有机化合物的紫外吸收光谱及溶剂效应
溶剂概述和溶剂效应
溶剂概述和溶剂效应摘要:对化学反应中溶剂的种类和作用做概述,以及溶剂效应在紫外,荧光,红外,核磁波谱和液相色谱中的作用。
关键词:溶剂溶剂效应吸收光谱液相色谱1,溶剂1.1溶剂的定义溶剂是一种可以溶化固体,液体或气体溶质的液体,继而成为溶液,最常用的溶剂是水。
1.2溶剂的分类溶剂按化学组成分为有机溶剂和无机溶剂有机溶剂是一大类在生活和生产中广泛应用的有机化合物,分子量不大,常温下呈液态。
有机溶剂包括多类物质,如链烷烃、烯烃、醇、醛、胺、酯、醚、酮、芳香烃、氢化烃、萜烯烃、卤代烃、杂环化物、含氮化合物及含硫化合物等等,多数对人体有一定毒性。
(本文主要概述有机溶剂在化学反应以及波谱中的应用)2,溶剂效应2.1溶剂效应的定义溶剂效应是指溶剂对于反应速率,平衡甚至反应机理的影响。
溶剂对化学反应速率常数的影响依赖于溶剂化反应分子和相应溶剂化过渡态的相对稳定性。
2.2溶剂效应在紫外,荧光,红外,核磁中的应用2.2.1溶剂效应在紫外吸收光谱中的应用[5]有机化合物紫外吸收光谱的吸收带波长和吸收强度,与所采用的溶剂有密切关系。
通常,溶剂的极性可以引起谱带形状的变化。
一般在气态或者非极性溶剂(如正己烷)中,尚能观察到振动跃迁的精细结构。
但是改为极性溶剂后,由于溶剂与溶质分子的相互作用增强,使谱带的精细结构变得模糊,以至完全消失成为平滑的吸收谱带。
这一现象称为溶剂效应。
例如,苯酚在正庚烷溶液中显示振动跃迁的精细结构,而在乙醇溶液中,苯酚的吸收带几乎变得平滑的曲线,如图所示2.2.1.1溶剂极性对n→π*跃迁谱带的影响[2]n→π*跃迁的吸收谱带随溶剂的极性的增大而向蓝移。
一般来说,从以环己烷为溶剂改为以乙醇为溶剂,会使该谱带蓝移7nm:如改为以极性更大的水为溶剂,则将蓝移8nm。
增大溶剂的极性会使n→π*跃迁吸收谱带蓝移的原因如下:会发生n→π*跃迁的分子,都含有非键电子。
例如C=O在基态时碳氧键极化成Cδ+=Oδ-,当n电子跃迁到π*分子轨道时,氧的电子转移到碳上,使得羰基的激发态的极性减小,即Cδ+=Oδ-(基态)→C=O(激发态)。
溶剂概述和溶剂效应
溶剂概述和溶剂效应摘要:对化学反应中溶剂的种类和作用做概述,以及溶剂效应在紫外,荧光,红外,核磁波谱和液相色谱中的作用。
关键词:溶剂溶剂效应吸收光谱液相色谱1,溶剂1.1溶剂的定义溶剂是一种可以溶化固体,液体或气体溶质的液体,继而成为溶液,最常用的溶剂是水。
1.2溶剂的分类溶剂按化学组成分为有机溶剂和无机溶剂有机溶剂是一大类在生活和生产中广泛应用的有机化合物,分子量不大,常温下呈液态。
有机溶剂包括多类物质,如链烷烃、烯烃、醇、醛、胺、酯、醚、酮、芳香烃、氢化烃、萜烯烃、卤代烃、杂环化物、含氮化合物及含硫化合物等等,多数对人体有一定毒性。
(本文主要概述有机溶剂在化学反应以及波谱中的应用)2,溶剂效应2.1溶剂效应的定义溶剂效应是指溶剂对于反应速率,平衡甚至反应机理的影响。
溶剂对化学反应速率常数的影响依赖于溶剂化反应分子和相应溶剂化过渡态的相对稳定性。
2.2溶剂效应在紫外,荧光,红外,核磁中的应用2.2.1溶剂效应在紫外吸收光谱中的应用[5]有机化合物紫外吸收光谱的吸收带波长和吸收强度,与所采用的溶剂有密切关系。
