《向量的几何表示》教案

合集下载

教师资格证面试试讲-10《向量的几何表示》-逐字稿

教师资格证面试试讲-10《向量的几何表示》-逐字稿

《向量的几何表示》逐字稿各位评委老师大家好,我是今天的1号考生,今天我试讲的题目是《向量的几何表示》。

下面开始我的试讲。

一、类比概念,引入课题正式上课前,老师想问大家一个问题,实数在数轴上是如何表示的呢?有的同学说是用点表示的,完全正确,那向量又该如何表示呢?带着这个问题我们一起来学习今天的新课---《向量的几何表示》。

二、类比实数概念,知识新授1、实例引入概念下面我们一起来看下PPT上的这幅图片,在物理学中是如何表示力的呢?谁来给我们说一下?好,物理课代表来说吧。

他说这幅图是用带箭头的线段来表示力的,箭头指示力的方向,线段是按比例来画的,线段的长度表示力的大小。

大家觉得他解释的对不对?你们都认为是对的啊,很好,而且解释的也很全面,在他的叙述中,我们发现带方向的这条线段起到了关键作用,在数学上,我们把它叫做有向线段。

2、向量与有向线段的区别与联系那这条线段应该如何表述呢?能否像实数一样就用一个点来表示呢?你们异口同声的说不能,那为什么呢?好,你来说下理由吧。

他说线段是有端点的,需要两个点来表述。

那老师现在在这条有向线段上标上端点A和B,这个有向线段应该如何表述呢?有同学说是AB,又有同学说是BA,哪个是对的呢?举手的这位同学你来说,他说应该是BA,因为这条线段是有方向的,从B指向A,所以要说BA。

很好,大家都很聪明啊,一下子就注意到了问题的关键点,以B为起点,A为终点的话记为BA,同时在BA上面要画一个这样的箭头,表明它的方向。

表述有向线段的时候必须表示清楚它的三要素:起点、方向、长度,当这三个要素确定后,终点也就随之确定了,大家明白了吗?明白了,那也就是说我们可以用这样的有向线段来表示向量了,那我们是否可以说有向线段就是向量,向量就是有限线段呢?有些孩子摇头了,那理由呢?想好了举手!好,你来说。

他说有向线段有三要素,即起点、长度和方向,向量只有大小和方向两个要素,与起点无关。

你们赞同吗?大家都同意啊,很好,这位同学对于概念抓的很细致,表述也特别清楚,真厉害!3、向量的其他概念现在我们已经学会了如何用有向线段来表示向量,书上还给出了另一种向量的记法,用a,b···也可以表示向量,书上的向量用的是印刷体的黑体字母a表示向量,没有箭头.但是我们书写的字母不是印刷体,在表示向量时,必须打上箭头。

向量的教案5篇

向量的教案5篇

向量的教案5篇(实用版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的实用资料,如合同协议、学习总结、生活总结、工作总结、企划书、教案大全、演讲稿、作文大全、工作计划、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor.I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, the shop provides you with various types of practical information, such as contract agreement, learning summary, life summary, work summary, plan, teaching plan, speech, composition, work plan, other information, etc. want to know different data formats and writing methods, please pay attention!向量的教案5篇教案不仅仅是一份计划,还是教育实践的反映和指南,教案包含了教材选择和使用的详细说明,以便教师能够有效地传授知识,下面是本店铺为您分享的向量的教案5篇,感谢您的参阅。

2.1.1 向量的物理背景与概念及向量的几何表示

2.1.1  向量的物理背景与概念及向量的几何表示

2.1.1 向量的物理背景与概念及向量的几何表示教学目标:1. 了解向量的实际背景,理解平面向量的概念和向量的几何表示;掌握向量的模、零向量、单位向量、平行向量、相等向量、共线向量等概念;并会区分平行向量、相等向量和共线向量. 2. 通过对向量的学习,使学生初步认识现实生活中的向量和数量的本质区别.3. 通过学生对向量与数量的识别能力的训练,培养学生认识客观事物的数学本质的能力. 教学重点:理解并掌握向量、零向量、单位向量、相等向量、共线向量的概念,会表示向量. 教学难点:平行向量、相等向量和共线向量的区别和联系.学 法:本节是本章的入门课,概念较多,但难度不大.学生可根据在原有的位移、力等物理概念来学习向量的概念,结合图形实物区分平行向量、相等向量、共线向量等概念. 教学思路: (一) 一、情景设置:如图,老鼠由A 向西北逃窜,猫在B 处向东追去,设问:猫能否追到老鼠?(画图) 结论:猫的速度再快也没用,因为方向错了.分析:老鼠逃窜的路线AC 、猫追逐的路线BD 实际上都是有方向、有长短的量.引言:请同学指出哪些量既有大小又有方向?哪些量只有大小没有方向? 二、新课学习:(一)向量的概念:我们把既有大小又有方向的量叫向量。

(二)(教材P74面的四个图制作成幻灯片)请同学阅读课本后回答:(7个问题一次出现) 1、数量与向量有何区别?(数量没有方向而向量有方向) 2、如何表示向量?3、有向线段和线段有何区别和联系?分别可以表示向量的什么?4、长度为零的向量叫什么向量?长度为1的向量叫什么向量?5、满足什么条件的两个向量是相等向量?单位向量是相等向量吗?6、有一组向量,它们的方向相同或相反,这组向量有什么关系?7、如果把一组平行向量的起点全部移到一点O ,这是它们是不是平行向量? 这时各向量的终点之间有什么关系?(三)探究学习1、数量与向量的区别:数量只有大小,是一个代数量,可以进行代数运算、比较大小; 向量有方向,大小,双重性,不能比较大小. 2.向量的表示方法:①用有向线段表示; ②用字母a、b(黑体,印刷用)等表示;ABCDA(起点)B(终点)a③用有向线段的起点与终点字母:AB;④向量AB的大小―长度称为向量的模,记作|AB|.3.有向线段:具有方向的线段就叫做有向线段,三个要素:起点、方向、长度.向量与有向线段的区别:(1)向量只有大小和方向两个要素,与起点无关,只要大小和方向相同,这两个向量就是相同的向量;(2)有向线段有起点、大小和方向三个要素,起点不同,尽管大小和方向相同,也是不同的有向线段.4、零向量、单位向量概念:①长度为0的向量叫零向量,记作0.0的方向是任意的. 注意0与0的含义与书写区别.②长度为1个单位长度的向量,叫单位向量.说明:零向量、单位向量的定义都只是限制了大小.5、平行向量定义:①方向相同或相反的非零向量叫平行向量;②我们规定0与任一向量平行.说明:(1)综合①、②才是平行向量的完整定义;(2)向量a、b、c平行,记作a∥b∥c. (四)理解和巩固:例1 书本75页例1.例2判断:(1)平行向量是否一定方向相同?(不一定)(2)与任意向量都平行的向量是什么向量?(零向量)(3)若两个向量在同一直线上,则这两个向量一定是什么向量?(平行向量)课堂练习:书本77页练习1、2、3题三、小结:1、描述向量的两个指标:模和方向.2、平面向量的概念和向量的几何表示;3、向量的模、零向量、单位向量、平行向量等概念。

