2020年安徽省江南十校联考理科数学试题及答案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
绝密★启用前
2020年安徽省“江南十校”综合素质检测
理科数学
考生注意:
1.本试卷分选择题和非选择题两部分。满分150分,考试时间120分钟。
2.答卷前,考生务必用毫米黑色签字笔将自己的姓名和座位号填写在答题卡上。
3.考生作答时,请将答案答在答题卡上。选择题每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑;非选择题请用直径毫米黑色墨水签字笔在答题卡上各题的答题
区域内作答,超出答题区域书写的答案无效,在试题卷、草稿纸上作答无效
...........................。
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知复数z=(1-a)+(a2-1)i(i为虚数单位,a>1),则z在复平面内的对应点所在的象限为
A.第一象限
B.第二象限
C.第三象限
D.第四象限
2.已知集合A={x|3x A.(-1,2) B.(2,7) C.(2,+∞) D.(1,2) 3.某装饰公司制作一种扇形板状装饰品,其圆心角为120°,并在扇形弧上正面等距安装7个发彩色光的小灯泡且在背面用导线相连(弧的两端各一个,导线接头忽略不计),已知扇形的半径为30厘米,则连接导线最小大致需要的长度为 厘米厘米厘米厘米 4.函数f(x)= cos 22 x x x x - + 在[- 2 π , 2 π ]上的图象大致为 5.若(1+ax)(1+x)5的展开式中x2,x3的系数之和为-10,则实数a的值为 A.-3 B.-2 C.-1 6.已知a=log2b=ln3,c=2-,则a,b,c的大小关系为 >c>a >b>c >a>b >b>a 7.执行下面的程序框图,则输出S 的值为 A.112- B.2360 C.1120 D.43 60 8.“哥德巴赫猜想”是近代三大数学难题之一,其内容是:一个大于2的偶数都可以写 成两个质数(素数)之和,也就是我们所谓的“1+1”问题。它是1742年由数学家哥德巴赫提出的,我国数学家潘承洞、王元、陈景润等在哥德巴赫猜想的证明中做出相当好的成绩。若将6拆成两个正整数的和,则拆成的和式中,加数全部为质数的概率为 A. 15 B.13 C.35 D.2 3 9.已知正项等比数列{a n }的前n 项和为S n ,S 2= 19,S 3=7 27 ,则a 1a 2…a n 的最小值为 A.2 427⎛⎫ ⎪⎝⎭ B.3 427⎛⎫ ⎪⎝⎭ C.4 427⎛⎫ ⎪⎝⎭ D.5 427⎛⎫ ⎪⎝⎭ 10.已知点P 是双曲线C :2222 221(0,0,x y a b c a b a b -=>>=+上一点,若点P 到双曲 线C 的两条渐近线的距离之积为 2 14 c ,则双曲线C 的离心率为 25 3 11.已知f(x)=1-2cos 2 (ωx + 3 π )(ω>0)。给出下列判断: ①若f(x 1)=1,f(x 2)=-1,且|x 1-x 2|min =π,则ω=2; ②存在ω∈(0,2),使得f(x)的图象右移6 π 个单位长度后得到的图象关于y 轴对称; ③若f(x)在[0,2π]上恰有7个零点,则ω的取值范围为[4124,47 24); ④若f(x)在[-6π,4 π ]上单调递增,则ω的取值范围为(0,23]。 其中,判断正确的个数为 12.如图,在平面四边形ABCD 中,满足AB =BC ,CD =AD ,且AB +AD =10,BD =8,沿着BD 把ABD 折起,使点A 到达点P 的位置,且使PC =2,则三棱锥P -BCD 体积的最大值为 2 C. 1623 D.16 3 二、填空题:本题共4小题,每小题5分,共20分。 13.已知函数f(x)=lnx +x 2 ,则曲线y =f(x)在点(1,f(1))处的切线方程为 。 14.若∃x 0∈R ,x 02 -a 2 01x ++5<0为假,则实数a 的取值范围为 。 15.在直角坐标系xOy 中,已知点A(0,1)和点B(-3,4),若点C 在∠AOB 的平分线上,且|OC |=310,则向量OC 的坐标为 。 16.已知抛物线C :y 2 =4x ,点P 为抛物线C 上一动点,过点P 作圆M :(x -3)2 +y 2 =4的切线,切点分别为A ,B ,则线段AB 长度的取值范围为 。 三解答题:共70分。解答应写出文字说明、证明过程或演算步骤。第17~21题为必考题,每个试题考生都必须作答。第22、23题为选考题,考生根据要求作答。 (一)必考题:共60分。 17.(本小题满分12分) 在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且csinB =bsin(3 π -C)+3b 。 (1)求角C 的大小; (2)若c =7,a +b =3,求AB 边上的高。 18.(本小题满分12分) 如图,在四棱锥P -ABCD 中,底面ABCD 为等腰梯形,AB 2本小题 满分12分) 一种游戏的规则为抛掷一枚硬币,每次正面向上得2分,反面向上得1分。 (1)设抛掷4次的得分为X ,求变量X 的分布列和数学期望。