通常,溶剂的极性可以引起谱带形状的变化。
一般在气态或者非极性溶剂(如正己烷)中,尚能观察到振动跃迁的精细结构。
但是改为极性溶剂后,由于溶剂与溶质分子的相互作用增强,使谱带的精细结构变得模糊,以至完全消失成为平滑的吸收谱带。
这一现象称为溶剂效应。
例如,苯酚在正庚烷溶液中显示振动跃迁的精细结构,而在乙醇溶液中,苯酚的吸收带几乎变得平滑的曲线,如图所示2.2.1.1溶剂极性对n→π*跃迁谱带的影响[2]n→π*跃迁的吸收谱带随溶剂的极性的增大而向蓝移。
一般来说,从以环己烷为溶剂改为以乙醇为溶剂,会使该谱带蓝移7nm:如改为以极性更大的水为溶剂,则将蓝移8nm。
增大溶剂的极性会使n→π*跃迁吸收谱带蓝移的原因如下:会发生n→π*跃迁的分子,都含有非键电子。
例如C=O在基态时碳氧键极化成Cδ+=Oδ-,当n电子跃迁到π*分子轨道时,氧的电子转移到碳上,使得羰基的激发态的极性减小,即Cδ+=Oδ-(基态)→C=O(激发态)。
实验三: 有机化合物的紫外-可见吸收光谱及溶剂效应
实验三:有机化合物的紫外-可见吸收光谱及溶剂效应一、实验目的1、了解紫外-可见分光光度法的原理及应用范围。
2、了解紫外-可见分光光度计的基本构造及设计原理。
3、了解苯及衍生物的紫外吸收光谱及鉴定方法。
4、观察溶剂对吸收光谱的影响。
二、实验原理紫外-可见分光光度法是光谱分析方法中吸光测定法的一部分。
1、紫外-可见吸收光谱的产生紫外可见吸收光谱是由于分子中价电子的跃迁而产生的。
这种吸收光谱决定于分子中价电子的分布和结合情况。
分子内部的运动分为价电子运动、分子内原子在平衡位置附近的振动和分子绕其重心的转动。
因此分子具有电子能级、振动能级和转动能级。
通常电子能级间隔为1至20eV,这一能量恰落在紫外与可见光区。
每一个电子能级之间的跃迁,都伴随着分子的振动能级和转动能级的变化,因此,电子跃迁的吸收线就变成了内含有分子振动和转动精细结构的较宽的谱带。
芳香族化合物的紫外光谱的特点是具有由π→π*跃迁产生的3个特征吸收带。
例如,苯在184nm附近有一个强吸收带,ε=68000;在204nm处有一较弱的吸收带,ε=8800;在254nm附近有一个弱吸收带,ε=250。
当苯处在气态时,这个吸收带具有很好的精细结构。
当苯环上带有取代基时,则强烈地影响苯的3个特征吸收带。
2、紫外-可见光谱分析法的应用1)化学物质的结构分析;2)有机化合物分子量的测定;3)酸碱离解常数的测定;4)标准曲线法测定有机化合物的含量;5)络合物中配位体/金属比值的测定;6)有机化合物异构物的判别等。
3、紫外-可见分光光度计的基本构造三、实验仪器与试剂仪器:Cary500紫外-可见-近红外分光光度计比色管(带塞):5mL10支,10mL3支;移液管:1mL6支,0.1mL2支试剂:苯、乙醇、环己烷、正己烷、氯仿、丁酮溶液:HCl(0.1mol•L-1),NaOH(0.1 mol•L-1),苯的环己烷溶液(1:250),甲苯的环己烷溶液(1:250),苯的环己烷溶液(0.3g•L-1),苯甲酸的环己烷溶液(0.8g •L-1),苯酚的水溶液(0.4 g•L-1)。
