概率论习题试题集1
概率论与数理统计习题集-(1)
概率论与数理统计习题集学号_______________姓名_______________班级_______________计算机学院第一章 概率论的基本概念一、填空题1,在一副扑克牌(52张)中任取4张,则4张牌花色全不相同的概率为_________。
2,设A,B,C,D 是四个事件,则四个事件至少发生一个可表示为_______________;四个事件恰好发生两个可表示为_______________。
3,已知5把钥匙中有一把能打开房门,因开门者忘记是哪把能打开门,逐次任取一把试开,则前三次能打开门的概率为 _________。
4,10件产品中有3件次品,从中随机抽取2件,至少抽到一件次品的概率是_________。
5,设两个随机事件A ,B 互不相容,且4.0)(=A P ,3.0)(=B P ,则=)(B A P _____。
二、选择题1,某公司电话号码有五位,若第一位数字必须是5,其余各位可以是0到9中的任意一个,则由完全不同数字组成的电话号码的个数是( )。
A ,126B ,1260C ,3024D ,50402,若B A ⊃,C A ⊃,9.0)(=A P ,8.0)(=⋃C B P ,则=-)(BC A P ( )。
A ,0.4B ,0.6C ,0.8D ,0.73,在书架上任意放置10本不同的书,其中指定的三本书放在一起的概率为( )。
A ,1/15B ,3/15C ,4/5D ,3/54,若5.0)(=A P ,4.0)(=B P ,3.0)(=-B A P ,则=⋃)(B A P ( )。
A ,0.6B ,0.7C ,0.8D ,0.55,设为A ,B 任意两个随机事件,且B A ⊂,0)(>B P ,则下列选项必然成立的是( )。
A ,)|()(B A P A P < B ,)|()(B A P A P ≤C ,)|()(B A P A P >D ,)|()(B A P A P ≥三、计算题1,10个零件中有3个次品,每次从中任取一个零件,取出的零件不再放回去,求第三次才取得合格品的概率。
概率论与数理统计:概率论练习题1及答案
5 / 8概率论练习题1(本大题共 6 小题,每小题 3 分,共 18 分)1、若当事件A ,B 同时发生时,事件C 必发生,则下列选项正确的是( ) A .()()P C P AB =; B .()()P C P AB ≤; C .()()P C P AB ≥; D .以上答案都不对.2、设随机变量()~X E λ,则下列选项正确的是( )A .X 的密度函数为(),00,0x e x f x x λ-⎧>=⎨≤⎩;B .X 的密度函数为(),00,0x e x f x x λλ-⎧>=⎨≤⎩;C .X 的分布函数为(),00,0x e x F x x λλ-⎧>=⎨≤⎩;D .X 的分布函数为()1,00,0x e x F x x λλ-⎧->=⎨≤⎩.3、设相互独立的连续型随机变量1X ,2X 的概率密度函数分别()1f x ,()2f x ,分布函数分别为()1F x ,()2F x ,则下列选项正确的是( ) A .()()12f x f x +必为某一随机变量的概率密度函数; B .()()12f x f x ⋅必为某一随机变量的概率密度函数; C .()()12F x F x +必为某一随机变量的分布函数; D .()()12F x F x ⋅必为某一随机变量的分布函数.4、设()~,X B n p ,()2~,Y N μσ,则下列选项一定正确的是( ) A .()E X Y np μ+=+; B .()E XY np μ=⋅; C .()()21D X Y np p σ+=-+; D .()()21D XY np p σ=-⋅.5、设随机变量X 与Y 相互独立,且都服从()1,0.2B ,则下列选项正确的是( )6 / 8A .()1P X Y ==;B .()1P X Y ≤=;C .()1P X Y ≥=;D .以上答案都不对. 6、设12,,,,n X X X 为独立的随机变量序列,且都服从参数为()0λλ>的指数分布,当n 充分大时,下列选项正确的是( )A .21nii Xn nλλ=-∑近似服从()0,1N ; Bni X nλ-∑近似服从()0,1N ;C .21ni i X λλ=-∑近似服从()0,1N ; D .1ni i X nnλ=-∑近似服从()0,1N .二、填空题(本大题共 6 小题,每小题 3 分,共 18 分)1、设事件A ,B ,C 相互独立,且()()()P A P B P C ==,()1927P A B C =,则()P A =.2、若()14P A =,()13P B A =,()12P A B =,则()P A B =.3、设()2~10,X N σ,且()10200.3P X <<=,则()010P X <<=.4、设随机变量X 与Y 相互独立,且()~100,0.3X B ,()~4Y P ,则()D X Y -=.5、设平面区域(){},01D x y x y =≤≤≤,二维随机变量(),X Y 在区域D 上服从均匀分布,则(),X Y 的联合分布密度函数为.6、若随机变量X 的分布律为()()2,0,1,2,k P X k ae k -+===,则常数a =.三、解答题(本大题共 6 小题,共 64 分)5 / 81、设盒一装有1支红色笔和2支黑色笔,盒二装有2支红色笔和1支黑色笔,盒三装有3支红色笔和3支黑色笔.现掷一枚匀质骰子,若掷出1点,则从盒一中任取一支笔,若掷出6点,则从盒三中任取一支笔,否则均从盒二中任取一支笔.求取出黑色笔的概率.(10分)2、一盒装有6只灯管,其中有2只次品,4只合格品,随机地抽取一只测试,测试后不放回,直到2只次品都被找出,求所需测试次数X 的概率分布及均值.(10分)3、设连续型随机变量X 的分布密度函数为(),13;0,ax b x f x +<<⎧=⎨⎩其他.,且{}{}23212P X P X <<=-<<,求常数a 和b 的值.(10分)6 / 84、设某工程队完成某项工程所需时间X (天)服从()100,25N .工程队若在100天内完工,可获奖金10万元;若在100~115天内完工,可获奖金3万元;若超过115天完工,则罚款5万元.求该工程队在完成工程时所获奖金的均值(要求用标准正态分布的分布函数值表示).(10分)5、设二维随机变量(),X Y 的概率密度函数为()8,01;,0,xy x y f x y <<<⎧=⎨⎩其他,求关于X 和Y 的边缘分布密度函数()X f x 和()Y f y ,并判别X 与Y 是否相互独立.(10分)5 / 86、设()~,X U a b ,且()0E X =,()13D X =.试确定X 的概率密度函数(6分)7、设随机变量X 服从标准正态分布,求2Y X =的概率密度函数()Y f y .(8分)6 / 8概率论练习题1参考答案一、单项选择题(本大题 6 小题,每小题 3 分,共 18 分) 1、C ; 2、B ; 3、D ; 4、A ; 5、D ; 6、B . 二、填空题(本大题 6 小题,每小题 3 分,共 18 分)1、13; 2、13; 3、0.3; 4、25; 5、()()2,,;,0,x y D f x y ∈⎧⎪=⎨⎪⎩其他.; 6、23e e ---.三、解答题(本大题 6 小题,共 64 分)1、解 设A 表示“取出黑色笔”,iB 表示“从盒i 中取笔”,1,2,3i =.……..2分则()()1316P B P B ==,()246P B =,()123P A B =,()213P A B =,()312P A B =,…………7分故由全概率公式,有()()()31124111563636212iii P A P B P A B ===⋅+⋅+⋅=∑.……………….10分2、解 由题意可知,X 的所有可能取值为2,3,4,5,6,…………….…….2 且{}1215P X ==,{}2315P X ==,{}145P X ==, {}4515P X ==,{}163P X ==,……..7分 所以 ()121411423456151551533E X =⨯+⨯+⨯+⨯+⨯=.……………………10分 3、解 由密度函数的性质()1f x dx +∞-∞=⎰,可得()31421ax b dx a b +=+=⎰,………..3分又由 {}{}23212P X P X <<=-<<,可得()()32212ax b dx ax b dx +=+⎰⎰,即02ab +=,…..7分联立方程,解得11,36a b ==-.………………………………………….10分4、解 方法1 由题设知工程队完成工程所需天数()~100,25X N .设所获奖金为Y 万元,Y 的可能取值为10,3,-5,Y 取各值的概率为()100100{10}{100}(100)00.55P Y P X F -⎛⎫==≤==Φ=Φ= ⎪⎝⎭, ()115100100100{3}{100115}(115)(100)30.555P Y P X F F --⎛⎫⎛⎫==<≤=-=Φ-Φ=Φ- ⎪ ⎪⎝⎭⎝⎭, 115100{5}{115}1(115)11(3)5P Y P X F -⎛⎫=-=>=-=-Φ=-Φ ⎪⎝⎭,…………….8分Y 因此 ()()()()100330.5513E Y =⨯Φ+Φ---Φ⎡⎤⎡⎤⎣⎦⎣⎦()()()100.5330.551383 1.5=⨯+Φ---Φ=Φ-⎡⎤⎡⎤⎣⎦⎣⎦.…………10分方法2 由题设知工程队完成工程所需天数()~100,25X N , 所获奖金10,100;3,100115;5,115.X Y X X ≤⎧⎪=<≤⎨⎪->⎩…………………………………………….2分5 / 8而()100100{10}{100}(100)00.55P Y P X F -⎛⎫==≤==Φ=Φ= ⎪⎝⎭, ()115100100100{3}{100115}(115)(100)30.555P Y P X F F --⎛⎫⎛⎫==<≤=-=Φ-Φ=Φ- ⎪ ⎪⎝⎭⎝⎭, 115100{5}{115}1(115)11(3)5P Y P X F -⎛⎫=-=>=-=-Φ=-Φ ⎪⎝⎭,…….8分因此 ()()()()100330.5513E Y =⨯Φ+Φ---Φ⎡⎤⎡⎤⎣⎦⎣⎦()()()100.5330.551383 1.5=⨯+Φ---Φ=Φ-⎡⎤⎡⎤⎣⎦⎣⎦.…………10分5、解 关于X 的边缘分布密度函数()Xf x :当0x ≤或1x ≥时,(,)0f x y =,所以()(),00Xf x f x y dy dy +∞+∞-∞-∞===⎰⎰,当01x <<时,()()()1212,8441Xxxf x f x y dy xydy xy x x +∞-∞====-⎰⎰,所以,()()241,01;0,X x x x f x ⎧-<<⎪=⎨⎪⎩其他. ………………………….4分关于Y 的边缘分布密度函数()Yf y :当0y ≤或1y ≥时,(,)0f x y =,所以()(),00Yf y f x y dx dx +∞+∞-∞-∞===⎰⎰,当01y <<时,()()230,844yyYf y f x y dx xydx yx y +∞-∞====⎰⎰,所以()34,01;0,Yy y f y ⎧<<⎪=⎨⎪⎩其他..……………………………………………8分于是()()()()32161,01,01;,0,X Y xy x x y f x f y f x y ⎧-<<<<⎪=≠⎨⎪⎩其他,所以X 与Y 不相互独立.……………………………………………10分 6、解 因为()~,X U a b ,所以()2a bE X +=,()()212b a D X -=,于是有()241,2123b a a b -+==,解得 1,3a b =-=,………….…..4分故X 的概率密度函数为()1,13;40,x f x ⎧-<<⎪=⎨⎪⎩其他..………………….6分7、22(0,1),(),.x X N x x ϕ-=-∞<<∞Y 的分布函数为2()()()Y F y P Y y P X y =≤=≤ ……………………2分 当0y ≤时,()()0Y F y P Y y =≤=,从而()0.Y f y = ……………………4分当0y>时,2()(){(YF y P X y P X=≤=≤≤=Φ-Φ…6分从而2()()(((Y Yyf y F yϕϕϕϕ-'''==Φ-Φ==+=7分所以20()0,0-⎧>=≤⎩yYyf yy……………………………………………8分6 / 8。
概率论与数理统计习题(含解答,答案)
概率论与数理统计习题(含解答,答案)概率论与数理统计复习题(1)⼀.填空.1.3.0)(,4.0)(==B P A P 。
若A 与B 独⽴,则=-)(B A P ;若已知B A ,中⾄少有⼀个事件发⽣的概率为6.0,则=-)(B A P 。
2.)()(B A p AB p =且2.0)(=A P ,则=)(B P 。
3.设),(~2σµN X ,且3.0}42{ },2{}2{=<<≥==>}0{X P 。
4.1)()(==X D X E 。
若X 服从泊松分布,则=≠}0{X P ;若X 服从均匀分布,则=≠}0{X P 。
5.设44.1)(,4.2)(),,(~==X D X E p n b X ,则==}{n X P6.,1)(,2)()(,0)()(=====XY E Y D X D Y E X E 则=+-)12(Y X D 。
7.)16,1(~),9,0(~N Y N X ,且X 与Y 独⽴,则=-<-<-}12{Y X P (⽤Φ表⽰),=XY ρ。
8.已知X 的期望为5,⽽均⽅差为2,估计≥<<}82{X P 。
9.设1?θ和2?θ均是未知参数θ的⽆偏估计量,且)?()?(2221θθE E >,则其中的统计量更有效。
10.在实际问题中求某参数的置信区间时,总是希望置信⽔平愈愈好,⽽置信区间的长度愈愈好。
但当增⼤置信⽔平时,则相应的置信区间长度总是。
⼆.假设某地区位于甲、⼄两河流的汇合处,当任⼀河流泛滥时,该地区即遭受⽔灾。
设某时期内甲河流泛滥的概率为0.1;⼄河流泛滥的概率为0.2;当甲河流泛滥时,⼄河流泛滥的概率为0.3,试求:(1)该时期内这个地区遭受⽔灾的概率;(2)当⼄河流泛滥时,甲河流泛滥的概率。
三.⾼射炮向敌机发射三发炮弹(每弹击中与否相互独⽴),每发炮弹击中敌机的概率均为0.3,⼜知若敌机中⼀弹,其坠毁的概率是0.2,若敌机中两弹,其坠毁的概率是0.6,若敌机中三弹则必坠毁。
概率论习题全部
概率论习题全部概率论习题全部1习题⼀习题⼀1. ⽤集合的形式写出下列随机试验的样本空间与随机事件A:(1)掷两枚均匀骰⼦,观察朝上⾯的点数,事件A表⽰“点数之和为7”;(2)记录某电话总机⼀分钟内接到的呼唤次数,事件A表⽰“⼀分钟内呼唤次数不超过3次”;(3)从⼀批灯泡中随机抽取⼀只,测试它的寿命,事件A表⽰“寿命在2 000到2 500⼩时之间”.2. 投掷三枚⼤⼩相同的均匀硬币,观察它们出现的⾯.(1)试写出该试验的样本空间;(2)试写出下列事件所包含的样本点:A={⾄少出现⼀个正⾯},B={出现⼀正、⼆反},C={出现不多于⼀个正⾯};(3)如记A={第i枚硬币出现正⾯}(i=1,2,i3),试⽤123A A A表⽰事件A,B,C.,,3. 袋中有10个球,分别编有号码1~10,从中任取1球,设A={取得球的号码是偶数},B={取得球的号码是奇数},C={取得球的号码⼩习题⼀ 2 于5},问下列运算表⽰什么事件:(1)A B ;(2)AB ;(3)AC ;(4)AC ;(5)C A ;(6)B C ;(7)A C -. 4. 在区间上任取⼀数,记112A x x ??=<≤,1342B x x ??=≤≤,求下列事件的表达式:(1)A B ;(2)AB ;(3)AB ,(4)A B .5. ⽤事件A ,B ,C 的运算关系式表⽰下列事件:(1)A 出现,B ,C 都不出现;(2)A ,B 都出现,C 不出现;(3)所有三个事件都出现;(4)三个事件中⾄少有⼀个出现;(5)三个事件都不出现;(6)不多于⼀个事件出现;(7)不多于⼆个事件出现;(8)三个事件中⾄少有⼆个出现.6. ⼀批产品中有合格品和废品,从中有放回地抽取三个产品,设表⽰事件“第次抽到废品”,试⽤的运算表⽰下列各个事件:(1)第⼀次、第⼆次中⾄少有⼀次抽到废品;(2)只有第⼀次抽到废品;(3)三次都抽到废品;]2,0[i A i iA习题⼀3 (4)⾄少有⼀次抽到合格品;(5)只有两次抽到废品.7. 接连进⾏三次射击,设={第i 次射击命中}(i =1,2,3),试⽤表⽰下述事件:(1)A ={前两次⾄少有⼀次击中⽬标};(2)B ={三次射击恰好命中两次};(3)C ={三次射击⾄少命中两次};(4)D ={三次射击都未命中}.8. 盒中放有a 个⽩球b 个⿊球,从中有放回地抽取r 次(每次抽⼀个,记录其颜⾊,然后放回盒中,再进⾏下⼀次抽取).记={第i 次抽到⽩球}(i =1,2,…,r ),试⽤{}表⽰下述事件:(1)A ={⾸个⽩球出现在第k 次};(2)B ={抽到的r 个球同⾊},其中1k r ≤≤.*9. 试说明什么情况下,下列事件的关系式成⽴:(1)ABC =A ;(2)A B C A =.iA 321,,A A A iA iA习题⼆ 3习题⼆1. 从⼀批由45件正品、5件次品组成的产品中任取3件产品,求其中恰有1件次品的概率.2. ⼀⼝袋中有5个红球及2个⽩球.从这袋中任取⼀球,看过它的颜⾊后放回袋中,然后,再从这袋中任取⼀球.设每次取球时⼝袋中各个球被取到的可能性相同.求:(1)第⼀次、第⼆次都取到红球的概率;(2)第⼀次取到红球、第⼆次取到⽩球的概率;(3)两次取得的球为红、⽩各⼀的概率;(4)第⼆次取到红球的概率.3. ⼀个⼝袋中装有6只球,分别编上号码1~6,随机地从这个⼝袋中取2只球,试求:(1)最⼩号码是3的概率;(2)最⼤号码是3的概率.4. ⼀个盒⼦中装有6只晶体管,其中有2只是不合格品,现在作不放回抽样.接连取2次,每次随机地取1只,试求下列事件的概率:(1)2只都是合格品;(2)1只是合格品,⼀只是不合格品;(3)⾄少有1只是合格品.4习题⼆5. 从某⼀装配线上⽣产的产品中选择10件产品来检查.假定选到有缺陷的和⽆缺陷的产品是等可能发⽣的,求⾄少观测到⼀件有缺陷的产品的概率,结合“实际推断原理”解释得到的上述概率结果.6. 某⼈去银⾏取钱,可是他忘记密码的最后⼀位是哪个数字,他尝试从0~9这10个数字中随机地选⼀个,求他能在3次尝试之中解开密码的概率.7. 掷两颗骰⼦,求下列事件的概率:(1)点数之和为7;(2)点数之和不超过5;(3)点数之和为偶数.8. 把甲、⼄、丙三名学⽣随机地分配到5间空置的宿舍中去,假设每间宿舍最多可住8⼈,试求这三名学⽣住在不同宿舍的概率.9. 总经理的五位秘书中有两位精通英语,今偶遇其中的三位秘书,求下列事件的概率:(1)事件A={其中恰有⼀位精通英语};(2)事件B={其中恰有两位精通英语};(3)事件C={其中有⼈精通英语}.10. 甲袋中有3只⽩球,7只红球,15只⿊球,⼄袋中有10只⽩球,6只红球,9只⿊球,习题⼆ 5 现从两个袋中各取⼀球,求两球颜⾊相同的概率.11. 有⼀轮盘游戏,是在⼀个划分为10等份弧长的圆轮上旋转⼀个球,这些弧上依次标着0~9⼗个数字.球停⽌在那段弧对应的数字就是⼀轮游戏的结果.数字按下⾯的⽅式涂⾊:0看作⾮奇⾮偶涂为绿⾊,奇数涂为红⾊,偶数涂为⿊⾊.