苏教版数学高一必修4教案 2.1向量的概念及表示

苏教版数学高一必修4教案 2.1向量的概念及表示

2.1向量的概念及表示●三维目标1.知识与技能(1)理解、掌握向量的概念.(2)掌握向量的模、零向量、单位向量、平行向量、相等向量、共线向量等的概念.2.过程与方法在理解向量等有关概念的基础上,充分联系实际,培养学生解决生活实际问题的能力.3.情感、态度与价值观(1)通过对向量的学习,使学生对现实生活中的向量和数量有一个清楚的认识,培养学生对现实生活中的真善美的识别能力.(2)对学生进行辩证思维的教育.●重点难点重点:向量的概念、相等向量的概念、向量的几何表示.难点:向量的概念和共线向量的概念.●教学建议1.关于向量概念的教学教学时,建议教师从向量的物理背景出发,借助物理学中的位移、速度、力等矢量引出向量的概念,并指出向量具有“数”和“形”的双重特征.2.关于零向量、单位向量、相等向量和共线向量的教学教学时,建议教师类比数及向量的概念给出零向量、单位向量的概念;结合向量的两要素给出相等向量的定义;强调指出共线向量未必是在同一直线上的向量.由于零向量、单位向量、相等向量和共线向量是研究向量的基础,为增加学生对上述概念的感性认识,学习时建议教师对该知识点进行适当训练.●教学流程创设问题情境,引入向量的概念.⇒引导学生结合物理学中的位移、速度、力等矢量理解向量具有“数”和“形”的双重特征.⇒通过类比数与向量的概念,引导学生理解零向量、单位向量、相等向量、共线向量等概念.⇒通过例1及其变式训练,使学生掌握利用向量有关概念判断有关命题真假的方法.⇒通过例2及其变式训练,使学生掌握利用有向线段表示向量的方法,并注意向量模的大小.⇒通过例3及其变式训练,使学生掌握写出图形中的相等共线向量的方法.⇒归纳整理,进行课堂小结,整体认识本节课所学知识.⇒完成当堂双基达标,巩固所学知识并进行反馈矫正.课标解读1.了解向量的实际背景,理解平面向量的概念.2.理解零向量、单位向量、相等向量、共线(平行)向量、相反向量的含义.(重点、难点)3.理解向量的几何表示.向量及其有关概念(1)火车向正南方向行驶了50 km,行驶速度的大小为120 km/h,方向是正南.(2)起重机吊装物体时,物体既受到竖直向下的重力作用,同时又受到竖直向上的起重机拉力的作用.1.上述两个实例中涉及的物理量的特点是什么?【提示】它们的大小和方向都是确定的.2.上述实例中的速度和力,如何表示?【提示】可以用有向线段表示,也可以用字母表示.1.向量的概念向量:既有大小,又有方向的量叫向量.2.向量的表示(1)用有向线段表示向量常用一条有向线段来表示,有向线段的长度表示向量的大小,箭头所指的方向表示向量的方向.以A 为起点、B 为终点的向量记作AB →.向量AB →的大小称为向量的长度(或称为模),记作|AB →|. (2)用字母表示向量通常在印刷时,用黑体小写字母a ,b ,c …表示向量,在手写时用带箭头的小写字母a →, b →, c →…表示向量.也可用表示向量的有向线段的起点和终点字母表示,如AB →,CD →. 3.与向量有关的概念(1)零向量:长度为0的向量叫做零向量,记作0.(2)单位向量:长度等于1个单位长度的向量叫做单位向量. (3)相等向量:长度相等且方向相同的向量叫做相等向量. (4)相反向量:长度相等且方向相反的向量叫相反向量.(5)平行向量(共线向量):方向相同或相反的非零向量叫做平行向量,也叫共线向量.规定零向量与任一向量平行.向量的有关概念(1)单位向量一定相等; (2)若a =b ,b =c ,则a =c ;(3)若AB →=CD →,则点A 与点C 重合,点B 与点D 重合; (4)若向量a 与b 同向,且|a |>|b |,则a >b ; (5)若向量a =b ,则a ∥b ; (6)若a ∥b ,b ∥c ,则a ∥c .【思路探究】 从概念的理解出发,结合具体实例进行判断.【自主解答】 (1)不正确.向量有大小和方向两个要素,单位向量的模一定是1,但方向不一定相同,所以单位向量不一定相等.(2)正确.∵a =b ,∴a ,b 的长度相等且方向相同;又∵b =c ,∴b ,c 的长度相等且方向相同,∴a ,c 的长度相等且方向相同,故a =c .(3)不正确.这是因为AB →=CD →时,应有|AB →|=|CD →|及由A 到B 与由C 到D 的方向相同,但不一定有A 与C 重合,B 与D 重合.(4)不正确.“大于”、“小于”对于向量来说是没有意义的.(5)正确.相等向量一定是共线向量,但共线向量不一定相等.(6)不正确.对于非零向量命题正确,但当b =0时,满足a ∥b ,b ∥c ,但a 与c 不一定共线.1.在判断与向量有关的命题时,既要立足向量的数(即模的大小),又要考虑其形(即方向性).2.涉及共线向量或平行向量的问题,一定要明确所给向量是否为非零向量. 3.对于判断命题的正误,应该熟记有关概念,理解各命题,逐一进行判断,对于错误命题,只要举一反例即可.下列说法:①方向相同或相反的向量是平行向量;②零向量的长度是0;③长度相等的向量叫相等向量;④共线向量是在一条直线上的向量.其中正确的命题是________.(填序号)【解析】 方向相同或相反的非零向量才是平行向量,所以①不正确;长度相等,方向相同的向量才叫相等向量,所以③不正确;共线向量也叫平行向量,它们不一定在一条直线上,也可能在平行直线上,所以④不正确;零向量的长度为0,所以②正确.【答案】 ②向量的表示50°行驶了200千米到达点C ,最后又改变方向,向东行驶了100千米到达点D.(1)作出向量AB →,BC →,CD →; (2)求|AD →|.【思路探究】 解答本题应首先确定指向标,然后再根据行驶方向确定有关向量,进而求解.【自主解答】 (1)如图.(2) 由题意,易知AB →与CD →方向相反,故AB →与CD →共线,即AB ∥CD. 又∵|AB →|=|CD →|,∴在四边形ABCD 中,AB 綊CD. ∴四边形ABCD 为平行四边形.∴|AD →|=|BC →|=200(千米).用有向线段表示向量时,先确定起点,再确定方向,最后依据向量模的大小确定向量的终点.必要时,需依据直角三角形知识求出向量的方向或长度(模),选择合适的比例关系作出向量.在如图2-1-1的方格纸中,画出下列向量.图2-1-1(1)|OA →|=3,点A 在点O 正西方向; (2)|OB →|=32,点B 在点O 北偏西45°方向.【解】 取每个方格的单位长为1,依题意,结合向量的表示可知,相应的向量如图所示:相等向量与共线向量图2-1-2如图2-1-2所示,在△ABC 中,三边长均不相等,D ,E ,F 分别是BC ,AC ,AB 的中点,在以A ,B ,C ,D ,E ,F 这6点中任意一点为起点,另一点为终点的所有向量中,写出:(1)与EF →共线的向量; (2)与EF →长度相等的向量; (3)与EF →相等的向量.【思路探究】 (1)与EF →共线的向量即与之方向相同或相反的向量;(2)与EF →长度相等即表示向量的线段与EF 长度相等;(3)与EF →相等的向量即与之共线且长度相等的向量.【自主解答】 (1)∵E ,F 分别是AC ,AB 的中点,∴EF ∥BC , ∴与EF →共线的向量为FE →,BD →,DB →,DC →,CD →,BC →,CB →.(2)∵D ,E ,F 分别是BC ,AC ,AB 的中点,∴BD =DC =12BC ,EF =12BC.∵AB ,BC ,AC 均不相等,∴与EF →长度相等的向量为FE →,BD →,DB →,DC →,CD →. (3)与EF →相等的向量为DB →,CD →.1.寻找相等向量:先找与表示已知向量的有向线段长度相等的向量,再确定哪些是同向共线.2.寻找共线向量:先找与表示已知向量的有向线段平行或共线的线段,再构造同向与反向的向量,注意不要漏掉以表示已知向量的有向线段的终点为起点,起点为终点的向量.图2-1-3如图2-1-3,D ,E ,F 分别是△ABC 各边上的中点,四边形BCMF 是平行四边形,请分别写出:(1)与CM →模相等且共线的向量; (2)与ED →相等的向量; (3)与BF →相反的向量.【解】 (1)DE →,ED →,BF →,FB →,FA →,AF →,MC →. (2)FB →,AF →,MC →. (3)FB →,AF →,ED →,MC →.对向量的有关概念理解不透彻致误判断下列说法是否正确: (1)向量就是有向线段; (2)AB →=BA →;(3)若向量AB →与向量CD →平行,则线段AB 与CD 平行; (4)若|a |=|b |,则a =±b ;(5)若AB →=DC →,则ABCD 是平行四边形. 