向量数乘运算及其几何意义 说课稿 教案 教学设计
223__向量数乘运算及其几何意义(教案).doc
2. 2.3向量数乘运算及其几何意义【教学目标】1、知识与技能掌握实数与向量的积的定义,理解实数与向量的积的几何意义;掌握实数与向量的积得运算律;理解两个向量共线的充要条件,能够运用两向量共线条件判定两向量是否平行。
2、过程与方法通过本节的教学,培养学生数形结合和分类讨论思想,同时渗透类比和化归思想方法。
3、情感、态度与价,通过对向量共线的充要条件的分析理解,培养学生严谨的学习习惯。
【教学重点】实数与向量积的定义、运算律,向量共线的充要条件。
【教学难点】向量共线定理的理解。
【教学方法】讲练结合法。
【教学过程】K创设情境导入新课》_ _【导语】在物理学科中我们学习过如下的公式:F = ma,S = vt等,这些公式都是实数与向量的乘积的具体体现,并且从这些公式可以看出,实数可以与向量相乘,并且一个实数乘以一个向量的结果还是一个向量。
因此,在数学中我们就从这些公式出发,抽象出一般的实数与向量的乘积的定义以及它们的一些运算律和性质。
在小学我们由几个相同的有理数相加导出了数的乘法的运算法则,现在我们已经学过了向量的加法运算,那么由几个相同的向量相加,我们又能否得出类似的实数与向量的乘法运算呢?已知向量G ,求向量d+Q + d和(-+ + ,并思考和向量与向量G的关系。
【总结】(1 )由于向量a + a + a是由三个向量方相加得到的,因此为了简单起见,我们将a + a + a记作:3:,因此3:是一个向量,又因为a + a + a的方向与向量方的方向相同,模长为向量方的模长的3倍,所以3。
的方向与向量a的方向相同,模长为向量。
的模长的3倍。
即:向量3a与向量a同向且3a = 3 a。
(2 )类似地,由于(-可+ (-可+(-可是由三个向量(-可相加得到的,因此为了简单起见,我们将(-a) + (-a) +(-a)记作:3(-a),因此,3(-a)也是一个向量,又因为(-a) + (-a) + (-a)的方向与与向量 a + a + a 互为相反向量,因此( - a)+又由于d + a + a 可记作:3« ,对于任意向量二乙以及任意实数2、“ “2,恒有:=如式嗨向量。
向量数乘运算及其几何意义 说课稿 教案 教学设计
平面向量的线性运算(习题课)一、教学目标知识与技能1了解向量的实际背景;2.理解平面向量的概念,理解两个向量相等的含义;3.理解向量的几何表示;4.掌握向量加法、减法的运算,并理解其几何意义;5.掌握向量数乘的运算及其几何意义,理解两个向量共线的含义;6.了解向量线性运算的性质及其几何意义.过程与方法通过本节习题课,渗透研究新问题的思想和方法,培养创新能力和积极进取精神.通过解决具体问题,体会解决常见问题的思想方法。
.情感、态度与价值观通过学习对学习进行辩证唯物主义思想教育、数学审美教育,提高学生学习数学的积极性.二.重点难点重点 1.实数与向量积的意义. 2.实数与向量积的运算律. 3.两个向量共线的等价条件及其运用.难点对向量共线的等价条件的理解运用.三、教材与学情分析向量运算作为一种新的运算体系,一方面类比数量运算。
同时更要注重向量运算的特殊性,通过本节习题课,达到对向量线性运算进一步熟练,对基本问题掌握常见的方法。
提高对知识的系统性理解。
四、教学方法问题引导,主动探究,启发式教五、教学过程(一)温故知新1.向量的有关概念零向量 长度为零的向量;其方向是任意的记作0单位向量 长度等于1个单位的向量 非零向量a 的单位向量为±a|a |平行向量 方向相同或相反的非零向量 0与任一向量平行或共线共线向量方向相同或相反的非零向量又叫做共线向量相等向量 长度相等且方向相同的向量两向量只有相等或不等,不能比较大小相反向量长度相等且方向相反的向量0的相反向量为02.向量的线性运算向量运算定 义法则(或几何意义) 运算律加法求两个向量和的运算(1)交换律a +b =b +a . (2)结合律 (a +b )+c =a +(b +c )减法求a 与b 的相反向量-b 的和的运算叫做a 与b 的差a -b =a +(-b )数乘求实数λ与向量a的积的运算(1) λa = λ a ;(2)当λ>0时,λa 的方向与a 的方向相同;当λ<0时,λa 的方向与a 的方向相反;当λ=0时,λa =0λ(μa )=λμa ; (λ+μ)a =λa +μa ;λ(a +b )=λa +λb 3.共线向量定理向量a (a ≠0)与b 共线的充要条件是存在唯一一个实数λ,使得b =λa . (二)诊 断 自 测1.判断正误(在括号内打“√”或“×”) (1)零向量与任意向量平行.( ) (2)若a ∥b ,b ∥c ,则a ∥c .( )(3)向量AB →与向量CD →是共线向量,则A ,B ,C ,D 四点在一条直线上.( ) (4)当两个非零向量a ,b 共线时,一定有b =λa ,反之成立.( ) (5)在△ABC 中,D 是BC 中点,则AD →=12(AC →+AB →).( )解析 (2)若b =0,则a 与c 不一定平行.(3)共线向量所在的直线可以重合,也可以平行,则A ,B ,C ,D 四点不一定在一条直线上. 答案 (1)√ (2)× (3)× (4)√ (5)√2.给出下列命题 ①零向量的长度为零,方向是任意的;②若a ,b 都是单位向量,则a =b ;③向量AB →与BA →相等.则所有正确命题的序号是( ) A.①B.③C.①③D.①②解析 根据零向量的定义可知①正确;根据单位向量的定义可知,单位向量的模相等,但方向不一定相同,故两个单位向量不一定相等,故②错误;向量AB →与BA →互为相反向量,故③错误. 答案 A3.设D 为△ABC 所在平面内一点,AD →=-13AB →+43AC →,若BC →=λDC →(λ∈R ),则λ=( )A.2B.3C.-2D.-3解析 由AD →=-13AB →+43AC →,可得3AD →=-AB →+4AC →,即4AD →-4AC →=AD →-AB →,则4CD →=BD →,即BD →=-4DC →,可得BD →+DC →=-3DC →,故BC →=-3DC →, 则λ=-3,故选D. 答案 D4.已知▱ABCD 的对角线AC 和BD 相交于O ,且OA →=a ,OB →=b ,则DC →=______,BC →=________(用a ,b 表示).解析 如图,DC →=AB →=OB →-OA →=b -a ,BC →=OC →-OB →=-OA →-OB →=-a -b . 答案 b -a -a -b(三)典例解析考点一 平面向量的概念【例1】 下列命题中,不正确的是________(填序号). ①若 a = b ,则a =b ;②若A ,B ,C ,D 是不共线的四点,则“AB →=DC →”是“四边形ABCD 为平行四边形”的充要条件;③若a =b ,b =c ,则a =c .解析 ①不正确.两个向量的长度相等,但它们的方向不一定相同.②正确.∵AB →=DC →,∴ AB → = DC → 且AB →∥DC →,又A ,B ,C ,D 是不共线的四点,∴四边形ABCD 为平行四边形;反之,若四边形ABCD 为平行四边形,则 AB → = DC → ,AB →∥DC →且AB →,DC →方向相同,因此AB →=DC →.③正确.∵a =b ,∴a ,b 的长度相等且方向相同,又b =c ,∴b ,c 的长度相等且方向相同,∴a ,c 的长度相等且方向相同,故a =c . 答案 ①规律方法 (1)相等向量具有传递性,非零向量的平行也具有传递性. (2)共线向量即为平行向量,它们均与起点无关.(3)向量可以平移,平移后的向量与原向量是相等向量.解题时,不要把它与函数图象的移动混为一谈.(4)非零向量a 与a |a |的关系 a|a |是与a 同方向的单位向量.