事件A ={结果为奇数},事件B ={结果为涂⿊⾊的数}.求以下事件的概率:(1))(A P ;(2))(B P ;(3)()P A B ;(4))(AB P .12. 设⼀质点⼀定落在xOy 平⾯内由x 轴,y 轴及直线x +y =1所围成的三⾓形内,⽽落在这三⾓形内各点处的可能性相等,即落在这三⾓形内任何区域上的可能性与这区域的⾯积成正⽐,计算这质点落在直线x =的左边的概率. 13. 甲、⼄两艘轮船都要在某个泊位停靠6h ,假定它们在⼀昼夜的时间段中随机地到达,试求这两艘船中⾄少有⼀艘在停靠泊位时必须等待的概率.14. 已知B A ?,4.0)(=A P ,6.0)(=B P ,求:(1))(),(B P A P ;(2)()P A B ;(3))(AB P ;(4))(),(B A P A B P ;(5))(B A P .316习题⼆15. 设A,B是两个事件,已知P(A)=0.5,P(B)=0.7,()P A B=0.8,试求:P(A-B)与P (B-A).*16. 盒中装有标号为1~r的r个球,今随机地抽取n个,记录其标号后放回盒中;然后再进⾏第⼆次抽取,但此时抽取m个,同样记录其标号,这样得到球的标号记录的两个样本,求这两个样本中恰有k个标号相同的概率.习题三 5习题三1. 已知随机事件A 的概率5.0)(=A P ,随机事件B 的概率6.0)(=B P 及条件概率8.0)(=A B P ,试求)(AB P 及)(B A P .2. ⼀批零件共100个,次品率为10%,每次从中任取⼀个零件,取出的零件不再放回去,求第三次才取得正品的概率.3. 某⼈有⼀笔资⾦,他投⼊基⾦的概率为0.58,购买股票的概率为0.28,两项投资都做的概率为0.19.(1)已知他已投⼊基⾦,再购买股票的概率是多少?(2)已知他已购买股票,再投⼊基⾦的概率是多少?4. 罐中有m 个⽩球,n 个⿊球,从中随机抽取⼀个,若不是⽩球则放回盒中,再随机抽取下⼀个;若是⽩球,则不放回,直接进⾏第⼆次抽取,求第⼆次取得⿊球的概率.5. ⼀个⾷品处理机制造商分析了很多消费者的投诉,发现他们属于以下列出的6种类型:习题三6如果收到⼀个消费者的投诉,已知投诉发⽣在保质期内,求投诉的原因是产品外观的概率.6. 给定5.0)(=A P ,3.0)(=B P ,15.0)(=AB P ,验证下⾯四个等式:)()(A P B A P =;)()(A P B A P =;)()(B P A B P =;)()(B P A B P =.7. 已知甲袋中装有6只红球,4只⽩球,⼄袋中装有8只红球,6只⽩球.求下列事件的概率:(1)随机地取⼀只袋,再从该袋中随机地取⼀只球,该球是红球;(2)合并两只⼝袋,从中随机地取1只球,该球是红球.8. 设某⼀⼯⼚有A ,B ,C 三间车间,它们⽣产同⼀种螺钉,每个车间的产量,分别占该⼚⽣产螺钉总产量的25%、35%、40%,每个车间成品中次货的螺钉占该车间出产量的百分⽐分别为5%、4%、2%.如果从全⼚总产品中抽取⼀件产品,(1)求抽取的产品是次品的概率;(2)已知得到的是次品,求它依次是车间A ,B ,C ⽣产的概率.9. 某次⼤型体育运动会有1 000名运动员参加,其中有100⼈服⽤了违禁药品.在使⽤者中,假定有90⼈的药物检查呈阳性,⽽在未使⽤者中也有5⼈检验结果显⽰阳性.如果⼀个运习题三 7 动员的药物检查结果是阳性,求这名运动员确实使⽤违禁药品的概率.10. 发报台分别以概率0.6和0.4发出信号“*”和“—”.由于通信系统受到⼲扰,当发出信号“*”时,收报台未必收到信号“*”,⽽是分别以概率0.8和0.2收到信号“*”和“—”.同样,当发出信号“—”时,收报台分别以概率0.9和0.1收到信号“—”和“*”.求:(1)收报台收到信号“*”的概率;(2)当收报台收到信号“*”时,发报台确是发出信号“*”的概率.*11. 甲袋中有4个⽩球6个⿊球,⼄袋中有4个⽩球2个⿊球.先从甲袋中任取2球投⼊⼄袋,然后再从⼄袋中任取2球,求从⼄袋中取到的2个都是⿊球的概率.12. 设事件B A ,相互独⽴.证明:B A ,相互独⽴,B A ,相互独⽴. 13. 设事件A 与B 相互独⽴,且p A P =)(,q B P =)(.求下列事件的概率:(),(),().P A B P A B P A B14. 已知事件A 与B 相互独⽴,且91)(=B A P ,)()(B A P B A P =.求:)(),(B P A P .15. 三个⼈独⽴破译⼀密码,他们能独⽴译出的概率分别为0.25,0.35,0.4,求此密码被译习题三8 出的概率.16. 设六个相同的元件,如下图所⽰那样安置在线路中.设每个元件不通达的概率为p ,求这个装置通达的概率.假定各个元件通达、不通达是相互独⽴的.*17. (配对问题)房间中有n 个编号为1~n的座位.今有n 个⼈(每⼈持有编号为1~n 的票)随机⼊座,求⾄少有⼀⼈持有的票的编号与座位号⼀致的概率.(提⽰:使⽤概率的性质5的推⼴,即对任意n 个事件12,,,n A A A ,有1121111111()()(1)()(1)().)k k n n k k i j k i j n k k n i i n i i i n P A P A P A A P A A P A A =≤<≤=--≤<<<≤??=-+ +-++-∑∑∑ *18. (波利亚(Pólya )罐⼦模型)罐中有a 个⽩球,b 个⿊球,每次从罐中随机抽取⼀球,观察其颜⾊后,连同附加的c 个同⾊球⼀起放回罐中,再进⾏下⼀次抽取.试⽤数学归纳法证明:第k 次取得⽩球的概率为a a b+(1k ≥为整数).(提习题三 9 ⽰:记{}k A k 第次取得⽩球,使⽤全概率公式1111()=()()+()()k k k P A P A P A A P A P A A 及归纳假设.)19. 甲⼄两⼈各⾃独⽴地投掷⼀枚均匀硬币n 次,试求:两⼈掷出的正⾯次数相等的概率.20. 假设⼀部机器在⼀天内发⽣故障的概率为0.2,机器发⽣故障时全天停⽌⼯作.若⼀周五个⼯作⽇⾥每天是否发⽣故障相互独⽴,试求⼀周五个⼯作⽇⾥发⽣3次故障的概率.21. 灯泡耐⽤时间在1 000 h 以上的概率为0.2,求:三个灯泡在使⽤1 000 h 以后最多只有⼀个坏了的概率.22. 某宾馆⼤楼有4部电梯,通过调查,知道在某时刻T ,各电梯正在运⾏的概率均为0.75,求:(1)在此时刻所有电梯都在运⾏的概率;(2)在此时刻恰好有⼀半电梯在运⾏的概率;(3)在此时刻⾄少有1台电梯在运⾏的概率.23. 设在三次独⽴试验中,事件A 在每次试验中出现的概率相同.若已知A ⾄少出现⼀次的概率等于2719,求事件A 在每次试验中出现的概率)(A P .10习题三*24. 设双胞胎中为两个男孩或两个⼥孩的概率分别为a及b.今已知双胞胎中⼀个是男孩,求另⼀个也是男孩的概率.25. 两射⼿轮流打靶,谁先进⾏第⼀次射击是等可能的.假设他们第⼀次的命中率分别为0.4及0.5,⽽以后每次射击的命中率相应递增0.05,如在第3次射击⾸次中靶,求是第⼀名射⼿⾸先进⾏第⼀次射击的概率.26. 袋中有2n-1个⽩球和2n个⿊球,今随机(不放回)抽取n个,发现它们是同⾊的,求同为⿊⾊的概率.*27. 3个外形相同但可辨别的球随机落⼊编号1~4的四个盒⼦,(1)求恰有两空盒的概率;(2)已知恰有两空盒,求有球的盒⼦的最⼩编号为2的概率.习题四 8习题四1. 下列给出的数列,哪些可作为随机变量的分布律,并说明理由.(1)15ii p =(0,1,2,3,4,5)i =;(2)6)5(2i p i -=(0,1,2,3)i =;(3)251+=i p i (1,2,3,4,5)i =.2. 试确定常数C ,使i C i X P 2)(== (0,1,2,3,4)i =成为某个随机变量X 的分布律,并求:(1)(2)P X >;(2)1522P X ??<<;(3)(3)F (其中F (·)为X 的分布函数).3. ⼀⼝袋中有6个球,在这6个球上分别标有-3,-3,1,1,1,2这样的数字.从这⼝袋中任取⼀球,设各个球被取到的可能性相同,求取得的球上标明的数字X 的分布律与分布函数.4. ⼀袋中有5个乒乓球,编号分别为1,2,3,4,5.从中随机地取3个,以X 表⽰取出的3个球中最⼤号码,写出X 的分布律和分布函数.5. 在相同条件下独⽴地进⾏5次射击,每次射击时击中⽬标的概率为0.6,求击中⽬标的9习题四次数X的分布律.6. 从⼀批含有10件正品及3件次品的产品中⼀件⼀件地抽取产品.设每次抽取时,所⾯对的各件产品被抽到的可能性相等.在下列三种情形下,分别求出直到取得正品为⽌所需次数X的分布律:(1)每次取出的产品⽴即放回这批产品中再取下⼀件产品;(2)每次取出的产品都不放回这批产品中;(3)每次取出⼀件产品后总以⼀件正品放回这批产品中.7. 设随机变量X),6(==XP,XP(=)1B,已知)5~p(求p与)2P的值.(=X8. ⼀张试卷印有⼗道题⽬,每个题⽬都为四个选项的选择题,四个选项中只有⼀项是正确的.假设某位学⽣在做每道题时都是随机地选择,求该位学⽣未能答对⼀道题的概率以及答对9道以上(包括9道)题的概率.9.市120接听中⼼在长度为t的时间间隔内收到的紧急呼救的次数X服从参数为0.5t的泊松分布,⽽与时间间隔的起点⽆关(时间以⼩时计算):习题四10 求:(1)某天中午12点⾄下午3点没有收到紧急呼救的概率;(2)某天中午12点⾄下午5点⾄少收到1次紧急呼救的概率.10.某商店出售某种物品,根据以往的经验,每⽉销售量X服从参数4=λ的泊松分布.问在⽉初进货时,要进多少才能以99%的概率充分满⾜顾客的需要?11. 有⼀汽车站有⼤量汽车通过,每辆汽车在⼀天某段时间出事故的概率为0.000 1.在某天该段时间内有1 000辆汽车通过,求事故次数不少于2的概率.12. 设鸡下蛋数X服从参数为λ的泊松分布,但由于鸡舍是封闭的,我们只能观察到从鸡舍输出的鸡蛋.记Y为观察到的鸡蛋数,即Y的分布与给定>0X的条件下X的分布相同,今求Y 的分布律.(提⽰:()(0),1,2,.对于)P Y k P X k X k===>=13. 袋中有n把钥匙,其中只有⼀把能把门打开,每次抽取⼀把钥匙去试着开门.试在:(1)有放回抽取;(2)不放回抽取两种情况下,求⾸次打开门时试⽤钥匙次数的分布律.习题四11 14. 袋中有a 个⽩球、b 个⿊球,有放回地随机抽取,每次取1个,直到取到⽩球停⽌抽取,X 为抽取次数,求()P X n ≥.15. 据统计,某⾼校在2010年上海世博会上的学⽣志愿者有6 000名,其中⼥⽣3 500名.现从中随机抽取100名学⽣前往各世博地铁站作引导员,求这些学⽣中⼥⽣数X 的分布律.16. 设随机变量X 的密度函数为2,()0,x f x ?=??0,x A <<其他,试求:(1)常数A ;(2))5.00(<17.设随机变量X 的密度函数为()e x f x A -=()x -∞<<+∞,求:(1)系数A ;(2))10(<(3)X 的分布函数. 18.证明:函数22e ,0,()0,0,xc x x f x c x -??≥=??可作为⼀个密度函数.19. 经常往来于某两地的⽕车晚点的时间X(单位:min )是⼀个连续型随机变量,其密度函数为23(25),55,()5000,x x f x ?--<X 为负值表⽰⽕车早到了.求⽕车⾄少晚点2min 的概率.习题四 1220. 设随机变量X 的分布函数为0()1(1)e x F x x -?=?-+?,0,,0,x x ≤>求X 的密度函数,并计算)1(≤X P 和)2(>X P .21. 设随机变量X 在(1,6)上服从均匀分布,求⽅程012=++Xt t 有实根的概率.22. 设随机变量X 在)1,0(上服从均匀分布,证明:对于0,0,1a b a b ≥≥+≤,()P a X b b a ≤≤=-,并解释这个结果.23. 设顾客在某银⾏的窗⼝等待服务的时间X (单位:min )是⼀随机变量,它服从51=λ的指数分布,其密度函数为51e ()50x f x -??=,0,,x >其它.某顾客在窗⼝等待服务,若超过10 min ,他就离开.(1)设某顾客某天去银⾏,求他未等到服务就离开的概率;(2)设某顾客⼀个⽉要去银⾏五次,求他五次中⾄多有⼀次未等到服务⽽离开的概率.24. 以X 表⽰某商店从早晨开始营业起直到第⼀个顾客到达的等待时间(单位:min ),X 的分布函数是0.21e ,0,()0,x x F x -?->=??其他.求:(1)X 的密度函数;(2)P (⾄多等待。
《概率论与数理统计》习题及答案
概率论与数理统计 第一部份 习题第一章 概率论基本概念一、填空题1、设A ,B ,C 为3事件,则这3事件中恰有2个事件发生可表示为 。
2、设3.0)(,1.0)(=⋃=B A P A P ,且A 与B 互不相容,则=)(B P 。
3、口袋中有4只白球,2只红球,从中随机抽取3只,则取得2只白球,1只红球的概率为 。
4、某人射击的命中率为0.7,现独立地重复射击5次,则恰有2次命中的概率为 。
5、某市有50%的住户订晚报,有60%的住户订日报,有80%的住户订这两种报纸中的一种,则同时订这两种报纸的百分比为 。
6、设A ,B 为两事件,3.0)(,7.0)(==B A P A P ,则=)(B A P 。
7、同时抛掷3枚均匀硬币,恰有1个正面的概率为 。
8、设A ,B 为两事件,2.0)(,5.0)(=-=B A P A P ,则=)(AB P 。
9、10个球中只有1个为红球,不放回地取球,每次1个,则第5次才取得红球的概率为 。
10、将一骰子独立地抛掷2次,以X 和Y 分别表示先后掷出的点数,{}10=+=Y X A{}Y X B >=,则=)|(A B P 。
11、设B A ,是两事件,则B A ,的差事件为 。
12、设C B A ,,构成一完备事件组,且,7.0)(,5.0)(==B P A P 则=)(C P ,=)(AB P 。
13、设A 与B 为互不相容的两事件,,0)(>B P 则=)|(B A P 。
14、设A 与B 为相互独立的两事件,且4.0)(,7.0)(==B P A P ,则=)(AB P 。
15、设B A ,是两事件,,36.0)(,9.0)(==AB P A P 则=)(B A P 。
16、设B A ,是两个相互独立的事件,,4.0)(,2.0)(==B P A P 则=)(B A P 。
17、设B A ,是两事件,如果B A ⊃,且2.0)(,7.0)(==B P A P ,则=)|(B A P 。
大学概率论试题及答案
大学概率论试题及答案一、选择题(每题3分,共30分)1. 设随机变量X服从标准正态分布,即X~N(0,1),则P(X>1)为:A. 0.8413B. 0.1587C. 0.3446D. 0.5000答案:B2. 抛一枚均匀的硬币两次,观察正面朝上的次数,该随机试验的样本空间Ω为:A. {(0,0), (1,0), (0,1), (1,1)}B. {0, 1}C. {(0,0), (1,0), (0,1), (1,1), (2,0), (0,2)}D. {正面, 反面}答案:A3. 以下哪个事件是不可能事件?A. 连续抛掷一枚均匀硬币5次,至少出现一次正面B. 连续抛掷一枚均匀硬币5次,全部出现正面C. 连续抛掷一枚均匀硬币5次,全部出现反面D. 连续抛掷一枚均匀硬币5次,每次都是正面答案:D4. 设随机变量X服从泊松分布,参数为λ=2,则P(X=1)为:A. 0.2707B. 0.1353C. 0.5000D. 0.0707答案:B5. 以下哪个是二项分布的概率公式?A. P(X=k) = C(n,k) * p^k * (1-p)^(n-k)B. P(X=k) = C(n,k) * p^n * (1-p)^kC. P(X=k) = C(n,k) * p^k * (1-p)^nD. P(X=k) = C(n,k) * p^(n-k) * (1-p)^k答案:A6. 随机变量X和Y相互独立,且都服从标准正态分布,那么Z=X+Y的分布为:A. 标准正态分布B. 平均值为0,方差为2的正态分布C. 平均值为0,方差为1的正态分布D. 平均值为2,方差为1的正态分布答案:B7. 设随机变量X服从指数分布,参数为λ=1,则P(X>2)为:A. 0.1353B. 0.2707C. 0.5000D. 0.7500答案:A8. 以下哪个是随机变量的期望值的定义?A. E(X) = ∑x * P(X=x)B. E(X) = ∑x * P(X≠x)C. E(X) = ∑x * P(X=x),对于离散型随机变量D. E(X) = ∫x * f(x) dx,对于连续型随机变量9. 假设随机变量X服从二项分布,n=10,p=0.5,那么P(X≥6)为:A. 0.246B. 0.754C. 0.500D. 0.246答案:B10. 设随机变量X和Y相互独立,且X~N(0,1),Y~N(0,1),则Z=X+Y 的分布为:A. N(0,2)B. N(0,1)C. N(1,0)D. N(2,0)答案:A二、填空题(每题4分,共20分)1. 如果随机变量X服从二项分布,参数为n=5,p=0.3,则P(X=3)为______。
概率论习题试题集
第一章随机事件与概率一、填空题1.已知随机事件 A 的概率P( A)0.5 ,事件 B 的概率P( B)0.6 ,条件概率P(B A)0.8 ,则P(A B)__________ ____ 。
2. 设 A,B为随机事件,已知P( A),,B),则P(AB)____________。
0.3 P(B)0.4 P( A3.甲、乙两人独立地对同一目标射击一次,其命中率分别为0.6 和,现目标被击中,则它是甲命中的概率为 ___________ 。
4.某射手在 3 次射击中起码命中一次的概率为0.875 ,则该射手在一次射击中命中的概率为___________ 。
5.设随机事件 A在每次试验中出现的概率为1,则在 3次独立试验中 A 起码发生一次的概率为3___________ .6.袋中有黑白两种球 , 已知从袋中任取一个球是黑球的概率为1, 现从袋中不放回地挨次取球, 则第 k 4次获得白球的概率为___________ 。
7.三台机器互相独立运行,设第一,第二,第三台机器不发生故障的概率挨次为,,,则这三台机器中起码有一台发生故障的概率是___________ 。
8.电路由元件 A 与两个并联的元件 B, C 串连而成,若 A, B,C 破坏与否互相独立,且它们破坏的概率挨次为,,0.1 ,则电路断路的概率是___________ 。
9. 甲乙两个投篮,命中率分别为,,每人投 3 次,则甲比乙进球数多的概率是___________ 。
10. 3 人独立破译一密码,他们能独立译出的概率分别是1115,,,则此密码被译出的概率是34________。
二、选择题1. 关于任意两个事件 A, B,有P( A B) 为()(A)P( A)P( B)(B)P(A)P(B)P(AB)(C)P( A)P(AB)(D)P(A)P(B)P(AB)2. 设 A, B 为两个互斥事件,且P( A)0, P(B)0 ,则以下正确的选项是()(A)P(A B)P(A)(B)P(B A)0(C ) P( AB) P( A)P( B) (D ) P(B A) 03. 其人独立地投了 3 次篮球, 每次投中的概率为 0.3 ,则其最可能失败 (没投中) 的次数为 ()(A ) 2 (B )2 或 3 (C ) 3(D )14. 袋中有 5 个球( 3 个新, 2 个旧),每次取一个,无放回地抽取两次,则第二次取到新球的概率是( )(A )3(B )354(C )2(D )34105. n 张奖券中含有 m 张有奖的, k 个人购置,每人一张,此中起码有一个人中奖的概率是( )(A )m(B )1C n k m C n mC n kC m 1C n k m 1k C m r(C )( D )1C n kC n kr 三、计算题( 随机事件、随机事件的关系与运祘 )1.指出下边式子中事件之间的关系:⑴AB A ;⑵ABC A ; ⑶A B A 。