【错解】 以上说法都正确.【错因分析】 (1)向量常用一条有向线段来表示,有向线段的长度表示向量的大小,箭头所指的方向表示向量的方向.因此,有向线段是向量的一种表示方法,不能说向量就是有向线段.(2)AB →与BA →的长度相等,但方向相反,故当AB →是非零向量时,AB →与BA →不相等. (3)方向相同或相反的非零向量叫做平行向量,故若AB →与CD →平行,则线段AB 与CD 可能平行,也可能共线.(4)由|a |=|b |,仅能说明两向量的模相等,但方向却不能确定,故(4)不正确.而(5)中,A ,B ,C ,D 可能落在同一条直线上,故(5)不正确.【防范措施】 首先,要清楚向量的两要素:大小和方向;其次,要对共线向量、单位向量、相等向量、零向量有深入的理解,考虑问题要全面,注意零向量的特殊性.【正解】 以上说法都不正确.1.如果有向线段AB 表示一个向量,通常我们就说向量AB →,但有向线段只是向量的表示,并不是说向量就是有向线段.2.共线向量也就是平行向量,其要求是几个非零向量的方向相同或相反,当然向量所在的直线可以平行,也可以重合,其中“共线”的含义不同于平面几何中“共线”的含义.1.下列说法正确的是________. ①若|a |=0,则a =0; ②若|a |=|b |,则a =b ;③向量AB →与向量BA →是相反向量; ④若a ∥b ,则a =b .【解析】 ①不正确,若|a |=0,则a =0;由于相等向量的长度相等且方向相同,故②④不正确;③显然正确.【答案】 ③图2-1-42.如图2-1-4所示,E ,F 分别为△ABC 的边AB ,AC 的中点,则与向量EF →共线的向量有________(将图中适合条件的向量全写出来).【解析】 ∵E ,F 分别为AB ,AC 的中点,∴EF ∥BC , ∴适合条件的向量为FE →,BC →,CB →. 【答案】 FE →,BC →,CB →3.若四边形ABCD 是矩形,则下列命题中不正确的是________. ①AB →与CD →共线;②AC →与BD →相等;③AD →与CB →是相反向量;④AB →与CD →的模相等.【解析】 ∵四边形ABCD 是矩形,∴AB ∥CD ,AB =CD ,故①,④正确; AC =BD ,但AC →与BD →的方向不同,故②不正确; AD =CB 且AD ∥CB ,AD →与CB →的方向相反,故③正确. 【答案】 ②4.在直角坐标系中,画出下列向量,使它们的起点都是原点O. (1)|a |=2,a 的方向与x 轴正方向成60°,与y 轴正方向成30°;(2)|a |=4,a 的方向与x 轴正方向成30°,与y 轴正方向成120°. 【解】 所求向量及其向量的终点坐标如图所示:一、填空题1.若a 为任一非零向量,b 为单位向量,下列各式:①|a |>|b |;②a ∥b ;③|a |>0;④|b |=±1;⑤a |a |=b .其中正确的是________.(填序号)【解析】 |a |不一定大于1,|b |=1,∴①④不正确;a 和b 不一定平行.a|a |是与a 方向相同的单位向量,所以②⑤不正确;a 为非零向量,显然有|a |>0. 只有③正确. 【答案】 ③2.若a =b ,且|a |=0,则b =________. 【解析】 ∵a =b ,且|a |=0,∴a =b =0. 【答案】 0图2-1-53.如图2-1-5所示,四边形ABCE 为等腰梯形,D 为CE 的中点,且EC =2AB ,则与AB →相等的向量有________.【解析】 易知四边形ABDE 为平行四边形,则AB →=ED →, 又∵D 是CE 的中点,则ED →=DC →. 【答案】 DC →,ED →4.某人向正东方向行进100米后,再向正南方向行进1003米,则此人位移的方向是________.【解析】 如图所示,此人从点A 出发,经点B ,到达点C ,则tan ∠BAC =1003100=3,∴∠BAC =60°,即位移的方向是东偏南60°,即南偏东30°.【答案】 南偏东30°5.给出以下4个条件:①a =b ;②|a |=|b |;③a 与b 的方向相反;④|a |=0或|b |=0,其中能使a 与b 共线成立的是________.【解析】 两向量共线只需两向量方向相同或相反.①a =b ,两向量方向相同;②|a |=|b |两向量方向不确定;④|a |=0或|b |=0即为a =0或b =0 ,因为零向量与任一向量平行,所以④成立.综上所述,答案应为①③④. 【答案】 ①③④图2-1-66.如图2-1-6,已知正方形ABCD 边长为2,O 为其中心,则|OA →|=________. 【解析】 正方形的对角线长为22, ∴|OA →|= 2. 【答案】27.四边形ABCD 满足AD →=BC →且|AC →|=|BD →|,则四边形ABCD 的形状是________. 【解析】 由四边形ABCD 满足AD →=BC →可知,四边形ABCD 为平行四边形. 又|AC →|=|BD →|,即平行四边形ABCD 对角线相等,从而可知四边形ABCD 为矩形. 【答案】 矩形8.设O 是正方形ABCD 的中心,则①AO →=OC →;②AO →∥AC →;③AB →与CD →共线;④AO →=BO →.其中,所有表示正确的序号为________.【解析】 如图,正方形的对角线互相平分,∴AO →=OC →,①正确;AO →与AC →的方向相同,所以AO →∥AC →,②正确;AB →与CD →的方向相反,所以AB →与CD →共线,③正确;尽管|AO →|=|BO →|,然而AO →与BO →的方向不相同,所以AO →≠BO →,④不正确.【答案】 ①②③二、解答题图2-1-79.设在平面上给定了一个四边形ABCD ,如图2-1-7所示,点K ,L ,M ,N 分别是边AB ,BC ,CD ,DA 的中点,求证:KL →=NM →.【证明】 ∵N ,M 分别是AD ,DC 的中点,则NM →=12AC →,同理KL →=12AC →,故KL →=NM →.图2-1-810.如图2-1-8所示菱形ABCD 中,对角线AC ,BD 相交于O 点,∠DAB =60°,分别以A ,B ,C ,D ,O 中的不同两点为起点与终点的向量中,(1)写出与DA →平行的向量;(2)写出与DA →模相等的向量.【解】 由题意可知,(1)与DA →平行的向量有:AD →,BC →,CB →;(2)与DA →模相等的向量有:AD →,BC →,CB →,AB →,BA →,DC →,CD →,BD →,DB →.11.一架飞机从A 点向西北飞行200 km 到达B 点,再从B 点向东飞行100 2 km 到达C 点,最后从C 点向南偏东60°飞行50 2 km 到达D 点,求飞机从D 点飞回A 点的位移.【解】 如图所示,由|AB →|=200 km ,|BC →|=100 2 km ,知C 在A 的正北100 2 km 处.又由|CD →|=50 2 km ,∠ACD =60°,知∠CDA =90°,所以∠DAC =30°,所以|DA →|=50 6 km.故DA →的方向为南偏西30°,长度为50 6 km.如图,已知四边形ABCD 中,M ,N 分别是BC ,AD 的中点,又AB →=DC →.求证:CN綊MA.【思路探究】 要证CN ∥MA 且CN =MA ,只需证四边形AMCN 是平行四边形,而四边形AMCN 是平行四边形,可以通过AN →=MC →得证.【自主解答】 由条件AB →=DC →可知AB =DC 且AB ∥DC ,从而四边形ABCD 为平行四边形,从而AD →=BC →.又M ,N 分别是BC ,AD 的中点,于是AN →=MC →,所以AN =MC 且AN ∥MC ,所以四边形AMCN 是平行四边形,从而CN =MA 且CN ∥MA ,即CN 綊MA.1.若AB →=DC →,且四点A ,B ,C ,D 不共线,则四边形ABCD 为平行四边形,反之,若四边形ABCD 为平行四边形,则AB →=DC →.2.利用向量相等或共线证明平行、相等问题:(1)证明线段相等,只需证明相应向量的长度(模)相等.(2)证明线段平行,先证明相应的向量共线,再说明线段不共线.在四边形ABCD 中,AB →=DC →,N 、M 分别是AD ,BC 上的点,且CN →=MA →,证明:四边形DNBM 是平行四边形.【证明】 ∵AB →=DC →,∴四边形ABCD 为平行四边形,∴AD ,BC 平行且相等.又∵CN →=MA →,∴四边形CNAM 为平行四边形,∴AN ,MC 平行且相等,∴DN ,MB 平行且相等,∴四边形DNBM 是平行四边形.。

