x ≥.(1)用含x 的代数式填空:①若到同心百货商店购买,应付_______元;①若到繁鑫文印商店购买,应付______元;(2)若小丽同学要买50张宣纸,选择哪家文具商店购买更划算?请说明理由.若购买200张呢? 19.点A ,B 在数轴上的位置如图所示,其对应的数分别是a 和b .(1)把,,,a b a b -这四个数用“<”连接起来: ;(2)用“>”或“<”填空:a b +______0,a b -______0;(3)化简:a b a b +--= ;(4)若3,4,2a b c d ==、互为相反数,m n 、互为倒数,求()22023c d mn a b +-++的值.20.111111111111,,,122232334344545=-=-=-=-=⨯⨯⨯⨯(1)第5个式子是_______;第n 个式子是_______.(2)从计算结果中找规律,利用规律计算:111111223344520202021+++++=⨯⨯⨯⨯⨯_______; (3)计算:(由此拓展写出具体过程): ①111113355799101++++⨯⨯⨯⨯; ①1111126129900-----. 21.学校需要到印刷厂印刷x 份材料,甲印刷厂提出:每份材料收0.2元印刷费,另收400元制版费;乙印刷厂提出:每份材料收0.4元印刷费,不收制版费.(1)两印刷厂的收费各是多少元?(用含x 的代数式表示)(2)学校要印刷2400份材料,不考虑其他因素,选择哪家印刷厂比较合算?试说明理由.22.如图是一组有规律的图案,它们是由边长相等的等边三角形组合而成,第1个图案有4个三角形,第2个图案有7个三角形,第3个图案有10个三角形…照此规律摆下去:(1)照此规律,摆成第5个图案需要_____________个三角形;(2)照此规律,摆成第n 个图案需要_____________个三角形(用含n 的代数式表示);(3)照此规律,摆成第2021个图案需要几个三角形?23.若干个1与1-排成一行:1,1,1,1,1,1,1,1,1,------规则是:先写一行1,再在第k 个1与第1k +个1之间插入k 个()11,2,3,k -=.(1)第2012个数是1还是1-?(2)前2012个数的和是多少?参考答案1.A【分析】本题考查了代数式.根据书写规则,数字应在字母前面,分数不能为假分数,不能出现除号,对各项的代数式进行判定,即可求出答案.【详解】解:A 、a b书写形式正确,故本选项符合题意; B 、正确书写形式为a -,故本选项不符合题意;C 、正确书写形式为2y x个,故本选项不符合题意; D 、正确书写形式为373xy ,故本选项不符合题意. 故选:A .2.C【分析】本题考查列代数式,由题意得,把新的五位数中b 扩大100倍,即可求解.【详解】解:由题意得,这个五位数是100b a +故选:C .3.A【分析】根据已知表示出矩形的另一边长,进而利用矩形面积求法得出答案.此题主要考查了列代数式,根据题意表示出矩形的另一边长是解题关键.【详解】解:一个矩形的周长为30,矩形的一边长为x∴矩形另一边长为:15x -故此矩形的面积为:(15)x x -.故选:A .4.C【分析】本题考查了比的代数式表示式,根据题意将a 与b 转化为c 的倍数,相比即可解题.【详解】解:c 是a 的16,c 是b 的18 6a c ∴= 8b c =:6:83:4a b c c ∴==故选:C .5.D【分析】本题主要考查了绝对值的非负性、相反数的定义、代数式求值等知识点,根据绝对值的非负性和相反数的定义求出m 与n 的值成为解题的关键.根据绝对值的非负性和相反数的定义求出m 与n 的值,再代入2m n +计算即可.【详解】解:①5m +和52n -互为相反数 ①5025m n ++-= 又①50m +≥502n -≥ ①50m += 502n -= ①552m n =-=, ①2550m n +=-+=故选:D .6.D【分析】本题考查多项式的次数,多项式的每一项都有次数,其中次数最高的项的次数,就是这个多项式的次数,分0m =与0m ≠两种情况,根据两个多项式的次数相同,求出n 的值,代入求解即可. 