概率论与数理统计练习题(含答案)
第一章 随机事件及其概率练习: 1. 判断正误(1)必然事件在一次试验中一定发生,小概率事件在一次试验中一定不发生。
(B )(2)事件的发生与否取决于它所包含的全部样本点是否同时出现。
(B )(3)事件的对立与互不相容是等价的。
(B ) (4)若()0,P A = 则A =∅。
(B )(5)()0.4,()0.5,()0.2P A P B P AB ===若则。
(B ) (6)A,B,C 三个事件至少发生两个可表示为AB BC AC ⋃⋃(A ) (7)考察有两个孩子的家庭孩子的性别,{()Ω=两个男孩(,两个女孩),(一个男孩,}一个女孩),则P{}1=3两个女孩。
(B )(8)若P(A)P(B)≤,则⊂A B 。
(B ) (9)n 个事件若满足,,()()()i j i j i j P A A P A P A ∀=,则n 个事件相互独立。
(B )(10)只有当A B ⊂时,有P(B-A)=P(B)-P(A)。
(A ) 2. 选择题(1)设A, B 两事件满足P(AB)=0,则©A. A 与B 互斥B. AB 是不可能事件C. AB 未必是不可能事件D. P(A)=0 或 P(B)=0 (2)设A, B 为两事件,则P(A-B)等于(C)A. P(A)-P(B)B. P(A)-P(B)+P(AB)C. P(A)-P(AB)D. P(A)+P(B)-P(AB) (3)以A 表示事件“甲种产品畅销,乙种产品滞销”,则其对立事件A 为(D)A. “甲种产品滞销,乙种产品畅销”B. “甲乙两种产品均畅销”C. “甲种产品滞销”D. “甲种产品滞销或乙种产品畅销”(4)若A, B 为两随机事件,且B A ⊂,则下列式子正确的是(A) A. P(A ∪B)=P(A) B. P(AB)=P(A) C. P(B|A)=P(B) D. P(B-A)=P(B)-P(A) (5)设(),(),()P A B a P A b P B c ⋃===,则()P AB 等于(B)A. ()a c c + B . 1a c +-C.a b c +- D. (1)b c -(6)假设事件A 和B 满足P(B|A)=1, 则(B)A. A 是必然事件 B . (|)0P B A = C. A B ⊃ D. A B ⊂ (7)设0<P(A)<1,0<P(B)<1, (|)(|)1P A B P A B += 则(D)A. 事件A, B 互不相容B. 事件A 和B 互相对立C. 事件A, B 互不独立 D . 事件A, B 互相独立8.,,.,,.D ,,.,,.,,1419.(),(),(),(),()37514131433.,.,.,.,37351535105A B A AB A B B AB A B C AB A B D AB A B P B A P B A P AB P A P B A B C φφφφ≠=≠====对于任意两个事件必有(C )若则一定独立;若则一定独立;若则有可能独立;若则一定不独立;已知则的值分别为:(D)三解答题1.(),(),(),(),(),(),().P A p P B q P AB r P A B P AB P A B P AB ===设求下列事件的概率:解:由德摩根律有____()()1()1;P A B P AB P AB r ⋃==-=-()()()();P AB P B AB P B P AB q r =-=-=-()()()()(1)()1;P A B P A P B P AB p q q r r p ⋃=+-=-+--=+-________()()1[()()()]1().P AB P A B P A P B P AB p q r =⋃=-+-=-+-2.甲乙两人独立地对同一目标射击一次,命中率分别是0.6和0.5,现已知目标被命中,求它是甲射击命中的概率。
概率论习题一
第一章(A)A、A B互斥B、A、B互斥C、A、B互斥D、A、B互斥2、以A表示事件“甲种产品畅销,乙种产品滞销”,则A表示(C)A、甲种产品滞销,乙种产品畅销B、甲乙两种产品均畅销C、甲产品滞销或乙产品畅销D、甲乙两种产品均滞销3、设A、B为两个事件,若A B,则一定有(B)A、P(A B)=P(B)B、P(A B)=P(B)C、P(B│A)=P(B)D、P(A│B)=P(B)4、设A B为两个随机事件,则p(A B),P(A B),P(A)+P(B)由小到大的顺序是(A)A P(A B)≤p(A B)≤P(A)+P(B)B P(A)+P(B)≤P(A B)≤p(A B)C p(A B)≤P(A B)≤P(A)+P(B)D P(A B)≤P(A)+P(B)≤p(A B)5、设A B为两个事件,且0<P(A)<1,P(B)>0,P(B│A)=P(B│A),则必有(C)A、P(A│B)=P(A│B)B、P(A│B)≠P(A│B)C、P(A│B)=P(A)D、P(A│B)=P(B)6、设A、B、C为三个相互独立的随机事件,且有0<P(C)<1,则下列事件不相互独立的是( A )A AC 与CB AB 与C C B A 与CD B A -与C 7、在一次实验中,事件A 发生的概率为p (0<p <1),进行n 次独立重复试验,则事件A 之多发生一次的概率为( D )A n p -1B n pC ()N P --11D ()()111--+-n n p np p 8、对飞机连续射击三次,每次发射一枚炮弹,事件i A (i =1,2,3)表示第i 次射击击中飞机,则“至少有一次击中飞机”可表示为321A A A ,“至多击中一次”表示为321321321321A A A A A A A A A A A A9、设A 、B 为随机事件,则()()B A B A =B10、若事件A 、B 互不相容,则()B A P -=P (A ),()A B P -=P (B ),若事件A 、B 相互独立,则()B A P -=)()(B P A P ,()A B P -=)()(A P B P11、已知P (A )=0.5,P (B )=0.4,P (B │A )=0.6,则()B A P =0.6,()=B A P 0.75.12、已知P (A )=0.5,P (B )=0.4,若A 、B 相互独立,则()B A P =0.7. 13、根据调查所知,一个城镇居民三口之家每年至少用600元买粮食的概率是0.5,至少用4000元买副食的概率是0.64,至少用600元买粮食同时用4000元买副食的概率为0.27,则一个三口之家至少用600元买粮食或至少用4000元买副食的概率为_____。
(完整word版)概率论与数理统计习题集及答案(word文档良心出品)
《概率论与数理统计》作业集及答案第1章 概率论的基本概念§1 .1 随机试验及随机事件1. (1) 一枚硬币连丢3次,观察正面H ﹑反面T 出现的情形. 样本空间是:S= ;(2) 一枚硬币连丢3次,观察出现正面的次数. 样本空间是:S= ; 2.(1) 丢一颗骰子. A :出现奇数点,则A= ;B :数点大于2,则B= . (2) 一枚硬币连丢2次, A :第一次出现正面,则A= ;B :两次出现同一面,则= ;C :至少有一次出现正面,则C= .§1 .2 随机事件的运算1. 设A 、B 、C 为三事件,用A 、B 、C 的运算关系表示下列各事件:(1)A 、B 、C 都不发生表示为: .(2)A 与B 都发生,而C 不发生表示为: . (3)A 与B 都不发生,而C 发生表示为: .(4)A 、B 、C 中最多二个发生表示为: . (5)A 、B 、C 中至少二个发生表示为: .(6)A 、B 、C 中不多于一个发生表示为: . 2. 设}42:{},31:{},50:{≤<=≤<=≤≤=x B x x A x x S :则(1)=⋃B A ,(2)=AB ,(3)=B A , (4)B A ⋃= ,(5)B A = 。
§1 .3 概率的定义和性质1. 已知6.0)(,5.0)(,8.0)(===⋃B P A P B A P ,则(1) =)(AB P , (2)()(B A P )= , (3))(B A P ⋃= . 2. 已知,3.0)(,7.0)(==AB P A P 则)(B A P = .§1 .4 古典概型1. 某班有30个同学,其中8个女同学, 随机地选10个,求:(1)正好有2个女同学的概率,(2)最多有2个女同学的概率,(3) 至少有2个女同学的概率.2. 将3个不同的球随机地投入到4个盒子中,求有三个盒子各一球的概率.§1 .5 条件概率与乘法公式1.丢甲、乙两颗均匀的骰子,已知点数之和为7, 则其中一颗为1的概率是 。
概率论_习题集(含答案)
《概率论》课程习题集一、计算题1. 10只产品中有2只次品, 在其中取两次, 每次任取一只,作不放回抽样,求下列事件的概率:(1)两只都是正品;(2)一只是正品,一只是次品;(3)第二次取出的是次品。
2. 一个学生接连参加同一课程的两次考试。
第一次及格的概率为p ,若第一次及格则第二次及格的概率也为p ;若第一次不及格则第二次及格的概率为.2/p 求 (1)若至少有一次及格则他能取得某种资格,求他取得该资格的概率; (2)若已知他第二次已经及格,求他第一次及格的概率3. 用某种方法普查肝癌,设:A ={ 检验反映呈阳性 },C ={ 被检查者确实患有肝癌 },已知()()5.C A P ,.C A P 90950==()5.C P 000=且现有一人用此法检验呈阳性,求此人真正患有肝癌的概率.4. 两台机床加工同样的零件,第一台出现次品的概率是0.03, 第二台出现次品的概率是0.02,加工出来的零件放在一起,并且已知第一台加工的零件比第二台的多一倍。
(1)求随意取出的零件是合格品的概率(2)如果随意取出的零件经检验是次品,求它是由第二台机床加工的概率5. 某人有5把钥匙,但忘了开房门的是哪一把,现逐把试开,求∶(1) 恰好第三次打开房门锁的概率(2) 三次内打开房门锁的概率(3) 如5把钥匙内有2把是开房门的,三次内打开房门锁的概率6. 设X 是连续型随机变量,其密度函数为()()⎩⎨⎧<<-=其它020242x x x c x f求:(1);常数c (2){}.1>X P7. 设X ~⎩⎨⎧≤≤=其他,02,)(x o cx x f 求(1)常数c ;(2)分布函数)(x F ;8. 一工厂生产的某种元件的寿命X (以小时计)服从参数为σμ,160= 的正态分布。
若要求,80.0)200120(≥≤<X P 允许σ最大为多少?9. 证明:指数分布有无记忆性(或称无后效性),即证:如果)(~λE X ,则有)()|(t X P s X t s X P >=>+>,0,0≥≥t s10. 对球的直径作测量,设测量值均匀地分布在],[b a 内,求球的体积的概率密度.11. 设随机变量X 的概率密度为⎪⎩⎪⎨⎧≤≤-=其他,021),11(2)(2x xx f ,求X 的分布函数。
概率论与数理统计习题库,第一章
长沙理工大学二手货QQ 交易群146 808 417第一章#00001写出下列随机试验的样本空间及下列事件中的样本点:(1)掷一颗骰子,出现奇数点.(2)将一枚均匀的硬币抛出两次,A: 第一次出现正面B: 两次出现同一面C: 至少有一次出现正面(3)一个口袋中有5只外形完全相同的球,编号为1、2、3、4、5,从中同时取出3只,球的最小号码为1.(4)一个口袋中有2只白球、3只黑球、4只红球,从中任取一球,A: 得白球, B: 不得红球*00001#00002在数学系中任选一名学生,令事件A 表示该生为男生,事件B 表示该生为三年级学生,事件C 表示该生为运动员. (1)(1)叙述事件C AB 的意义(2)(2)在什么条件下ABC=C 成立?(3)(3)什么时候关系式C ⊂B 是正确的? (4)(4)什么时候B A =成立?*00002#00003长沙理工大学二手货QQ 交易群146 808 417一个工人生产了n 个零件,事件A i ="该工人生产得第i 个零件是正品" i =1、2、、n用A i 表示下列事件:(1)(1)没有一个零件是次品;(2)(2)至少有一个零件是次品;(3)(3)仅仅只有一个零件是次品;(4)(4)至少有两个零件是次品.*00003#00004A 、B 是两个事件.证明下列关系等价B A ⊂,B A ⊂,B B A = ,A B A = ,φ=B A*00004#00005把A 1⋂ A 2⋂⋯ ⋂ A n 表示为不相容事件的和.*00005#00006长沙理工大学二手货QQ 交易群146 808 417证明:若(A-B )⋂(B-A )⊂ C ,则A ⊂(B-C )⋂(C-B )的充要条件是ABC= φ. *00006#00007一部五卷文集任意地排列到书架上,文卷号自左向右或自右向左恰好为12345的顺序的概率等于多少?*00007#00008在分别写有2、4、6、7、8、11、12、13的八张卡片中任取两张,把卡片上的两个数字组成分数,求所得分数为既约分数得概率.*00008#00009有五条线段,长度分别为1、3、5、7、9.从这五条线段中任取三条,求所取三条线段恰好能构成三角形的概率.*00009#00010把一个表面涂有颜色的立方体等分为一千个小立方体,从这些小立方体中任取一个,求所取小立方体有k面(k=0、1、2、3)涂有颜色的概率.*00010#00011一个小孩用13个字母A、A、A、C、E、H、I、I、M、M、N、T、T做组字游戏.如随机地排列字母,问他组成"MATHEMATICIAN"的概率是多少?*00011#00012甲从2、4、6、8、10中任取一数,乙从1、3、5、7、9中任取一数,求甲取的数大于乙取的数的概率.*00012#00013在中国象棋的棋盘上任意地放上一只红"车"及一只黑"车",求它们正好可以互相吃掉的概率.*00013#00014一批灯泡有40只,其中有3只是坏的,从中任取5只检查.问:(1)5只都是好的概率是多少?(2)5只中有2只是坏的概率是多少?*00014#00015一幢10层楼中的一架电梯在底层走上7位乘客.电梯在每一层都停,乘客从第二层起离开电梯,设每位乘客在每层离开是等可能的,求没有两位乘客在同一层离开的概率.*00015#00016从一副扑克牌(52)张中任取6张,求得三张红色三张黑色牌的概率.*00016#00017掷两个骰子,求所得的两个点数一个恰是另一个的两倍的概率.*00017#00018掷三颗骰子,求所得的三个点数中最大的一个恰是最小的一个的两倍的概率.*00018#00019一个班上有2n个男生及2n个女生,把全班学生任意地分成人数相等的两组,求每组中男女生人数相等的概率.*00019#00020某城市共有自行车10000,牌照编号从00001到10000.问事件"偶然遇到一辆牌照编号中有数字8的自行车"的概率是多少?*00020#00021从n个数1、2、3、 、n中随机地取出两个数(不重复),问其中一个小于k(1<k<n),另一个大于k的概率是多少?*00021#00022有2n个数字,其中n个是0,n个是1.从中任取两数,求所取两数之和为0或为偶数的概率.*00022#00023在十个数字0、1、2、⋯、9中任取四个数(不重复),能排成一个四位偶数的概率是多少?*00023#00024四颗骰子掷一次至少得一个一点与两个骰子掷24次至少有一次得两个一点,哪一个概率大?*00024#00025从一副扑克牌(52张)中任意抽出10张,问(1)(1)至少有一张"A"的概率是多少?(2)(2)至少有两张"A"的概率是多少?*00025#00026一个中学有十五个班级,每班选出三个代表出席学生代表会议,从45名代表中选出15名组成工作委员会.求下列事件的概率(1)(1)一年级(一)在委员会中有代表;(2)(2)每个班级在委员会中均有代表.*00026#00027设甲袋中有a只白球b只黑球,乙袋中有c只白球d只黑球.今从两袋中各取一球,求所得两球颜色不同的概率.*00027#00028一口袋中有a只白球b只黑球,从中连续取球三次(不返回),求三只球依次为黑白黑的概率.*00028#00029从数1、2、3、⋯、n中随机地取出两个数,求所取两数之和为偶数的概率.*00029#00030任取两个正整数,求它们之和为偶数的概率.*00030#00031任取一个正整数,求下列事件的概率:(1)(1)该数的平方的末尾数字是1;(2)(2)该数的四次方的末尾数字是1;(3)(3)该数的立方的最后两位数字是1.*00031#00032设每个人的生日在星期几是等可能的,求6个人的生日都集中在一星期中的某两天但不是都在同一天的概率.*00032#00033一个小组有8个学生,问这8个学生的生日都不相同的概率是多少?(一年有365天)*00033#00034n个朋友随机地围绕圆桌而坐,求下列事件的概率:(1)(1)甲、乙两人坐在一起,且乙坐在甲的左边;(2)(2)甲、乙、丙三人坐在一起;(3)(3)若n个人并排坐在长桌的一边,求上述事件的概率.*00034#00035把n个"0"与n个"1"随机地排列,求没有两个"1"连续在一起的概率.*00035#00036从一个装有白球、黑球与红球各n个的口袋中任取m个球,求其中有m1个白球、m2个黑球、m3个红球的概率.(m1+ m2 +m3=m)*00036#00037从一个装有n个白球、n个黑球的口袋中逐一取球(不返回,直至取完为止),求黑白球恰好相间取出的概率.*00037#00038从一个装有a个白球、b个黑球的口袋中逐一取球(不返回),直至留在袋中的球都是同一中颜色为止.求最后是白球留在袋中的概率.*00038#00039有mn个球,其中一个是黑球,一个是白球,其余的都是红球.把这mn个球放在m个袋中,每袋放n个球.求黑球与白球恰好在一袋中的概率.*00039#00040从n双尺码不同的鞋子中任取2r只(2r<n)求下列事件的概率:(1)(1)所取的2r只中没有两只成对;(2)(2)所取的2r只中只有两只成对;(3)(3)所取的2r只中只有恰成r对.*00040#00041在一口袋中装有n种颜色的球,每种颜色的球只有k只.从中任取r只(r n),求所取r 只球颜色全部都不相同的概率.*00041#00042把n根同样长的棒都分成长度为1与2之比的两根小棒,然后把2n根小棒任意地分成n对,每对又接成一根"新棒".求下列事件的概率:(1)(1)全部新棒都是原来分开的两根小棒相接的,(2)(2)全部新棒的长度都与原来的一样.*00042#00043一个人把六根草紧握在手中,仅露出它们的头和尾.然后请另一人把六个头两两相连接,六个尾两两相连接.求放开手后六根草恰好连成一个环的概率.试把该结果推广到2n根草的情形.*00043#00044把n个不同的球随机地放入n个匣子中去,求恰有一个空匣的概率.*00044#00045一个教室共有n+k个座位,随机地坐上n个人.求其中指定的s个座位(s<n)都坐上了人的概率.*00045#00046设有n 个人,每个人都等可能地被分配到N 个房间中的任意一间去住(n ≤N).求下列事件的概率:(1)(1)指定的n 个房间里各有一人住的概率,(2)(2)恰有n 各房间,其中各住一人.