《向量在几何证明中的应用》 讲义

《向量在几何证明中的应用》 讲义

《向量在几何证明中的应用》讲义一、向量的基本概念在数学的广阔天地中,向量是一个极其重要的概念。

简单来说,向量是既有大小又有方向的量。

它可以用有向线段来表示,线段的长度表示向量的大小,箭头所指的方向表示向量的方向。

比如,一个物体在平面上的位移,力的作用方向和大小,速度的快慢和方向等,都可以用向量来描述。

向量通常用小写字母加上箭头来表示,如\(\vec{a}\)、\(\vec{b}\)等。

向量的大小称为模长,记作\(|\vec{a}|\)。

如果向量的模长为 1,则称为单位向量。

两个向量的方向相同或相反,且模长相等,就称这两个向量相等。

二、向量的运算1、加法向量的加法遵循三角形法则和平行四边形法则。

三角形法则:将两个向量首尾相连,从第一个向量的起点指向第二个向量的终点的向量就是这两个向量的和。

平行四边形法则:以两个向量为邻边作平行四边形,从公共起点出发的对角线所表示的向量就是这两个向量的和。

2、减法向量的减法是加法的逆运算。

\(\vec{a} \vec{b} =\vec{a}+(\vec{b})\),即将\(\vec{b}\)取反后与\(\vec{a}\)相加。

3、数乘一个实数\(k\)与向量\(\vec{a}\)相乘,得到的向量\(k\vec{a}\)的模长为\(|k|\times|\vec{a}|\),方向:当\(k > 0\)时,与\(\vec{a}\)同向;当\(k < 0\)时,与\(\vec{a}\)反向。

4、点乘(数量积)两个向量\(\vec{a}\)和\(\vec{b}\)的数量积\(\vec{a}\cdot \vec{b} =|\vec{a}|\times|\vec{b}|\times\cos\theta\),其中\(\theta\)为两个向量的夹角。

数量积的结果是一个标量。

它有着广泛的应用,比如可以用来计算向量的模长、判断向量的垂直关系等。

三、向量在几何证明中的优势向量为几何证明带来了新的思路和方法,具有以下显著优势:1、简洁直观通过向量的运算,可以将复杂的几何关系转化为简单的代数运算,使证明过程更加简洁明了。

人教A版高中数学必修4《二章 平面向量 2.1.2 向量的几何表示》优质课教案_12

人教A版高中数学必修4《二章 平面向量  2.1.2 向量的几何表示》优质课教案_12

2.1.2 向量的几何表示学习目标1.掌握向量的几何表示;2.理解向量的有关概念。

学习重点、难点1.向量的概念、相等向量的概念、向量的几何表示;2.向量的概念和共线向量的概念。

探究(一):向量的几何表示思考1:一条小船从A 地出发,向西北方向航行15km 到达B 地,可以用什么方式表示小船的位移?思考2:如图,以A 为起点、B 为终点的有向线段记作,一条有向线段由哪几个基本要素所确定?1.向量的有关概念 (1)向量的大小叫做向量的长度(模)。

表示为:___________(2)字母表示法为了书写的方便,除了用表示向量的有向线段的起点和终点字母表示外,向量也可以用黑体的单个小写字母a ,b ,c ,…,或,,表示,如图。

要注意手写体a ,b 与印刷体a ,b 的不同,向量的字母表示法有利于向量的代数运算。

思考4:向量的模可以为0吗?可以为1吗?可以为负数吗?2.两个特殊向量零向量:模为0的向量,记作。

单位向量:模为1个单位的向量。

思考5:A 起点B 终点思考6: “向量就是有向线段,有向线段就是向量”的说法对吗?知识运用例1.______________________________称为向量;常用_________________表示,记为____________,又可用小写字母表示为____________。

例2.在下列命题中,正确的是()A.若|a|>|b|,则a>b;B.若a与b平行,b与c平行,则a与c不一定平行C.终点相同的两个向量不平行D.由于0方向任意,故0不与任一向量平行例3.判断下列各命题是否正确:(1)若a是单位向量,b也是单位向量,则a与b的方向相同或相反。

()(2)若向量是单位向量,则也是单位向量。

()(3)以坐标平面上的定点A为始点,所有单位向量的终点P的集合是以A为圆心的单位圆。

()(4)单位向量都相等()例4.把同一平面内所有模不小于2且不大于4的向量的起点移到同一点O,则这些向量的终点构成的图形是_ _______________________________。

