自动控制理论教学课件-第四章 根轨迹法

合集下载

自动控制原理 第四章根轨迹

自动控制原理 第四章根轨迹

第四章根轨迹法4-1 根轨迹法的基本概念4-2 常规根轨迹的绘制法则4-3 广义根轨迹4-1 根轨迹法的基本概念一、根轨迹的概念根轨迹:系统中某个参数从零到无穷变化时,系统闭环特征根在s平面上移动的轨迹。

根指的是闭环特征根(闭环极点)。

根轨迹法是根据开环传递函数与闭环传递函数的关系,通过开环传递函数直接分析闭环特征根及系统性能的图解法。

K =0 s 1=0 s 2=-40 < K <1s 1 s 2为不等的负实根K =1s 1=-2 s 2=-21 < K < ∞s 1s2 实部均为-2由根轨迹可知:1)当K =0时,s 1=0,s 2=-1,这两点恰是开环传递函数的极点,同时也是闭环特征方程的极点.2)当0<K < 1 时,s 1,2都是负实根,随着k 的增长,s 1从s 平面的原点向左移,s 2从-1点向右移。

3) 当K = 1时, s 1,2= -2,两根重合在一起,此时系统恰好处在临界阻尼状态。

4) 1 <K <∞,s 1,2为共轭复根,它们的实部恒等于-2,虚部随着K 的增大而增大,系统此时为欠阻尼状态。

★在s平面上,用箭头标明K增大时,闭环特征根移动的方向,以数值表明某极点处的增益大小。

有了根轨迹图就可以分析系统的各种性能:(1)稳定性:根轨迹均在s的左半平面,则系统对所有K>0都是稳定的。

(2)稳态性能:如图有一个开环极点(也是闭环极点)s=0。

说明属于I型系统,阶跃作用下的稳态误差为0。

在速度信号V0t作用下,稳态误差为V0/K,在加速度信号作用下,稳态误差为∞。

(3)动态性能:过阻尼临界阻尼欠阻尼K越大,阻尼比ξ越小,超调量σ%越大。

由此可知:1、利用根轨迹可以直观的分析K的变化对系统性能的影响。

2、根据性能指标的要求可以很快确定出系统闭环特征根的位置;从而确定出可变参数的大小,便于对系统进行设计。

由以上分析知:根轨迹与系统性能之间有着密切的联系,但是,高阶方程很难求解,用直接解闭环特征根的办法来绘制根轨迹是很麻烦的。

根轨迹法(自动控制原理)ppt课件精选全文完整版

根轨迹法(自动控制原理)ppt课件精选全文完整版
1 K (s z1 )( s z2 )....( s zm ) 0 (s p1 )( s p2 )....( s pn )
课程:自动控制原理
第4章 根轨迹法
➢ 以K为参变量的根轨迹上的每一点都必须满足以上方程, 相应地,称之为‘典型根轨迹方程’。
也可以写成
m
n
(s zl ) K (s pi ) 0
可见,根轨迹可以清晰地描绘闭环极点与开环增益K之间的 关系。
课程:自动控制原理
第4章 根轨迹法
2.根轨迹的基本条件
❖ 考察图示系统,其闭环传递函数为:
Y(s) G(s) R(s) 1 G(s)H(s)
闭环特征方程为:
1 G(s)H(s) 0
➢ 因为根轨迹上的每一点s都是闭环特征方程的根,所以根轨 迹上的每一点都应满足:
l 1
i 1
对应的幅值条件为:
相角条件为:
n
( s pi ) K i1
m
(s zl )
l 1
m
n
(s zl ) (s pi ) (2k 1)180
k 1,2,
l 1
i 1
课程:自动控制原理
第4章 根轨迹法
❖ 上述相角条件,即为绘制根轨迹图的依据。具体绘制方法 是:在复平面上选足够多的试验点,对每一个试验点检查 它是否满足相角条件,如果是则该点在根轨迹上,如果不 是则该点不在根轨迹上,最后将在根轨迹上的试验点连接 就得到根轨迹图。
显然,位于实轴上的两个相邻的开环极点之间一定有分离 点,因为任何一条根轨迹不可能开始于一个开环极点终止 于另一个开环极点。同理,位于实轴上的两个相邻的开环 零点之间也一定有分离点。
课程:自动控制原理
第4章 根轨迹法

自动控制原理第四章根轨迹课件

自动控制原理第四章根轨迹课件

幅值条件
s z
i 1
Hale Waihona Puke mi s p
j 1
n

j
1 Kg
Kg=0
(s p ) 0
j 1 j
n
根轨迹起始于开环极点
Kg=∞
(s z ) 0
i 1 i
m
根轨迹终止于开环零点
根轨迹分支数 • n阶系统的根轨迹有n条分支
s z
i 1
m
i
s p
j 1