【详解】解:当0m =时3224545my y y +-=-,次数为2;当0m ≠时3245my y +-次数为3;多项式237n y y -+的次数为n多项式237n y y -+与3245my y +-的次数相同∴当0m =时 2n = 2255220n -=-⨯=-当0m ≠时 3n = 2255345n -=-⨯=-∴25n -的值是45-或20-.故选D .7.A【分析】本题考查有理数的乘方,有理数的混合运算,求代数式的值,分别求出a 、b 、c 并代入a bc +计算即可.掌握相应的运算法则是解题的关键.【详解】解:①()328a =--=()3327b =-=-①()827481249a bc ⨯=-+=+=-- ①a bc +的值为4-.故选:A .8.D 【分析】本题主要考查图形规律,由前4个图形总结得到第n 的图形的规律,即可得到第2024个图形含有的正方形数量.【详解】解:第1个图中有正方形1个第2个图中有正方形413=+个第3个图中有正方形7123=+⨯个第4个图中有正方形10133=+⨯个所以第n 个图中有正方形13(1)(32)n n +-=-个.当2024n =时,图中有3 2 02426070⨯-=个正方形.故选:D .9.B【分析】本题主要考查了列代数式,理解题意是解题的关键.根据题意列出代数式即可.【详解】解:由题意可知,第一排有m 个座位第二排有(21)m +⨯个座位第三排有(22)m +⨯个座位第四排有(23)m +⨯个座位...故第n 排座位数是2(1)m n +-故选B .10.D【分析】本题考查了图形中有关数字的变化规律,通过观察图形,得到()1?2n n a =- ()1?22nn b =-+ ()11?22n n c =⨯- 把6n =代入求出a b c 、、的值,再把a b c 、、的值代入到a b c --计算即可求解,仔细观察图形找到规律是解题的关键.【详解】解:通过观察可得规律:左边三角形上的数字 ()1?2n n a =- 右边三角形上的数字()1?22n n b =-+ 下面三角形上的数字()11?22n n c =⨯- ①当6n =时()661?264a =-= 64266b =+= 164322c =⨯= ①64663234a b c --=--=-故选:D .11.0.1570a -/15%70a -【分析】由已知,先列出a 的15%为0.15a ,再表示它减70即可.【详解】解:a 的15%为0.15a ,再减70则表示为0.1570a -.故答案为:0.1570a -.【点睛】此题是考查学生列代数式为题.值得注意的是a 的15%应列为0.15a ,要求规范列代数式. 12.1.15m【分析】本题考查了列代数式,根据今年的营业额()115%=+⨯去年的营业额列式求解即可.【详解】解:根据题意,得:今年的营业额是()115% 1.15m m +=故答案为:1.15m .13. 无名指 ()812n -+或()818n -+【分析】本题考查规律型数字的变化类问题,解题的关键是从一般到特殊探究规律、发现规律、利用规律解决问题,属于中考常考题型.先探究规律,发现规律后利用规律即可解决问题.【详解】解:如题意可知,八次为一个循环体重复出现202282526÷=⋯⋯当数到2022时,对应的手指与第6次对应的一样为:无名指;第一个循环体出现食指时,数到的数是:()8112-+ ()8118-+;第二个循环体出现食指时,数到的数是:()8212-+ ()8218-+;第三个循环体出现食指时,数到的数是:()8312-+ ()8318-+;⋯当第n 次数到食指时,数到的数是()812n -+ ()818n -+故答案为:无名指,()812n -+或()818n -+.14.8-或2-/−2或−8【分析】本题考查代数式求值,绝对值的意义,根据绝对值的意义,得到0a b -<,进而求出,a b 的值,再代入代数式计算即可.【详解】解:①||5a = ||3b =①5,3a b ①||a b b a -=-①0a b -<①5,3a b =-=±①538a b +=--=-或532a b +=-+=-;故答案为:8-或2-.15.160【分析】本题主要考查列代数式,根据:2h 后甲、乙间的距离=甲船行驶的路程+乙船行驶的路程即可得,掌握船顺流航行时的速度与逆流航行的速度公式是解题的关键.