中职数学平面向量教案

中职数学平面向量教案

中职数学平面向量教案第一章:向量的概念1.1 向量的定义介绍向量的概念,向量的表示方法(字母表示和箭头表示)通过实际例子解释向量的方向和大小1.2 向量的几何表示介绍向量的几何表示方法,箭头表示向量的方向和长度绘制向量图,让学生理解向量的直观表示1.3 向量的坐标表示介绍向量的坐标表示方法,二维和三维空间中的向量坐标表示解释坐标轴上的向量表示,以及坐标系中的向量表示第二章:向量的运算2.1 向量的加法介绍向量的加法运算,同一直线上的向量加法,不同直线上的向量加法利用图形和坐标表示向量的加法运算2.2 向量的减法介绍向量的减法运算,通过加上相反向量实现向量的减法利用图形和坐标表示向量的减法运算2.3 向量的数乘介绍向量的数乘运算,即向量与实数的乘积解释数乘运算的性质和运算规律,利用图形和坐标表示向量的数乘运算第三章:向量的数量积3.1 向量的数量积定义介绍向量的数量积概念,即向量的点积解释数量积的性质和运算规律3.2 数量积的计算公式介绍数量积的计算公式,即两个向量的数量积等于它们的模长的乘积与夹角的余弦值的乘积利用图形和坐标表示数量积的计算3.3 数量积的应用介绍数量积的应用,如判断两个向量的垂直关系,计算向量的模长和夹角利用实际例子展示数量积的应用第四章:向量的叉积4.1 向量的叉积定义介绍向量的叉积概念,即向量的叉积结果为一个向量,其方向垂直于原来的两个向量解释叉积的性质和运算规律4.2 叉积的计算公式介绍叉积的计算公式,即两个向量的叉积结果的模长等于它们的模长的乘积与夹角的正弦值的乘积,方向垂直于原来的两个向量利用图形和坐标表示叉积的计算4.3 叉积的应用介绍叉积的应用,如计算平行四边形的面积,求解两个向量的夹角利用实际例子展示叉积的应用第五章:向量的线性相关性5.1 向量的线性相关性定义介绍向量的线性相关性概念,即一组向量中存在至少一个向量可以由其他向量通过线性组合表示解释线性相关性的性质和判定条件5.2 向量的线性组合介绍向量的线性组合,即一组向量的加权和利用图形和坐标表示向量的线性组合5.3 向量的线性无关性介绍向量的线性无关性,即一组向量中没有任何一个向量可以由其他向量通过线性组合表示利用判定条件判断一组向量是否线性无关第六章:向量的应用6.1 物理中的应用介绍向量在物理学中的应用,如速度、加速度、力等物理量的向量表示通过实际例子解释向量在物理学中的作用6.2 几何中的应用介绍向量在几何中的应用,如计算线段的长度、夹角的大小、平行四边形的面积等通过实际例子解释向量在几何中的作用第七章:向量的分解7.1 向量的分解概念介绍向量的分解概念,即将一个向量分解为两个或多个向量的和解释向量分解的意义和作用7.2 向量的正交分解介绍向量的正交分解,即将一个向量分解为两个垂直向量的和利用正交基底进行向量分解,解释正交分解的性质和运算规律7.3 向量的坐标分解介绍向量的坐标分解,即将一个向量分解为坐标轴上的分量之和利用坐标表示向量的分解,解释坐标分解的性质和运算规律第八章:向量的方程8.1 向量的方程概念介绍向量的方程概念,即用向量的运算表达式描述向量之间的关系解释向量方程的意义和作用8.2 向量的线性方程组介绍向量的线性方程组,即由多个线性方程组成的方程组解向量的线性方程组,解释解的性质和判定条件8.3 向量的非线性方程介绍向量的非线性方程,即方程中包含向量的非线性运算通过实际例子解释向量非线性方程的解法和应用第九章:向量的空间9.1 向量的空间概念介绍向量的空间概念,即由向量组成的几何空间解释向量空间的意义和性质9.2 向量空间的基本性质介绍向量空间的基本性质,如向量加法、数乘运算的封闭性,线性组合的性质等解释向量空间的公理体系和判定条件9.3 向量空间的子空间介绍向量空间的子空间,即由原向量空间中的一部分向量组成的子集解释子空间的性质和运算规律,以及子空间之间的关系第十章:向量的进一步应用10.1 向量在工程中的应用介绍向量在工程技术中的应用,如力学、电路、控制等领域的向量表示和方法通过实际例子解释向量在工程中的应用和作用10.2 向量在计算机科学中的应用介绍向量在计算机科学中的应用,如图形学、计算机图形处理、机器学习等领域的向量表示和方法通过实际例子解释向量在计算机科学中的应用和作用10.3 向量在其他领域的应用介绍向量在其他领域中的应用,如经济学、生物学、环境科学等领域的向量表示和方法通过实际例子解释向量在其他领域的应用和作用重点和难点解析1. 向量的概念与几何表示:重点关注向量的定义和几何表示方法,理解向量的方向和大小。

向量的几何表示(教学设计)

向量的几何表示(教学设计)

向量的几何表示教学设计教学目标1.能理解向量的概念,并能用两种方法表示向量;明确向量的长度(模)、零向量、单位向量的概念;掌握平行向量、共线向量和相等向量的概念,能根据图形判定向量是否平行(共线)、相等.2.培养学生数形结合的能力,学会用类比和分类讨论的方法解决问题的能力.3.培养学生学以致用的科学探索精神.教学重点1.向量概念的引入,会表示向量.2.理解并掌握向量、零向量、单位向量、相等向量、共线向量的概念.教学难点1. “数”与“形”的结合思想2. 平行(共线)向量和相等向量区别和联系.教学课时:1【教学设计】本节内容主要内容是一些向量的概念,目的是使学生在区分相似概念的过程中更深刻的把握所学的知识,本节课以观看《奔跑吧》“拔河比赛”和一些实际问题引入概念.这样的导入即能吸引学生的注意力,又能帮助学生理解向量是既有大小又有方向的量。

向量不同于数量,数量是只有大小的量,而向量既有大小、又有方向.接着通过比较实数的表示方法引入向量的表示方法,教材中用有向线段来直观的表示向量,有向线段的长度叫做向量的模,有向线段的方向表示向量的方向.数量可以比较大小,而向量不能比较大小,记号“a>b”没有意义,而“︱a︱>︱b︱”才是有意义的.用例1来巩固向量的相关概念。

接下来讲解两个特殊向量的概念以及表示方法,引入平行向量和相等向量的相关概念,最后用例题加以巩固,讲解概念的过程中还穿插了练习,以讲带练的木大让学生能熟练掌握所学概念教学过程a说明:因为向量既有大小又有方向,所以两个向量不能比较大小;因为向量的模是个非负实数,所以两个课讲授新课向量的模可以比较大小。

故a ba b>>是有意义的是没有意义的,而。

例1.如图,试根据图中的比例尺以及三地的位置,在图中分别用向量表示A地至B,C两地的位移,并求出A地至B,C两地的实际距离(精确到1km).(二)、两个特殊向量(大小)零向量:长度为0的向量叫零向量,记作0. 零向量的方向是任意的。

空间向量与立体几何教案

空间向量与立体几何教案

空间向量与立体几何教案一、教学目标1. 让学生掌握空间向量的基本概念,理解空间向量的几何表示和运算规则。

2. 培养学生运用空间向量解决立体几何问题的能力,提高空间想象和思维能力。

3. 通过对空间向量与立体几何的学习,激发学生对数学的兴趣,培养学生的创新意识和实践能力。

二、教学内容1. 空间向量的基本概念及几何表示2. 空间向量的线性运算(加法、减法、数乘、共线向量、平行向量)3. 空间向量的数量积(定义、性质、运算规则、几何意义)4. 空间向量的垂直与平行(垂直的判断、平行的判断、垂直与平行的应用)5. 空间向量在立体几何中的应用(线线、线面、面面间的位置关系)三、教学方法1. 采用讲授法,系统地讲解空间向量与立体几何的基本概念、性质和运算规则。

2. 运用案例分析法,引导学生通过具体例子学会运用空间向量解决立体几何问题。

3. 利用多媒体技术,展示空间向量的几何形象,增强学生的空间想象力。

4. 开展小组讨论与合作交流,培养学生的团队协作能力和表达能力。

四、教学环境1. 教室环境:宽敞、明亮,教学设备齐全,包括黑板、投影仪、计算机等。

2. 学习资源:教材、辅导资料、网络资源等。

3. 实践场地:学校机房、实验室等。

五、教学评价1. 课堂表现:观察学生在课堂上的参与程度、提问回答等情况,了解学生的学习状态。

2. 作业完成情况:检查学生作业的完成质量,评估学生对知识点的掌握程度。

3. 考试成绩:定期进行测验,检验学生对空间向量与立体几何知识的掌握情况。

4. 实践能力:评估学生在实践活动中运用空间向量解决立体几何问题的能力。

5. 学生自评与互评:鼓励学生自我总结,互相交流学习经验,提高学习效果。

六、教学重点与难点教学重点:1. 空间向量的基本概念及几何表示。

2. 空间向量的线性运算规则。

3. 空间向量的数量积的定义和性质。

4. 空间向量的垂直与平行判断。

5. 空间向量在立体几何中的应用。

教学难点:1. 空间向量的数量积的运算规则。

向量的概念及表示优秀教案

向量的概念及表示优秀教案

向量的概念及表示执教:张亮点评:孔凡海【教学目标】一、通过对实例的引入,了解向量概念产生的实际背景;二、理解平面向量和向量相等的概念;三、掌握向量的几何表示;四、了解向量的长度、零向量、单位向量、平行向量等概念。