【训练1】 下列命题中,正确的是________(填序号). ①有向线段就是向量,向量就是有向线段;②向量a 与向量b 平行,则a 与b 的方向相同或相反; ③两个向量不能比较大小,但它们的模能比较大小.解析 ①不正确,向量可以用有向线段表示,但向量不是有向线段,有向线段也不是向量; ②不正确,若a 与b 中有一个为零向量,零向量的方向是不确定的,故两向量方向不一定相同或相反;③正确,向量既有大小,又有方向,不能比较大小;向量的模均为实数,可以比较大小. 答案 ③考点二 平面向量的线性运算【例2】 (1)在△ABC 中,P ,Q 分别是AB ,BC 的三等分点,且AP =13AB ,BQ =13BC .若AB→=a ,AC →=b ,则PQ →=( ) A.13a +13b B.-13a +13bC.13a -13bD.-13a -13b解析 PQ →=PB →+BQ →=23AB →+13BC →=23AB →+13(AC →-AB →)=13AB →+13AC →=13a +13b ,故选A.答案 A规律方法 (1)解题的关键在于熟练地找出图形中的相等向量,并能熟练运用相反向量将加减法相互转化.(2)用几个基本向量表示某个向量问题的基本技巧 ①观察各向量的位置;②寻找相应的三角形或多边形;③运用法则找关系;④化简结果.【训练2】 (1)如图,正方形ABCD 中,点E 是DC 的中点,点F 是BC 的一个靠近B 点的三等分点,那么EF →等于( ) A.12AB →-13AD → B.14AB →+12AD →C.13AB →+12DA → D.12AB →-23AD → (2)在△ABC 中,AB =2,BC =3,∠ABC =60°,AD 为BC 边上的高,O 为AD 的中点,若AO →=λAB →+μBC →,则λ+μ等于( ) A.1B.12C.13D.23解析 (1)在△CEF 中,有EF →=EC →+CF →.因为点E 为DC 的中点,所以EC →=12DC →.因为点F 为BC 的一个靠近B 点的三等分点,所以CF →=23CB →.所以EF →=12DC →+23CB →=12AB →+23DA →=12AB →-23AD →,故选D.(2)∵AD →=AB →+BD →=AB →+13BC →,∴2AO →=AB →+13BC →,即AO →=12AB →+16BC →.故λ+μ=12+16=23.答案 (1)D (2)D考点三 共线向量定理及其应用【例3】 设两个非零向量a 与b 不共线.(1)若AB →=a +b ,BC →=2a +8b ,CD →=3(a -b ).求证 A ,B ,D 三点共线; (2)试确定实数 ,使 a +b 和a + b 共线.(1)证明 ∵AB →=a +b ,BC →=2a +8b ,CD →=3(a -b ).∴BD →=BC →+CD →=2a +8b +3(a -b )=2a +8b +3a -3b =5(a +b )=5AB →. ∴AB →,BD →共线,又它们有公共点B ,∴A ,B ,D 三点共线. (2)解 ∵ a +b 与a + b 共线,∴存在实数λ,使 a +b =λ(a + b ),即 a +b =λa +λ b ,∴( -λ)a =(λ -1)b . ∵a ,b 是不共线的两个非零向量, ∴ -λ=λ -1=0,∴ 2-1=0,∴ =±1.规律方法 (1)证明三点共线问题,可用向量共线解决,但应注意向量共线与三点共线的区别与联系,当两向量共线且有公共点时,才能得出三点共线.(2)向量a ,b 共线是指存在不全为零的实数λ1,λ2,使λ1a +λ2b =0成立.【训练3】 (1)(2017·资阳模拟)已知向量AB →=a +3b ,BC →=5a +3b ,CD →=-3a +3b ,则( ) A.A ,B ,C 三点共线 B.A ,B ,D 三点共线 C.A ,C ,D 三点共线D.B ,C ,D 三点共线(2)已知A ,B ,C 是直线l 上不同的三个点,点O 不在直线l 上,则使等式x 2OA →+xOB →+BC →=0成立的实数x 的取值集合为( ) A.{0} B.∅ C.{-1}D.{0,-1}解析 (1)∵BD →=BC →+CD →=2a +6b =2(a +3b )=2AB →, ∴BD →、AB →共线,又有公共点B , ∴A ,B ,D 三点共线.故选B.(2)因为BC →=OC →-OB →,所以x 2OA →+xOB →+OC →-OB →=0,即OC →=-x 2OA →-(x -1)OB →,因为A ,B ,C 三点共线,所以-x 2-(x -1)=1,即x 2+x =0,解得x =0或x =-1. 答案 (1)B (2)D六、课堂小结。
〖2021年整理〗《向量的数乘运算及其几何意义》优秀教案
向量数乘运算及其几何意义
名师:卓忠越
一、教学目标
(一)核心素养
通过这节课学习,掌握向量数乘运算,理解其几何意义及向量共线定理,培养学生自主探究知识形成的过程的能力、合作释疑过程中合作交流的能力激发学生学习数学的兴趣和积极性,陶冶学生的情感,培养学生实事求是的科学态度、勇于创新的精神
(4)判断下列向量 与 是否共线:
① ;②
答案:① ∥ ;② ∥ ;
解析:【知识点】共线向量定理
【数学思想】数形结合
【解题过程】① ,所以 ∥ ;② ,所以 ∥ ;
点拨:根据两向量的数量关系,判定两向量是否共线
二课堂设计
1.知识回顾
(1)向量加减法的运算法则
(2)向量加法的运算律
① ;②
(3)向量加减法的几何表示
①
②
③
2.问题探究
探究一通过实例,理解向量数乘定义及其几何意义
●活动①类比定义向量数乘
我们已经学习了向量的加法,请同学们作出 和 向量,并请同学们指出相加后,和的长度与方向有什么变化?这些变化与哪些因素有关?
的长度是的长度的3倍,其方向与的方向相同, 的长度是长度的3倍,其方向与的方向相反
类比小学算术中 的乘法定义,类比规定:实数与向量的积就是,它还是一个向量,我们把这种运算叫做向量的数乘
【设计意图】通过由特殊到一般,探索发现共线向量基本定理,再用定义加以证明,符合科学探索发现的一般规律
●活动②巩固理解,尝试应用
判断三点之间的位置关系,主要看这三点是否共线由于两点确定一条直线,如果能够判断第三点在这条直线上,那么就可以判断这三点共线因此,借助共线向量基本定理,可以帮助我们判定三点是否共线
实数与向量的积是一个向量,记作它的长度和方向规定如下:
《向量数乘运算及其几何意义》参考教案(优秀经典公开课比赛教案)
向量数乘运算及其几何意义一、课题:向量数乘运算及其几何意义二、教学目标:1.掌握实数与向量的积的定义;2.掌握实数与向量的积的运算律,并进行有关的计算;3.理解两向量共线(平行)的充要条件,并会判断两个向量是否共线。
三、教学重、难点:1.实数与向量的积的定义及其运算律,向量共线的充要条件; 2.向量共线的充要条件及其应用。