-p3

j4
K1 G( s) H ( s) s( s 4)( s 2 4s 20)
规则1、2、3、4 根轨迹对称于实轴, 有四条根轨迹分支,分别起 始于极点0,-4和-2±j4,终止 于无限远零点。 实轴上0~-4区段为根轨迹. 相角条件 -p3、-p4的连接线为 根轨迹
-p2
s1 z1 ( z1 p1 )(z1 p2 )
s2 z1 ( z1 p1 )( z1 p2 )
7.根轨迹的出射角和入射角(1)

出射角:根轨迹离开复数极点处的切线方向与实轴 正方向的夹角 入射角:而进入开环复数零点处的切线方向与实轴 正方向的夹角
7.根轨迹的出射角和入射角(2)
i 1 i 1
每对共轭复数极点所提供的相角 之和为360°; s1右边所有位于实轴上的每一个极 点或零点所提供的相角为180°;
ⅹ ⅹ
-p3 s2
-p4

-θ -z1


-p2 s1

-p1
σ
s1左边所有位于实轴上的每一个极
点或零点所提供的相角为0°。

自动控制原理第四章-根轨迹分析法

自动控制原理第四章-根轨迹分析法

×
p4 z 2
×
p3
×
×
p 2 z1 p1
σ
规则4:根轨迹的分会点(分离点和会合点)d。 (1)定义:分会点是指根轨迹离开实轴进入复平面的点(分 离点)或由复平面进入实轴的点(汇合点),位于相邻两极点 或两零点之间。
(2)位置:大部分的分会点在实轴上,若出现在复平面内时,则 成对出现。
(3)特点:分会点对应于闭环特征方程有重根的点;根轨迹离开
(4)与虚轴的交点:
方法1:闭环特征方程为s3 + 6s2 + 8s + K*= 0 令s = jω得:-jω3 -6ω2 + j8ω + K* = 0
-6ω2 + K* = 0 即
-ω3 + 8ω= 0
K* = 48 ω= 2.8 s-1
方法2:闭环特征方程为 s3 + 6s2 + 8s + K*= 0 列劳斯表如下:
规则1:根轨迹的起点和终点。 根轨迹起始于开环极点,终止开环零点或无穷远。
m
i 1
s
zi
n
s
l 1
pl
1 K
K
K
0 s pl
s s
zi , m条 (, n
m)条
规则2: 根轨迹的条数和对称性。 n阶系统有n条根轨迹。根轨迹关于实轴对称。
规则3: 实轴上的根轨迹分布。
由实数开环零、极点将实轴分为若干段,如某段右边 开环零、极点(包括该段的端点)数之和为奇数,则该段就 是根轨迹,否则不是。如下图所示。
又因为开环传函的零极点表达式为:
m
GK (s)
G(s)H(s)
K
n
(s

自动控制原理根轨迹法

自动控制原理根轨迹法

21
二、根轨迹绘制的基本法则(4)
法则2
根轨迹的分支数和对称性 根轨迹的分支数与开环极点数n相等(n>m),或与开
环有限零点数m相等(n<m)。 根轨迹连续:根轨迹增益是连续变化导致特征根也连
续变化。 实轴对称:特征方程的系数为实数,特征根必为实数
或共轭复数。
22
二、根轨迹绘制的基本法则(5)
法则3
s(s 2.5)( s 0.5 j1.5)( s 0.5 j1.5)
试绘制该系统概略根轨迹。
解:将开环零、极点画在后面图中。按如下典型步骤
1)确定实轴上的根轨迹。本例实轴上区域

为轨迹。
0,-1.5
2)确定-根2.轨5,迹-的渐 近线。本例n=4,m=3,故只有
一条 的渐近线。 180
36
K均* 有关。
15
一、 根轨迹法的基本概念(13)
4 -1- 4 根轨迹方程
1、系统闭环特征方程
由闭环传函可得系统闭环特征方程为:
(s)
G(s)
1 G(s)H(s)
1 G(s)H (s) 0
2 、根轨迹方程
当系统有m个开环零点和n个开环极点时,下式称为
根轨迹方程
m
(s z j )
K * j1 n
i 1
j 1
n
n
n
(s si ) sn ( si )sn1 ... (si ) 0
i 1
i 1
i 1
式中,s i 为闭环特征根。
31
二、根轨迹绘制的基本法则(14)
当n m 2 时,特征方程第二项系数与K * 无关,无
论 K * 取何值,开环n个极点之和总是等于闭环特征方程n