【重点难点】重点:向量的概念和向量的几何表示;难点:向量概念的理解【点评】知识技能,数学思考,问题解决,情感态度。

目标明确有效,重点突出。

为组织、引导学生开展有效学习活动奠定了方向。

向量是近代数学中重要和基本的数学概念之一,是沟通代数、几何的工具。

向量由大小和方向两个因素确定,大小反映了向量数的特征,方向反映了向量形的特征,向量是集数形于一身的数学概念,是数学中数形结合思想的典型体现。

向量之所以有用,关键是它具有一套良好的运算性质。

由于向量的几何性质,以及向量、点、序偶之间的对应关系,于是,可以把图形的基本结构转化为向量运算,把图形的基本性质转化为向量的运算律,这就是几何问题代数化处理。

这样,几何中添线、补图等技巧让位于代数中的通法,也就是作为思辩数学的几何问题让位于作为算法数学的代数问题。

【教学过程】一、设置情境情景在如图所示的情景中,猫能否追上老鼠?合作探究看下面哪些量是与众不同的:(1)线段的长度(2)物体的质量(3)物体的体积(4)物体所受重力(前三个都是数量,即只有大小,而物体所受重力是矢量,既有大小又有方向)【点评】根据学生的生活经验,通过问题、设疑来创设思维的情境,引起认识的需要;通过揭露矛盾来引发思考,激发学习的兴趣。

通过学生活动,感知数学,进行意义建构。

物理中的力、速度、加速度以及几何中的有向线段等概念是向量概念的原型。

由物理上的位移、速度等引入向量概念,贴近学生已有的经验,比较自然,也体现了“最近发展区”原理的运用。

二、探索研究问题一情景中向我们呈现了一个新的量,那么我们怎样用数学的形式对这一量进行描述呢?1.向量的定义既有大小又有方向的量叫向量。

师:你还能举出一些向量的例子吗?师:在这一概念中你认为关键词有哪些?板书向量的二要素大小和方向师:我们怎样用符号来表示向量呢?重力加速度是一个向量,那么在物理中我们是用什么表示它的呢?2.向量的表示方法①几何表示法——向量常用有向线段表示师:那么有向线段是怎样表示向量的大小和方向呢?有向线段的长度表示向量的大小,箭头所指的方向表示向量的方向。

7.1 向量的概念和向量的几何表示

7.1 向量的概念和向量的几何表示

概念分析
以点A 为起点,点 B为终点的有向线段可以 表示向量,如图7-2所示,记做向量AB .
向量的大小叫做向量的模.向量a ,向量 AB的模分别记为
a,AB . 大小为0的向量叫做零向量,记做0,零向量的方向是任意的. 大小为1的向量叫做单位向量. 大小相等且方向相同的向量叫做相等向量. 大小相等且方向相反的向量叫做相反向量.如图7-3.
第七章 平面向量
7.1 向量的概念和向 量的几何表示
观察归纳 形成概念
(1)踢足球时,用力越大,球就飞的越远,并且球总 是沿着其所受的力的方向飞去.
(2)如图7-1,用力朝水平方向推箱子,当力足够大时, 箱子向右运动.
探究: 力是一个既有大小又有方向的量.大家还能例举几个这
样的量吗?
归纳总结 概括定义

教材
P74 习题 7.1第1、2、3题

再见
定义:既有大小又有方向的量叫做向量.
在自然界中,有许多既有大小又有方向的量,如力、
位移、速度等.
代数表示
向量的表示:
(1)向量可以用黑体字母a,b,c,…表示,手写为
a,
b,
c

(2)向量可以用有向线段(具有方向的线段)来表示,有 向线段的长度表示向量的大小,有向线段的方向表示向量 的方向.
几何表示
方向相同或相反的非零向量叫做平行向量.平行 向量又叫共线向量如图7-4. 规定:零向量与任何一个向量平行.
案例分析:
案例分析:
案例分析:
随堂练习:
课堂小结:
向量பைடு நூலகம்定义:
向量的表示:
向量模的表示:
特殊向量: (1)零向量: (2)单位向量: (3)相等向量: (4)相反向量: (5)共线向量(平行向量):

大学向量的概念的教案

大学向量的概念的教案

一、教学目标1. 知识目标:使学生理解向量的概念,掌握向量的表示方法。

2. 能力目标:培养学生运用向量知识解决实际问题的能力。

3. 情感目标:激发学生对向量学习的兴趣,培养学生的数学思维。

二、教学重点与难点1. 教学重点:向量的概念、向量的表示方法。

2. 教学难点:向量的几何表示和向量的运算。

三、教学过程一、导入1. 提问:同学们在生活中有哪些现象可以用向量来描述?2. 学生回答,教师总结:向量在物理、工程、计算机等领域都有广泛的应用,如力、速度、加速度等。

二、新课讲解1. 向量的概念(1)向量的定义:向量是既有大小又有方向的量。

(2)向量的表示方法:向量可以用有向线段表示,有向线段的起点表示向量的起点,终点表示向量的终点。

(3)向量的性质:向量具有方向性、大小、相加、数乘等性质。

2. 向量的几何表示(1)有向线段表示:向量的几何表示就是用一条有向线段来表示向量,有向线段的起点表示向量的起点,终点表示向量的终点。

(2)向量坐标表示:在直角坐标系中,向量可以用一对有序实数(坐标)来表示。

3. 向量的运算(1)向量加法:两个向量的和等于它们的终点与起点的连线。

(2)向量减法:两个向量的差等于它们的终点与起点的连线,但方向相反。

(3)向量数乘:一个向量乘以一个实数,相当于向量的大小乘以实数的大小,方向不变。

三、课堂练习1. 根据向量的定义和表示方法,写出下列向量的表示:(1)一个向东的向量,大小为5;(2)一个向北的向量,大小为3;2. 计算下列向量的和与差:(1)向量a = (2, 3),向量b = (1, -1);(2)向量a = (4, -2),向量b = (-3, 5)。