实验二 有机化合物的紫外吸收光谱及溶剂性质对吸收光谱的影响
七、思考题: 1.试样溶液浓度过大或过小,对测量有何影响?应如何调整? 2. εmax 值的大小与哪些因素有关? 紫外可见分光光度仪(北京普析通用仪器 UVWIN5)使用说明: 1、先开外设计算机,将干燥剂从样品室取出,盖好样品室盖,开启光度计电源, 10 秒钟后,开启计算机电源。 2、从计算机桌面上启动光度计应用程序 UVWIN5 图标,仪器自检(自检时不要
实验二 有机化合物的紫外吸收光谱及溶剂性质对吸收光谱的影响 3
枣庄学院化学化工与材料科学学院仪器分析实验教案
黄薇
1.根据苯的吸收光谱分析确定苯的吸收谱线(列出的苯的吸收光谱图) 最大吸收波长:苯在紫外区有三个吸收带 π→π* 180-184nm π→π* π→π* 200-204nm 230-270nm ε=47000-60000 (远紫外意义不大) ε=8000 ε=204 (在远紫外末端也不常用) (弱吸收带,苯环的精细结构或苯带,常用
实验二 有机化合物的紫外吸收光谱及溶剂性质对吸收光谱的影响 4
枣庄学院化学化工与材料科学学院仪器分析实验教案
黄薇
开启样品室盖) 。 3、参数设置:激活光谱扫描窗口,选择主菜单光谱扫描功能,选择【测量】菜 单下的【参数设置】子菜单,可打开设置窗口,选择需要测量的参数。选择测定 波长范围:300-250nm 4、基线校正:紫外光度计的一项校正功能,在吸光度或透光率扫描测光方式下, 空白溶液或溶剂执行校正。在光谱扫描之前,进行基线校正,再更改完扫描参数 后,也必须进行基线校正。 5、附件设置:选择主菜单光谱扫描功能选择【测量】菜单下的【附件】子菜单, 可打开附件设置窗口,点击“位置”,将相应的样品池选择为红色标记●,从而设 置当前样品池的位置。如果设置选择为空白样品(●在空白位置) ,则在进行基线 校正时,系统会自动切换到此样品池进行校正。 6、 光谱扫描: 将样品倒入比色皿中, 同上操作, 设置选择为样品 (●在样品位置) , 选择主菜单光谱扫描功能选择【测量】菜单下的【开始】子菜单,即可开始光谱 扫描。 7、图形处理:选择【图形】菜单下的相应子菜单,即可进行相应图形处理。例 如峰值检出:选择【图形】菜单下的【峰值检出】子菜单即可;选择【图形】菜 单下的【读屏幕】子菜单即可读出图形中相应的数据。 8、文件保存:想保存扫描文件,选择【文件】菜单下的【保存】子菜单,在弹 出的保存窗口中输入要保存的文件名,然后点击【确定】按钮即可。 9、导出数据:主要指测量数据,选择【文件】菜单下的【导出数据】子菜单, 通过【导出类型】对导出的文件类型进行选择,在【导出文件】编辑框中输入要 导出的文件名,或点击其右侧的“…”的按钮对文件进行选择。设置完成后,点击 【导出】按钮系统会按照设置的内容将说有的数据导出到指定的文件中。 10、测量结束后,样品室中取出比色皿,洗净放好,退出光度计应用程序,依 次关闭计算机和光度计电源, 样品室中放入干燥剂, 盖好防尘罩, 填写使用记录, 关好水、电、门。
溶剂效应在紫外光谱中的应用
溶剂效应在紫外光谱中的应用1.引言1.1 概述概述溶剂效应是指在化学反应或物理过程中,溶剂对溶质的溶解和溶质对溶剂的影响所产生的效应。