四、教学过程: (一)复习:已知非零向量a ,求作a a +和()()a a -+-. 如图:OB a a =+2a =,()()CE a a =-+-2a =-. (二)新课讲解:1.实数与向量的积的定义:一般地,实数λ与向量a 的积是一个向量,记作a λ,它的长度与方向规定如下:(1)||||||a a λλ=;(2)当0λ>时,a λ的方向与a 的方向相同;当0λ<时,a λ的方向与a 的方向相反; 当0λ= 时,0a λ=.2.实数与向量的积的运算律: (1)()()a a λμλμ=(结合律); (2)()a a a λμλμ+=+(第一分配律);(3)a b λλλ+(a+b )=(第二分配律).例1 计算:(1)(3)4a -⨯; (2)3()2()a b a b a +---; (3)(23)(32)a b c a b c +---+.解:(1)原式=12a -; (2)原式=5b ; (3)原式=52a b c -+-. 3.向量共线的充要条件:a - E a a a O B A C D a -定理:(向量共线的充要条件)向量b 与非零向量a 共线的充要条件是有且只有一个实数λ,使得b a λ=.例2 如图,已知3AD AB =,3DE BC =.试判断AC 与AE 是否共线. 解:∵333()3AE AD DE AB BC AB BC AC =+=+=+= ∴AC 与AE 共线.例3 判断下列各题中的向量是否共线:(1)21245a e e =-,12110b e e =-;(2)12a e e =+,1222b e e =-,且1e ,2e 共线. 解:(1)当0a =时,则0b =,显然b 与a 共线.当0a ≠时, 12121121(4)10454b e e e e a =-=-=,∴b 与a 共线. (3)当1e ,2e 中至少有一个为零向量时,显然b 与a 共线. 当1e ,2e 均不为零向量时,设12e e λ= ∴2(1)a e λ=+,2(22)b e λ=-若1λ=-时,,0a =,显然b 与a 共线. 若1λ≠-时,221b a λλ-=+,∴b 与a 共线.例4 设12,e e 是两个不共线的向量,已知122AB e ke =+,123CB e e =+,122CD e e =-, 若A ,B ,D 三点共线,求k 的值。
向量数乘运算及其几何意义教案
1 2.2.3向量数乘运算及其几何意义一.教学目标1.知识与技能: 通过实例,掌握向量数乘运算,理解其几何意义,理解向量共线定理。
熟练 运用定义、运算律进行有关计算,能够运用定理解决向量共线、三点共线、直线 平行等问题。
2.过程与方法:理解掌握向量共线定理及其证明过程,会根据向量共线定理判断两个向量是 否共线。
3.态度情感与价值观:通过由实例到概念,由具体到抽象,培养学生自主探究知识形成的过程的能 力,合作释疑过程中合作交流的能力。
激发学生学习数学的兴趣和积极性,陶冶 学生的情感,培养学生实事求是的科学态度,勇于创新的精神。
二.教学重难点重点:掌握实数与向量的积的定义、运算律,理解向量共线定理。
难点:向量共线定理的探究及其应用。
三.教学过程(一)复习回顾问题1:向量加法的运算法则?问题2:向量减法的运算法则?(二)新课讲解1.向量数量积的定义【探究1】 已知非零向量a ,作出a a a ++和()()()a a a -+-+-,你能说出他们的几何意义 吗?问题1:相加后,和的长度和方向有什么变化?问题2:这些变化与哪些因素有关?练一练:P 90 第1题,第2题.22.向量数乘的运算律【探究2】 问题一:求作向量)2(3a 和a 6(a 为非零向量),并进行比较。
问题二:已知向量a 、b ,求作向量)(2b a +和b a 22+,并进行比较。
类比实数乘法的运算律得向量数乘的运算律:对于任意向量a 、b 及任意实数λ、μ,恒有b a b a 2121)(λμλμμμλ±=±. 例5:计算(口答) (1) a 4)3(⨯-(2) a b a b a ---+)(2)(3(3) )23()32(c b a c b a +---+练一练:P 90 第5题.3、向量共线定理 【探究3】问题1:如果 a b λ=(0≠a ), 那么,向量a 与b 是否共线?问题2: b 与非零向量a 共线, 那么,a b λ= ?思考:1. a 为什么要是非零向量? 2. b 可以是零向量吗?例6.已知任意两非零向量a 、b ,试作b a OA +=, b a OB 2+=,b a OC 3+=。
2.2.3向量数乘运算及其几何意义(教学设计)
SCH 高中数学(南极数学)同步教学设计(人教A 版必修4第二章)2.2.3向量数乘运算及其几何意义(教学设计)一、知识与能力:1、理解掌握向量数乘运算及其几何意义,数乘运算的运算律,并能熟练运用定义、运算律进行有关计算。
2、理解掌握向量共线定理及其证明过程,会根据向量共线定理判断两个向量是否共线。
3、通过向量数乘运算的学习和探究,培养学生的观察、分析、归纳、抽象思维能力,以及运算能力和逻辑推理能力。
二、过程与方法:1. 经历向量加法三角形法则和平行四边形法则的归纳过程;2.体会数形结合的数学思想方法.三、情感、态度与价值观:培养对现实世界中的数学现象的好奇心,学习从数学角度发现和提出问题.教学重点:实数与向量的积的定义、运算律,向量共线的充要条件.教学难点:向量共线的充要条件.一、复习回顾,新课导入探究:已知非零向量a ,作出a+a+a 和(-a)+(-a)+(-a),并说明它们的几何意义. 类似数的乘法,把a+a+a 记作3a ,显然3a 的方向与a 的方向相同,3a 的长度是a 的3倍,即|3a|=3|a|.同样,(-a )+(-a )+(-a )=3(-a ),显然3(-a )的方向与a 的方向相反,3(-a )的长度是a 的3倍,这样3(-a )=-3a . 由学生作图,归纳几何意义,教师补充完善,引出本节课所学的内容。
二、师生互动,新课讲解1.定义:实数λ与向量a 的积是一个向量,称为向量的数乘,记作λa ,它的长度与方向规定如下:(1)|λa |=|λ||a |;(2)当λ>0时,λa 的方向与向量a 的方向相同;当λ<0时,λa 的方向与a 的方向相反.2. 特别地,当λ=0或a=0时,λa=0;当λ=-1时,(-1)⋅a=-a ,就是a 的相反向量.3. 实数与向量的积的运算律设λ、μ为实数,那么(1)λ(μa )=( λμ)a ;(结合律)(2)(λ+μ)a=λa+μa ;(第一分配律)(3)λ(a+b )= λa+λb .(第二分配律)结合律证明:如果λ=0,μ=0,a =0至少有一个成立,则①式成立如果λ≠0,μ≠0,a ≠0有:|λ(μa )|=|λ||μa |=|λ||μ||a ||(λμ)a |=|λμ|| a |=|λ||μ||a |∴|λ(μa )|=|(λμ)a |SCH 高中数学(南极数学)同步教学设计(人教A 版必修4第二章)如果λ、μ同号,则①式两端向量的方向都与a 同向;如果λ、μ异号,则①式两端向量的方向都与a反向。
向量数乘运算及其几何意义教案
向量数乘运算及其几何意义教案教学目标:1. 理解向量数乘的概念及其运算规则。
2. 掌握向量数乘的几何意义。
3. 能够运用向量数乘解决实际问题。
教学重点:1. 向量数乘的概念及其运算规则。
2. 向量数乘的几何意义。
教学难点:1. 向量数乘的运算规则。
2. 向量数乘的几何意义的理解。
教学准备:1. 向量知识的基础。
2. 数乘知识的基础。
教学过程:一、导入(5分钟)1. 引入向量的概念,复习向量的基本运算。
2. 引入数乘的概念,复习数乘的基本运算。
二、向量数乘的概念及其运算规则(10分钟)1. 介绍向量数乘的概念:将一个向量与一个实数相乘,得到一个新的向量。
2. 讲解向量数乘的运算规则:对于两个向量a和b,以及一个实数c,有ca = (ca1, ca2),其中a1和a2分别是向量a的两个分量。
三、向量数乘的几何意义(10分钟)1. 介绍向量数乘的几何意义:将一个向量进行数乘,相当于将这个向量按比例放大或缩小。
2. 讲解向量数乘的几何意义:如果将一个向量进行正数数乘,这个向量的大小会放大,方向不变;如果将一个向量进行负数数乘,这个向量的大小会缩小,方向不变。
四、向量数乘的运算性质(10分钟)1. 介绍向量数乘的运算性质:向量数乘满足交换律、结合律和分配律。
2. 讲解向量数乘的运算性质:交换律:ca = ac;结合律:(ca)b = ca(b);分配律:c(a + b) = ca + cb。
五、向量数乘的应用(10分钟)1. 介绍向量数乘在实际问题中的应用:如在物理学中,力的大小和方向可以通过向量数乘来表示;在工程学中,向量数乘可以用来计算物体的位移等。