四、总结1. 向量是既有大小又有方向的量,可以用有向线段或坐标表示。

2. 向量具有方向性、大小、相加、数乘等性质。

3. 向量的运算包括加法、减法和数乘。

五、课后作业1. 完成课后练习题,巩固所学知识。

2. 思考向量在实际生活中的应用,如力、速度、加速度等。

空间向量与立体几何(整章教案

空间向量与立体几何(整章教案

空间向量与立体几何第一章:空间向量基础1.1 向量的定义与表示了解向量的概念,掌握向量的几何表示和代数表示。

学习向量的长度和方向,掌握向量的模和单位向量。

1.2 向量的运算学习向量的加法、减法和数乘运算。

掌握向量加法和减法的几何意义,理解数乘向量的意义。

1.3 向量的坐标表示学习空间直角坐标系,了解向量的坐标表示方法。

掌握向量坐标的加法和数乘运算,理解向量坐标的几何意义。

第二章:立体几何基础2.1 平面立体几何学习平面的基本性质,掌握平面方程和点到平面的距离公式。

学习直线与平面的位置关系,了解线面平行、线面相交和线面垂直的判定条件。

2.2 空间立体几何学习空间几何体的基本性质,包括点、线、面的位置关系。

掌握空间几何体的体积和表面积计算公式,了解空间几何体的对称性。

第三章:空间向量在立体几何中的应用3.1 空间向量与直线的位置关系学习利用空间向量判断直线与直线、直线与平面的位置关系。

掌握向量夹角的概念,学习利用向量夹角判断直线与直线的夹角。

3.2 空间向量与平面的位置关系学习利用空间向量判断平面与平面的位置关系。

掌握平面法向量的概念,学习利用平面法向量求解平面方程。

3.3 空间向量与空间几何体的位置关系学习利用空间向量判断空间几何体与空间几何体的位置关系。

掌握空间几何体的体积和表面积计算方法,学习利用空间向量求解空间几何体的体积和表面积。

第四章:空间向量的线性运算与立体几何4.1 空间向量的线性组合学习空间向量的线性组合,掌握线性组合的运算规律。

理解线性组合在立体几何中的应用,包括线性组合与空间几何体的关系。

4.2 空间向量的线性相关与线性无关学习空间向量的线性相关和线性无关的概念。

掌握判断空间向量线性相关和线性无关的方法,理解线性相关和线性无关在立体几何中的应用。

4.3 空间向量的基底与坐标表示学习空间向量的基底概念,掌握基底的选取方法。

学习空间向量的坐标表示方法,理解坐标表示在立体几何中的应用。

空间向量与立体几何教案

空间向量与立体几何教案

空间向量与立体几何教案教案:空间向量与立体几何一、教学目标:1.知识与能力目标:掌握空间向量的基本概念和运算法则,并能够运用空间向量解决立体几何问题。

2.过程与方法目标:培养学生的观察能力和逻辑思维能力,通过实例分析和综合运用,激发学生对数学的兴趣和学习积极性。

3.情感态度目标:培养学生的合作学习精神,增强学生对数学的自信心和探究精神。

二、教学重点难点:1.教学重点:空间向量的概念、性质及运算法则。

2.教学难点:如何灵活应用空间向量解决立体几何问题。

三、教学方法:1.教师讲授与学生合作探究相结合的方法。

2.案例分析和综合运用的方法。

四、教学过程:第一节空间向量的概念和性质(40分钟)1.通过引入空间向量的概念,让学生了解空间向量的定义,并掌握向量的表示方法。

2.解释向量的性质,如向量的加法、数乘、共线和共面性质。

3.设计一些简单的例题进行讲解,引导学生掌握和理解空间向量的性质。

第二节空间向量的运算法则(40分钟)1.通过实例引导,让学生掌握向量的加法、减法、数量积和向量积的运算法则。

2.类比二维向量,在立体几何实例中引入空间向量运算,帮助学生理解和应用空间向量运算。

第三节空间向量在立体几何中的应用(40分钟)1.通过立体几何实例,引导学生运用空间向量解决立体几何问题。

2.给学生创设情境,让学生在小组合作的形式下,互相讨论和解决立体几何问题。

3.设计不同难度的立体几何问题,让学生进行综合运用,提高解决问题的能力。

第四节拓展课程与归纳总结(40分钟)1.设计拓展课程,引导学生发现和探究空间向量在其他学科中的应用,如物理、工程等领域。

2.巩固和总结空间向量的知识点,通过小测验和思维导图等方式,让学生检验和反思自己的学习效果。

五、教学资源准备:1.多媒体教学设备和教学课件。

2.各类立体几何教具和实物模型。

3.教科书及参考资料。

六、教学评价与反思:1.课堂提问与讨论,根据学生的回答和互动评价学生的理解和能力。

人教A版高中数学必修4《二章 平面向量 2.1 平面向量的实际背景及基本概念 2.1.2 向量的几何表示》教案_14

人教A版高中数学必修4《二章 平面向量  2.1 平面向量的实际背景及基本概念  2.1.2 向量的几何表示》教案_14

向量的几何表示教学设计1.教学内容解析本节课是《普通高中课程标准实验教科书数学4》(人教A 版)第二章第一节“平面向量的实际背景及基本概念”第一课时。

平面向量的实际背景及基本概念是向量知识体系中的起始内容,起着为其他知识学习奠基的重要作用。

一方面,它能为其他向量知识的学习奠基,通过了解向量的实际背景,理解向量的含义及几何表示等内容,奠定学生学习向量的线性运算、平面向量的基本定理及坐标表示和平面向量数量积的知识基础;另一方面,它能为学习新的数学对象奠基,学生通过认识向量,形成向量相关概念的过程,可以获得认识其他数学对象的基本方法和途径,可以为学习和研究其他数学对象奠定方法基础。

所以,平面向量的实际背景及基本概念作为向量的起始课及概念型课,其教学必须要有“交代问题背景、引入基本概念、渗透研究方法、构建研究蓝图”的大气。

由于是第一课时,所以笔者重点在于章引言,向量概念的引入,向量的表示,零向量、单位向量和平行向量的教学,不讲相等向量和共线向量。

2.教学目标设置课堂教学目标如下.(1)从如何由A点确定B点的位置,速度既有大小和方向抽象出向量的概念并与数量区分;(2)经历从实数的表示到“带箭头的线段”,从有向线段到向量的几何表示,掌握向量的几何表示、符号表示,模的表示,感受类比的思想,体会数学的实用性、表达的简洁美;(3)理解从大小看:零向量、单位向量,从方向看:平行向量;(4)体会认识新的数学概念基本思路:1.归纳共性;2.抽象定义;3.符号表示;4.认识特殊;5.研究一般;进而提高提出问题、研究问题的能力;3.学生学情分析(1)在物理学中,已经知道速度,力,位移等是既有大小又有方向的物理量(矢量);(2)如何作力的图示;(3)已经经历并了解实数的形成过程;(4)对实际生活中的一些常见的量,能识别它们是否具有大小、方向;(5)在以前的学习中,能运用类比的思想发现问题、提出问题,进而解决问题。

但是,高一学生在思维辨析方面还比较薄弱,教师要适度加以引导,指导学生进行辨析。

向量的几何表示

向量的几何表示
0
1
2
3
-1
有向线段的三个要素:起点、方向、长度。
A(起点)
有向线段:在线段AB的两个端点中,规定一个顺序,假设A为起点,B为终点,我们就说线段AB具有方向.具有方向的线段叫做有向线段。
B(终点)
1、向量的几何表示:用有向线段表示。
思考: “向量就是有向线段,有向线段就是向量.”的说法对吗?
向量AB的大小,也就是向量AB的长度(或称模),记作|AB|。 长度为0的向量叫做零向量,记作0。 长度等于1个单位的向量,叫做单位向量。
不一定
不一定
零向量
与任意向量都平行的向量是什么向量? 若两个向量在同一直线上,则这两个向量
一定是什么向量? 两个非零向量相等的时候当且仅当什么?
ቤተ መጻሕፍቲ ባይዱ
平行向量
零向量
长度相等且方向相同
1.温度含零上和零下温度,所以温度是向量( )
2.向量的模是一个正实数( )
注:向量不能比较大小
长度相等且方向相同的两个向量表示相等向量, 但是两个向量之间只有相等关系,没有大小之分,“对于向量 , , > ,或 < ”这种说法是错误的。
既有大小,又有方向的量叫做向量。
向量的概念:
知识回顾
数量与向量的区别:
数量只有大小,是一个代数量,可以进行代数运算、比较大小; 向量有方向,大小,因为方向性所以不能比较大小。
2.1.2 向量的几何表示
A
B