【详解】解:解:2h 后两船间的距离为:2(40)2(40)160a a ++-=千米;故答案为:16016.(1)a 表示正方形的边长(2)a 表示毛巾的数量(3)x 表示男生的人数【分析】(1)根据正方形的周长=边长×4即可得出答案;(2)根据总价=单价×数量即可得出答案;(3)根据女生比男生多1人即可得出答案.【详解】(1)解:根据题意可得,a 表示正方形的边长;(2)解:根据题意可得,a 表示毛巾的数量;(3)解:根据题意可得,x 表示男生的人数.【点睛】本题考查了代数式,熟练掌握各代数式的意义是解题的关键.17.(1)11,2a b ==- 0,1c d ==- (2)8-【分析】本题考查了非负数的性质和求代数式的值,解题关键是根据题意求出字母的值.(1)根据非负数的性质及有理数相关概念求出a 、b 、c 、d 的值即可;(2)将求出的a 、b 、c 、d 的值代入代数式求值即可.【详解】(1)解:21102a b 110,02a b 11,2a b c 是最小的自然数,d 是最大负整数0,1c d ;(2)解:11,2a b0,1c d ==- 328b a c d 32181012 18118 9818918=-.18.(1)()460x + ()3.690x +(2)若小丽同学要买50张宣纸,选择同心商店购买更划算;若小丽同学要买50张宣纸,选择繁鑫文印商店购买更划算,理由见解析:【分析】(1)根据所给的两个商店的优惠标准列式求解即可;(2)根据(1)所求分别代入50x =,200x =求出两个商店的费用即可得到答案.【详解】(1)解:由题意得,若到同心百货商店购买,应付()()520410460x x ⨯+-=+元;若到繁鑫文印商店购买,应付()()95204 3.69010x x ⨯+⨯=+ 故答案为:()460x + ()3.690x +;(2)解:若小丽同学要买50张宣纸,选择同心商店购买更划算;若小丽同学要买200张宣纸,选择繁鑫文印商店购买更划算,理由如下:当50x =时46045060260x +=⨯+= 3.690 3.65090270x +=⨯+=①260270<①若小丽同学要买50张宣纸,选择同心商店购买更划算;当200x =时460420060860x +=⨯+= 3.690 3.620090810x +=⨯+=①810860<①若小丽同学要买200张宣纸,选择繁鑫文印商店购买更划算.【点睛】本题主要考查了列代数式和代数式求值,正确理解题意是解题的关键.19.(1)b a a b <-<<(2)<,>(3)2a - (4)214【分析】(1)由数轴可知3,3,03,3,30b b a a a -<<<-<-<,即可解答;(2)由数轴可知3,3,03,b b a a b -<<<,进而完成解答;(3)先利用(2)的结论去绝对值,然后再运算即可;(4)由数轴可知0,0b a <>从而确定a 、b 的值,再根据相反数、倒数的性质代入计算即可.【详解】(1)解:由数轴可知3,3,03,3,30b b a a a -<<<-<-<,即b a a b <-<<. 故答案为:b a a b <-<<.(2)解:由数轴可得:3,3,03,b b a a b -<<<,则0a b 0a b -.故答案为:<,>(3)解:①0a b 0a b -①()()2a b a b a b a b a b a b a +--=-+--=---+=-.故答案为:2a -.(4)解:由数轴可知0,0b a <>①3,4,2a b c d ==、互为相反数,m n 、互为倒数 ①3,4,0,12a b c d mn ==-+== ①()22203525211411202320232244c d mn a b +⎛⎫⎛⎫-++=-+-=-+-=-+= ⎪ ⎪⎝⎭⎝⎭. 【点睛】本题主要考查了数轴、去绝对值、相反数、倒数代数式求值等知识点,掌握数轴的应用成为解题的关键.20.(1)1115656=-⨯;()111n n 1n n 1=-++ (2)20202021(3)①50101;①1100【分析】此题主要考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.