*00046#00047甲掷均匀硬币n+1次,乙掷n 次.求甲掷出正面的次数大于乙掷出正面的次数的概率. *00047#00048从数1、2、3、⋯、N 中不重复地任取n 个数(n ≤N)按大小排成一列:x 1<x 2<⋯<x m <⋯<x n求x m =M (m ≤M ≤N )的概率.*00048#00049从数1、2、3、⋯、N 中可重复地任取n 个数按大小排成一列:x 1≤x 2≤⋯≤x m ≤⋯≤x n求x m =M (m ≤M ≤N )的概率.*00049#00050已知事件A 、B 的概率都是1/2,证明: P(AB)=)B A P(*00050#00051设事件A 与B 同时发生比导致C 发生,证明:P(A)+P(B)-1≤ P(C)*00051#00052对任意事件A 、B 、C ,证明:P(AB)+P(AC)-P(BC) ≤ P(C)*00052#00053设A 、B 、C 为三个事件,且P(A)=x 、P(B)=2 x 、P(C)=3 xP(AB)=P(AC)=P(BC)= y证明:x ≤1/4,y ≤1/4.*00053#00054从装有红、白、黑各一个球的口袋中任意取球(取后放回),直至各种颜色的球都至少出现一次为止.求(1)(1)摸球次数不少于6次的概率,(2)(2)摸球次数恰好为6次的概率.*00054#00055从一副扑克牌中(有返回地)任意抽取n 张(n ≥4),求这n 张牌包含全部四种花色的概率. *00055#00056甲乙从1、2、3、⋯、15中各任取一数(不重复),已知甲取的数是5的倍数,求甲数大于乙数的概率.*00056#00057袋中有一个白球及一个黑球,一次次地从中摸球,如果取出白球,则除把白球放回外再加进一个白球,直至取出黑球为止.求取了n 次都没有取到黑球的概率.*00057#00058甲袋中有两个白球四个黑球,乙袋中有四个白球两个黑球.现在掷一枚均匀的硬币,若得到正面就从甲袋中连续摸球n 次(有返回),若得反面就从乙袋中连续摸球n 次.若已知摸到的n 个球均为白球,求这些球是从甲袋中取出的概率.*00058#00059两个体育协会各有排球、足球、篮球队各一个,同类球队进行比赛时协会A 的各队胜协会B 的各队的概率分别为0.8、0.4、0.4(不可能平局).若一个协会在三次比赛中至少胜两次就称获胜,问哪一个协会获胜的可能性大?*00059#00060两个赌徒在每一局获胜的概率都是1/2.两人约定谁先赢得一定的局数就获得全部赌本.但赌博在中途被中断了.此时第一个赌徒还需赢得m 局才获胜,第二个赌徒还需赢得n 局才能获胜,问如何分配赌本才合理.*00060#00061把n 个不同的球随机地放入N 个匣子.求某指定的一个匣子中恰有r 个(r ≤n )球的概率. *00061#00062甲乙两人各掷均匀硬币n 次,求两人掷出正面次数相同的概率.*00062#00063甲乙两射手轮流对同一目标进行射击,甲命中的概率为p 1,乙命中的概率为p 2,甲先射,谁先命中谁得胜.问甲乙两人获胜的概率为多少?*00063#00064设甲袋中有k 个白球及1个黑球,乙袋中有k +1白球,每次从两袋中各任取一球,交换放入对方的袋中.求经过n 次交换后,黑球仍在甲袋中的概率为p n ,证明:21p lim n =∞→n*00064#00065做一系列独立试验,每次试验成功的概率为p .求在试验成功n 次之前至少失败m 次的概率. *00065#00066掷均匀硬币n+m 次,已知至少出现一次正面,求第一次正面出现在第n 次的概率. *00066#00067做一系列独立试验,每次试验成功的概率为p .求第n 次试验时得到第r 次成功的概率. *00067#00068某数学家有两盒火柴,每盒有n 根.每次用火柴时他在两盒中任取一盒,抽出一根.求他用完一盒(既拿出最后一根)时,另一盒中还有r (1≤r ≤n )根的概率.*00068#00069掷m+n次均匀硬币(m>n),求至少连续出现m次正面的概率*00069#00070掷均匀硬币直至第一次出现连接两个正面为止,求这时共掷了n次的概率.*00070#00071在线段(0,1)中任取十个点,求其中三点在区间(0,1/4)中,四点在区间(1/4,2/3),三点在区间(2/3,1)中的概率.*00071#00072有两只口袋,甲袋中3只白球2只黑球,乙袋中装有2只白球5只黑球.任选一袋,并从中任取一球,问此球是白球的概率是多少?*00072#00073袋中装有m(m≥3)个白球和n个黑球的罐子中失去一个球,但不知是什么颜色,为了猜测它是什么颜色,随机地从罐子中取两个球,结果均为白球,问失去的是白球的概率是多少?*00073#00074袋中装有5个白球和5个黑球,从中任取5个球放入空袋中,再从此5个球中任取3个球放入另一个空袋中,最后从第三个袋子中任取一球为白球,问第一次取出的球均为白球的概率?*00074#00075一个质点从平面上某一点开始等可能地向上、下、左、右四个方向游动,每次游动的距离为1.求经过2n次游动后回到出发点的概率.*00075#00076写出下列随机试验的样本空间及下列事件中的样本点。
概率论练习题
概率论练习题练习题一、单项选择题1.事件C B A 的含义是【】 A 、A 发生 B 、C B 不发生 C 、A 发生且B 、C 都不出现 D 、A 发生,B 和C 中至少有一个不发生2.已知{}0,),1,2,(k /k!C K X P k 1>===-λλ其中则C= 【】 A 、λ-e B 、λe C 、1e --λ D 、1e -λ3.同时抛掷3枚均匀的硬币,则恰好三枚正面向上的概率为【】A 、0.5B 、0.25C 、0.125D 、0.375 4.已知随机变量X 满足{},1612EX X P =≥-则必有( )。
【】 A.41DX = B 、41DX ≥ C 、{}16152EX 1X P =<- D 、41DX <5.设X~N(0,1),Y~N(1,2),且X 与Y 相互独立,则Z=2X+Y 【】A 、Z~N(1,6)B 、Z~N(1,7)C 、Z~N(1,11)D 、Z~N(1,12)6.设事件A 与B 互斥,,0)(,0)(>>B P A P 则下列结论中一定成立的有.【】 (A ) A 与B 互不相容; (B ) A ,B 为对立事件;(C )A 与B 相互独立; (D ) A 与B 不独立. 7.一盒零件有5个正品,2个次品,不放回任取3个,其中至少有2个正品的概率为【】(A ) 7/2; (B ) 7/4; (C )7/5; (D ) 7/6.8某人射击中靶的概率为0.75. 若射击直到中靶为止,则射击次数为3 的概率为【】 (A ) 3)75.0(; (B )2)25.0(75.0; (C )2 )75.0(25.0;(D ) 3)25.0(.9.下列各函数中可以作为某个随机变量X 的分布函数的是 . 【】(A ) x x F sin )(=; (B ) 211)(xx F +=;(C )>≤+=;)0(1,)0(11)(2x x x x F ; (D ) ??>≤≤<=;)1(1,)10(1.1,)0(0)(x x x x F .10.设12,,,n X X X 是来自正态总体(,1)N μ的一个简单随机样本,2,X S 分别为样本均值与样本方差,则 . 【】)(A )1,0(~N X ; )(B )1(~)(221--∑=n X Xini χ;)(C )(~)(221n X i ni χμ-∑=; )(D )1(~1/--n t n S X .二、填空题1、若事件A 、B 互不相容,且===)B P(A 0.7,P(B)0.3,P(A)则______。
概率试题库一
概率论试题库(一)第一章 预备知识(排列、组合、集合) 第二章 随机事件1. 令A 表示事件“甲种产品畅销,乙种产品滞销”,则A 的对立事件A 为( ) (A )“甲种产品滞销,乙种产品畅销” (B )“甲,乙产品均畅销 ” (C )“甲种产品滞销” (D )“甲产品滞销或乙产品畅销 答案:D2. 设A 、B 、C 为三个随机事件,则“A 、B 、C 至少有一个发生"可表示为__________;“A 发生而B 、C 不发生"可表示为__________。
答案:A+B+C, ABC ;3. 设,,,A B C D 为任意四个事件,则四个事件中至多有一个发生可表示 为4. 设A 、B 、C 为三个随机事件,则“A 、B 、C 不都发生”可表示为__________; “A ,B 、C 至多有一个发生”可表示为__ ________.第三章 随机事件的概率5. 掷三枚质地均匀的骰子,出现三个3点的概率为 。
6. 掷三枚质地均匀得硬币,出现三个正面得概率为 .7. 投掷一枚均匀的骰子,出现6点的概率为____________,点数能被3整除的概率为 。
8. 投掷一枚均匀的骰子,出现6点的概率为____________,点数能被2整除的概率为 。
第四章 条件概率 事件(试验的)相互独立9. 一射手对同一目标独立地射击4次,且已知射手的命中率为2/3,则4次射击中恰好命中一次的概率为____________,4次射击中至少命中一次的概率为 。
答案:8/81; 80/81 ;10. 一射手对同一目标独立地射击3次,且已知射手的命中率为2/3,则3次射击中恰好命中一次的概率为____________,3次射击中至少命中一次的概率为 . 11. 2.0)(,5.0)(,6.0)(===B A P B P A P ,求)(),(),(B A P A B P B A P -+解:()()()0.50.20.1P AB P B P A B ==⨯=,()()()()0.60.50.11P A B P A P B P AB +=+-=+-=,()0.11()()0.66P AB P B A P A ===, ()()()0.60.10.5P A B P A P AB -=-=-=。
概率论第一章习题
一.选择题1.设,,A B C 为三个事件,与事件A 不相容的事件是() (A)AB AC (B)()A B C (C)ABC (D)A B C2.设,,A B C 为三个事件,则‘其中至少有两个事件不发生’这一事件可表示为() (A)A B C (B)A B C (C)AB AC BC (D)ABC3.以A 表示事件“甲种产品畅销,乙种产品滞销”,则其对立事件A 为( ). A .“甲种产品滞销,乙种产品畅销”; B .“甲、乙两种产品均畅销”; C .“甲种产品滞销”; D .“甲种产品滞销或乙种产品畅销”;4.设任意两个事件A 和B 满足条件AB AB ,则()(A)A B (B)A B (C)A B A (D)A B B5. 设,A B 是两个随机事件,且0()1P A ,0()1P B ,()()1P A B P A B 则下列正确的选项是()(A) A 与B 相互独立(B) A 与B 相互对立 (C) A 与B 互不相容 (D) A 与B 互不独立6.设,,A B C 为三个事件两两独立,则,,A B C 相互独立的充分必要条件是()(A)A 与BC 独立 (B)AB 与A C 独立(C)AB 与AC 独立 (D)A B 与A C 独立7.将一枚均匀的硬币独立地掷两次,记事件1A 表示掷第一次出现正面,2A 表示掷第二次出现正面,3A 表示正反面各出现一次,4A 表示正面出现两次,则()(A)123,,A A A 相互独立 (B)234,,A A A 相互独立(C)123,,A A A 两两独立 (D)234,,A A A 两两独立8.设,,A B C 是三个相互独立的随机事件,且0()1P C ,则下列事件不一定独立有()(A) A B 与C(B) AC 与C (C) A B 与C (D) AB 与C 9.对于任意两个事件A B ,,有( ).A .若AB ,则A B ,一定独立; B .若AB ,则A B ,有可能独立;C .若AB ,则A B ,一定独立;D .若AB ,则A B ,一定不独立.10.设A 与B 为任意两个事件,且()0P AB ,则()A.A 与B 相互独立 B.A BC.AB 未必为 D.()0P A 或者()0P B11. 对于任意两个随机事件A 与B ,其对立的充要条件为()(A) A 与B 至少有一个发生 (B) A 与B 不同时发生(C) A 与B 至少必有一个发生,且A 与B 至少必有一个不发生(D) A 与B 至少必有一个不发生 12. 设,A B 是两个随机事件,且0()1P A ,()0P B ,()()P B A P B A 则必有() (A) ()()P A B P A B(B) ()()P A B P A B (C) ()()()P AB P A P B (D) ()()()P AB P A P B13. 设,A B 是两个相互独立的随机事件,且()0P A ,()0P B ,则必有()P A B ()(A) ()()P A P B(B) 1()()P A P B (C) 1()()P A P B (D) 1()P AB14.设AB ,则下列选项成立的是()A.()1()P A P B B.(|)0P A B C.1P(A|B ) D.0P(AB )15.设A 与B 互不相容 ,则下列选项成立的是() A.()0P AB B.()()()P AB P A P B C.()1()P A P B D.()1P A B16.设A 与B 为任意两个概率不为零的不相容事件,则下列结论正确的是() A.A 与B 不相容 B.A 与B 相容C.()()()P AB P A P B D.()()P A B P A17.设,A B 为任意随机事件,则必有()(A) ()()()P AB P A P B (B) ()()()P AB P A P B(C) ()()()2P A P B P AB (D) ()()()2P A P B P AB 18.设,A B 为任意随机事件,且A B ,0()P B ,则下列选项成立的是()(A) ()()P A P A B(B) ()()P A P A B (C) ()()P A P A B (D) ()()P A P A B19.设事件A 和B 满足()1P B A ,则()(A) A 是必然事件; (B) 事件A 与B 相互独立;(C)A B ; (D)()0P B A20. A 和B 为随机事件,且()0P B ,()1P A B ,则()(A) ()()P A B P A ; (B) ()()P A B P B ;(C) ()()P A B P A ; (D) ()()P A B P B21.设,,A B C 为三个随机事件,()0P ABC ,且0()1P C ,则一定有()(A)()()()()P ABC P A P B P C (B)()()()P A B C P A C P B C(C)()()()()P A B C P A P B P C (D)()()()P A B C P A C P B C22. 已知()0P B ,12A A ,则下列各式中不正确的是() (A)12()0P A A B (B)1212()()() P A A B P A B P A B (C)12()1P A A B (D)12()1 P A A B23.假设事件A 与B 相互独立,且()0.5P B ,()0.3P A B ,则()P B A ()(A) 0.1 (B)0.2 (C)0.3 (D)0.424.某人向同一目标独立重复射击,每次射击命中目标的概率为(01)p p ,则此人第4次射击恰好第二次命中目标的概率为()(A) 23(1)p p (B) 26(1)p p (C) 223(1)p p (D) 226(1)p p25.在圆周上随机挑选5个点,五个点都落在某一侧的半圆内的概率() A.4152 B. 512 C. 412 D.5152 26.在8件产品中由4件次品,从中任取3件,则取到2件次品的概率为() A.14 B. 37 C. 12 D.6727.有编号为1,2,3的三箱同型号零件,已知各箱中所含的一等品的比例为13,12,23,其余的为二等品,现先从三个箱子任取一箱,然后再从该箱中任取一个零件,那么取出的零件为一等品的概率是() A.12 B. 13 C. 23 D.34二.计算题1. 已知事件A ,B 满足()()P AB P AB ,且()P A p ,求()P B .2.设A ,B 为随机事件, 0.7,P A 0.3P A B ,则P AB =?3. 已知事件A ,B 满足()0.6P A ,()0.5P B ,()0.2P AB ,求()P A B ,()P B A . 4.设两个相互独立的事件A 和B 都不发生的概率为19,A 发生B 不发生的概率与B 发生A 不发生的概率相等,则 P A ?5.设10件产品中有4件不合格品,从中任取两件,已知所取两件产品中有一件不合格品,则另一件也是不合格品的概率.6.小明从家到公司上班总共有三条路可以直达(如下图),但是每条路每天拥堵的可能性不太一样,由于路的远近不同,选择每条路的概率如下:123()0.5,()0.3,()0.2P L P L P L每天上述三条路不拥堵的概率分别为:123()0.2,()0.4,()0.7P C P C P C假设遇到拥堵会迟到,(1)小明从Home 到Company 不迟到的概率是多少?(2)到达公司未迟到选择第1条路的概率是多少?7. 已知某酒鬼有90%的日子都会出去喝酒,10%的日子在家休息,出去喝酒他会等概率的随机去固定的三家酒吧,今天警察找了其中两家酒吧都没有找到酒鬼,那么酒鬼在第三家酒吧的概率是多少?8. 已知某医院用某种新药医治流感,对病人进行试验,其中3/4的病人服用此药,1/4的病人不服此药,5天后有70%的病人痊愈. 已知不服药的病人5天后有10%可以自愈. 求(1)该药的治愈率,(2)若某病人5天痊愈,求他是服用此药而痊愈的概率?9.甲袋中5只红球,10只白球. 乙袋中5只白球,10只红球. 今从甲袋中任取一球放入乙袋,然后从乙袋中任取一球放回甲袋. 求再从甲袋中任取一球是红球的概率.10.设平面区域D1是由x=1,y=0,y=x所围成,今从D1随机投入 10个点. 求这10个点中至少有两个点落在由y=x2与y=x所围成的区域D内的概率.11.某彩票每周开奖一次,每次提供百万分之一的中奖机会.若你每周买一张彩票,坚持10年(每年52周),问你从未中奖过的概率是多少?。
概率论习题集与答案
概率论习题一、填空题1、掷21n +次硬币,则出现正面次数多于反面次数的概率是 .2、把10本书任意的放到书架上,求其中指定的三本书放在一起的概率.3、一批产品分一、二、三级,其中一级品是二级品的两倍,三级品是二级品的一半,从这批产品中随机的抽取一件,试求取到二级品的概率 .4、()0.7,()0.3,P A P A B =-= 则().P AB =5、()0.3,()0.4,()0.5,P A P B P AB === 则(|).P B A B ⋃=6、掷两枚硬币,至少出现一个正面的概率为..7、设()0.4,()0.7,P A P A B =⋃= 假设,A B 独立,则().P B =8、设,A B 为两事件,11()(),(|),36P A P B P A B === 则(|).P A B = 9、设123,,A A A 相互独立,且2(),1,2,3,3i P A i == 则123,,A A A 最多出现一个的概率是.10、某人射击三次,其命中率为0.8,则三次中至多命中一次的概率为 .11、一枚硬币独立的投3次,记事件A =“第一次掷出正面〞,事件B =“第二次掷出反面〞,事件C =“正面最多掷出一次〞。