2. 讲解向量数乘在实际问题中的应用:通过举例,说明如何运用向量数乘解决实际问题。
教学反思:本节课通过讲解和实例演示,使学生掌握了向量数乘的概念及其运算规则,理解了向量数乘的几何意义,并能运用向量数乘解决实际问题。
在教学过程中,注意引导学生主动参与,通过讲解和实际例子的结合,使学生更好地理解和掌握向量数乘的知识。
2..2..3向量数乘运算及其几何意义(教、教案)
2. 2.3向量数乘运算及其几何意义一、教学内容分析实数与向量的积及它们的混合运算称为向量的线性运算,也叫向量的初等运算,是进一步学习向量知识和运用向量知识解决问题的基础。
实数与向量的积的结果是向量,要按大小和方向这两个要素去理解。
向量平行定理实际上是由实数与向量的积的定义得到的,定理为解决三点共线和两直线平行问题又提供了一种方法。
特别:向量的平行要与平面中直线的平行区别开。
fLqJrVD3NX二、教学目标设计1.掌握实数与向量的积的定义以及实数与向量的积的三条运算律,会利用实数与向量的积的运算律进行有关的计算;fLqJrVD3NX 2.理解两个向量平行的充要条件,能根据条件判断两个向量是否平行;3.通过对实数与向量的积的学习培养学生的观察、分析、归纳、抽象的思维能力,了解事物运动变化的辩证思想。
fLqJrVD3NX 三、教学重点与难点重点:实数与向量的积的定义、运算律,向量平行的充要条件;难点:理解实数与向量的积的定义,向量平行的充要条件。
四、教学用具准备多媒体、实物投影仪五、教学流程设计1.设置情境:引入:位移、力、速度、加速度等都是向量,而时间、质量等都是数量,这些向量与数量的关系常常在物理公式中体现。
如力与加速度的关系,位移与速度的关系。
这些公式都是实数与向量间的关系。
fLqJrVD3NX师:我们已经学习了向量的加法,请同学们作出和向量,并请同学们指出相加后,和的长度与方向有什么变化?这些变化与哪些因素有关?fLqJrVD3NX生:的长度是的长度的3倍,其方向与的方向相同,的长度是长度的3倍,其方向与的方向相反。
师:很好!本节课我们就来讨论实数与向量的乘积问题,<板书课题:实数与向量的乘积)2.探索研究1)定义:请大家根据上述问题并作一下类比,看看怎样定义实数与向量的积?<可结合教材思考)可根据小学算术中的解释,类比规定:实数与向量的积就是,它还是一个向量,但要对实数与向量相乘的含义作一番解释才行。
“向量数乘运算及其几何意义”的教学设计
“向量数乘运算及其几何意义”的教学设计一、教材分析1.教学内容:《高中数学必修4》中第二章“向量数乘运算及其几何意义”这一节,在新课标中主要内容有三方面:①向量数乘运算及其几何意义的含义;②数乘运算的运算律;③平面向量共线定理。
2.地位与作用:向量数乘运算是学习向量其他运算以及空间向量的基础,也是解决平面解几、立几、三角、复数的重要工具。
因此,本节课的教学活动将对后续课程起着桥梁作用。
教材通过复习引入新课,并通过三个探究活动,完成本节课的教学活动。
二、三维目标根据新课标要求并结合学生具体实际,设计以下三维目标:1.知识与技能⑴掌握向量数乘运算及其几何意义,数乘运算的运算律,并能熟练运用定义、运算律进行简单的计算。
⑵理解向量共线定理及其推导过程,会应用向量共线定理判断或证明两个向量共线、三点共线及两直线平行等简单问题。
2.过程与方法通过对两个向量共线充要条件的探究与推导,让学生对平面向量共线定理有更深刻的理解。
为了帮助学生消化和巩固相应的知识,本节课设置了三个例题及其变式引申;指导学生探究发现,并得出结论,培养学生自主探究能力和创新思维能力。
3.情感、态度与价值观通过向量数乘运算的学习和探究,有助于激发学生学习兴趣和积极性,还有助于培养类比、分析、归纳、抽象思维能力以及逻辑推理能力。
三、重点、难点与疑点1.重点:向量数乘运算的几何意义、运算律,向量共线定理;〖解决办法〗为了突出重点,让学生在创设问题链的驱动下合作探究,得出结论,发展学生的认知结构。
2.难点与疑点:向量共线定理的探究过程及其应用。
〖解决办法〗为了突破难点与疑点,按照学生的认知规律、由浅入深地变式讨论,达到全面理解。
四、学情分析与对策学生已明确向量是有大小和方向的量,且已学过向量的加、减法,对于这种有方向的量能否与实数进行乘法运算有些疑问,且“相乘后方向如何判断呢?”:这也就是本节课知识产生的背景。
通过熟知的实数乘法作类比,探究向量数乘的含义,让学生在此过程中,体验数学知识的产生、发展、成熟和应用的过程。
《向量数乘运算及其几何意义》教案1.doc
2.2.3仙量数乘运算及几何意义(2)一、教学目标:(1)理解并掌握共线向量定理,并会判断两个I可量是否共线。
(2)能运用向量判断点共线、线共点等。
二、教学重、难点:(1)共线向量定理(2)共线向量定理应用。
三、教学过程:(一)复习:1.实数与向量的积的定义:一般地,实数九与向量U的积是一个向量,记作万,它的长度与方向规定如下:(1) 12a 1=12II a I ;(2)当九〉0时,/lU的方向与L的方向相同;当2<0时,万的方向与a的方向相反;当2 = 0时,人。
=0・2.实数与|可量的积的运算律:(1)人(御)=(")。
(结合律);(2)(2 + /Ll)a = Xci 4- jLia(第一分配律);(3) 2(a+b)=Aa + Xb(第二分配律).3 .向量共线定理:定理:如果有一个实数彳,使 b = Aa(UrO),那么向量方与U是共线向量;反之,如果向量片与;(U^O)是共线向量,那么有且只有一个实数人,使得b = Aa.(二)新课讲解:1.向量共线问题:例1、已知向量U、5满足仁丑-日 = -(3^ + 2/;),求证:向量指和汲线.5 2 5伽夕己知AD = 3AB f DE = 3BC,试判断AC^jAE^否共线?2.迎三鲍堑]问题AB = ^BC(BC^0)=> B、C三点共线.例3、教材P89面例63.证明两直线平行的问题2.3. AB =/I CD => AB//CDAB与CD不在同一直线上n直线AB〃直线CD.例4。
在四边j^ABCD也~AB = a + 2b, BC = -4^i-b y CD =-5a- 3&.求证:四边形ABC。
为梯形.四、课堂练习:P90面6题五、小结:1.掌握向量数乘运算的定义;2.掌握向量数乘运算的运算律,并进行有关的计算;3.理解两时量共线(平行)的条件,并会判断两个向量是否共线、点共线。
课后思考1・如图,在任意四边形ABCD中.碱分别是AD.BC的中点求证:AB + I)C = 2EF.如图.平行四边形ABCD中. E是DC中点.AE交于M •试用向量的方法证明:M 是BD的一个三等分点.设D.E.F分别是('的边BC'.GM,功上的点•且AF=—,出.3D = :BC. CE = !(小.若记X5 = 3 4m. (14 = 〃.试用m.n表示DE,EF.FD.。
向量数乘运算及其几何意义说课稿
向量数乘运算及其几何意义说课稿说课内容:普通高中课程标准实验教科书(人教A版)《数学必修4》第二章第二节“平面向量的线性运算”的第三课时---向量数乘运算及其几何意义。
下面,我从背景分析、教学目标设计、课堂结构设计、教学过程设计、教学媒体设计及教学评价设计六个方面对本节课的思考进行说明。
一、背景分析1、学习任务分析向量的数乘运算是继向量的加、减运算之后的又一重要运算,也是高中数学的一个重要概念,在数学、物理等学科中应用十分广泛。
本节内容教材共安排一课时,主要研究数乘运算及其几何意义、共线向量定理及其应用。
本节课的主要学习任务是通过物理中“位移”的事例抽象出向量数乘运算的概念,在此基础上探究数乘运算的定义与运算律,使学生体会类比的思想方法,进一步培养学生的抽象概括和推理论证的能力。
其中数乘运算的定义既是对物理背景的抽象,又是研究几何意义和运算律的基础。