(1)观察一系列等式得到一般性规律,写出第5个式子与第n 个式子即可;(2)原式利用得出的规律化简,计算即可得到结果;(3)①原式变形为9139111111123501⎛⎫-+-+⋯+- ⎪⎝⎭,利用得出的规律化简,计算即可得到结果; ①原式变形为1223349910011111-----⨯⨯⨯⨯,利用得出的规律化简,计算即可得到结果. 【详解】(1)解:①111122=-⨯ 1112323=-⨯ 1113434=-⨯ 1114545=-⨯ ①第5个式子是:1115656=-⨯; 第n 个式子是()111n n 1n n 1=-++; 故答案为:1115656=-⨯ ()111n n 1n n 1=-++; (2)解:111111223344520202021+++++⨯⨯⨯⨯⨯ 111111112233420202021⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-+⋯+- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭111111112233420202021=-+-+-+⋯+-112021=- 20202021=; (3)解:①111113355799101++++⨯⨯⨯⨯ 1111111233599101⎛⎫=-+-+⋯+- ⎪⎝⎭ 1112101⎛⎫=- ⎪⎝⎭50101=. ①1111126129900----- 0111122334911190=⨯---⨯-⨯-⨯ 1112233499101110⎛⎫=⎪++- ⨯⨯++⨯⨯⎝⎭ 1111111122334199100⎛⎫=⎪-+-+-++-- ⎝⎭ 111100⎛⎫=-- ⎪⎝⎭111100=-+1100=. 21.(1)甲:()0.2400x +元,乙:0.4x 元(2)选择甲印刷厂比较合算,见解析【分析】本题考查了列代数式、求代数式的值,理解题意,正确列出代数式是解此题的关键. (1)根据甲、乙两厂的收费方式列出代数式即可;(2)把2400x =代入(1)中所求的代数式,分别计算出甲、乙两厂的费用,比较即可得出答案.【详解】(1)解:由题意得:甲印刷厂的收费为:()0.2400x +元乙印刷厂的收费为:0.4x 元;(2)解:当2400x =时甲印刷厂的收费为:0.24000.22400400880x +=⨯+=(元).乙印刷厂的收费为:0.40.42400960x =⨯=(元)因为880960<所以选择甲印刷厂比较合算.22.(1)16(2)31n +(3)6064【分析】本题考查了规律型:图形的变化类以及列代数式,根据各图案所需三角形个数的变化,找出变化规律“31n a n =+”是解题的关键.(1)根据前4个图案所需三角形的个数,可得出每个图案所需三角形的个数比前一个图形多3个,再结合4a 的值即可求出5a 的值;(2)由(1)的结论“每个图案所需三角形的个数比前一个图形多3个”,可得出21324311()()()()31n n n a a a a a a a a a a n -=-+-+-+⋯+-+=+;(3)代入2021n =即可求出结论.【详解】(1)解:设摆成第n (n 为正整数)个图案需要n a 个三角形.①1234471013a a a a ====,,,①2132433a a a a a a -=-=-=①54316a a =+=.故答案为:16;(2)解:由(1)可知:21324311()()()()31n n n a a a a a a a a a a n -=-+-+-+⋯+-+=+.故答案为:31n +;(3)解:当2021n =时20213202116064a =⨯+=①摆成第2021个图案需要6064个三角形.23.(1)第2012个数为1-.(2)1888-【分析】本题主要考查了数字规律,理解并应用数字规律是解题的关键.(1)根据规则可知第1k -行共有数字个数为()()()21111122k k k k k +--++-=-,由于62k =时,数字个数为1953个,63k =时,数字个数为2016个,从而得出第2012个数;(2)由(1)可知2012个数在62行,则共有62个1,其余均为1-,然后据此求和即可.【详解】(1)解:排列规律如下:1行:1,1-2行:1,1,1--3行:1,1,1,1---………k 行①到第1k -行共有数字个数为()212341122k k k k k +++++⋯+=-=- 由于62k =时219532k k +=,63k =时220162k k +=. ①第2012个数为1-.(2)解:设前2012个数的和为S由(1)可得:2012个数在62行,则共有62个1,其余均为1-.则()()62112012621888S =⨯+-⨯-=-.。