在紫外光谱分析中,溶剂效应是指溶剂对物质在紫外光谱中的吸收行为所产生的影响。
溶剂效应在紫外光谱分析中具有重要的作用。
不同的溶剂会对物质的吸收峰位置、吸收强度和光谱形状等参数产生影响,从而对物质的结构和性质进行研究和分析。
溶剂效应的研究不仅可以帮助我们更深入地了解物质的光谱特性,还可以为溶液中溶质的分析提供重要的指导。
本文将首先介绍溶剂效应的概念和原理,包括溶剂分子与溶质分子相互作用的机制。
然后,我们将重点探讨溶剂效应在紫外光谱中的基本应用,包括不同溶剂对物质吸收峰位置的影响、溶剂效应对吸收强度的影响以及溶剂效应对光谱形状的影响等。
通过对溶剂效应在紫外光谱中的应用的研究,我们可以更加准确地识别和定量分析物质,尤其是在溶液中的物质。
同时,溶剂效应的研究也为我们提供了深入了解物质溶解过程和溶解行为的机制的途径。
本文的目的是系统地介绍溶剂效应在紫外光谱分析中的应用,希望能够为相关领域的研究者提供一定的参考和借鉴,推动溶剂效应在紫外光谱分析中的深入研究和应用。
在文章的后续部分,我们将详细阐述溶剂效应对紫外光谱的影响以及溶剂效应在紫外光谱分析中的应用前景。
1.2文章结构2.正文2.1 溶剂效应的概念和原理溶剂效应是指溶剂对溶质分子或离子的环境影响所导致的物理性质的变化。
溶剂效应在化学和物理学领域中具有广泛的应用,其中在光谱学中的应用尤为显著。
溶剂效应的产生是由于溶剂与溶质之间的相互作用力。
在溶液中,溶剂分子与溶质分子之间可以发生氢键、范德华力、静电作用等相互作用,这些相互作用能会对溶质的光谱特性产生影响。
2.2 溶剂效应在紫外光谱中的基本应用溶剂是紫外光谱分析中不可或缺的一个因素。
溶剂对溶质的光谱特性产生影响,主要是通过溶剂效应的方式实现的。
溶剂的选择和光谱的测量条件对于准确分析和解释光谱数据非常重要。
3.2 重要有机化合物的紫外吸收光谱及应用[最新]
苯环上发色基团对吸
收带的影响
K、B、R带均红移
6/23/2021
3.稠环芳烃化合物
(1) 共轭体系增大, (2) 紫外吸收均比苯环移向长波长方向,可达可见光区 (3) 精细结构比苯环更明显。
在前面,已经了 解了
典型有机物的光 谱特
征,目的是为了 将紫
外吸收光谱应用 于有
机物的结构解析
6/23/2021
(5) 有些双键或基团“身
兼数职”,计算时是重
复计算
6/23/2021
例
m a基 x 3 R 2 1 3 5 7 232
C
AB
1
2
6/23/2021
例
6/23/2021
表
max
共轭烯烃吸收光谱的 m变ax化规律是:共轭双键连有取代基 λmax 红移;共轭体系增大, 也m红ax 移。
㏒ε
N HCl H
4
E2带
B带
3
B带
2
苯胺
1
甲苯 苯
0
200 220 240 260 280 300 波长λ(nm) (b)
6/23/2021
(3)发色团取代苯衍生物
光谱特征:含双键的取代基团,与苯环共轭后,双键在200~ 250nm出现K带,使B带发生强烈红移,有时B带被淹没在K 带之中,同时氧上的孤对电子:R带,弱。
基准值。
λi和ni是由双键上取代基的种类和个数决定的校
6/23/2021
λmax=λ基+Σniλi
注意: ?
?