2、学生情况分析学生在学习本节内容之前,已熟知了向量的概念,掌握了向量的加、减运算,具备了位移等物理知识,并且初步体会了研究向量运算的一般方法:即先由特殊模型(主要是物理模型)抽象出概念,然后再从概念出发,在与实数运算类比的基础上研究运算律。
这为学生学习向量数乘运算做了很好的铺垫,使学生倍感亲切。
二、教学目标设计《普通高中数学课程标准(实验)》对本节课的要求有以下三条:①通过经历探究数乘运算法则及几何意义的过程,掌握实数与向量积的定义,理解实数与向量积的几何意义,掌握实数与向量的积的运算律.②理解两个向量共线的等价条件,能够运用两向量共线条件判定两向量是否平行.③通过探究,体会类比迁移的思想方法,渗透研究新问题的思想和方法,培养创新能力和积极进取精神.通过解决具体问题,体会数学在生活中的重要作用.从以上的背景分析可以看出,数乘运算既是本节课的重点,也是难点。
为了突破这一难点,首先无论是在概念的引入还是应用过程中,物理中“位移”的实例都发挥了重要作用。
《向量的数乘运算及其几何意义》教学设计(优质课比赛教案)
《向量的数乘运算及其几何意义》教学设计一、教学分析向量具有丰富的实际背景和几何背景,向量既有大小,又有方向.本节学习向量的数乘运算及其几何意义.向量数乘运算以及加法、减法统称为向量的三大线性运算,向量的数乘运算其实是加法运算的推广及简化.教学时从加法入手,引入数乘运算,充分体现了数学知识之间的内在联系.实数与向量的乘积仍然是一个向量,既有大小,又有方向.特别是方向与已知向量是共线向量,进而引出共线向量定理.这样平面内任意一条直线l 就可以用点A和某个向量a 表示了.共线向量定理是本章节的重要的内容,应用相当广泛,且容易出错,尤其是定理的前提条件:向量a 是非零向量.共线向量的应用主要用于证明点共线或线平行等,且与后学的知识有着密切的联系.二、教学目标1、知识与技能通过经历探究数乘运算法则及其几何意义的过程,掌握实数与向量积的定义;理解实数与向量积的几何意义;掌握实数与向量积的运算律.2、过程与方法通过师生互动理解两个向量共线的等价条件,能够运用两向量共线条件判定两向量是否平行,进而判定点共线或直线平行.3、情感态度与价值观通过探究,体会类比迁移的思想方法,渗透研究新问题的思想和方法(从特殊到一般、分类讨论、转化化归、观察、猜想、归纳、类比、总结等);培养创新能力和积极进取精神;通过解决具体问题,体会数学在实际生活中的重要作用.四、教学重难点教学重点:1.实数与向量积的意义及其几何意义; 2.实数与向量积的运算律;3.两个向量共线的等价条件及其运算. 教学难点:对向量共线的等价条件的理解以及运用. 五、教具选取三角板、投影仪、多媒体辅助教学. 六、教学过程 1、导入新课:一条细绳东西方向摆放,一只蚂蚁在细绳上做匀速直线运动,若蚂蚁向东方向一秒钟的位移对应的向量为a,那么它在同一方向上3秒钟的位移对应的向量怎样表示?是a 3吗?若蚂蚁向西3秒钟的位移对应的向量又怎样表示?是a3-吗?你能用图形表示吗?学生活动:独立思考.教师活动:提问、引导学生作答.设计意图:向量具有丰富的实际背景和几何背景,并且兼具“数”与“形”的特点,它在物理和几何中具有广泛的应用,故本节通过位移的实际背景引入新课. 2、推进新课:探究:已知非零向量a ,试作出a a a ++和)()()(a a a-+-+-,你能说明它的几何意义吗?学生活动:独立观察、思考、总结. 教师活动:提问、引导学生.设计意图:认识和理解向量数乘的几何意义必须从几何直观入手,即通过学生自己作出向量a a a++和)()()(a a a-+-+-,以及独立观察、思考,让学生对向量的伸缩有一个初步的感性认识,进而为下一步对向量的数乘的定义及其几何意义的理性aa a认识做好铺垫.问题1:你能通过上述的具体实例总结出更具一般性的向量数乘的定义吗? 从而推广到一般的向量数乘的定义.我们规定实数λ与向量a 的积是一个向量,这种运算叫做向量的数乘,记作aλ,它的长度与方向规定如下:(1)a aλλ=;(2)当0>λ时,a λ的方向与a 一致;当0<λ时,a λ的方向与a的方向相反.由(1)可知当0=λ时,0=a λ.设计意图:通过引出向量的数乘的定义,让学生体会从特殊到一般的思想方法. 问题2:你能说明它的几何意义吗? 学生活动:小组合作交流,学生单独作答.设计意图:从数学学科这个整体来看,数学的高度抽象性造就了数学的难懂、难学,解决这一问题的基本途径是顺应学习者的认知规律,在可能的情况下,尽量做到从直观入手,从具体开始,逐步抽象.通过师生互动,得到向量数乘的几何意义是把向量a 沿a 的方向或a的反方向放大λ倍或缩小λ倍.问题3:C 在线段AB 上,且25=CB AC ,则=AC AB ;=BC AB . 学生活动:独立思考并踊跃回答. 教师活动:评价.设计意图:通过简单口答题来巩固学生对向量数乘定义的理解及运用.通过活动过程的成功体验提高学生学习的积极性.问题4:数的运算和运算律是紧密相连的,运算律可以有效地简化运算.类比数的乘法的运算律,你能说出数乘向量的运算律吗?归纳总结: (1)a a)()(λμμλ=(2)a a aμλμλ+=+)((3)b a b aλλλ+=+)(问题5:你能解释上述运算律的几何意义吗?归纳总结:)()(a a a-=-=-λλλ, b a b a λλλ-=-)(.问题6:你能从形式上描述向量数乘运算律与思考向量线性运算与以前学习过的哪些运算相类似?师生活动:通过类比得到向量数乘运算律;并且通过师生活动得到向量数乘运算、向量的加法、减法可以进行综合运算;实数运算中去括号、移项、提取公因式等可类比进行向量的线性运算.设计意图:数学中引进一个新的量,自然要看看它的运算及其运算律的问题.向量运算可以与学生熟悉的数的运算进行类比,从中得到启发.而数的运算和运算律是紧密相连的,运算律可以有效地简化运算.类比数的乘法的运算律引出数乘向量的运算律.向量具有明显的几何背景,所以向量的运算及运算律也具有明显的几何意义,尤其是涉及到长度、夹角的几何问题可以通过向量及其运算得到解决.这样了解向量数乘运算律的几何意义就有必要了. 3、例题讲解:例1.计算: 1.a 4)3(⨯-;2.)23()32(c b a c b a +---+. 变式练习:(1)计算:---+)(2)(3;(2)已知:0)(4)2(2)(3 =+---++b a x a x a x 求x.学生活动:独立完成,学生单独回答. 教师活动:提问、及时评价.设计意图:心理学认为:概念一旦形成,必须及时加以巩固,通过例1及巩固练习加深学生对数乘向量运算律的理解.解以向量作为未知数的方程可与求解实数方程类比.归纳总结:向量的加、减、数乘运算统称为向量的线性运算.对于任意的向量b a ,,以及任意实数21,,μμλ,恒有b a b a2121)(λμλμμμλ±=±.设计意图:向量的加、减、数乘运算统称为向量的线性运算.本节作为向量线性运算的最后一节,有必要综合认识向量线性运算.问题7:引入向量数乘运算后,你能发现数乘向量与原向量之间的位置关系吗? 师生活动:(分析总结)对于向量)0(≠a a 、b ,如果有一个实数λ,使a b λ=,那么由向量数乘的定义知a与b 共线,且向量b 是向量)0( ≠a a 模的λ倍,而λ的正负由向量)0( ≠a a 、b 的方向所决定.反过来,已知向量a 与b 共线,0 ≠a ,且向量b 的长度是向量a的长度的μ倍,即a b μ=,那么当a 与b 同方向时,有a b μ=;当a与b 反方向时,有a b μ-=.从上述两方面可知归纳总结:共线向量定理:向量)0(≠a a 、b 共线,当且仅当有一个实数λ,使得a b λ=.问题8:1) a为什么要是非零向量?2) b可以是零向量吗?3) 怎样理解向量平行?与两直线平行有什么异同? 学生活动:合作交流,独立作答. 教师活动:提问、引导、及时评价.