那么(|)P C AB = 。
12、男人中有5%是色盲患者,女人中有0.25%是色盲患者.今从男女人数相等的表示为互不相容事件的和是 。
15、,,A B C 中不多于两个发生可表示为 。
二、选择题1、下面四个结论成立的是〔 〕2、设()0,P AB =则以下说法正确的选项是〔 〕3、掷21n +次硬币,正面次数多于反面次数的概率为〔 〕4、设,A B 为随机事件,()0,(|)1,P B P A B >= 则必有〔 〕5、设A 、B 相互独立,且P (A )>0,P (B )>0,则以下等式成立的是〔 〕.A P (AB )=0.B P (A -B )=P (A )P (B ).C P (A )+P (B )=1 .D P (A |B )=06、设事件A 与B 互不相容,且P (A )>0,P (B ) >0,则有〔 〕.A P (AB )=l.B P (A )=1-P (B ) .C P (AB )=P (A )P (B ) .D P (A ∪B )=17、()0.5P A =,()0.4P B =,()0.6P A B +=,则(|)P A B =〔 〕.A 0.2 .B 0.45 .C 0.6 .D8、同时抛掷3枚均匀的硬币,则恰好有两枚正面朝上的概率为〔 〕.A 0.125 .B 0.25.C 0.375 .D 0.509、设事件,A B 互不相容,()0.4P A =,()0.5P B =,则()P AB =〔 〕.A .B .C .D 110、事件A ,B 相互独立,且()0P A >,()0P B >,则以下等式成立的是〔 〕11、设1)(0<<A P ,1)(0<<B P ,1)|()|(=+B A P B A P ,则〔 〕..A 事件A 与B 互不相容.B 事件A 与B 相互独立 .C 事件A 与B 相互对立 .D 事件A 与B 互不独立12、对于任意两事件A 和B ,)(B A P -=〔 〕.13、设A 、B 是两事件,且P 〔A 〕=0.6,P(B)=0.7则P 〔AB 〕取到最大值时是〔 〕.A 0.6 .B 0.7 .C 1 .D14、某人忘记了 号码的最后一个数字,因而他随意地拨号。
经济数学《概率论与数理统计》习题库(第 1 章)
第 一 章 练习题(A )一.单项选择题 1.设事件A 与B 互斥,P (A )p ,P (B )q ,则)(B A P 等于( ).(A)(1p )q ;(B)pq ;(C)q ;(D)p .==答 C 2.一批产品的废品率为0.01,从中随机抽取10件,则10是2件的概率为( ).(A)2210)0.01(C (B)28210)0.99()(C (C)82810)()(C (D)28810)()(C 件中废品数0.010.010.990.990.01;.;;答 C3.如果A ,B 为任意事件,下列命题正确的是 ( ). (A)如果A ,B 互不相容,则B A ,也互不相容;(C)如果相容,则B A ,也相容;(D)B A AB .(B)如果A ,B 相互独立,则B A ,也相互独立;A ,B答 B4..;;;( ).,3,2,1,,,310必有一发击中恰好击中一发至多击中一发至少击中一发表示那么事件发击中表示事件发打靶(D)(C)(B)(A)A A i i A i “”答 B 5..;;)(;,(B AB A A B P A A B P B A 是必然事件则正确的是满足和假设事件(A)(B)(C)(D)( ).答 D 6..)1(;)1(;)1(;)1(4),10(63395449643964410p p C p p C p p C p p C p p 次成功地概率为才取得进行重复试验每次试验成功率为(A)(B)(C)(D)( ).直到第十次试验,答 B7.设有10个人抓阄抽取两张戏票,则第三个人抓到有戏票的事件的概率等于( ).(A)0;(B)41;(C)81;(D)51.答 D 8.).()()();()()();|()|();|()|(( ).),|()|(,0)(,1)(0,B P A P AB P (D)B P A P AB P (C)B A P B A P (B)B A P B A P (A)A B P A B P B P A P B A 则下列各式中成立的是满足设事件答 C 9..1;1);1)(1)(1(;1( ).,,,,321321321321321321p p p p p p (D)p p p (C)p p p (B)p p p (A)p p p 则加工该种零件的成品率为各道工序的废品率分别为加工一种零件需经过三道独立工序答 B 10.).()()((D));|()|(|})(|{(C));()()((B);(A)( ).),|()|(|){(,0)()()(21212121212121212121B A P B A P B A BA P AB P A B P A A B P A P A P A A P A A B A P B A P B A A P A P A P B P 则已知答 D二.填空题 1.E 0,1,2,3,4,5,E ______________.若随机试验是:在六张卡片上分别中任意依次取出两张,取后不放回,组成一个二位数,空间中基本事件个数是标有数字则从的样本251515C C .答2.将3个球随机地放入4个盒子中,记事件A 表示:一盒中”P (A )等于________________.“三个球恰在同.则答161.3.设A , B 是两个互不相容的随机事件,且知)(,)(B P A P ,则)(B AP _______________.答43.4..____2,5,7.0次的概率为则恰好命中次现独立地重复射击设某人打靶的命中率为1323.0答.5..________5,5,,1010,,2,1个数字全不相同的事件的概率等于则所得数字个先后取出然后放回个数字中任取一个共从.3024.0106789105答6..____|,41)(,31)(,B (A P B P A P B A 则条件概率且互不相容与设事件).94答7.设A , B , C 表示3个随机事件, 试以A , B , C 的运算来表示下列事件:(1)C B A ,,恰有1个发生}表示为___________.(2)C B A ,,不多于1个发生}表示为_________.{{(2)填.C B A CB A CB A A (1)C B A ,,恰有1个发生}是一个较复杂的事件, 它可{A 发生, 而B , C 不发生}, {B 发生, 而A , C 不发生},C 发生, 而A , B 不发生}, 它们可以分别表示为C B A C B A BC A ,,.这3它们的和事件即为所要表(2) 所述事件可以分解为{A 发生, B , C 不发生}, {B 发生, A , C 不发生}, {C 发生, A , B 不发生}, {C B A ,,都不发生}.它们分别表示为C B A C B A C B A ,,与C B A ,它们的和事件为C B A C B A C B A CB A .{, 以分解为解(1)填C B A A ;个事件是互不相容的{示的事件.8.设321,,A A A 是随机试验E 的三个相互独立的事件,且知,)()(,)(321A P A P A P 则事件1A 发生且32,A A 至少有一个发生”_________.“的概率是答)].1)(1(1[)(或9.甲,乙,丙三人中恰好有两人出生在同一月份的概率是________.答4811.10. .________概率的可列可加性是指.)(,,,,,:,.)(,,,,,121121n nn n nn A P A A A A A P A PA A A 则是两两互不相容的随机事件设可知概率的可列可加性是指由概率的定义则是两两互不相容的随机事件设答,三.计算题 1.随机试验E 是连续检验某种产品但检查总次数不超过5次, ( 即检验到第五次品也停止检验).试写出E 的样本空间就停止检验,如果出两个废品,,即使未查出两个废,.解若把检出正品记为0,检出废品记为1,则).0,0,0,0,0(),0,0,0,0,1(),0,0,0,1,0(),0,0,1,0,0(),0,1,0,0,0(),1,0,0,0,0(),1,0,0,0,1(),1,0,0,1,0(),1,0,1,0,0()1,1,0,0,0(),1,0,0,1(),1,0,1,0(),1,1,0,0(),1,0,1(),1,1,0(),1,1U , 2.设随机试验为A 为“三颗骰子中最小的点数为3”;随机事件B 为;“点数之和为n ”,如果A 和B 不相容n 应满足怎样的条件?若随机事件,掷三颗骰子:互则,答如果事件A 出现3,故点数之和至少为9,因此A 与B 不同时出现9即"n8".即每一点数至少为,要使,点数之和应小于,,3.任取一自然数m ,设事件A ={m 为偶数},B ={m 为5的倍},C ={m 20},D ={m10},具体写出下列各式表示的集合:(1)B A;(2)C B ;D A ;C A .数(3)(4)答(1)N nn BA10,30,20,10.(2)20,15,10,5C B .(3)9,7,5,3,1DAD A .(4)11,2,26,24,22nN nn CA.4.某人向一目标连续射击直到击中两次为止,k A 表示事件k 击中目标”(k =),试用k A 表示下列事件:(1)“射击次数为3”记为B (2)“射击次数超过3”记为C .1, 2, 3,;次“第解(1)321321A A A A A B .(2)323121A A A A A A C.5..,,",54321B A i A B i i 表示事件请用个开关闭合表示第的事件电路接通表示用表示电路开关、、、、如果12345"答4325315421A A A A A A A A A A B.6..(2);(1):)5432(,"","",5B B i A B i A i i 表示、、、、用的事件次品不多于三件表示件次品发现有表示用件从一批产品中任意取解(1) A 0A 1A 2A 3(2)3210A A A A 或3210A A A A B或54A A B;.7.).()(,0.3(,0.4)(,0.5)(B A P B A P B A P B P A P 和求若解法一因为3.0)(B A P )()(B P A P ,1.0又),()(A P B A P ,,B A 又无包含关系既不互斥与这说明.而是一般的相容关系).()()()(AB P B P A P B A P 又由)()(AB A P B A P ),()(AB P A P 故得)()()(B A P A P AB P 3.05.0.2.0所以2.04.05.0)(B A P .7.0而)()(B A P B A P )(AB P 2.0.8.0解法二,B A 相容与由于B A 可写为因此,)(),(B A B B A B 互斥与从而))(()(B A B P B A P )()(B A P B P 3.04.0.7.0)(B B A A ,B A AB )()()(B A P AB P A P ),()(B A P AB P 所以)()()(B A P A P AB P 3.05.0,2.0于是)()(B A P B A P )(AB P 2.0.8.0,,由加法公式因此有8.某城市中发行2种报纸A, B. 经调查, 在这2种报纸的订户中, A 报的有45%, 订阅B 报的有35%, 同时订阅2种报纸A,的有10%. 求:(1)只订A 报的概率;(2)只订1种报纸的概率.订阅B解(1)记事件订阅A 报}, B 订阅B 报}, 则{只订阅A 报}可表示为AB A BA . 因,A AB故.0.350.10.45)()()()(AB P A P AB A P B A P (2)只订1种报,)()(A B A B B A 要把AB B A ,分别表示为.,AB BAB A 又这2个事件是互不相容的, 由概率加法公式, 有.0.60.10.350.10.45)()()()()()(AB P B P AB P A P AB B P AB A P p {9.52,个男兵和个女兵排成一列?如两头都是男兵共有多少种排法解2025P 种,5,有5!2400!520.两头一定是男兵的排法为剩下个兵排在中间种排法所求共有种排法10.从103,:(1).(2).(3),.名队员中选出名参加比赛试求共有多少种选法如队长必须被选上有多少种选法如某运动员甲不被考虑选上有多少种选法;1203218910(1)310C 解;362189(2)29C .84321789(3)39C11.1204,,5件,?件产品中有件次品在抽样检查时从中任取有且仅有一件次品的抽法共有多少种其中解5,4!112!4!1164116C ,414C 种,4,1).28640980(11319115!112!3!116144116或C C 抽取件产品其中有件正品的抽法有另一件是次品的抽法有故抽取件正品件次品的抽法共有12.在房间里有10人,分别佩戴着1~10号的纪念章,任意选4录其纪念章的号码,求最大的号码为5的概率.人记解A 表示事件“最大的号码为5”基本事件总数410C A 的基本事件数34C ,P (A )10524.,所包含13.20名运动员中有2名优秀选手,现将运动员平分成两组,2秀选手分在同一组的概率是多少?名优问解A 表事件“2名优秀选手分在同一组”.基本事件总数n1020C .A 所包含的基本事件数r8182C ,P (A )1993892.14.圆形靶由三个环形区域I,和III 组成,在射击一次中,命中第环形区域的概率依次为0.15, 0.23, 0.17 ,试求没有命中靶II I,和III II 子的概率. 解设A 为没有命中靶子事件,A 即为命中事件,321,,A A A 为命中I, II, III 区域的事件,于是.321A A A 55.0.023.015.0()()()(321A P A P A P A P 由此得出45.0)(1)(A P A P ..各15.,,5,4,5每次取一个次球从中取个红球个黑球箱中放了..求黑球和红球都取到至少两次的概率取后放回,,},},3},2BCC B A A C B 且则少取到两次黑球数为黑球数为设解.61.0)()()(55C C C P B P A P 由此可得黑球和红球至16.,4,3,,10卷另一套卷一套其中有两套书本书放在书架上任意将:求事件.两套中至少有一套放在一起的概率解,这是一古典概型概率问题,”3“A 卷一套的放在一表示设,4“B 卷一套的放在一起表示”,”“C 起表示两套各自放在一”“D 两套按卷次顺序排好表示.)()()()(AB P B P A P B A P 212.起17.,11名教师某教研室共有,7人其中男教师,3个为优秀教师现该教研室中要任选.13个女教师的概率个教师中至少有问解法一设;”3“A名优秀教师中有女教师,3,2,1,”3“i i A i名女教师名优秀教师中恰有则,321A A A A,,,321A A A 两两互斥由加法公式有)()()()(321A P A P A P A P 311073431117243112714C C C C C C C C C 0.788.),(1)(A P A P ,”3“A个优秀教师全是男的1)(31137C C A P .0.788解法二18.任意取两个正的真分数,记事件E 是两个分数的和介于21与23之间,求事件E 的概率.解设此二真分数分别为x ,y 则(x ,y )OACB .事件E 对应着图中阴影部分G 的面积.故)(OACB G E P 3181811.方形B y 的一切可能值对应着正19.已知.2.0)|(,3.0)(,1.0)(B A P B P A P 求(1)P (AB );(2)P ( AB );(3)P (B A );(4));(B A P (5)).|(B A P |解06.0B A P B P ABP .34.0AB P B P AP B AP .6.0AB P .04.0AB P A P AB A P B A P .66.01B A P BAP BA P .35337.066.0BA P .20.甲,乙两个盒子里各装有10只螺钉,是次品,其余均为正品,现从甲盒中任取二只螺钉放入乙盒中,从乙盒中取出两只,的概率是多少?每个盒子的螺钉中各有一只再一只次品问从乙盒中取出的恰好是一只正品,答)2,(i A i “放入乙盒的螺钉中有i 只正品”.B :“乙盒中出的二只螺钉是一只次品,一只正品”.511019111A P ,3310212110121C C C A B P .4210292C C A P ,61212111112C C C A B P .由全概率公式i i A B P A P BP 2194.03216522106154331051.21.,1,2,5求第三次才打开房门的概率.开房门从中随机地取把可以打开房门其中有把钥匙某人有把试 2.0324253)()()()(,).3,2,1(""213121321A A A P A A P A P A A A P i i A i 所求概率为于是次能打开房门第设解.22..(2);(1),3.0,.2.0,1.0.,,当乙河流泛滥是甲河流泛滥的概率该时期内这个地区遭受水灾的概率求乙河流泛滥的概率为当甲河流泛滥时乙河流泛滥的概设某时期内甲河流泛滥地区即遭受水灾当任一河流泛滥时假设某地区位于甲、乙二河流的汇合处率为该15.02.0.01.0)()()()((2)27.03.01.02.01.0)()()()()()()()(,,,(1),B P A B P A P B A P A B P A P B P A P AB P B P A P B AP B A B A 所求概率为于是该地区遭受水灾可表示为由题意乙河流泛滥甲河流泛滥设解..“”“”.23.)?每个字母的工作是相互独立的的概率是多少(问输入的是已知输出为其输入概率分别为之一输入信道,今将字母串输出为其他一字母的概率都是输出原字母的概率为,三个字母之一输入信道将AAAA ABCA p p p p p p CCCC BBBB AAAA aa C B A ,),(,,,,.21,,,21321而设信道传输ap a ap ap B P B A P B P B A P B P B A P B P B A P A B P ABCA A CCCC BBBB AAAA B B B 1)13(22)()|()()|()()|()()|()|(,,,11321133221111131的事件,由页贝斯公式为输出的事件,,分别为输入解 2设事件24.在18盒同类电子元件中有5盒是甲厂生产的,7盒是乙厂生产的,4盒是丙厂生产的,其余是丁厂生产的,0.8,0.7,0.6,0.5,现任意从某一盒中任取一个元件,现是不合格品,次为该四厂的产品合格品率依经测试发试问该盒产品属于哪一个厂生产的可能性最大?答)4,3,2,(i A i “所取一盒产品属于甲,乙,丙,丁厂生产”B :“所取一个元件为不合格品”,则1851A P ,1872A P ,1843A P ,1824A P .2.1A B P ,3.2A B P ,4.A B P ,5.A B P .由全概率公式ii A B P A P BP 418057.由贝叶斯公式5710,5716,5721,57104321B A P BA PB A P B A P 故该盒产品由乙厂生产的可能性最大.,.25..,)2(;)1(.一半,,%25.0%5求该人是男人的概率若已知此人不是色盲求此人是色盲的概率现随机挑选一人假设男人和女人各占女人是色盲患者的男人和已知21)(,21)()1(,,A P A P B A A 由题知出的是色盲选出的是女人则选出的是男人设解4878.097375.021)05.01()()2(02625.0)(0025.