人教版数学七上 第三章 代数式 单元测试(含答案)

人教版数学七上 第三章 代数式一、单选题1.下列代数式书写规范的是( )A .2m ×nB .256abC .a ÷bD .3x2.“x 的三分之一与y 的一半的差”用代数式表示正确的是( )A .3x−2yB .13x−yC .13x−2yD .13x−12y 3.为落实“双减”政策,某校利用课后服务时间开展读书活动.现需要购买甲、乙两种读本共100本供学生阅读,其中甲种读本的单价为10元/本,乙种读本的单价为8元/本,设购买甲种读本x 本,则购买乙种读本的费用为( )A .8(100−x )元B .8x 元C .10(100−x )元D .8(100−10x )元4.买一个足球需m 元,买一个篮球需n 元,则买3个足球和2个篮球共需( )元A .5mnB .6mnC .(3m +2n )D .(2m +3n )5.如果2x +3y =7,那么8x +12y−1等于( )A .13B .27C .28D .不能确定6.若|x−4|+(y +13)2=0,则6xy 的值为( )A .43B .8C .−8D .−437.近年来,重庆作为网红城市,旅游业市场发展迅速:据调查,今年重庆5月份旅游旺季全市旅游业收入为x 亿元,6月份比5月份减少了25%,暑期如约而至,7月份比6月份增加了78%,则7月份重庆全市的旅游业收入是( )亿元.A .(1﹣25%+78%)xB .(1﹣25%)(1+78%)xC .(1﹣25%)x +(1+78%)xD .[1﹣25%(1+78%)]x8.若x 表示一个一位数,y 表示一个两位数,小明把x 放在y 的右边来组成一个三位数,你认为下列表达式中能表示这个数的是( )A .yxB .100x +yC .10x +yD .10y +x 二、填空题9.按照列代数式的规范要求重新书写:a ×a ×2−b ÷3,应写成 .10.一张贺卡的单价是a 元/张,小明买8张,用去 元.11.若代数式2y 2+3y +7的值是8,则代数式4y 2+6y−2023的值是 .12.足球上白色皮共有a 块,比黑色皮的2倍少4块,共有黑色皮 块.13.“a 的2倍与b 的差的平方”用式子表示为 ,当a =−2,b =−1时,此式子的值为 .14.如图,下列各图形中的三个数之间均具有相同的规律,根据此规律,用含有n 的代数式表示y = .15.单项式6a 2可以表述为“棱长为a 的正方体的表面积”,请再赋予它一个新的实际背景: .16.如图都是由同样大小的黑棋子按一定规律摆出的图案,第①个图案有4个黑棋子,第②个图案有9个黑棋子,第③个图案有14个黑棋子,…,依此规律,则第6个图案中有黑色棋子 个;第n 块图案中有黑色棋子 个.17.a 是为1的有理数,我们把11−a 称为a 的差倒数.例如:2的差倒数是11−2=−1,−1的差倒数 11−(−1)=12,已知a 1=−13,a 2是a 1的差倒数,a 3是a 2的差倒数,a 4是a 3的差的倒数,⋯,则a 4= ,依此类推a 2024= .三、解答题18.指出下列各代数式的意义:(1)2a +3; (2)(a +3)x ; (3)c ab ; (4)x x−y 19.已知a 是最小的正整数,b 比﹣1大3,c 的相反数还是它本身.(1)求出a 、b 、c 的值;(2)计算(2a +3c )×b 的值.20.如图,有一块长和宽分别为10和6的长方形纸片,将它的四角截去四个边长为a(0<a<3)的小正方形,然后将它折成一个无盖的长方体纸盒,解答下列问题:(1)求这个无盖长方体纸盒的表面积(用含a的代数式表示).(2)求这个无盖长方体纸盒的容积(用含a的代数式表示并化简).