B(终点)
A(起点)
教学目标
知识与能力: 理解向量、零向量、向量的模、单位向量的概念; 理解向量的几何表示,会用字母表示向量; 了解平行向量、相等向量的概念及表示法。 过程与方法: 学会将实际问题转化为数学问题,并能够运用向量知识解决。

ei的教学设计

ei的教学设计

ei的教学设计一、教学内容本节课的教学内容来自于人教版《普通高中数学教科书》必修第二册,第四章第一节《平面向量的概念》。

本节课主要内容包括向量的定义、向量的几何表示、向量的运算规则等。

二、教学目标1. 理解向量的定义,掌握向量的几何表示方法。

2. 掌握向量的加法、减法、数乘运算规则。

3. 能够运用向量解决实际问题,提高学生的数学应用能力。

三、教学难点与重点1. 教学难点:向量的几何表示,向量的运算规则。

2. 教学重点:向量的定义,向量的加法、减法、数乘运算规则。

四、教具与学具准备1. 教具:黑板、粉笔、投影仪、电脑。

2. 学具:教科书、笔记本、直尺、三角板。

五、教学过程1. 实践情景引入:讲解一个物体在平面直角坐标系中的运动轨迹,引导学生思考如何用数学工具描述这个物体的运动。

2. 向量定义:在实际情景的基础上,引入向量的定义,讲解向量的概念和几何表示方法。

3. 向量运算:讲解向量的加法、减法、数乘运算规则,结合实例进行演示和解释。

4. 例题讲解:选取具有代表性的例题,讲解解题思路和步骤,引导学生跟随解题过程。

5. 随堂练习:布置随堂练习题,让学生即时巩固所学知识,教师及时解答学生的问题。

6. 作业布置:布置课后作业,巩固向量的概念和运算规则。

六、板书设计板书设计如下:向量的定义:……向量的几何表示:……向量的加法运算:……向量的减法运算:……向量的数乘运算:……七、作业设计1. 请用向量表示下列实际问题:(1)一个物体从点A(2,3)出发,沿着直线AB移动5个单位长度,求物体的新位置。

(2)一个物体从点O(0,0)出发,沿着直线OC移动3个单位长度,再沿着直线OD移动4个单位长度,求物体的新位置。

答案:(1)物体的新位置向量为:$\vec{v} = \begin{pmatrix} 2 \\3 \end{pmatrix} + \begin{pmatrix} 5 \\ 0 \end{pmatrix} =\begin{pmatrix} 7 \\ 3 \end{pmatrix}$(2)物体的新位置向量为:$\vec{v} = \begin{pmatrix} 0 \\0 \end{pmatrix} + \begin{pmatrix} 3 \\ 0 \end{pmatrix} +\begin{pmatrix} 0 \\ 4 \end{pmatrix} = \begin{pmatrix} 3 \\ 4 \end{pmatrix}$八、课后反思及拓展延伸1. 课后反思:本节课通过实际情景引入向量的概念,让学生能够更好地理解和接受新知识。

向量的几何表示

向量的几何表示

①用有向线段表示;
uuur AB
A(起
点)
B(起点 )
②用用黑体字,母手a写、用b、ar
c…等表示.(印刷 )
③用表示向量的有向u线uur段u u的ur 起点与终点 字母表示,例如 A B ,C D .
问题3:向量与有向线段的区别?
(1)向量只有大小和方向两个要素,与起点无 关,只要大小和方向相同,这两个向量就是相同 的向量;
思如考果:uAuBu用r 有C uu向D ur线,段那表么示A、非B零、向C、量D四uA点uBur和 的C u位uD ur置 关系有哪几种可能情形?
A
BC
D
C A
D B
问题6 平行向量
①方向相同或相反的非零向量叫平行向量
如图:用有向线段表示的两个平行向量a、b.
a
b
向量a、b平行,记作 a ∥b
向量用带有箭头的线段来表示向量用带有箭头的线段来表示线段按一定线段按一定的比例的比例标度标度画出它的长短表示向量的画出它的长短表示向量的大小箭头的指向表示向量的方向大小箭头的指向表示向量的方向
2.1平面向量的基本概念
阅读教材P74-P76,并思考以下问题:
(1)向量定义是什么?数量与向量的区别与联系 ?
且 量 向方量Cuuuu向DuuurAru相uB的r 反相的u,u 反u负r那向向么量量把(或)向,把量记向作A量BuA uCuB u叫ruDur 做 叫向C u做uD ur
(或CDAB) .
※注意:uuur uuur ABBA.
向量的定义
字母表示
向量
向量的表示
几何表示
向量的模与零向量、单位向量
(1)向量a与b相等,记作a=b; a
b
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《向量的物理背景与概念及向量的几何表示》教案
一、 教学目标:
1. 了解向量的实际背景,理解平面向量的概念和向量的几何表示;掌握向量的模、零向量、单位向量、平行向量、相等向量、共线向量等概念;并会区分平行向量、相等向量和共线向量.
2. 通过对向量的学习,使学生初步认识现实生活中的向量和数量的本质区别.
3. 通过学生对向量与数量的识别能力的训练,培养学生认识客观事物的数学本质的能力.
二、 教学重点:理解并掌握向量、零向量、单位向量、相等向量、共线向量的概念,会表示向量.
三、 教学难点:平行向量、相等向量和共线向量的区别和联系.
四、 学法:本节是本章的入门课,概念较多,但难度不大.学生可根据在原有的位移、力等物理概念来学习向量的概念,结合图形实物区分平行向量、相等向量、共线向量等概念.
五、 教学思路:
一、情景设置:
如图,老鼠由A 向西北逃窜,猫在B 处向东追去,设问:猫能否追到老鼠?(画图) 结论:猫的速度再快也没用,因为方向错了.
分析:老鼠逃窜的路线AC 、猫追逐的路线BD 实际上
都是有方向、有长短的量.
引言:请同学指出哪些量既有大小又有方向?哪些量只有大小没有方向?
二、新课学习:
(一)向量的概念:我们把既有大小又有方向的量叫向量。

(二)请同学阅读课本后回答:(7个问题一次出现)
1、数量与向量有何区别?(数量没有方向而向量有方向)
2、如何表示向量?
3、有向线段和线段有何区别和联系?分别可以表示向量的什么?
4、长度为零的向量叫什么向量?长度为1的向量叫什么向量?
5、满足什么条件的两个向量是相等向量?单位向量是相等向量吗? A B C D
6、有一组向量,它们的方向相同或相反,这组向量有什么关系?
7、如果把一组平行向量的起点全部移到一点O ,这是它们是不是平行向量?
这时各向量的终点之间有什么关系?
(三)探究学习
1、数量与向量的区别:
数量只有大小,是一个代数量,可以进行代数运算、比较大小; 向量有方向,大小,双重性,不能比较大小.
2.向量的表示方法:
①用有向线段表示; ②用字母a、b等表示; ③用有向线段的起点与终点字母:AB ;④向量AB 的大小―长度称为向量的模,记作|AB |.
3.有向线段:具有方向的线段就叫做有向线段,三个要素:起点、方向、长度.
六、 向量与有向线段的区别:
(1)向量只有大小和方向两个要素,与起点无关,只要大小和方向相同,这两个向量就是相同
的向量;
(2)有向线段有起点、大小和方向三个要素,起点不同,尽管大小和方向相同,也是不同的有
向线段.
4、零向量、单位向量概念:
①长度为0的向量叫零向量,记作0. 0的方向是任意的. 注意0与0的含义与书写区别. ②长度为1个单位长度的向量,叫单位向量.
说明:零向量、单位向量的定义都只是限制了大小.
5、平行向量定义:
①方向相同或相反的非零向量叫平行向量;②我们规定0与任一向量平行.
说明:(1)综合①、②才是平行向量的完整定义;(2)向量a、b、c平行,记作a∥b∥c.
(四)理解和巩固:
例1判断:
(1)平行向量是否一定方向相同?(不一定)
(2)与任意向量都平行的向量是什么向量?(零向量)
(3)若两个向量在同一直线上,则这两个向量一定是什么向量?(平行向量)
A(起点) B
(终点)
A
七、小结:
1、描述向量的两个指标:模和方向.
2、平面向量的概念和向量的几何表示;
3、向量的模、零向量、单位向量、平行向量等概念。

相关文档
最新文档