(,05.)(B A P B P A B P A B P 由逆概率公式知由全概率公式知)(A P )(A B P )(A P )(A B P )(A B P )(A P )(B P .“”“”“”.选,26.?,,.6,6,4的为要我们在随机地选出一名学生时名二年级女名一年级女生名一年级男生一个教室里有教室里还应有多少名二年级男生生性别与年级是相互独立.4,4.164104),()|(,,.1041610)|()()(.164)(,1610)(}.},{.名二年级男生即还应有解之得即必有独立欲则任选一名学生为男生任选一名学生为一年级个二年级男生设还应有解NNNB P A B P B A N A B P A P AB P NNB P N A P B A N .4,4.164104),()|(,,.104)|()()(.164)(,1610)(}.},{.名二年级男生即还应有解之得即必有独立欲则任选一名学生为男生任选一名学生为一年级个二年级男生设还应有解NNNB P A B P B A A B P A P AB P NNB P N A P B A N27.(0.70.9,,只要有一架飞机投中目标即完成使使完成使命有较大的概率、、同时投弹员驾驶员必须要找到目标轰炸机要完成它的使命.必须要投中目标设驾驶员甲、乙找到目标的概率分别为;0.8投弹员丙、丁在找到目标的条件下投中的概率分别为,.0.6问甲现在要配备两组轰炸人员丁怎样配合才能、丙乙、、.?)求此概率是多少命解,1为甲找到目标设A ,1为丙投中目标B ,2为乙找到目标A (1),甲丙搭配乙丁搭配)(W P )()()(两机均命中乙丁机命中甲丙机命中P P P )()()()()()()()(222111222111A B P A P A B P A P A B P A P A B P A P ||||6.08.07.09.06.08.07.09.08076.0:注意,”,标丙投中目标而且乙找到目.丁投中目标(2),乙丙搭配甲丁搭配)(W P )()()(两机均命中乙丙机命中甲丁机命中P P P 7.08.06.09.07.08.06.09.07976.0,所以甲丙搭配,乙丁搭配好.8076.0此时命中率为,2为丁投中目标B .为完成任务W .两机均命中“指甲找到目标.28.设有二类各三个相同的元件A 和把成一组,再把这三组并联成一个系统,p ,又各元件损坏与否是相互独立的,求此系统能正常工作的概率.,A ,A B ,B ,B ,B A ,0.8)B (p ,0.7)A (两两串联设每个元件正常工作的概率解)]()(1[B p A p P 3)8.07.01()915.0(44.013.29..,5.0,6.0,试求敌机被射中的概率乙炮的命中率为已知甲炮的命中率为甲乙二门炮同时独立地向一敌机开炮、)(,:5.06.0)(()(,:}.P P C P B A P A P B AP C P B A B A C得相互独立和由第二种方法相互独立和由第一种方法被击中甲炮射中敌机令事件解.8.02.05.04.)()()()(,.8.03.01.5.06.0)()()()()()(),},},B P A P B A P C B A B P A P B AB P B P A P C B 则有也相互独立和则有乙炮射中敌机敌机30.实验室器皿中产生甲类细菌与乙类细菌的机会是相同的,若某次发现产生了20个细菌,求甲,乙二类细菌各占一半的概率.解PC 2021!10!!20)1762.0(21113171918.31.甲、,投篮命中率分别为0.8和0.7,每人投篮3次,求两人进球相等的概率.乙两篮球运动员解甲投篮命中概率p 不中概率q 0.2乙投篮命中概率p 10.7,不中概率q 1甲在 3次中m 次概率mm mq p C m P 31133)(mm mq p C m P 32233)(则P )3()3()2()2()1()1()0()0(33333333P P P P P P P P 22333.07.032.08.033.02.033227.08.03.07.032.08.03 0.363乙在n 3次中m 次概率;,.32.,,,,.4,3,2,144321它们的可靠性分别为个独立工作的元件设有p p p p 将它们按右图的方式连接),(称为并串.试求这个系统的可靠性1234联系统解,5,4,3,2,1,,,,工作正常分别表示元件设事件E D C B A }.系统工作正常G .对图中的串联系统AD ABC G)()(AD ABC P G P )()()(ABCD P AD P ABC P )()()()()()()()()(D P C P B P A P D P A P C P B P A P .432141321p p p p p p p p p33.一袋中装有1N 个黑球及1个白球. 每次从袋中随机地摸出1球, 并换入1个黑球, 如此进行下去. 求:(1)第k 次摸球时, 摸到白球的概率;(2)第k 次摸球时, 摸到黑球的概率.解(1)因为袋中只有1只白球, 而每次摸球总是换入黑球, 故k 次摸球摸到白球, 则前面)1(k 次一定不能摸到白球, 也就, 前)1(k 次都摸到黑球.在前)1(k 次摸到黑球时, 皆放, )1(k 次中, 摸到黑球的概率皆为.111NN N 试验是独立的, 故.1111Np (2)它为(1)中事件的对立事件, 故故在这.112Np 1第是说入黑球解(1)因为袋中只有1只白球, 而每次摸球总是换入黑球, 故k 次摸球摸到白球, 则前面)1(k 次一定不能摸到白球, 也就, 前)1(k 次都摸到黑球.在前)1(k 次摸到黑球时, 皆放, )1(k 次中, 摸到黑球的概率皆为.111NN N 试验是独立的,故.1111Np (2)它为(1)中事件的对立事件, 故故在这.112Np 1第是说入黑球34..,2.0,2.0,3.0,,.2C B A C B A 求电路发生间断的概率损坏的概率分别是设电池串联而成及个并联的电池与电路由电池 328.0.02.03.02.02.03.0)()()()()()()]([)()(.,,,3,,C P B P A P C P B P A P BC AD P BC A D C B A C B A 于是则生间断损坏个电池分别表示设解.表示电路发,35.,,85.0,8.0,9.0,.1,3因无人照管而停工的概率.求在这段时间内不需要照管的概率依次是某段时间个人照管由部机床独立地工作甲、乙、丙它们机床 059.0)15.02.01.0(215.02.015.01.02.01.0)()()(2)()()()()()()(2)()()()(,.,,,,C P B P A P C P B P C P A P B P A P ABC P BC P AC P AB P BC ACABP BC AC AB C B A 所求概率为于是事件可表示为因无人照管而停工即有两台或两台以上机床需要照管照管分别表示在这段时间内机床甲、乙、丙需要工人设解.此36..,..1.0,8.0,.3.0,4.0,3.0.,,,的概率求被传送的字符为字母为若接收到的假定前后字母是否被歪曲互不影响的概率为而接收到其他两个字母每个字母被正确接收的概率为扰由于通道噪声的干定传送这三组字符的概率分别为三者之一传送的字符为某通信渠道中BBBB ABBC CCCC BBBB AAAA 假 .842.0)()|()()|(.00304.0)|()()(.0008.0)|(,0064.0)|(,0008.0)|(,3.0)(,4.0)(,3.0)(,.,,,,2223321321321A P B A P B P A B P B A P B P A P B A P B A P B A P B P B P B P ABBC A CCCC BBBB AAAA B B Bi i 于是由全概率公式则的事件表示接收到的字符为事件分别表示传送的字符为设解的37..,,,出现偶数次的概率事件次独立实验中求在出现的概率为事件在伯努利实验中A n p A 解事件A 出现偶数次的概率为a22222200mqp C q p C q p C a mnm m n n n n n 12121233311qp qp C pq C b m n m m n nn nn 而a b p q )a b (q p )n 2p )n解得n p a)21(2121事件A 出现奇数次的概率为b (1,.,.38..(2);(1),3,8.07.02甲比乙进球数多的概率两人进球数相等的概率求次每人投篮和人投篮命中率分别为甲、乙343.0)7.0()(411.0.07.0)(189.03.07.0)(027.03.0)(,,,,3,3332232213130A P C A P C A P A P C i B i A i i 甲比乙进球数多甲、乙进球数相等个球乙投中个球投中甲设重伯努利概型分别为次设甲、乙个投篮解21476.0)()()()()()()()()()()()()()((2)36332.0)()()()()()()()()()()()(()1(512.0)(;384.0)(096.0)(;008.0)(23130312020123130312020133221100332211003210B P A P B P A P B P A P B P A P B P A P B P A P B A B A B A B A B A B A P D P B P A P B P A P B P A P B P A P B A P B A P B A P B A P C P B P B P B P B P 同理可得.“”“”“”“”.,,,.;.;39.某车间中, 一位工人操作甲、乙2台没有联系的自动车床. 由积累的数据知道, 这2台车床在某段时间里停车的概率分别为0.15及0.20. 求这段时间里至少有1台车床不停车的概率.解法一设A 甲车床不停车}, B {乙车床不停车}.则A , B 独立, 且.0.8)(,0.85)(B P A P 所求概率为.0.970.80.850.80.85)()()()()()()()(B P A P B P A P AB P B P A P B A P p解法二{2台都停车}.B A 因为B A ,相互独立, 因此2台车床都停车的概率为.0.030.200.15)()()(B P A P B A P 从而,至少有1台不停车的概率为.0.970.03p 40..,:不相互独立但两两独立,举例说明C B A C B A ,,,解,一个均匀正四面体,其第一面染成白色,第二面染成蓝色.白、蓝色,一次四面体.蓝色分别表示出现红、、、以C B A 白、,有两个面有红色故;)(A P 同理)()(C P B P .1/2,因为只有一个面含有两种颜色所以)()(AC P AB P )(BC P ,1/4因而),()()(B P A P AB P ),()()(C P A P AC P ),()()(C P B P BC P .两两独立、、故C B A 但是)(ABC P )()()(C P B P A P ,1/8.不是相互独立、、故C B A ,第三面染成红色,3块第四面分成分别染成红、投因四面体四.综合与证明题 1.设E 、F 、G 是三个随机事件各式(1));()(F E F E (2));()()(F E F E F E (3)).()(G F F E试利用事件的运算性质化简下列,:解(1)原式E F F F E F E E E .(2)原式.E F FE F F E F E F E (3)原式.G EF FFGEFE2.,,,21A A A 发生则同时发生已知事件.1)()()(21A P A P AP 证明:1)()()(1)()()()()()()()(,21212121212121A P A P A P A P A P A A P A P A P A A P A A P A P A A A 所以又于是由题意证,3.).()(),3,2,1(,3321321A A A A A A i i A i 次射击击中靶子”表示“第用次设某人向靶子射击试用语言描述事件解.)()(321321表示恰好连续两次击中靶子A A A A A A4..2)()()()(),3,2,(,,3321321A P A P A P A P i A A A A A i证明:都满足个事件已知2)()()()(1)()()()()()(1)()()()()()()(,,,),3,2,(32121212121321321321321321A P A P A P A P A P A P A A P A P A P A A P A P A A PA AA P A P A A P A A A P A P A A A A i A A i 所以又于是所以因为证.5.盒中有9个白球,1个红球,从盒中一个一个地取球(取出的球不再放回),证明:第k 次取得红球的概率为101.证k A “第k 次取得红球”(1k 10)由题设条件知k kkA A A A A 121kkk A A A A P 12111kk A A A P A P P 291298109k 101..,6.设0P (C )试证对任意的随机事件A ,恒有:P (A C ).1)|(C A P 1,|证)()()()|()|(C P C A P AC P C A P C A P )()(C P C A AC P .1)()(C P C P7.)()((,,,1)(0212121B A P B A P B A A P A A B P 证明互不相容若事件设.)()()()()()()()()(212121B P B A P B P B A P B P B A B A B P B A B A P 有因为证)(21B A A P )()(21B A P B A P ).()(21B A P B A8..,独立与证明独立与设事件B A B A .)()()()()()(1)()()()(1)](1)][(1[)()()(也独立与因此得由证B A B A P B AP B AP AB P B P A P B P A P B P A P B P A P B P A P AB P )()(B P A P9..,:,,,独立肯定与证明三个事件相互独立设C AB B A C B A 相互证(1))(])[(BC AC P C B A P )()()(ABC P BC P AC P )()()()()()()(C P B P A P C P B P C P A P )]()()()[(AB P B P A P C P )()(B A P C P .相互独立与故C B A (2))(])[(ABC P C AB P )()()(C P B P A P )()]()(C P B P A P )()(C P AB P .相互独立与故C AB10.设P (A )P (B )研究事件A ,B 相互独立与A ,B 同时成立.0,0,互斥能否解A ,B 相互独立,则P (AB )P (A )P (B ).若A ,B 互斥,则0.由于假设故两者不能同时成立.P (AB )P (A )P (B )0,0,练习题(B )一.单项选择题 1.设A ,B 为两个不同事件,下列等式中有哪个是正确的( ).(A)B A B A ;(B)B A B A ;(C) B ABA;(D)AB BABA.答(B).2..3(D);(C);(B);(A)( ).,3,2,1,0,,3321发击中必然击中至少有一发击中全部击中表示那么事件发击中表示事件发打靶A A A Aii A i “”答(B).3.设c B P b A P a B A P )(,)(,)(,则)(B A P 等于( ).(A);)(c c a (B);a c b (C);c b a (D).)1(c b答(B).设A ,B 相互独立,P (A ),P (B ,则( ).)(B AP (A)0.45;(B)0.95;(C)0.6;(D)0.55.0.8答(B).5.).()();()(;;( ).,1)(,0)(A P AB P (D)B p AB p (C)A B (B)A (A)A B P A P 为必然事件则有设答(D).6.).()()();()();()();()(( ).)(,AB P B P A P (D)B P A P (C)AB P A P (B)B P A P (A)B A P B A 、对于任意两个事件答(B).7.).()()();()()();()()();()()(,AB P B P A P A P AB P B P AB P B P A P A P B P A B P B A则已知(A)(B)(C)(D)( ).A.答8..)(;)(;0)();()(,0)(,0)(,2,AB P B A P B A P B P A P B P A P B A 成立.则个互不相容的事件是设(A)(B)(C)(D)( )一定答B.9.).()()(;;;,8.(,7.0)(,8.(B P A P B AP A BB A B A B A P B P A P 互斥与独立与则下列结论正确的是设(A)(B)(C)(D)( ).A.答10..)(;)(;0)();()(,0)(,0)(,,B A P B A P B A P B P A P B P A P B A 则下列式子不正确的是( ).是两个对立事件设(A)(B)(C)(D)D.答).()();()((;;,0)(,0)(,A P B A P B P A AB P B A B P A P B A 相容不相容与列结论中肯定正确的是并且是任意两个不相容的事件和设B A 与(A)(B)(C)(D)( ).则下D.答12..)((,)(B P A P AB AB B A AB P B A 或未必是不可能事件;是不可能事件;不相容(相斥);和则同时出现的概率和若两事件(A)(B)(C)(D)( ).答C.13..,,,(D);,,,(C);,,,(B);,,,(A)( ).,,也互为对立则互为对立如果不独立则相容如果相互独立则互不相容如果也互不相容则互不相容如果下列命题中正确的是对事件B A B A B A B A B A B A B A BA B AD.答14.下列结论中,错误的是(A)若P (A 则A 为不可能事件;(B)P (A )P (B )(B A P ;(C)P (B A P (B ) P (A );(D)P (BA P (B ) P (BA ).),( ).A.答15..;;)(;,3,,C B AC AC B A C A B A A C B A 互斥的事件是与事件个事件是设(A)(B)(C)(D)( ).D.答16..])[(;)(;2)(;)(( ).,,2B A B B A A (D)AB A B A A (C)B A BB A (B)A B B A (A)B A 则以下等式正确的是是任意两个随机事件设D.答17.).|()|()|((D));|()()|()()((C));|()|()((B));()())(((A)( ).).|()|()|(,0)(,,,C B P C A P C B A P B C P B P A C P A P C P C B P C A P B A P BC P AC P B A C P C B P C A P C B A P C P C B A 则下列不等式成立的是且若为随机事件设A.答18.相互独立与事件互不对立与事件互相对立与事件互不相容与事件则设B A (D)B A B A (B)B A B A P B A P B P A P (C)(A),|()|(,1)(0,1)(0( ).;;;.D.