自动控制原理第四章根轨迹法

自动控制原理第四章根轨迹法

i 1
j 1
开环极点到此被测零点 (终点)的矢量相角
8. 根轨迹的平衡性(根之和) ( n-m 2)
特征方程 Qs KPs 0
sn an1sn1 a1s a0 K sm bm1sm1 b1s b0 0
n
Qs KPs s p j sn cn1sn1 c1s c0 0 j 1
i 1
j1
k 0,1,2,
s zoi i 开环有限零点到s的矢量的相角
s poj j 开环极点到s的矢量的相角
矢量的相角以逆时针方向为正。
幅值条件:
s
m
m
s zoi
li
A s
i 1 n
i 1 n
s poj
Lj
j 1
j1
li αi
-zoi
Lj βj
×
-poj
开 环 有 限 零 点 到s的 矢 量 长 度 之 积 开环极点到s的矢量长度之积
, 2 2
c 2k 11800 2
由此可推理得到出射角:
其余开环极点到被测极 点(起点)的矢量相角
n1
m
c 2k 1180o j i
j 1
i 1
有限零点到被测极点
(起点)的矢量相角
同理入射角:
其余开环有限零点到被测 零点(终点)的矢量相角
m1
n
r 2k 1180o i j
1 GsHs 0
m
GsHs
KPs Qs
K
i 1
n
s
s
zoi
poj
j 1
P s sm bm1sm1 b1s b0
Q s sn an1sn1 a1s a0
于是,特征方程

自动控制原理第四章根轨迹法

自动控制原理第四章根轨迹法

第四章 根轨迹法
第一节 根轨迹与根轨迹方程 根轨迹 系统的某个参数(如开环增益K)由0到∞变化时, 闭环特征根在S平面上运动的轨迹。
例: GK(S)= K/[S(0.5S+1)] = 2K/[S(S+2)] GB(S)= 2K/(S2+2S+2K) 特征方程:S2+2S+2K = 0
-P1)(S-P2)…(S-Pn)
单击此处可添加副标题
当n>m时,只有m条根轨迹趋向于开环零点,还有(n-m)条? m,S→∞,有: (S-Z1)(S-Z2)…(S-Zm) -1 -1 ———————-— = —— = —— P1)(S-P2)…(S-Pn) K* AK 可写成:左边 = 1/Sn-m = 0 当K=∞时,右边 = 0 K=∞(终点)对应于S→∞(趋向无穷远). 即:有(n-m)条根轨迹终止于无穷远。
分解为:
03
例:GK(S)= K/[S(0.05S+1)(0.05S2+0.2S+1)] 试绘制根轨迹。 解: 化成标准形式: GK(S)= 400K/[S(S+20)(S2+4S+20)] = K*/[S(S+20)(S+2+j4)(S+2-j4)] K*=400K——根迹增益 P1=0,P2=-20,P3=-2+j4,P4=-2-j4 n=4,m=0
一点σa。
σa= Zi= Pi
ΣPi-ΣZi = (n-m)σa
σa= (ΣPi-ΣZi)/(n-m)
绘制根轨迹的基本法则
K*(S-Z1)(S-Z2)…(S-Zm)
—————————— = -1 (S-P1)(S-P2)…(S-Pn)

自动控制原理第四章--根轨迹法

自动控制原理第四章--根轨迹法
G(s)H(s) 1
2.相角条件:
G(s)H(s) (2k 1)
k 0,1, 2
为了把幅值条件和相角条件写成更具体的形 式,把开环传递函数写成如下形式:
m
(s zi )
G(s)H(s) Kg
i 1 n
(s pj)
j 1
式中:K
g 称为根轨迹增益;
zi ,
p
为开环零极
j
点。
∴ 幅值条件:
m
n
pl (2k 1) ( pl z j ) ( pl pi )
j 1
i 1
m
il
( pl z j ) ——所有开环零点指向极点-pl 矢量的相角之和。
j 1
n
( pl pi )——除-pl 之外的其余开环极点指向极点-pl 矢量
i 1
il
的相角之和。
在复数零点-zl 处的入射角为:
而s2、s3点不是根轨迹上的点。
[例]设系统的开环传递函数为 试求实轴上的根轨迹。
Gk (s)
s2(s
K g (s 2) 1)(s 5)(s
10)
[解]:零极点分布如下:
10
5
2 1 0
红线所示为实轴上根轨迹,为:[-10,-5]和[-2,-1] 。
四、根轨迹的渐近线:
渐近线包括两个内容:渐近线的倾角(渐近线与实轴的夹角) 和渐近线与实轴的交点。
n
m
zl (2k 1) (zl pi ) (zl z j )
i 1
j 1
jl
n
(zl pi )
i 1
——所有开环极点指向零点-zl 矢量的相角之和。
m
(zl z j )
j 1 jl