并求出当a=3时,此时纸2盒的容积.21.已知代数式ax2−x+1,请按照下列要求分别求值:(1)当a=2,x=1时,求代数式的值;(2)当a=1,5+x−x2=3时,求代数式的值;(3)当x=2023时,代数式ax2−x+1的值是m,则当x=−2023时,求ax2−x+1的值(结果用m表示).22.春暖花开,新学期伊始,某中学为了给学生提供充足的体育运动器材,准备购买一批某品牌的足球和跳绳,足球每个定价为150元,跳绳每条定价为25元.该品牌通过线下实体店和网店两种方式进行销售,线下实体店的销售方案为:买一个足球送一条跳绳;网店的销售方案为:足球和跳绳都按定价打九折.(1)如果购买足球60个,跳绳a条(a>60),若在实体店购买,共需付款元;若在网店购买,共需付款元(用含a的代数式表示).(2)如果购买足球60个,跳绳120条,通过计算说明怎样购买最合算.参考答案:1.D2.D3.A4.C5.B6.C7.B8.D9.2a2-b310.8a11.−202112.a+4213.(2a−b)2914.3n+115.6个边长为a的正方形的面积和(答案不唯一) 16.29 5n−117.−133 418.(1)a的2倍与3的和;(2)a与3的和的x倍;(3)c与a,b的积的商;(4)x 与x,y两数的差的商19.(1)a、b、c的值分别为1,2,0;(2)4.20.(1)60−4a2(2)4a3−32a2+60a,31.521.(1)2(2)3(3)m+404622.(1)(25a+7500),(22.5a+8100)(2)在实体店购买足球60个,送跳绳60条,在网店购买跳绳60条,购买方式最合算.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
单元测试(二) 代数式
(时间:45分钟 满分:100分) 题号 一 二 三 总分 合分人 复分人 得分
一、选择题(每小题3分,共30分)
1.下列代数式中符合书写要求的是( )
A .ab4
B .413m
C .x ÷y
D .-52
a 2.下列各式:-12mn ,m ,8,1a ,x 2+2x +6,2x -y 5,x 2+4y π,y 3-5y +1y 中,整式有( ) A .3个 B .4个 C .6个 D .7个
3.列式表示“比m 的平方的3倍大1的数”是( )
A .(3m)2+1
B .3m 2+1
C .3(m +1)2
D .(3m +1)2
4.下列各组单项式中,不是同类项的是( )
A .12a 3y 与2ya 33
B .6a 2mb 与-a 2bm
C .23与32 D.12x 3y 与-12
xy 3 5.下列所列代数式正确的是( )
A .a 与b 的积的立方是ab 3
B .x 与y 的平方差是(x -y)2
C .x 与y 的倒数的差是x -1y
D .x 与5的差的7倍是7x -5 6.多项式1+2xy -3xy 2的次数及最高次项的系数分别是( )
A .3,-3
B .2,-3
C .5,-3
D .2,3
7.如果代数式2a 2+3a +1的值是6,那么代数式6a 2+9a +5的值为( )
A .18
B .16
C .15
D .20
8.一根铁丝正好可以围成一个长是2a +3b ,宽是a +b 的长方形框,把它剪去可围成一个长是a ,宽是b 的长方形的一段铁丝(均不计接缝),剩下部分铁丝的长是( )
A .a +2b
B .b +2a
C .4a +6b
D .6a +4b
9.有理数a ,b ,c 在数轴上对应的点如图所示,化简|b +a|+|a +c|+|c -b|的结果是( )
A .2b -2c
B .2c -2b
C .2b
D .-2c
10.一列数a 1,a 2,a 3,…,其中a 1=12,a n =11+a n -1
(n 为不小于2的整数),则a 4的值为( ) A.58 B.85 C.138 D.813
二、填空题(每小题3分,共18分)
11.单项式-2πa 2b 3c 3
的系数是________,次数是________. 12.把多项式x 2y -2x 3y 2-3+4xy 3按字母x 的指数由小到大排列是________________________.