(1) 以丁二烯基的基准值
大的为母体;
(2) 与共轭体系无关的孤
立双键不参与计算;
(3) 不在双键上的取代基
芳香族化合物的紫外吸收光谱及溶剂效应
实验六芳香族化合物的紫外吸收光谱及溶剂效应[ 实验目的]1.了解紫外可见光光度计的结构、用途及使用方法。
2.了解紫外吸收光谱在有机化合物结构鉴定中的作用及原理。
3.了解溶剂对吸收光谱的影响及原理。
[ 实验原理]作为有机化合物结构解析四大光谱之一,紫外吸收光谱具有方法简单、仪器普及率高、操作简便,紫外吸收光谱吸收强度大检出灵敏度高,可进行定性、定量分析的特点。
尽管紫外光谱谱带数目少、无精细结构、特征性差,只能反映分子中发色团和助色团及其附近的结构特征,无法反映整个分子特性,单靠紫外光谱数据去推断未知物的结构很困难,但是紫外光谱对于判断有机物中发色团和助色团种类、位置、数目以及区别饱和与不饱和化合物,测定分子中共轭程度进而确定未知物的结构骨架等方面有独到之处。
因此紫外吸收光谱是配合红外、质谱、核磁进行有机物定性鉴定和结构分析的重要手段。
利用有机光谱定性的依据是化合物的吸收光谱特征,主要步骤是绘制纯样品的吸收光谱曲线,由光谱特征依据一般规律作出判断;用对比法比较未知物和已知纯化合物的吸收光谱,或将未知物吸收光谱与标准谱图对比,当浓度和溶剂相同时,若两者谱图相同(曲线形状、吸收峰数目、λmax及εmax等),说明两者是同一化合物。
为进一步确证可换溶剂进行比较测定。
常用的光谱图集是Sadtler谱图,它收集了46000多种化合物的紫外吸收光谱图,并附有五种索引,使用方便。
最后要用其他化学、物理或物理化学等方法进行对照验证才能作出正确的结论。
有机物的紫外吸收光谱谱图解析:1.如果化合物在200-400nm内无吸收带,可推断未知物可能是饱和直链烃、脂环烃或只含一个双键的烯烃。
2.如果化合物只在270-350nm内有弱吸收带(ε =10-100L .mol-1 .cm-1)这是R带吸收的特征,则可推断未知物可能是一个简单的、非共轭的含有杂原子的双键化合物,如:羰基、硝基等,此谱带是n →Π∗跃迁产生的吸收带。
3.如果化合物在210-250nm内有强吸收带(ε ≥104L .mol-1 .cm-1)这是K带吸收的特征,则可推断未知物可能是含有共轭双键的化合物。
紫外可见吸收光谱吸收带类型与溶剂效应
4、π→π*跃迁(最重要的、研究最多的吸收带)
所需能量较小,吸收波长处于远紫外区的近紫外端或近 紫外区,εmax一般在104L·mol-1·cm-1以上,大多属于强吸收。 包含有:
K吸收带:共轭非封闭体系中的π→π*跃迁吸收带,一般 为强吸收(ε在104以上)。应用最多。极性溶剂使K带发生红 移。
摩尔吸光系数ε增大或减小
的现象分别称为增色效应或 减色效应,如图所示。
13:01:32
三、溶剂对紫外-可见吸收光谱的影响
1、常用溶剂 溶剂选用的原则: A、溶剂不影响溶质的测量; B、溶剂对溶质具有良好的溶解性; C、溶剂与溶质不相互作用。 一般情况下,极性物质选用极性溶剂;非极
性物质选用非极性溶剂。
这类光谱一般位于可见光区,摩尔吸收系数εmax很小,
对定量分析意义不大,一般用于研究配合物结构及无机配合 物键合理论等方面。
13:01:32
苯的紫外吸收光谱(溶剂:异辛烷)
13:01:32
二、常用术语