第4章 线性系统的根轨迹法(《自动控制原理》课件)

第4章 线性系统的根轨迹法(《自动控制原理》课件)

如果用试凑的方法由相角条件来绘制根轨迹, 如果用试凑的方法由相角条件来绘制根轨迹 将会非常不方 人们利用前面介绍的几个式子, 便. 人们利用前面介绍的几个式子 导出一些绘制根轨迹的法则 利用导出的法则, 可方便地绘制出根轨迹的大至形状, 利用导出的法则 可方便地绘制出根轨迹的大至形状 叫概略根 轨迹, 轨迹 这在利用根轨迹对系统进行初步分析和设计时已基本可用 了.
(2) 当0<K<=0.25时, 一个根的绝对值随 的增大而增大 另 的增大而增大, 时 一个根的绝对值随K的增大而增大 一个根的绝对值随K的增大而减小 两根的变化轨迹如下图所示: 的增大而减小, 一个根的绝对值随 的增大而减小 两根的变化轨迹如下图所示 jω ω σ -2 -1.5 -1 0
当K=0.25时, 两根相等 均为 时 两根相等, 均为-1.5 (3) 0.25<K<+∞ 时, 两根为共軛复根 且其实部均为 两根为共軛复根, 且其实部均为-1.5 , 而 +∞ 虚部的绝对值随K的增大而增大 两根的变化轨迹如下图所示: 的增大而增大, 虚部的绝对值随 的增大而增大 两根的变化轨迹如下图所示 jω ω σ
4-2 根轨迹绘制的基本法则
本节通过一个例子, 介绍绘制根轨迹的七条法则, 本节通过一个例子 介绍绘制根轨迹的七条法则 但对法则 不予推导和证明. 不予推导和证明 需指出的是, 需指出的是 绘制根轨迹的前提是必须已知闭环系统的开环 传递函数的零点和极点的具体数值, 一般以K’为参变量 为参变量. 传递函数的零点和极点的具体数值 一般以 为参变量 某闭环系统的开环传递函数为: 例: 某闭环系统的开环传递函数为
阶数. 阶数 K叫开环系统的增益 K’叫开环系统的根轨迹增益 叫开环系统的增益, 叫开环系统的根轨迹增益, 叫开环系统的增益 叫开环系统的根轨迹增益 K与K’的本质相同 仅它们间的值有一系数关系, 即: 与 的本质相同, 仅它们间的值有一系数关系 的本质相同

根轨迹法(自动控制原理)

根轨迹法(自动控制原理)

i1
l 1
nm
规则4:实轴上的根轨迹
➢ 实轴上的开环零点和开环极点将实轴分为若干段,对其中任一段,如果其右
边实轴上的开环零、极点总数是奇数,那么该段就一定是根轨迹的一部分。
❖ 该规则用相角条件可以证明,设实轴上有一试验点s0。 ➢ 任一对共轭开环零点或共轭极点(如p2,p3),与其对应的相角(如θ2,θ3)
第四章 根轨迹法
4.1 根轨迹的基本概念 4.2 绘制典型根轨迹 4.3 特殊根轨迹图 4.4 用MATLAB绘制根轨迹图 4.5 控制系统的根轨迹分析
内容提要
➢ 根轨迹法是一种图解法,它是根据系统的开环零 极点分布,用作图的方法简便地确定闭环系统的 特征根与系统参数的关系,进而对系统的特性进 行定性分析和定量计算。
规则3:渐近线
❖ 当n>m时,根轨迹一定有n-m支趋向无穷远;当n<m时,根轨迹一定有m-n支 来自无穷远。可以证明:
➢ 当n≠m时,根轨迹存在|n-m|支渐近线,且渐近线与实轴的夹角为:
所有渐近线交于k实轴上(2的k一n点1,)m1其8坐00标,为 k 0,1,2,,| n m | 1
n
m
pi zl
之和均为360°,也就是说任一对共轭开环零、极点不影响实轴上试验点s0的相 角条件。
➢ 对于在试验点s0左边实轴上的任一开环零、极点,与其对应的相角(如θ4,φ3) 均为0。
➢ 而试验点s0右边实轴上任一开环零、极点,与其对应的相角(如θ1,φ1,φ2) 均为180°。
所以要满足相角条件,s0右边实轴上的开环零、极点总数必须是奇数。
❖ 1948年伊凡思(W.R.Evans)提出了根轨迹法,它不 直接求解特征方程,而用图解法来确定系统的闭环 特征根。

自动控制原理第四章根轨迹法(管理PPT)