设计意图:师生共同活动引出向量共线的定理;引导学生理解向量共线只需看这两个向量的方向相同或是相反,在向量)0( ≠a a 的前提下,向量)0(≠a a 、b 共线,当且仅当有一个实数λ,使得a b λ=;且实数λ的唯一性是由向量a和b 的模和方向同时决定.通过学生合作交流,促进学生合作的集体意识;通过学生独立作答,提高学生分析问题、解决问题的能力. 例2.如图,ABCD 的两条对角线相交于点M ,且b a==,,你能用b a ,表示,,,吗?师生互动:利用向量共线的定理及平行四 边形的性质定理,即平行四边形的对角线互相平分.∵b a AC AB AC+=+=, .b a-=-=结合平行四边形的性质:b a b a AC MA2121)(2121--=+-=-=,,212121b a +==.212121b a+-=-=-=设计意图:综合运用向量的加、减、数乘等向量的线性运算.尤其是应当注意到-=,-=从而可简化解题过程,并且在实际的解题中做到举一反三、融会贯通;通过例3的教学使学生明确:有了向量的线性运算,平面中的点、线段(直线)就可以得到向量表示,这是利用向量解决几何问题的重要步骤. 4、课堂作业(1).在△ABC 中,已知D 是AB 边上的一点,若DB AD 2=,CB CA CD λ+=31,则λ的值为( )32.A31.B31.-C32.-D ,2121)(2121b a b a -=-==Aa(2.)计算:=⎥⎦⎤⎢⎣⎡--+)24()82(2131b a b a.(3).若向量方程0)2(32 =--a x x ,则向量=x.(4).根据下列各小题中的条件,分别判断四边形ABCD 的形状,并给出证明.(1)=; (2)BC AD 31=; (3)==,5、课堂小结一、①aλ的定义及运算律;②向量共线定理)0( ≠a ,⇔=a b λ 向量a与b 共线.二、定理的应用:(1)证明向量共线;(2)证明三点共线:⇒=λA 、B 、C 三点共线; (3)证明两直线平行. 三、你体会到了那些数学思想.特殊到一般,归纳,猜想,类比,分类讨论,等价转化等数学思想. 设计意图:1.知识性内容的总结,可以把课堂教学传授的知识尽快转化为学生的素质.2.运用数学方法,创新素质的小结能让学生更系统,更深刻地理解数学理想方法在解题中的地位和作用,并且逐渐培养学生的良好个性品质.3.由学生口头表述,不仅可以提高学生的综合概括能力,还能提高学生的口头表达能力. 6、课后作业P92 A 组习题11、12题。
高一数学《向量数乘运算及其几何意义》教案
山东省郯城第三中学高一数学《向量数乘运算及其几何意义》教案教学目的:1.掌握实数与向量积的定义,理解实数与向量积的几何意义;2.掌握实数与向量的积的运算律;3.理解两个向量共线的充要条件,能够运用共线条件判定两向量是否平行.教学重点:掌握实数与向量的积的定义、运算律、理解向量共线的充要条件教学难点:对向量共线的充要条件的理解授课类型:新授课课时安排:1课时教 具:多媒体、实物投影仪教学过程:一、复习引入:差向量的意义: OA = a , OB = b , 则BA = a - b即a - b 可以表示为从向量b 的终点指向向量a 的终点的向量二、讲解新课:1.示例:已知非零向量a ,作出a +a +a 和(-a )+(-a )+(-a )OC =OA AB BC ++=a +a +a=3a PN =PQ QM MN ++=(-a )+(-a )+(-a )=-3a(1)3a 与a 方向相同且|3a |=3|a |;(2)-3a 与a 方向相反且|-3a |=3|a |2.实数与向量的积:实数λ与向量a 的积是一个向量,记作:λa(1)|λa |=|λ||a |(2)λ>0时λa 与a 方向相同;λ<0时λa 与a 方向相反;λ=0时λa =3.运算定律 结合律:λ(μa )=(λμ)a ①第一分配律:(λ+μ)a =λa +μa② 第二分配律:λ(a +b )=λa +λb ③结合律证明:如果λ=0,μ=0,a =至少有一个成立,则①式成立如果λ≠0,μ≠0,a ≠有:|λ(μa )|=|λ||μa |=|λ||μ||a ||(λμ)a |=|λμ|| a |=|λ||μ||a |∴|λ(μa )|=|(λμ)a |如果λ、μ同号,则①式两端向量的方向都与a 同向;如果λ、μ异号,则①式两端向量的方向都与a反向从而λ(μa )=(λμ)a第一分配律证明:如果λ=0,μ=0,a =0至少有一个成立,则②式显然成立如果λ≠0,μ≠0,a ≠当λ、μ同号时,则λa 和μa 同向,∴|(λ+μ)a |=|λ+μ||a |=(|λ|+|μ|)|a ||λa +μa |=|λa |+|μa |=|λ||a |+|μ||a |=(|λ|+|μ|)|a |∵λ、μ同号 ∴②两边向量方向都与a 同向即 |(λ+μ)a |=|λa +μa |当λ、μ异号,当λ>μ时 ②两边向量的方向都与λa 同向;当λ<μ时 ②两边向量的方向都与μa 同向,且|(λ+μ)a |=|λa +μa|∴②式成立 第二分配律证明:如果a =0, b =0中至少有一个成立,或λ=0,λ=1则③式显然成立.当a ≠0,b ≠0且λ≠0,λ≠1时(1)当λ>0且λ≠1时在平面内任取一点O ,作OA =a AB =b 1OA =λa 11A B =λb则OB =a +b 1OB =λa +λb由作法知 ,AB ∥11A B 有∠OAB=∠OA 1B 1 |AB |=λ|11A B | ∴111||||||||OA A B OA AB ==λ ∴△OAB ∽△OA 1B 1 ∴1||||OB OB =λ ∠AOB=∠ A 1OB 1 因此,O ,B ,B 1在同一直线上,|1OB |=|λOB | 1OB 与λOB 方向也相同∴λ(a +b )=λa +λb当λ<0时 可类似证明:λ(a +b )=λa +λb∴ ③式成立4.向量共线的充要条件若有向量a (a ≠0)、b ,实数λ,使b =λa ,则a 与b 为共线向量若a 与b 共线(a ≠0)且|b |:|a |=μ,则当a 与b 同向时b =μa ;当a 与b 反向时b =-μa 从而得向量共线定理 向量b 与非零向量a 共线的充要条件是:有且只有一个实数λ,使b =λa三、讲解范例:例1若3m +2n =a ,m -3n =b ,其中a ,b 是已知向量,求m ,n .分析:此题可把已知条件看作向量m 、n 的方程,通过方程组的求解获得m 、n . 解:记3m +2n =a ① m -3n =b ②3×②得3m -9n =3b ③①-③得11n =a -3b . ∴n =111a -113b ④ 将④代入②有:m =b +3n =113a +112b 例2凸四边形ABCD 的边AD 、BC 的中点分别为E 、F ,求证EF =21(AB +DC ). 解法一:构造三角形,使EF 作为三角形中位线,借助于三角形中位线定理解决.过点C 在平面内作CG =AB ,则四边形ABGC 是平行四边形,故F 为AG 中点.∴EF 是△ADG 的中位线,∴EF =DG 21, ∴EF =21DG . 而DG =DC +CG =DC +AB ,∴EF =21(AB +DC ). 解法二:创造相同起点,以建立向量间关系如图,连EB ,EC ,则有EB =EA +AB , EC =ED +DC ,又∵E 是AD 之中点,∴有EA +ED =0.即有EB +EC =AB +DC ;以EB 与EC 为邻边作平行四边形EBGC ,则由F 是BC 之中点,可得F 也是EG 之中点.∴EF =21EG =21(EB +EC )=21(AB +DC ) 例3 如图,已知任意两个非零向量a,b,试作2,3OA OB OC ==+=+a +b,a b a b 你能判断A 、B 、C 三点之间的位置关系吗?为什么?解:∵()2AB OB OA =-=+-+=a b a b b()32AC OC OA =-=+-+=a b a b b∴2AC AB =所以,A 、B 、C 三点共线.四、课堂练习:五、小结:通过本节学习,要求大家掌握实数与向量的积的定义,掌握实数与向量的积的运算律,理解两个向量共线的充要条件,并能在解题中加以运用.六、课后作业:七、板书设计(略)八、课后记:中国书法艺术说课教案今天我要说课的题目是中国书法艺术,下面我将从教材分析、教学方法、教学过程、课堂评价四个方面对这堂课进行设计。