发色团:最有用的紫外—可见光谱是由π→π*和n→π*跃迁产 生的。这两种跃迁均要求有机物分子中含有不饱和基团。这 类含有π键的不饱和基团称为发色团,也叫生色团。简单的发 色团(生色团)由双键或叁键体系组成,如乙烯基、羰基、 亚硝基、偶氮基—N=N—、乙炔基、腈基—C≡N等。单一 双键在远紫外区,共轭双键在近紫外区。 助色团:有一些含有n电子的基团(如—OH、—OR、—NH2 、—NHR、—X等),它们本身没有生色功能(不能吸收 λ>200nm的光),但当它们与生色团相连时,就会发生n→π共 轭作用,增强生色团的生色能力(吸收波长向长波方向移动, 且吸收强度增加),这样的基团称为助色团。
第五章 紫外-可见吸
实验二 有机化合物的紫外吸收光谱及溶剂性质对吸收光谱的影响
七、思考题: 1.试样溶液浓度过大或过小,对测量有何影响?应如何调整? 2. εmax 值的大小与哪些因素有关? 紫外可见分光光度仪(北京普析通用仪器 UVWIN5)使用说明: 1、先开外设计算机,将干燥剂从样品室取出,盖好样品室盖,开启光度计电源, 10 秒钟后,开启计算机电源。 2、从计算机桌面上启动光度计应用程序 UVWIN5 图标,仪器自检(自检时不要
其特点是谱带强度弱摩尔吸光系数小通常小于100r枣庄学院化学化工与材料科学学院仪器分析实验教案黄薇实验二有机化合物的紫外吸收光谱及溶剂性质对吸收光谱的影响某些有机化合物经取代反应引入含有未共享电子对的基团ohshclbrsrnr之后吸收峰的波长将向长波方向移动这种效应称为红移效应
枣庄学院化学化工与材料科学学院仪器分析实验教案
*
甲醇 237nm 309nm
水 243nm 305nm
极性 红移 紫移
230nm 329nm
238nm 315nm
n→π
*
A
2.0 1.8 1.6 1.4 1.2 1.0 0.8 0.6 0.4 0.2 0.0 -0.2 220 230 240
苯
吸 收杂Βιβλιοθήκη 质乙醇250
260
270
280
Wavelength(nm)
实验二 有机化合物的紫外吸收光谱及溶剂性质对吸收光谱的影响 3
枣庄学院化学化工与材料科学学院仪器分析实验教案
黄薇
1.根据苯的吸收光谱分析确定苯的吸收谱线(列出的苯的吸收光谱图) 最大吸收波长:苯在紫外区有三个吸收带 π→π* 180-184nm π→π* π→π* 200-204nm 230-270nm ε=47000-60000 (远紫外意义不大) ε=8000 ε=204 (在远紫外末端也不常用) (弱吸收带,苯环的精细结构或苯带,常用
实验八 有机化合物紫外吸收光谱及溶剂对其吸收光谱的影响
实验八 有机化合物紫外吸收光谱及溶剂对其吸收光谱的影响一、实验目的:1、学习并掌握紫外-可见分光光度计的使用;2、了解不同的助色团对苯的紫外吸收光谱的影响;3、观察pH 对苯酚的吸收光谱的影响。
二、实验原理:具有不饱和结构的有机化合物,特别是芳香族化合物,在近紫外区(200~400nm )有特征的吸收,给鉴定有机化合物提供了有用的信息。
苯有三个吸收带,它们都是由*ππ→跃迁引起的,E 1带:11max 180(60000)nm L cm mol λε--==⋅⋅,E 2带:11max 204(8000)nm L cm mol λε--==⋅⋅,两者都属于强吸收带。
B 带出现在230~270nm ,其11max 254(200)nm L cm mol λε--==⋅⋅ 。