自动控制原理第四章根轨迹法(管理PPT)

根轨迹法的优化建议
结合其他方法
将根轨迹法与其他分析方 法(如频率响应法)相结 合,以获得更全面的系统 性能分析。
ቤተ መጻሕፍቲ ባይዱ开发软件工具
开发专门用于根轨迹分析 的软件工具,以提高分析 的效率和准确性。
加强实践应用
在实际工程中加强根轨迹 法的应用,通过实践不断 优化和完善该方法。
05
CATALOGUE
根轨迹法与其他控制方法的比较
根轨迹分析的实例
假设一个开环传递函数为 G(s)H(s) = (s+1)(s+2)/(s^2+2s+5),对其进行 根轨迹分析。
分析根轨迹图,确定系统的稳定性、 动态性能和系统参数的影响。
根据开环传递函数,绘制出根轨迹图 ,并标注出系统的极点和零点。
根据根轨迹图进行系统设计和优化, 例如调整开环传递函数的增益参数, 以改善系统的性能。
对于非线性系统,根轨迹法可能无法给出准确的描述和分析。
04
CATALOGUE
根轨迹法的改进与优化
根轨迹法的局限性与挑战
参数敏感性
根轨迹法对系统参数的微小变化非常敏感,可能导致根轨迹的剧 烈变化,影响系统的稳定性。
无法处理非线性系统
根轨迹法主要适用于线性系统,对于非线性系统的分析存在局限性 。
计算复杂度较高
和设计。
对于具有特定性能指标要求的系统,如 快速响应、低超调量等,可以根据系统 特性和性能要求选择适合的控制方法,
如状态反馈控制器等。
06
CATALOGUE
根轨迹法的实际应用案例
根轨迹法在工业控制系统中的应用
根轨迹法在工业控制系统中广泛应用于系统的分析和设计。通过绘制根轨迹图,可以直观地 了解系统性能的变化,如稳定性、响应速度和超调量等。

《自动控制原理》第4章_根轨迹分析法

《自动控制原理》第4章_根轨迹分析法
一般有两个解,从中
因此求分离点和会合点公式: 可以判断是分离点或
N(s)D '(s) N '(s)D(s) 0 会合点,只有满足条
Kg 0
件Kg≥0的是有用解。
例4-1.设系统结构如图, 试绘制其概略根轨迹。
R(s)
k(s 1) c(s)
s(s 2)(s 3)
解:画出 s 平面上的开环零点(-1),开环极点(0, -2,-3)。
逆时针为正。(- , )
m
n
pj (2k 1) ( z j pi ) pj pi
j 1
j 1
ji
m
n
zi (2k 1) ( z j zi ) p j zi
j 1
j 1
j i
k 0,1,
k 0, 1,
例3.设系统开环传递函数为: G(s) Kg(s 1.5)(s 2 j)(s 2 j) s(s 2.5)(s 0.5 j1.5)(s 0.5 j1.5)
K
s1
00
0.5 1
1 1 j1
s2
K
K 2.5
2
K 1
1 K 0
1 j1
2 1
2 1 j 3 1 j 3
1 j 1 j
j
2
1
0
K 0.5
1
2
一、根轨迹的一般概念
开环系统(传递函数)的某一个参数从零变化到 无穷大时,闭环系统特征方程根在 s 平面上的轨迹 称为根轨迹。
根轨迹法:图解法求根轨迹。 借助开环传递函数来求闭环系统根轨迹。
nm
独立的渐近线只有(n-m)条 u=0,1…,(n-m-1)
(2)渐近线与实轴的交点
分子除以分母

(完整版)第四章根轨迹法

(完整版)第四章根轨迹法

j
8K * (1 K * )2 j
2
2
(1 K * ) K * 2 1
2
2 8K * (1 K * )2 8(2 1) 4 2 2 4 2
4
4
2 4 4 2 2
( 2)2 2
第四章 根轨迹法
自动控制原理课程的任务与体系结构
时域:微分方程 复域:传递函数 频域:频率特性
描述
控制系统
校正
时域法 复域法 频域法
评价系统的性能指标 稳定性 快速性(动态性能) 准确性(稳态性能)
分析
自动控制原理
§4 根轨迹法
§4.1 根轨迹法的基本概念 §4.2 绘制根轨迹的基本法则 §4.3 广义根轨迹 §4.4 利用根轨迹分析系统性能
• s平面上满足相角条件的点(必定满足模值条件) 一定在根轨迹上。 满足相角条件是s点位于根轨迹上的充分必要条件。
• 根轨迹上某点对应的 K* 值,应由模值条件来确定。
§4.2
m
绘制根轨迹的基本法则(1) G(s)H(s) =
K* s - z1 L s - zm s - p1 s - p2 L s - pn
K*
(s zi )
i 1 n
1
(s pj)
— 模值条件
j 1
m
n
G(s)H (s) (s zi ) (s p j ) (2k 1)
i 1
j1
— 相(s)H(s) =
K* s - z1 L s - zm s - p1 s - p2 L s - pn
§4 根 轨 迹 法
根轨迹法: 三大分析校正方法之一
特点: (1)图解方法,直观、形象。 (2)适合于研究当系统中某一参数变化时,系统性能的变化