2.2.3--向量数乘运算及其几何意义(教案)
2.2.3 向量数乘运算及其几何意义【教学目标】1、知识与技能掌握实数与向量的积的定义,理解实数与向量的积的几何意义;掌握实数与向量的积得运算律;理解两个向量共线的充要条件,能够运用两向量共线条件判定两向量是否平行。
2、过程与方法通过本节的教学,培养学生数形结合和分类讨论思想,同时渗透类比和化归思想方法。
3、情感、态度与价值观通过对向量共线的充要条件的分析理解,培养学生严谨的学习习惯。
【教学重点】实数与向量积的定义、运算律,向量共线的充要条件。
【教学难点】向量共线定理的理解。
【教学方法】讲练结合法。
【教学过程】〖创设情境 导入新课〗【导语】在物理学科中我们学习过如下的公式:,F ma S vt ==u r r u r r等,这些公式都是实数与向量的乘积的具体体现,并且从这些公式可以看出,实数可以与向量相乘,并且一个实数乘以一个向量的结果还是一个向量。
因此,在数学中我们就从这些公式出发,抽象出一般的实数与向量的乘积的定义以及它们的一些运算律和性质。
在小学我们由几个相同的有理数相加导出了数的乘法的运算法则,现在我们已经学过了向量的加法运算,那么由几个相同的向量相加,我们又能否得出类似的实数与向量的乘法运算呢?已知向量a r ,求向量a a a ++r r r 和()()()a a a -+-+-r r r,并思考和向量与向量a r 的关系。
【总结】(1)由于向量a a a ++r r r 是由三个向量a r 相加得到的,因此为了简单起见,我们将a a a ++r r r记作:3a r ,因此3a r 是一个向量,又因为a a a ++r r r 的方向与向量a r 的方向相同,模长为向量a r的模长的3倍,所以3a r 的方向与向量a r 的方向相同,模长为向量a r 的模长的3倍。
即:向量3a r 与向量a r 同向且33a a =r r 。
(2)类似地,由于()()()a a a -+-+-r r r 是由三个向量()a -r相加得到的,因此为了简单起见,我们将()()()a a a -+-+-r r r 记作:()3a -r ,因此,()3a -r 也是一个向量,又因为()()()a a a -+-+-r r r的方向与向量a r 的方向相反,模长为向量a r 的模长的3倍,所以()3a -r 的方向与向量a r 的方向相反,模长为向量a r 的模长的3倍。
2. 2.3《向量的数乘运算及几何意义》教学设计.docx
2. 2.3《向量的数乘运算及几何意义》教学设计教学基本流程已知三点A、B、C共线, o 是平Fl而内任意一点, 若有oc = 2OA +//OB, 试求证2 + “ = 1学生的综合能力。
板书设计2.2.3向量数乘的运算及其几何意义1.向量数乘的定义;2.数乘向量的运算律;3.共线向量定理;例题讲解例1.例2、变式一、变式二例3.例4课堂小结教学反思1.向量数乘运算及其几何意义是继向量的加法、减法Z麻的基木运算,为了正确的认识向量数乘运算及其儿何意义,首先复习了向量的加法、减法,然后通过学生比较熟悉的位移例了,引入主题。
从实际问题出发引入新课,不但展示了教学的主要内容,而且还激发了学生学习兴趣。
2.实数与向量的三个运算律,为了降低难度课本上没有证明,可以结合图形给学生直观解释,程度好的学生可以适当指导给出证明,证明的关键是向量的两要素:方向和大小。
3.由于学生已理解平行向量,因此可以让学生观察平行向量间的关系,可以提示从方向和大小两个方血來考虑。
然示指出向量平行的充要条件实质上是由实数与向最的积得到的。
给学生说明定理的作用,通常用来判断三点在同一条直线上或两直线平行,要指出与平瓯屮直线间的平行的区别。
4.木节课总共设置三个探究题,目的是通过学生自主探究、合作释疑,参与知识形成的过程。
木节课的教学理念是:体现学生的主体地位,培养学生科学的探究能力。
设计本节课Z后,我想让学生在知识上:掌握向量数乘的定义、运算律及其几何意义,理解两个向量共线的含义并能解决:向量共线、三点共线、直线平行等问题。
在能力上:培养学生白主探究知识形成的过程的能力,合作释疑过程屮合作交流的能力。
通过对例题的分析,使学生掌握解题的思想和方法;对变式训练的操作,使学生巩固知识点的掌握;通过当堂检测,判断学生的收获;通过课后拓展提高,开阔学生视野,拓宽知识血。
希望通过木节课,能更好的培养学生的创新能力。
新课程标准高中数学人教A版高中数学必修4113向量数乘运算及其几何意改授课人:孔明明2013年3月20日。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数乘运算及其几何意义整体设计教学分析向量的数乘运算,其实是加法运算的推广及简化,与加法、减法统称为向量的三大线性运算.教学时从加法入手,引入数乘运算,充分展现了数学知识之间的内在联系.实数与向量的乘积,仍然是一个向量,既有大小,也有方向.特别是方向与已知向量是共线向量,进而引出共线向量定理.共线向量定理是本章节中重要的内容,应用相当广泛,且容易出错.尤其是定理的前提条件:向量a是非零向量.共线向量定理的应用主要用于证明点共线或平行等几何性质,且与后续的知识有着紧密的联系.三维目标1.通过经历探究数乘运算法则及几何意义的过程,掌握实数与向量积的定义,理解实数与向量积的几何意义,掌握实数与向量的积的运算律.2.理解两个向量共线的等价条件,能够运用两向量共线条件判定两向量是否平行.3.通过探究,体会类比迁移的思想方法,渗透研究新问题的思想和方法,培养创新能力和积极进取精神.通过解决具体问题,体会数学在生活中的重要作用.重点难点教学重点:1.实数与向量积的意义.2.实数与向量积的运算律.3.两个向量共线的等价条件及其运用.教学难点:对向量共线的等价条件的理解运用.课时安排1课时教学过程导入新课思路1.前面两节课,我们一起学习了向量加减法运算,这一节,我们将在加法运算基础上研究相同向量和的简便计算及推广.在代数运算中,a+a+a=3a,故实数乘法可以看成是相同实数加法的简便计算方法,那么相同向量的求和运算是否也有类似的简便计算.思路2.一物体做匀速直线运动,一秒钟的位移对应的向量为a,那么在同一方向上3秒钟的位移对应的向量怎样表示?是3a吗?怎样用图形表示?由此展开新课.推进新课新知探究提出问题①已知非零向量a,试一试作出a+a+a和(-a)+(-a)+(-a).②你能对你的探究结果作出解释,并说明它们的几何意义吗?③引入向量数乘运算后,你能发现数乘向量与原向量之间的位置关系吗?怎样理解两向量平行?与两直线平行有什么异同?活动:引导学生回顾相关知识并猜想结果,对于运算律的验证,点拨学生通过作图来进行.通过学生的动手作图,让学生明确向量数乘运算的运算律及其几何意义.教师要引导学生特别注意0·a =0,而不是0·a =0.这个零向量是一个特殊的向量,它似乎很不起眼,但又处处存在,稍不注意就会出错,所以要引导学生正确理解和处理零向量与非零向量之间的关系.实数与向量可以求积,但是不能进行加、减运算,比如λ+a ,λ-a 都无法进行.向量数乘运算的运算律与实数乘法的运算律很相似,只是数乘运算的分配律有两种不同的形式:(λ+μ)a =λa +μa 和λ(a +b )=λa +λb ,数乘运算的关键是等式两边向量的模相等,方向相同.判断两个向量是否平行(共线),实际上就是看能否找出一个实数,使得这个实数乘以其中一个向量等于另一个向量.