13.请你结合生活实际,设计具体情境,解释代数式30a
的意义:_______________________________________________________________________________________.
14.规定一种新运算:aΔb =a·b -a -b +1,如3Δ4=3×4-3-4+1,请比较大小:
(-3)Δ4________4Δ(-3).(填“>”“=”或“<”)
15.某商品先按批发价a 元提高10%零售,后又按零售价90%出售,则它最后的单价是________________元.
16.有一组多项式:a +b 2,a 2-b 4,a 3+b 6,a 4-b 8,…,请观察它们的构成规律,用你发现的规律写出第10个多项式为________________.
三、解答题(共52分)
17.(16分)计算:
(1)3a 3-(7-12
a 3)-4-6a 3; (2)(5x -2y)+(2x +y)-(4x -2y);
(3)2(x 2-y )-3(y +2x 2); (4)3x 2-[x 2+(2x 2-x )-2(x 2-2x )].
18.(6分)若a ,b 满足(a -3)2+|b +13|=0,求代数式3a 2b -[2ab 2-2(ab -32
a 2b)+ab]+3a
b 2的值.
19.(8分)已知,如图,长方形广场的四角都有一块边长为x 米的正方形草地,长方形的长为a 米,宽为b 米.
(1)请用代数式表示阴影部分的面积;
(2)若长方形广场的长为200米,宽为150米,正方形的边长为10米,求阴影部分的面积.
20.(10分)小红做一道数学题“两个多项式A ,B ,B 为4x 2-5x -6,试求A +2B 的值”.小红误将A +2B 看成A -2B ,结果答案(计算正确)为-7x 2+10x +12.
(1)试求A +2B 的正确结果;
(2)求出当x =-3时,A +2B 的值.
21.(12分)某影剧院观众席近似于扇面形状,第一排有m个座位,后边的每一排比前一排多两个座位.
(1)写出第n排的座位数;
(2)当m=20时,①求第25排的座位数;②如果这个剧院共25排,那么最多可以容纳多少观众?
参考答案
1.D 2.C 3.B 4.D 5.C 6.A 7.D 8.C 9.A 10.A 11.-2π3
6 12.-3+4xy 3+x 2y -2x 3y 2 13.答案不唯一,如:某班级有a 名学生参加考试,30名学生成绩合格,则合格人数占总人数的
30a 14.= 15.0.99a 16.a 10-b 20 17.(1)-52
a 3-11. (2)3x +y.
(3)-4x 2-5y.
(4)2x 2-3x.
18.因为(a -3)2+|b +13|=0,所以a =3,b =-13
. 又因为原式=3a 2b -2ab 2+2ab -3a 2b -ab +3ab 2=ab 2+ab.
所以当a =3,b =-13
时, 原式=ab 2+ab =3×(-13)2+3×(-13)=-23
. 19.(1)ab -4x 2.(2)阴影部分的面积为:200×150-4×102=29 600(m 2).
20.(1)因为A -2B =-7x 2+10x +12,B =4x 2-5x -6,所以A =-7x 2+10x +12+2(4x 2-5x -6)=x 2.所以A +2B =x 2+2(4x 2-5x -6)=9x 2-10x -12.(2)当x =-3时,A +2B =9×(-3)2-10×(-3)-12=99.
21.(1)m +2(n -1).(2)①当m =20,n =25时,m +2(n -1)=20+2×(25-1)=68(个).②m +m +2+m +2×2+…+m +2×(25-1)=25m +600.当m =20时,25m +600=25×20+600=1 100(人).。