《自动控制理论(第版)》邹伯敏课件第4章

《自动控制理论(第版)》邹伯敏课件第4章

i1
n
n
s n pl s n1
pl
l 1
l 1
3、用分子除以分母得
GsH s
K0
s nm
n l 1
pl
m i 1
zi s nm1
2020/5/4
第四章 根轨迹法
14
自动控制理论
当s 时,
令某系统的开环传递函数为W s
s
K0
A
nm
K0
snm
n
m
s nm1
A
1 W s 0,有n m条根轨迹分支,它们是由实轴上s σA点出发的射线,
图4-4 一阶系统
2020/5/4
图4-5 图4-4系统的等增益轨迹和根轨迹
第四章 根轨迹法
6
自动控制理论
结论:
根轨迹就是s 平面上满足相角条件点的集合。由于相角条件是绘制根轨迹 的基础,因而绘制根轨迹的一般步骤是:
➢找出s 平面上满足相角条件的点,并把它们连成曲线 ➢根据实际需要,用幅值条件确定相关点对应的K值
例4-4
已知GsH s
ss
K0
4s 2
4s
20
求根的分离点
图4-12 例4-4的根轨迹
解:1)有4条根轨迹分支,它们的始点分别为0,-4,-2±j4
2) 渐近线与正实轴的夹角
2k 1 , 3 , 5 , 7 , k 0,1,2,3
4
44 4 4
渐近线与实轴的交点为
2020/5/4
-A
422 4 第四章
规则2:根轨迹的分支数及其起点和终点
闭环特征方程:
n
m
s pl K 0 s zi 0
l 1

自动控制原理第四章根轨迹小结课件

自动控制原理第四章根轨迹小结课件

绘制根轨迹的条件
存在开环传递函数
01
根轨迹的绘制需要知道系统的开环传递函数。
参数可调
02
系统的开环传递函数中的参数必须是可调的,以便观察不同参
数值对系统性能的影响。
无闭环零点
03
根轨迹的绘制要求系统没有闭环零点,即系统的闭环极点必须
是实数。
根轨迹的分类
根据参数变化情况分类
可以分为单调递增、单调递减、周期性和非单 调性根轨迹。
无法分析多输入多输出系 统
根轨迹分析方法只适用于单输入单输出系统 ,对于多输入多输出系统,需要采用其他方
法进行分析。
04
CATALOGUE
根轨迹的拓展知识
多变量系统的根轨迹分析
根轨迹分析在多变量系统中,可以用于研究系统各变量之间的相互影响关 系。
通过绘制多变量系统的根轨迹图,可以直观地观察到系统各极点、零点的 变化情况,进而分析系统的稳定性和动态性能。
在多变量系统中,根轨迹分析可以帮助确定系统参数的最优配置,以实现 系统整体性能的提升。
非线性系统的根轨迹分析
对于非线性系统,根轨迹分析同样适用,但需要采用适当的坐标变换或状态反馈方法将非线性系统转 化为线性系统进行处理。
非线性系统的根轨迹分析有助于深入了解系统的非线性特性,如饱和、死区等,以及这些特性对系统稳 定性和性能的影响。
THANKS
感谢观看
高阶系统的根轨迹分析
总结词
高阶系统的根轨迹分析相对复杂,需要综合考虑系统的 极点、零点和增益等参数。
详细描述
高阶系统是线性控制系统中比较复杂的一种,其根轨迹 分析需要考虑系统的极点、零点和增益等参数。通过绘 制高阶系统的根轨迹图,可以帮助设计者了解系统性能 的细节,并找到最优的系统参数配置。在进行高阶系统 根轨迹分析时,需要借助计算机仿真软件进行计算和绘 图。