一定要切实理解两向量共线的条件,它是证明几何中的三点共线和两直线平行等问题的有效手段.对问题①,学生通过作图1可发现,OC →=OA →+AB →+BC →=a +a +a .类似数的乘法,可把a +a +a 记作3a ,即OC →=3a .显然3a 的方向与a 的方向相同,3a 的长度是a 的长度的3倍,即|3a|=3|a |.同样,由图1可知,图1PN →=PQ →+QM →+MN →=(-a )+(-a )+(-a ),即(-a )+(-a )+(-a )=3(-a ).显然3(-a )的方向与a 的方向相反,3(-a )的长度是a 的长度的3倍,这样,3(-a )=-3a .对问题②,上述过程推广后即为实数与向量的积.我们规定实数λ与向量a 的积是一个向量,这种运算叫做向量的数乘,记作λa ,它的长度与方向规定如下:(1)|λa |=|λ||a |;(2)当λ>0时,λa 的方向与a 的方向相同;当λ<0时,λa 的方向与a 的方向相反. 由(1)可知,λ=0时,λa =0.根据实数与向量的积的定义,我们可以验证下面的运算律.实数与向量的积的运算律设λ、μ为实数,那么a)=λ(-a),λ(a-b)=λa-λb.对问题③,向量共线的等价条件是:如果a(a≠0)与b共线,那么有且只有一个实数λ,使b=λa.推证过程教师可引导学生自己完成,推证过程如下:对于向量a(a≠0)、b,如果有一个实数λ,使b=λa,那么由向量数乘的定义,知a与b共线.反过来,已知向量a与b 共线,a≠0,且向量b的长度是向量a的长度的μ倍,即|b|=μ|a|,那么当a与b同方向时,有b=μa;当a与b反方向时,有b=-μa.关于向量共线的条件,教师要点拨学生作进一步深层探究,让学生思考,若去掉a≠0这一条件,上述条件成立吗?其目的是通过0与任意向量的平行来加深对向量共线的等价条件的认识.在判断两个非零向量是否共线时,只需看这两个向量的方向是否相同或相反即可,与这两个向量的长度无关.在没有指明非零向量的情况下,共线向量可能有以下几种情况:(1)有一个为零向量;(2)两个都为零向量;(3)同向且模相等;(4)同向且模不等;(5)反向且模相等;(6)反向且模不等.讨论结果:①数与向量的积仍是一个向量,向量的方向由实数的正负及原向量的方向确定,大小由|λ|·|a|确定.②它的几何意义是把向量a沿a的方向或a的反方向放大或缩小.③向量的平行与直线的平行是不同的,直线的平行是指两条直线在同一平面内没有公共点;而向量的平行既包含没有交点的情况,又包含两个向量在同一条直线上的情形.应用示例思路1例1计算:(1)(-3)×4a;(2)3(a+b)-2(a-b)-a;(3)(2a+3b-c)-(3a-2b+c).活动:本例是数乘运算的简单应用,可让学生自己完成,要求学生熟练运用向量数乘运算的运算律.教学中,点拨学生不能将本题看作字母的代数运算,可以让他们在代数运算的同时说出其几何意义,使学生明确向量数乘运算的特点.同时向学生点出,向量的加、减、数乘运算统称为向量的线性运算.对于任意向量a、b,以及任意实数λ、μ1、μ2,恒有λ(μ1a±μ2b)=λμ1a±λμ2b.解:(1)原式=(-3×4)a=-12a;(2)原式=3a+3b-2a+2b-a=5b;(3)原式=2a+3b-c-3a+2b-c=-a+5b-2c.点评:运用向量运算的运算律,解决向量的数乘.其运算过程可以仿照多项式运算中的“合并同类项”.图2判断三点共线的方法转化为用向量共线证明三点共线.本题只要引导学生理清思路,具体过程可由学生自己完成.另外,本题是一个很好的与信息技术整合的题材,教学中可以通过计算机作图,进行动态演示,揭示向量a 、b 变化过程中,A 、B 、C 三点始终在同一条直线上的规律.解:如图3,分别作向量OA →、OB →、OC →,过点A 、C 作直线AC .观察发现,不论向量a 、b 怎样变化,点B 始终在直线AC 上,猜想A 、B 、C 三点共线.图3事实上,因为AB →=OB →-OA →=a +2b -(a +b )=b ,而AC →=OC →-OA →=a +3b -(a +b )=2b ,于是AC →=2AB →.所以A 、B 、C 三点共线.点评:关于三点共线问题,学生接触较多,这里是用向量证明三点共线,方法是必须先证明两个向量共线,并且有公共点.教师引导学生解完后进行反思,体会向量证法的新颖独特.例3如图4,ABCD 的两条对角线相交于点M ,且AB →=a ,AD →=b ,你能用a 、b 表示MA →、MB →、MC →和MD →吗?图4活动:本例的解答要用到平行四边形的性质.另外,用向量表示几何元素(点、线段等)是用向量方法证明几何问题的重要步骤,教学中可以给学生明确指出这一点.解:在ABCD 中,∵AC →=AB →+AD →=a +b ,DB →=AB →-AD →=a -b ,又∵平行四边形的两条对角线互相平分,∴MA →=-12AC →=-12(a +b )=-12a -12b , MB →=12DB →=12(a -b )=12a -12b ,MC →=12AC →=12a +12b , MD →=-MB →=-12DB →=-12a +12b . 点评:结合向量加法和减法的平行四边形法则和三角形法则,将两个向量的和或差表示出来,这是解决这类几何题的关键.思路2例1凸四边形ABCD 的边AD 、BC 的中点分别为E 、F ,求证:EF →=12(AB →+DC →). 活动:教师引导学生探究,能否构造三角形,使EF 作为三角形中位线,借助于三角形中位线定理解决,或创造相同起点,以建立向量间关系.鼓励学生多角度观察思考问题.证法一:过点C 在平面内作CG →=AB →,则四边形ABGC 是平行四边形,故F 为AG 中点.(如图5)图5EB →=EA →+AB →,EC →=ED →+DC →,图6又∵E 是AD 的中点,∴EA →+ED →=0,即有EB →+EC →=AB →+DC →.以EB →与EC →为邻边作▱EBGC ,则由F 是BC 的中点,可得F 也是EG 的中点.∴EF →=12EG →=12(EB →+EC →)=12(AB →+DC →). 点评:向量的运算主要从以下几个方面加强练习:(1)加强数形结合思想的训练,画出草图帮助解决问题;(2)加强三角形法则和平行四边形法则的运用练习,做到准确熟练运用.例2已知OA →和OB →是不共线向量,AP →=tAB →(t ∈R ),试用OA →、OB →表示OP →.活动:教师引导学生思考,由AP →=tAB →(t ∈R )知A 、B 、P 三点共线,而OP →=OA →+AP →,然后以AB →表示AP →,进而建立OA →,OB →的联系.本题可让学生自己解决,教师适时点拨.解:OP →=OA →+AP →=OA →+t ·AB →=OA →+t ·(OB →-OA →)=(1-t )·OA →+t ·OB →.点评:灵活运用向量共线的条件.若令1-t =m ,t =n ,则OP →=m ·OA →+n ·OB →,m +n =1.本节练习解答:1.图略.2.AC →=57AB →,BC →=-27AB →. 点评:本题可先画一个示意图,根据图形容易得出正确答案.值得注意的是BC →与AB →反向.3.(1)b =2a ;(2)b =-74a ;(3)b =-12a ;(4)b =89a . 4.(1)共线;(2)共线.5.(1)3a -2b ;(2)-1112a +13b ;(3)2y a .6.图略.课堂小结1.让学生回顾本节学习的数学知识:向量的数乘运算法则,向量的数乘运算律,向量共线的条件,体会本节学习中用到的思想方法:特殊到一般,归纳、猜想、类比,分类讨论,等价转化.2.向量及其运算与数及其运算可以类比,这种类比是我们提高思想性的有效手段,在今后的学习中应予以充分的重视,它是我们学习中伟大的引路人.作业。