答19..;;;.()(()((D)(C)(B)(A)B A P A B P B P A P 则设( )A.答20..);1(;;(,)(,)(,(a b b a b c b a B A P c B A P b B P A P 则设(A)(B)(C)(D)答B.21.).|()()|()()();|()|()();()()();|()|(]|)[(),|()|(]|)[(,1)(022112121212121212121A B P A P A B P A B P B A P B A P A A P B A P B A P B A B A P B A P B A P B A A P B A P B A P B A A P B P 则下列选项成立的是且已知(A)(B)(C)(D)( ).答B.22.从1, 2, 3, 4, 5五个数码中, 任取2个不同数码排成2位数, 则所得位数为偶数的概率为( ).(A) 0.4; (B) 0.3; (C) 0.6; (D) 0.5.A.答23.设袋中有4只白球,只黑球. 从袋中任取2只球(不放回抽样), 2只白球的概率是( ).(A)53;51;52;54.2则取得(B)(C)(D)答C.24.甲再能活20年的概率为0.7, 乙再能活20年的概率为0.9. 则二人均无法活20年的概率是( ).(A) 0.63; (B) 0.03; (C) 0.27; (D) 0.07.答B.25.每次试验的成功率为p(0p 1),进行重复独立试验,直到第10次试验才取得4次试验成功的概率为( ).(A)64410)1(p p C ;(B)6439)1(p p C ;(C)6449)1(p p C ;(D)6339)1(p p C .答B.26..1;;1;,)(,)(,p (D)p (C)q (B)q (A)B P q B P p A P B A 则互斥、设随机事件D.答27.在编号为n ,,2,1的n 张赠券中采用不放回方式抽签, 则在第k 次)(n k 抽签时抽到1号赠券的概率是( ).(A)k n 1;11k n ;n 1;11k n .(B)(C)(D) 答C.二.填空题 1._________.随机试验是对同一目标连续独立射击次,观察中靶的次数,的样本空间E 10E U则{ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10}.答设A 表示事件B 表示事件子出现2点”A 与B 的关系是 ______.“掷一颗骰子出现偶数点”,“掷一颗骰则,答A B .3.如果,A B A 且AB A ,则事件A 与B 满足的关系是_______.答A B .4.._____________,,15A ,i AA A A i i 则表示若用的事件子的点数和大于掷三个骰表示的事件点掷一个骰子恰好出现表示设“”“”答A 4A 6A 6A 5A 6A 6A 6A 6A 6A 5A 5A 6.5.从含有6个红球,4个白球和5个蓝球的盒子里随机地摸取一个球,则取到的是红球的事件的概率等于 _____________.答52.6.一只袋中有4只白球和2只黑球,另一只袋中有3只白球和5黑球,的概率等于___________.只:“两只球都是黑球”则事件如果从每只袋中各摸一只球,答245.7.一个盒中有8只红球,3只白球,9只蓝球,如果随机地无放回地3只球,则摸到的没有一只是白球的事件的概率等于________.摸答5734.8.设A ,B 为两个随机事件,且P (B )则由乘法公式知P (AB )__________.0,答).|()(B A P B P9.已知P (A )1,41A B P ,则B A P _______________.答83.设n 个事件n A A A ,,,21互相独立,且),,2,(,{n k p A P k ,则这n 个事件恰好有一件不发生的概率是________________.答.)1(1np p n11.某产品的次品率为0.002,现对其进行重复抽样检查,共取200样品,则查得其中有4件次品的概率p 的计算式是.___________件答19644200)998.0()002.0(C .12.独立重复地掷一枚匀质硬币三次,A 事件,则P (A ) ________.表示至少有一次出现正面的答87.13.._______)(,3.0)(,3.0)(,4.0)(:B AP B A P B P A P 则已知答0.6.14.._____1,2,3,2,4个黑球的概率是白球则取得个球从中随机地取出个黑球个白球口袋中有个6.0答.15..________)(,31)(,41)(,,B A P B P A P B A 则且是两个相互独立的随机事件设.61答16..__________50,9,,1,0是的概率或则这三个数中不包含中任取三个数字从 .1514答17.._____,,3.0)(,8.()(都不发生的概率为则已知B A AB P B P A P.5.0答18..__________,,,},.,}},},:,,,321321BB A A A B A A A 则有表示若用目标被摧毁设则该目标被摧毁又若目标至少被击中两次丙击中目标乙击中目标甲击中目标令丙三个各自向同一目标射击一次乙甲..,.321321321321133221321321321321321133221A A A A A A A A A A A A A A A A A A B A A A B A A A A A A A A A A A A A A A A A A 或者因此至少有两发生等价于随机事件可知随机事件由题意或者答个发生,,19.._________)(,3.0)(,4.0)(,,B A P B P A P B A 则且互不相容设两个随机事件.3.03.04.0)(,0(,),()()()()()(.3.0B A P AB P B A AB P B P A P B AP B AP B A P 故所以互不相容与因为答20.从1,2,…,10共十个数字中任取一个5字__________.先后取出然后放回,,个数则所得个数字全不相同的事件的概率等于,答.3024.0106789421.9,,3,2,1,0____________.设由十个数字的任意七个数字都可以组成电话号码,则所有可能组成的电话号码的总数是....107个答22..________,5,至少发生一次的概率是次重复独立试验则在发生的概率为设在一次试验中事件A p A 中答5)1(1p .23.._____)(,,3.0)(,1.0)(则互不相容与且设B P B A B A P A P2.0答.24._________.)(,21)(,41(,31)(则设B AP B A P B P A P1211答.25.B P p A P B A AB P B A __________.(,)(),((,则且两个事件满足已知p 1.答26.______.)(,3.0)(,2.0(,则已知事件A B P B P A P B A1.0答.27..__,则有三个空盒的概率为把四个球随机地投入四个盒子中去.641答28.掷一对骰子, 则2个骰子点数总和是8的概率是________.此题是古典概型, 按古典概率定义求. 掷2个骰子, 情况总,3666即.36N出现点数总和是8的情况为:{2, 6}, {3, 5}, {4, 4}, {5, 3}, {6, 2}而总和是8的情况数,5M故所求概率.365N Mp 解填.365数是29..__________)(,7.0)(,3.0)(,B P B AP A P B A 则是相互独立的随机事件与设.747.04.0)(,),(3.0)(3.07.0,7.0(,3.0())()()()()()()()(.74B P B P B P B A P A P B A B P A P B P A P AB P B P A P B A P 得解方程得代入将是相互独立的随机事件与答(.30.._________)(,)()()(:B P p A P B A P AB P B A 则且适合、设随机事件答p 1.31._______.,,03.0(02.)(,01.0)(,,求他至少有一张奖券中奖的概率为奖是相互独立的且各奖券是否中和次为三种不同种类的奖券各一张某人买了C P B P A P C B A 已知中奖概率依.0589.0答.32.._______)(,5.0)(,4.0(,7.)(,,,,,C AB P AB P C A P A P C B C A C B A 则为三个随机事件设.2.0答33..__________)(72,2,52p 列式的概率数为张不同花且最大点则恰取到张随机抽取张扑克牌中在.171]1[252161224C C C C 答34..__________,5),(15,,2,1则甲取到的数大于乙取到的数的概率为倍数知甲取到的数是不重复的十五个数字中各取一数甲、乙二人从已故且甲取到的数大于乙取到的数的倍数甲取到的数是的倍数甲取到的数是令事件个样本点样本空间答},,5{};5},2101415)}14,15(,),2,5(),1,5(,),3,1(),2,1.149AB A S.1494227)|(,1494227210/42210/27)()()|(}271494},42143A B P A A P AB P A B P AB A 则得作为样本空间或将于是个样本点个样本点,,三.计算题 1.用5,4,3,2,1,0,个六位数?六个数码排成数字不重复的六位数共有多少多少个偶数其中有多少个奇数,解600!55288!443312288600)312!442!5(或六位数总数奇数个数偶数个数;;.2.设D C B A ,,,,(A BC )[(A C B )D ]化简下式为任意集合. 解因(A CB )D (ABC )D A B C 故(A BC )[(A CB )D ]A BC ,.3.E a ,b ,c 1,2,3E U .随机试验是三只球三只球任意放入三只盒子中去的情况的样本空间的三个盒子有编号为,,:将观察放球使每只盒子放一只球,,写出,则U 解用序组表示基本事件第一只盒子放球第三只盒子放入a ,b ,c )(第二只盒子放入球a ,b ,c .球a ,b ,c )(, a ,c ,b )(, b ,a ,c )(, b ,c ,a )(, c ,a ,b )(, c ,b ,a )(}.:4.设随机试验为A 为“三颗骰子中最小的点数为3”;随机事件B 为;“点数之和为n ”,如果A 和B 不相容n 应满足怎样的条件若随机事件,掷三颗骰子:互则,答如果事件A 出现3,故点数之和至少为9,因此A 与B 不同时出现9即"n8".即每一点数至少为,要使,点数之和应小于,,5.从自然数1至10中任取一数,设A 表示事件“取得的数是偶数”B 表示事件“取得的数是奇数”;C 表示事件“取得的数小于5”,试问:(1)B A;AB ;C ;C B 分别表示什么事件?;(2)(3)(4)答(1)A B 表示事件“必然事件”.(2) AB 表示事件“不可能事件”.(3)C 表示事件“取得的数大于或等于5”.(4)C B表示事件“取得的数是6、8、10、”.6..,"","",654321,B B A i A B i i 及表示事件请用个开关闭合第表示电路接通表示用表示开关、、、、、设如果123456解(1) 6543231A A A A A A A B (2) ()()()6543231A A A A A A A B或()[]()654321A A A A A A .7..),3,2,1(,3321A A A i i A i 次射击击中靶子”表示“第用次设某人向靶子射击试用语言描述事件解.3321次射击至少一次没击中靶子表示A A A8.设随机试验E 是从包含两件次品21,a a 和二件正品21,b b 产品中依次取出一件(每次取后放回),连续取2次E 空间和下列事件的集合表示( 1 )“恰好取到k 件正品”记为);2,1(kA k ( 2 )“两次取出的是同一件产品”记为B ;( 3 )“第一次取到的是第一件正品”记为C .写出的四件,的样本:解}.,,,}.,,,{}.,,,,,,,{}.,,,,,,,,,,,,,,,{112111212211122122221121122122111122112221121112312212122221112111b b a b a b b b C b b b b b b b b A a b a b a b a b b a b a b a b a A b b b b a b a b a b a b b b b b b a b a a a a a b a b a a a a a U9..,20,,,,A BC B A y x 事件之差为零”设事件分别表示第一、二两颗骰子出现的点数、同时掷两颗骰子”为“点数之积不超过表示“两颗骰子出现点数之和为奇数”用样本点的集合表示表示“点数解试验的样本空间}6,,2,;6,,2,),y x y x |S )};5,6(),3,6(),1,6(),6,5(),4,5(),2,5(),5,4(),3,4(),1,4(),6,3(),4,3(),2,3(),5,2(),3,2(),1,2(),6,1(),4,1(),2,1A 事件)};6,6(),5,5(),4,4(),3,3(),2,2(),1,1B 事件)}.3,6(),2,6(),1,6(),4,5(),3,5(),2,5(),1,5(),5,4(,),2,3(),6,2(,),2,2(),1,2(),6,1(,),2,1(),1,1C 事件),1,3(,),2,4(),1,4(),6,3( .6,6(),5,5(),4,4(),3,3(),2,2(),1,1{(B AB 从而10.。
概率论 数学题集
概率论数学题集概率论数学题集概率论数学题集概率论题集一1.甲、乙、丙三人各向目标射击一发子弹,以a、b、c分别表示甲、乙、丙命中目标,试用a、b、c的运算关系表示下列事件:a1:“至少存有一人击中目标”:“恰有一人命中目标”:a2:“恰存有两人击中目标”:a3:“最多有一人命中目标”:a4:“三人均击中目标”:a5:a6:“三人均未命中目标”:2.存有三个子女的家庭,设立每个孩子就是男就是女的概率成正比,则至少存有一个男孩的概率就是多少?3(摸求问题)设合中存有3个白球,2个红球,现从合中任扣2个球,求得至一红一白的概率。
4(分球问题)将3个球随机的放入3个盒子中去,问:(1)每盒恰存有一球的概率就是多少?(2)空一盒的概率是多少?5(分组问题)30名学生中存有3名运动员,将这30名学生平均值分为3组与,谋:(1)每组有一名运动员的概率;(2)3名运动员分散在一个组的概率。
6(随机取数问题)从1到200这200个自然数中任取一个;(1)求得至的数能被6相乘的概率;(2)求取到的数能被8整除的概率;(3)求得至的数既能够被6相乘也能够被8相乘的概率.7某市有甲,乙,丙三种报纸,订每种报纸的人数分别占全体市民人数的30%,其中有10%的人同时定甲,乙两种报纸.没有人同时订甲乙或乙丙报纸.求从该市任选一人,他至少订有一种报纸的概率.8在110这10个自然数中任挑一数,谋(1)取到的数能被2或3整除的概率,(2)算出的数即为无法被2也无法被3相乘的概率,(3)取到的数能被2整除而不能被3整除的概率。
9盒中存有3个红球,2个白球,每次从袋中余因子一只,观测其颜色后送回,并再放进一只与所出之球颜色相同的球,若从合中已连续取球4次,试求第1、2次获得白球、第3、4次获得红球的概率。
10市场上有甲、乙、丙三家工厂生产的同一品牌产品,已知三家工厂的市场占有率分别为1/4、1/4、1/2,且三家工厂的次品率分别为2%、1%、3%,试求市场上该品牌产品的次品率。
概率论试题含答案)
第一部分 基本题一、选择题(共6小题,每小题5分,满分30分。
在每小题给出的四个选项中,只有一个是符合题目要求的,把所选项前的字母填在题后的括号内)(每道选择题选对满分,选错0分)1. 事件表达式A B 的意思是 ( ) (A) 事件A 与事件B 同时发生 (B) 事件A 发生但事件B 不发生 (C) 事件B 发生但事件A 不发生 (D) 事件A 与事件B 至少有一件发生 答:选D ,根据A B 的定义可知。
2. 假设事件A 与事件B 互为对立,则事件A B ( ) (A) 是不可能事件 (B) 是可能事件 (C) 发生的概率为1 (D) 是必然事件 答:选A ,这是因为对立事件的积事件是不可能事件。
3. 已知随机变量X ,Y 相互独立,且都服从标准正态分布,则X 2+Y 2服从 ( ) (A) 自由度为1的χ2分布 (B) 自由度为2的χ2分布 (C) 自由度为1的F 分布 (D) 自由度为2的F 分布答:选B ,因为n 个相互独立的服从标准正态分布的随机变量的平方和服从自由度为n 的χ2分布。
4. 已知随机变量X ,Y 相互独立,X ~N (2,4),Y ~N (-2,1), 则( ) (A) X +Y ~P (4) (B) X +Y ~U (2,4) (C) X +Y ~N (0,5) (D) X +Y ~N (0,3) 答:选C ,因为相互独立的正态变量相加仍然服从正态分布,而E (X +Y )=E (X )+E (Y )=2-2=0, D (X +Y )=D (X )+D (Y )=4+1=5, 所以有X +Y ~N (0,5)。
5. 样本(X 1,X 2,X 3)取自总体X ,E (X )=μ, D (X )=σ2, 则有( ) (A) X 1+X 2+X 3是μ的无偏估计(B)1233X X X ++是μ的无偏估计(C) 22X 是σ2的无偏估计(D) 21233X X X ++⎛⎫ ⎪⎝⎭是σ2的无偏估计答:选B ,因为样本均值是总体期望的无偏估计,其它三项都不成立。
《概率论》试卷汇总
《概率论与数理统计》1一、填空题:(每题2分,共20分)1、设事件A 、B 相互独立,且()0.7,()0.4P A B P A ⋃==,则)(B P = .2、袋中有5只球(其中2只白球、3只黑球),从中不放回地每次随机取一只球,则第二次取到白球的概率为 .3、若X 服从泊松分布(3)π,则()D X =_ __.4、若随机变量X 的分布函数为0,1,()ln ,1,1,.x F x x x e x e <⎧⎪=≤<⎨⎪≥⎩则X 的概率密度为__ .5、设随机变量X 的分布律为 1{0}{1}2P X P X ====, 随机变量Y 与X 相互独立且同分布,则随机变量max{,}Z X Y =的分布律为 。