西南交大 自动控制课件第四章 根轨迹法

西南交大       自动控制课件第四章  根轨迹法

4.2 根轨迹的基本概念
反馈控制系统的闭环传函
T (s) Y (s) R (s) G (s) 1 G (s)H (s)
3
特征方程
1 G (s)H (s) 0
(4.1)
P (s)
开环传函
(s z
K
i 1 g
m
oi
)
G (s)H (s) K
g
Q (s)
(s
实轴上的根轨迹,相邻开环极点之间、相邻开环零
点之间必存在分离点。相邻开环零点和极点之间,或不 存在分离点,或存在成对的分离点。
4.3 绘制根轨迹的基本规则
10
规则6:根轨迹与虚轴的交点为闭环系统的临界 稳定点。确定与虚轴交点和临界增益值的方法: a) 利用Routh判据,确定临界稳定点; b) 特征方程中,代入s=jw令实部和虚部分别等 于0,解出与虚轴交点±w和临界增益值
j 1
n
(4.2)
p oj )
Kg : 传递系数(开环根轨迹增益) -zoi : 开环(传函的)零点, i=1,2,…,m. -poj : 开环(传函的)极点, j=1,2,..,n.
4.2 根轨迹的基本概念
将特征方程写成:
P (s) Q (s)
m
4
(s z

i 1
oi
) A ( s )e
7
4.3 绘制根轨迹的基本规则
规则4:根轨迹的渐近线。根轨迹有|n-m|条分支沿 渐近线趋于(或始于)无穷远,这些渐近线的倾角fA 及与实轴的交点sA分别为:
fA
2k 1 n m
n
8
p , , k 0 ,1, , n m 1
(4.11)

自动控制原理课件4.1(梅晓榕)

自动控制原理课件4.1(梅晓榕)
Kg 0.5k Gk (s) , s(s 0.5) s(s 0.5) K g 0.5k
jω -p2 × -0.5 -p1 0
开环极点为:
p1 0, p2 0.5
×
σ
无开环零点
8
School of Information Science & Engineering
2)确定实轴上的根轨迹:在正实轴上取S1
(s1 p1 ) (s1 p2 ) 0
(s1 p1 ) (s1 p2 ) 180


不满足相角条件。
在负实轴-与-p2之间选一点,
不满足相角条件。

-p1
在负实轴–p1与-p2之间选一点 S1=-0.1

-p2 × -0.5
(4-12)
解出S 值,取 Kg>0 时的重根点。
18
School of Information Science & Engineering
5)
Gk ( s)
Kg s( s 2)(s 4)
j

解:特征方程为:
s ( s 2)(s 4) K g 0 K g s 3 6 s 2 8s
1 Gk ( s) 1
K g N ( s) D( s )
dK g ds
0
(4-11)
必要条件
分离点和会合点由方程根确定 亦即: 消去Kg,
0
K g N ( s ) D( s ) 0 K g N ( s) D( s) 0
N (s) D( s) N ( s) D( s) 0
15
School of Information Science & Engineering
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
定闭环极点位置。另一方面分析设计系统时经常要研究一个 或者多个参量在一定范围内变化时对闭环极点位置及系统性 能的影响.
W.R.EVAOVS(依万斯)于1948年首先提出了求解特征方程 式根的图解法─根轨迹法。
根轨迹简称根迹,它是开环系统某一参数从零变到无穷
s 时,闭环系统特征方程的根在 平面上变化的轨迹。
4
与s1,2实 轴a垂2 直j,K 并*相a2交4于,这( 时a ,, 根j 0 )轨,迹
j
对应于系统欠阻尼的情况。2
sa s
0
规定: —— 表示开环零点;
p1 0
p2 a a 2
—— 表示开环极点;
箭头表示 K * 增大时,闭环极点的变化趋势。
二、根轨迹与系统性能
稳定性
根轨迹与虚轴交点处的 K * 值就是临界根轨迹增益。
它有两个极点:p10,p2 a,无零点,K * 为根轨迹增益。
系统的闭环传递函数为:
(s)C(s)
R(s)
s2aKs*K*
闭环特征方程: s2asK*0
闭环特征根(极点) :
sa s
s1,2
a 2
a2 2
K*
K*:0时的根轨迹(闭环
p2 a a 2
特征根随 K * 变化的轨迹)如右
图所示。显然,a 和 K * 都为正时,系统稳定。
(K* KG * K*H)
i 1
r
h
闭环传递函数为:(s) G(s) 1G(s)H(s)
KG * (szj) (spi)
j1
i1
n
m
(spi)K* (szj)
i1
j1
n
m
系统的特征方程:D (s) 1 G (s)H (s) (sp i) K * (s zj) 0
i 1
j 1
m
KG* K*H (zj )
第四章 线性系统的根轨迹法
§4-1 根轨迹法的基本概念 §4-2 绘制根轨迹的基本条件和基本规则 §4-3 参数根轨迹 §4-4 正反馈回路和零度根轨迹 §4-5 利用根轨迹法分析系统的暂态响应
§4-1 根轨迹法的基本概念
一、根轨迹的概念
从上一章讨论知道,闭环系统的动态性能与闭环极点在
s 平面上的位置是密切相关的,分析系统性能时往往要求确
① 零极点形式: G (s)H (s)
j 1 n
首1型
(s pi )
i 1
m
K ( j s 1)
② 时间常数形式: G (s)H (s)
j 1 n
尾1型
(Tis 1)
显然有:
i 1
m
K* (zj)
K
j1 n
,zj
(pi)
1j ,pi
1
Ti
i1
根轨迹法中,其开环传递函数多采用零极点形式:
在实际应用中,用相角方程绘制根轨迹,而模值方程主
要用来确定已知根轨迹上某一点的 K * 值。
三、绘制根轨迹的基本规则 ★
[规则1] 根轨迹的起点和终点 根轨迹起始于开环极点,终止于开环零点。
Байду номын сангаас
m
K * (s z j )
G(s)H (s)
j 1 n
(s pi )
i 1
绘制根轨迹的幅值(模值)条件为:
m
K * s z j
j1 n
1 或
s pi
i1
绘制根轨迹的相角条件为:
n
s pi
K*
i1 m
s zj
j1
m
n
(s zj) (s p i) 1 8 0 (2 q 1 ) (q 0 ,1 ,2 , )
开环增益:K G(0)H(0)
j1
n
( pi)
——影响系统 的稳态误差
r
h i1
K
* G
( zj)
( pi )
闭环增益:KB n j1
i 1 m
—— 影响系统输入
( pi ) K* ( z j )
输出的幅值比
i 1
j 1
根轨迹增益: K* KG * KH *
结论 ① 闭环系统根轨迹增益等于系统前向通道的根轨迹增益。
② 闭环零点由前向通道的零点和反馈通道的极点组成。
③ 闭环极点与开环传递函数的零点、极点和增益有关。
§4-2 绘制根轨迹的基本条件和基本规则
一、绘制根轨迹的相角条件和幅值条件
闭环特征方程: 1G(s)H(s)0
即: G ( s ) H ( s ) 1 1 e j( 2 q 1 ) ( q 0 , 1 , 2 ,)
j
0
p1 0
讨论 a 一定时,根轨迹增益 K * 与特征根之间的关系:
➢ 当 K * 0 时,s10,s2a,即开环极点;
➢当0
K*
a2 4
时,s
1