在气态或非极性溶剂中,苯及其许多同系物的B 带有许多精细结构,这是振动跃迁在基态电子跃迁上叠加的结果。
在极性溶剂中,这些精细结构消失。
当苯环上有取代基时,苯的三个吸收带都将发生显著的变化,苯的B 带显著红移,并且吸收强度增大。
溶剂的极性对有机物的紫外吸收光谱有一定的影响。
当溶剂的极性由非极性改变到极性时,精细结构消失,吸收带变平滑。
显然,这是由于未成键电子对的溶剂化作用降低了n 轨道的能量使*π→n 跃迁产生的吸收带发生紫移,而*ππ→跃迁产生的吸收带则发生红移。
影响有机化合物的紫外吸收光谱的因素有:内因(共轭效应、空间位阻、助色效应)和外因(溶剂的极性和酸碱性)。
溶剂的极性和酸碱性不仅影响待测物质吸收波长的移动,还影响吸收峰吸收强度和它的形状。
本实验重点在了解不同的助色团对苯的紫外吸收光谱的影响和观察pH 对苯酚的吸收光谱的影响。
三、仪器:紫外-可见分光光度计,带盖石英比色皿(1.0cm )。
四、试剂:苯、环己烷、0.1mol/L HCl 、0.1mol/L NaOH 、苯的环己烷溶液(1:250)、甲苯的环己烷溶液(1:250)、苯酚的环己烷溶液(0.3g/L )、苯酚的水溶液(0.4 g/L )。
有机化合物紫外-可见光吸收光谱的测定及其影响因素
有机化合物的紫外吸收光谱及溶剂的影响一.实验目的和要求1.了解双光束紫外-可见分光光度计的仪器构造和使用。
2.学习紫外吸收光谱的绘制方法。
3. 了解取代基对物质吸收光谱的影响。
4.了解溶剂的酸碱性对物质的吸收光谱的影响。
二.实验原理苯具有环状共轭体系,在紫外区有三个吸收谱带:E1带、E2带和B带,这些吸收带都是π→π*电子跃迁产生的。
当苯环上的氢被助色团取代后,苯环共轭程度发生改变,因此苯的吸收光谱会发生变化:吸收带向长波方向移动,复杂的B 吸收带变得简单化。
溶剂对紫外吸收光谱的吸收峰的波长、强度及形状都可能产生影响,这种现象被称为溶剂效应。
造成这种影响的原因可能是溶剂和溶质间形成氢键,可能是由于溶剂的偶极作用使溶质的极性增强,也可能是酸碱性的影响。
但其实质也是改变了化合物的共轭程度,改变电子跃迁的能级差。
三.仪器与试剂仪器:TU-1901双光束紫外-可见分光光度计,1 cm石英吸收池。
试剂:苯酚,对硝基苯酚,H2O, NaOH。
四.实验内容与步骤1.溶剂性质对吸收光谱的影响配制浓度为0.09 mmol L-1的苯酚溶液,其溶剂分别为:(a)去离子水;(b)0.1 mol L-1 NaOH,摇匀。
2.取代基对吸收光谱的影响配制浓度为0.09 mmol L-1的对硝基苯酚溶液,溶剂为0.1 mol L-1 NaOH。
用1 cm石英吸收池,以相应的溶剂作参比,绘制各溶液在200-500 nm范围内的吸收光谱。
五.数据处理1.记录各苯酚溶液的吸收光谱,找出其最大吸收波长,并进行对比。
2. 记录对硝基苯酚氢氧化钠溶液的吸收光谱,找出其最大吸收波长,并与苯酚溶液进行对比。
苯酚水溶液稀释时要用30mL0.09mol/L溶液稀释到1000mL;苯酚氢氧化钠溶液正好10mL0.09mol/L溶液稀释到1000mL;对硝基苯酚氢氧化钠溶液则用5mL0.09mol/L溶液稀释到1000mL.六.思考题1.产生紫外光谱的电子跃迁有那些类型?2.影响紫外吸收光谱的因素有哪些?。
1实验一有机化合物的紫外吸收光谱及溶剂性质对吸收光谱的影响_.