6、设随机变量,X Y 的期望值分别为()1,()3,E X E Y ==则(231)E X Y -+= .7、在冬季供暖季节,住房温度X 是随机变量,已知平均温度为20C ,标准差2C ,试用切比雪夫不等式估计概率:{204}P X -<≥ .8、设1234,,,X X X X 为取自正态总体(0,1)N 的样本,令221234()()N X X X X =-+-,则当c =___ _时,cN 服从2χ分布.9、设总体X 服从区间[]0,θ上的均匀分布,从中取得样本12,,,n X X X ,则参数θ的矩估计量为__ __.10、设某种保险丝熔化时间~(,0.36)X N μ(单位:秒),取16=n 的样本,得样本均值为12,x = 则μ的置信度为95%的置信区间是 .(注:0.0250.051.96, 1.64Z Z ==)二、选择题:(每题2分,共10分)1、某人射击的命中率为0.4,用X 表示他在5次独立射击中命中目标的次数,则X 的分布为( )A. 0-1分布B.二项分布C.均匀分布D.泊松分布 2、设随机变量X 的分布函数是()F x ,则随机变量21Y X =+的分布函数为( )A. 2()1F y +B. (21)F y +C. 11()22F y -D. 11()22F y -3、若随机变量,X Y 相互独立,则下列结论错误的是( ) A.()()()E X Y E X E Y +=+ B.()()()E XY E X E Y =C.()()()D X Y D X D Y +=+D.()()()D X Y D X D Y -=-4、已知随机变量X 与Y 相互独立,且X ~(0,1)N ,Y ~(1,1)N 下式成立的是( ) A. 1{1}2P X Y +≤=B. 1{0}2P X Y +≤=C. 1{0}2P X Y -≤=D.1{1}2P X Y -≤= 5、设12,,,n X X X 为取自正态总体2(0,)N σ的样本, 下列统计量能作为2σ的无偏估计量的是 ( )A. 2111n i i X n =-∑B. 211n ii X n =∑ C. 2211ni i X n =∑ D. 2111ni i X n =+∑ 三、解答下列各题:(每题10分,共30分)1、甲乙两台机器制造出一批零件,根据长期资料总结,甲机器制造出的零件废品率为2%,乙机器制造出的零件废品率为3%,已知甲机器的制造量是乙机器的两倍.今从该批零件中任意取出一件, (1) 求取到废品的概率(2)若取到的零件经检验是废品,求该零件是乙机器制造的概率.2、设连续型随机变量X 的分布函数为4,0()0, 0x A Be x F x x -⎧+>=⎨≤⎩(1)求常数,A B 的值(2)计算概率{21}P X -≤<3、设离散型随机变量X 的所有可能取值为1,0,1-,已知15(),()39E X D X ==,求X的分布律及分布函数四、(本题12分)设二维随机变量,X Y ()的概率密度为, 0(,)0, y e x yf x y 其他-⎧<<=⎨⎩ 1、求边缘概率密度,并判断X Y 与是否相互独立; 2、求概率{2}P X Y +≤五、数理统计应用题:(每题12分,共24分)1、设总体X 的密度函数为,0() 0 ,0x e x f x x λλ-⎧>=⎨≤⎩ ,其中λ(>0)为参数,12,,n x x x 是来自总体的一组样本观测值,求参数λ的最大似然估计量.2、设某次考试的考生成绩服从正态分布,从中随机抽取25名考生的成绩,算得平均成绩为73.5分,标准差为10分,问在显著性水平=0.05α下,能否认为这次考试全体考生的平均成绩高于70分?(注:0.0250.05(24) 2.0639,(24) 1.7109t t ==) 六、证明题:(本题4分)设,A B 是两个随机事件,随机变量 1, 1A X A ⎧=⎨-⎩若出现,,若不出现. 1, 1Y ⎧=⎨-⎩若B 出现,,若B 不出现.试证明随机变量X 和Y 不相关的充分必要条件是A 与B 独立《概率论与数理统计》2(参考数据:(0.5)0.6915F =,(2)0.9772F =,0.025 1.96Z =,0.05 1.64Z =,0.025(15) 2.1315t =, 0.05(15) 1.7531t =,0.025(16) 2.1199t =,0.05(16) 1.7459t =)二、填空、选择题:(每题3分,共30分;请将各题的答案填入下列表格) 1、已知()0.5,()0.2,()0.2P A P B P B A ===,则()P A B È= .2、设X 与Y 相互独立,且2)(=X E ,()3E Y =,()()1D X D Y ==,则=-])[(2Y X E ___3、设(,)X Y 服从区域:02,01G xy##上的均匀分布,则概率{}P Y X ? .4、设1210,,, X X X 是取自总体),(2σμN 的样本,则统计量102211()i i X μσ=-∑服从____分布(注明分布的自由度).5、设(0,)X U θ ,且关于y 的方程240y y X ++=有实根的概率是0.8,则参数θ= .6、设随机变量X ~(10,0.2)b (二项分布),用切比雪夫不等式估计:{24}P X -≤≥( ).(A )19 (B ) 89 (C )110 (D )9107、设事件A 与B 互不相容,且()0≠A P ,()0≠B P ,则下面结论正确的是( ) (A) A 与B 互不相容 (B)()0>A B P (C) ()()()B P A P AB P = (D)()()A P B A P = 8、设两个随机变量X 和Y 相互独立,且同分布:()()1112P X P Y =-==-=,()()1112P X P Y ====,则()P X Y ==( ) (A) 0 (B) 1 (C)12 (D) 149、设随机变量),(Y X 的方差,1)(,4)(==Y D X D 相关系数,6.0=XY ρ则方差=-)23(Y X D ( ).(A) 40 (B) 34 (C) 25.6 (D) 17.610、若X 的分布函数为()F x ,Y 与X 相互独立且具有相同分布规律,max(,)Z X Y =,则Z 的分布函数为( )(A )()F z (B )2()F z (C) 1()F z - (D) 21(1())F z -- 二、概率论应用题:(40分)1、(10分)某厂有A 、B 、C 三条流水线生产同一产品,其产品分别占总产量的35%、40%、25%,这三条生产线的次品率分别为2%、3%、4%,现从出厂的产品中任取一件, (1)求恰好取到次品的概率;(2)若取到次品,求该次品是B 流水线生产的概率.2、(15分)设随机变量X 的概率密度为2,01()0,x x f x ≤≤⎧=⎨⎩其他, 求: (1)概率13{}22P X <≤;(2)X 的分布函数()F x ;(3)12+=X Y 的概率密度. 3、(15分)设随机变量,X Y 的联合概率密度为3,0,0(,)0,x y Ae x y f x y --⎧>>=⎨⎩其他,(1)求常数A 的值;(2)求边缘概率密度(),()X Y f x f y ; (3)分析随机变量,X Y 是否相互独立. 三、数理统计应用题:(25分)1、设总体X 的概率分布律为()()()11,1,2,x P X x p p x -==-= ,其中01p <<为未知参数,取样本12,,,n X X X ,记样本观测值为12,,,n x x x ,求参数p 的矩估计量和最大似然估计量.(15分)2、随机抽取某班16名学生的英语考试成绩,得平均分数为80x =分,样本标准差8s =分,若全年级的英语成绩服从正态分布,且平均成绩为76分,试问在显著性水平=0.05α下,该班的英语平均成绩是否显著高于全年级的英语平均成绩?(10分) 四、解答下列问题:(5分)某商店出售某种贵重商品. 根据经验,该商品每月销售量服从参数为12λ=的泊松分布.假定各月的销售量是相互独立的. 用中心极限定理计算该商店一年内(12个月)售出该商品件数在120件到150件之间的概率《概率论与数理统计》3一、填空题:(每题3分,共30分)1、设7.0)(=A P ,5.0)(=B P .则的最小值为)(AB P .2、三次独立的试验中,成功的概率相同,已知至少成功一次的概率为2719,则每次试验成功的概率为 .3、有甲、乙两人,每人扔两枚均匀硬币,则两人所扔硬币均未出现正面的概率为___.4、某射手对一目标独立射击4次,每次射击的命中率为0.5,则4次射击中恰好命中3次的概率为___.5、设离散型随机变量X 的分布函数为0,11(),1231,2x F x x x <-⎧⎪⎪=-≤<⎨⎪≥⎪⎩ ,则{2}P X == .6、设随机变量(1,1)X U - ,则1{}2P X ≤=____.7、设随机变量1(4,)3X B ,则{0}P X >=____.8、设随机变量(0,4)X N ,则{0}P X ≥=____.9、设),1,0(~),2,0(~N Y N X 且X 与Y 相互独立,则~Y X Z -=___.10、设总体X 的概率密度为,0()0,0x e x f x x λλ-⎧>=⎨≤⎩,来自总体X 的一个样本平均值9x =,则参数λ的矩估计ˆλ=___. 二、选择题:(每题4分,共20分)1、设随机变量X 的概率密度为3,01()0,kx x f x ⎧≤<=⎨⎩其他则常数k =( )A .1B .2C .3D .42、设随机变量)1,0(~,)1,0(~N Y N X ,且X 与Y 相互独立,则~22Y X +( ) A .)2,0(N B .)2(2χ C .)2(t D .)1,1(F3、设n X X X ,,,21 来自正态总体),(2σμN 的样本,其中μ已知,2σ未知,则下列( )不是统计量.A .i ni X ≤≤1min B .μ-X C .∑=ni iX 1σD .1X X n -4、已知随机变量X 的密度函数为 )(21)(4)3(2∞<<-∞=+-x ex f x π, 则Y =( ))1,0(~N 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章 随机事件与概率一、填空题1. 已知随机事件A 的概率5.0)(=A P ,事件B 的概率6.0)(=B P ,条件概率8.0)(=A B P ,则______________)(=B A P 。
2.设A ,B 为随机事件,已知3.0)(=A P ,4.0)(=B P ,5.0)(=B A P ,则____________)(=B A P 。
3. 甲、乙两人独立地对同一目标射击一次,其命中率分别为6.0和5.0,现目标被击中,则它是甲命中的概率为___________。
4. 某射手在3次射击中至少命中一次的概率为875.0,则该射手在一次射击中命中的概率为___________。
5. 设随机事件A 在每次试验中出现的概率为31,则在3次独立试验中A 至少发生一次的概率为___________.6. 袋中有黑白两种球,已知从袋中任取一个球是黑球的概率为41,现从袋中不放回地依次取球,则第k 次取得白球的概率为___________。
7. 三台机器相互独立运转,设第一,第二,第三台机器不发生故障的概率依次为7.08.09.0,,,则这三台机器中至少有一台发生故障的概率是___________。
8. 电路由元件A 与两个并联的元件B ,C 串联而成,若A ,B ,C 损坏与否相互独立,且它们损坏的概率依次为1.02.03.0,,,则电路断路的概率是___________。
9. 甲乙两个投篮,命中率分别为6.07.0,,每人投3次,则甲比乙进球数多的概率是___________。
10. 3人独立破译一密码,他们能独立译出的概率分别是413151,,,则此密码被译出的概率是________。
二、选择题1. 对于任意两个事件A ,B ,有)(B A P -为( ) (A ))()(B P A P -(B ))()()(B A P B P A P -+ (C ))()(AB P A P -(D ))()()(AB P B P A P +-2. 设A ,B 为两个互斥事件,且0)(,0)(>>B P A P ,则下列正确的是( )(A ))()(A P B A P = (B )0)(=A B P (C ))()()(B P A P AB P =(D )0)(>A B P3. 其人独立地投了3次篮球,每次投中的概率为3.0,则其最可能失败(没投中)的次数为( ) (A )2 (B )2或3 (C )3(D )14. 袋中有5个球(3个新,2个旧),每次取一个,无放回地抽取两次,则第二次取到新球的概率是( ) (A )53 (B )43 (C )42(D )1035. n 张奖券中含有m 张有奖的,k 个人购买,每人一张,其中至少有一个人中奖的概率是( ) (A )mnC m (B )knkm n C C --1(C )k nk mn m CC C 11--(D )∑=kr k n rm CC 1三、计算题(随机事件、随机事件的关系与运祘) 1. 指出下面式子中事件之间的关系:⑴ A AB =; ⑵ A ABC =; ⑶A B A = 。
2. 一个盒子中有白球、黑球若干个,从盒中有放回地任取三个球.设i A 表示事件“第i 次取到白球” )3,2,1(=i ,试用i A 的运算表示下列各事件.⑴ 第一次、第二次都取到白球; ⑵ 第一次、第二次中最多有一次取到白球; ⑶ 三次中只取到二次白球; ⑷ 三次中最多有二次取到白球; ⑸ 三次中至少有一次取到白球.3. 掷两颗骰子,设i A 、i B 分别表示第一个骰子和第二骰子出现点数i 朝上的事件,试用i A 、i B 表示下列事件.⑴ 出现点数之和为4; (2) 出现点数之和大于10.4. 对若干家庭的投资情况作调查,记{=A 仅投资股票},{=B 仅投资基金},{=C仅投资债券},试述下列事件的含义.⑴ C AB ; ⑵ C B A ; ⑶ A B C ; ⑷ C ABC =; ⑸ C AB C .5. 用集合的形式写出下列随机试验的样本空间及随机事件A . ⑴ 掷一颗骰子,点数为偶数的面朝上; ⑵ 掷二颗骰子,两个朝上面的点数之差为2;⑶ 把三本分别标有数字1,2,3的书从左到右排列,标有数字1的书恰好在最左边; ⑷ 记录一小时内医院挂号人数,事件=A {一小时内挂号人数不超50人};⑸ 一副扑克牌的4种花式共52张,随机取4张,取到的4张是同号的且是3的倍数.6. 对某小区居民订阅报纸情况作统计,记C B A ,,分别表示订阅的三种报纸,试叙述下列事件的含义. ⑴ 同时订阅B A ,两种报纸; ⑵ 只订阅两种报纸; ⑶ 至少订两种报纸;⑷ 一份报纸都不订阅; ⑸ 订C 报同时也订A 报或B 报中的一种; ⑹ 订A 报不订B 报.7.某座桥的载重量是1000公斤(含1000公斤),有四辆分别重为600公斤,200公斤,400公斤和500公斤的卡车要过桥,问怎样过法即省时间而桥又不会损坏。
(古典概型及其概率)8. 设袋中有5个白球,3个黑球,从袋中随机摸取4个球,分别求出下列事件的概率:(1)采用有放回的方式摸球,则四球中至少有1个白球的概率; (2)采用无放回的方式摸球,则四球中有1个白球的概率。
9. 设有3个人和4间房,每个人都等可能地分配到4间房的任一间房内,求下列事件的概率:(1)指定的3间房内各有一人的概率;(2)恰有3间房内各有一人的概率;(3)指定的一间房内恰有2人的概率。
10. 一幢12层的大楼,有6位乘客从底层进入电梯,电梯可停于2层至12层的任一层,若每位乘客在任一层离开电梯的可能性相同,求下列事件的概率:(1)某指定的一层有2位乘客离开;(2)至少有2位乘客在同一层离开。
11. 将8本书任意放到书架上,求其中3本数学书恰排在一起的概率。
12.某人买了大小相同的新鲜鸭蛋,其中有a只青壳的,b只白壳的,他准备将青壳蛋加工成咸蛋,故将鸭蛋一只只从箱中摸出进行分类,求第k次摸出的是青壳蛋的概率。
13.某油漆公司发出17桶油漆,其中白漆10桶,黑漆4桶,红漆3桶,在搬运中所有标签脱落,交货人随意将这些油漆发给顾客。
问一个订货为4桶白漆、3桶黑漆,2桶红漆的顾客,能按所定颜色如数得到订货的概率是多少?14. 将12名新技工随机地平均分配到三个车间去,其中3名女技工,求:(1)每个车间各分配到一名女技工的概率;(2)3名女技工分配到同一车间的概率。
15.从6双不同的手套中任取4只,求其中恰有两只配对的概率。
16.从0,1,2,......,9十个数中随机地有放回的接连取三个数字,并按其出现的先后排成一列,求下列事件的概率:(1)三个数字排成一奇数;(2)三个数字中0至多出现一次;(3)三个数字中8至少出现一次;(4)三个数字之和等于6。
(利用事件的关系求随机事件的概率)17. 在1~1000的整数中随机地取一个数,问取到的整数既不能被4整除,又不能被6整除的概率是多少?18. 甲、乙两人先后从52张牌中各抽取13张,(1)若甲抽后将牌放回乙再抽,问甲或乙拿到四张A的概率;(2)若甲抽后不放回乙再抽,问甲或乙拿到四张A的概率。
19. 在某城市中发行三种报纸A,B,C,经调查,订阅A报的有45%,订阅B报的有35%,订阅C报的有30%,同时订阅A及B的有10%,同时订阅A及C的有8%,同时订阅B及C的有5%,同时订阅A,B,C 的有3%。
试求下列事件的概率:(1)只订A报的;(2)只订A及B报的;(3)恰好订两种报纸。
20.某人外出旅游两天,据预报,第一天下雨的概率为0.6,第二天下雨的概率为0.3,两天都下雨的概率为0.1,试求:(1)至少有一天下雨的概率;(2)两天都不下雨的概率;(3)至少有一天不下雨的概率。
21.设一个工人看管三台机床,在1小时内三台机床需要工人照管的概率的依次是0.8,0.7,0.6,试求:(1)至少有一台机床不需要人照管的概率;(2)至多只有一台机床需要人照管的概率。
(条件概率与乘法原理)22.某种动物活15年的概率为0.8,活25年的概率为0.3,求现年15岁的这种动物活到25岁的概率。
23.设口袋有5只白球,4只黑球,一次取出3只球,如果已知取出的球都是同一种颜色,试计算该颜色是黑色的概率。
24.10件产品中有3件是次品,从中任取2件。
在已知其中一件是次品的条件下,求另一件也是次品的概率。
25.从混有5张假钞的20张百元钞票中任意抽出2张,并将其中的1张拿到验钞机上检验,结果发现是假钞,求抽出的2张都是假钞的概率。
26. 小王忘了朋友家电话号码的最后一位,他只能随意拨最后一个号,他连拨了三次,求第三次才拨通的概率。
27. 设袋中装有a只红球,b只白球,每次自袋中任取一只球,观察颜色后放回,并同时放入m只与所取出的那只同色的球,连续在袋中取球四次,试求第一、第二次取到红球且第三次取到白球,第四次取到红球的概率。
28. 一个游戏需要闯过三关才算通过,已知一个玩家第一关失败的概率是3/10,若第一关通过,第二关失败的概率是7/10,若前两关通过,第三关失败的概率为9/10,。
试求该玩家通过游戏的概率。
29.盒中有六个乒乓球,其中2个旧球,每次任取一个,连取两次(不放回),求至少有一次取到旧球的概率。
(全概率与贝叶斯公式)30. 设有两台机床加工同样的零件,第一台机床出废品的概率是0.03,第二台机床出废品的概率是0.02,加工出来的零件混放在一起,并且已知第一台机床加工的零件比第二台机床多一倍。
试求:(1)求任意取出的一个零件是合格品的概率;(2)如果任意取出一个零件经检验后发现是废品,问它是第一台机床还是第二台机床生产出来的可能性大?31. 已知男子有5%是色盲患者,女子有0.25%是色盲患者,假设人群中男女比例1:1。
试求:(1)人群中患色盲的概率是多少?(2)今从人群中随机地挑选一人,恰好是色盲者,问此人是男性的概率是多少?32.盒中有10只羽毛球,其中有6只新球。
每次比赛时取出其中的2只,用后放回,求第二次比赛时取到的2只球都是新球的概率。
33.一种传染病在某市的发病率为4%。
为查出这种传染病,医院采用一种新的检验法,它能使98%的患有此病的人被检出阳性,但也会有3%未患此病的人被检验出阳性。
现某人被此法检出阳性,求此人确实患有这种传染病的概率。
34.某人下午5:00下班,他所累计的资料表明:到家时间5:35~5:39 5:40~5:445:45~5:495:50~5:54迟于5:54乘地铁到家概率0.10 0.25 0.45 0.15 0.05乘汽车到家概率0.30 0.35 0.20 0.10 0.05某日他抛一枚硬币决定乘地铁还是乘汽车,结果他是5:47到家的,试求他是乘地铁回家的概率。