s
2
为互不相等的两个负实根,
对应于系统过阻尼的情况;

对当应K 于* 系a42统时临,界两阻根尼相的等情,况s1 ; s2
a 2

➢ 当 a 2 K * 时, 两根为共轭复数根,
典型的控制系统结构图如右:
R (s)
r
K
* G
(s z j )
G (s)
j 1 q
(s pi)
l
K
* H
(s z j )
H (s)
j 1 h
(s pi)
C (s)
G (s)
H (s)
i1
i1
m
K * (s z j )
开环传递函数为: G (s)H (s)
j 1 n
(s pi )
j 1
i 1
模值方程不但与开环零、极点有关,而且与开环根轨迹 增益有关;而相角方程只与开环零、极点有关。
模值方程是根轨迹的必要条件 —— S 平面上的某一点
s 是根轨迹上的点,则幅值条件成立;S 平面上的任一 s点 满足幅值条件,该点却不一定是根轨迹上的点。
相角方程是决定系统闭环根轨迹的充分必要条件。
幅值条件: G(s)H(s) 1
相角条件: G ( s ) H ( s ) 1 8 0 ( 2 q 1 ) ( q 0 , 1 , 2 ,)
凡是满足上述幅值条件和相角条件的 s 值,就是系
统特征方程式的根,也就是系统的闭环极点,就必定在 根轨迹上。
二、开环传递函数的两种表达式
m
K * (s z j )
一般而言,绘制根轨迹时选择的可变参量可以是系 统的任意参量。但在实际中,最常用的可变参量是系统
的开环增益 K 。以 K 为可变参量绘制的根轨迹称为
常规根轨迹。
例4-1:标准二阶系统根轨迹图。 R ( s )
标准二阶系统开环传递函数为:
G(s) K *
s(s a)
K * C (s) s(s a )
稳态性能 稳态性能与开环增益及在原点的开环极点数有关。开
环极点是表现在根轨迹上的,而且,开环增益如何变化, 系统的闭环极点位置也表现在根轨迹图上。可在根轨迹图 上,确定保证系统静态性能的开环增益范围。
动态性能 动态性能由闭环极点位置决定,在根轨迹图上,可以
确定出满足系统性能的参数范围。
三、闭环零极点与开环零极点之间的关系
相关文档
最新文档