实验一有机化合物的紫外吸收光谱及溶剂性质对吸收光谱的影响一、实验目的:1、熟练紫外—可见分光光度计的操作。
2、学习利用紫外吸收光谱检查物质的纯度的原理和方法。
3、掌握溶剂极性对跃迁,跃迁的影响二、仪器与试剂1、仪器730型紫外—可见分光光度计,带盖石英吸收池1cm 2只。
2、试剂(1 苯、乙醇、正己烷、氯仿、丁酮。
(2 异亚丙基丙酮:分别用水、氯仿、正已烷配成浓度为0.4g/L溶液。
二、实验原理具有不饱和结构的有机化合物,如芳香族化合物,在紫外区(200~400nm有特征的吸收,为有机化合物的鉴定提供了有用的信息。
紫外吸收光谱定性的方法是比较未知物与已知纯样在相同条件下绘制的吸收光谱,或将绘制的未知物吸收光谱与标准谱图(如Sadtler紫外光谱图相比校,若两光谱图的和相同,表明它们是同一有机化合物。
极性溶剂对有机物的紫外吸收光谱的吸收峰波长、强度及形状有一定的影响。
溶剂极性增加,使跃迁产生的吸收带蓝移,而跃迁产生的吸收带红移。
影响有机化合物紫外吸收光谱的因素,有内因(分子内的共轭效应、位阻效应、助色效应等和外因(溶剂的极性、酸碱性等溶剂效应由于受到溶剂极性和酸碱性的影响,将使溶质的吸收峰的波长、强度以及形状发生不同程度的变化,这是因为溶剂分子和溶质分子之间可能形成氢键,使极性溶剂分子的偶极减弱,溶质分子的极性增强,因而在极性溶剂中跃迁所需的能量减小,吸收波长红移,而在极性溶剂中所需能量增大,吸收波长蓝移,由于物质的紫外吸收光谱是物质分子中生色团和助色团的贡献,也是物质整个分子的特征表现。
例如具有键电子的共轭双键化合物、芳香烃化合物等,在紫外光谱区都有强烈吸收,其摩尔吸光系数可达104~105数量级,这与饱和烃化物有明显的不同。
利用这一特性,可以很方便地检查纯饱和烃化物中是否含有共轭双键、芳香烃等化合物杂质。
三、实验步骤1、苯的吸收光谱的测绘在1cm的石英吸收池中,加入两滴苯,加盖,用手心温热吸收池底部片刻,在紫外分光光度计上,以空白石英吸收池为参比,从220~360nm范围内进行波长扫描,绘制吸收光谱。
紫外-可见吸收光谱与分子结构的关系
➢ 常用溶剂的截止波长见课本 表3-2
(二)含有孤立>C=C<双键的不饱合化合物
➢产生*和*两种跃迁。 ➢吸收峰在170nm附近,ε约104 ➢有取代基,形成-或n-共轭时,吸收带红移
例如 RHC=CH2 R2C=CH2 R2C=CR2 λmax(nm) 175~185 185~205 215~232
Woodward 计算规则
化合物母体及取代基
环外双键是指共 轭体系上的C=C 有一个在五元上 或六元环上
环内双键是同环 二烯
(无环多烯或异环二烯)
环内双键 增加一个共轭双键 环外双键 烷基取代基 —O— —O—R —S—R —Cl, —Br —NR2
波长/nm
基 数 : 217 nm 36 30 5 5 0 6 30 5 60
第五节 紫外-可见吸收光谱与分子 结构的关系
一、有机化合物的紫外吸收光谱
(一)饱和烃及其取代衍生物
① 饱和烃(只含键):*
λmax<150nm ② 含有杂原子的取代烃(含n电子): n*
例: CH3Cl CH3Br
CH3I
λmax(nm ) 173
204
258
显示了助色团的助色作用。
➢ 它们是测定紫外和(或)可见吸收光谱的良好溶剂
(三)具有共轭体系的不饱和化合物
➢>C=C-C=C<共轭,产生*和 *两种跃 迁 K带 共轭体系,形成大键,△E↓,吸收峰红移, 强度增加。
➢当>C=O与>C=C<共轭时(例如α,β-不饱和醛 酮), K带红移,原因同上
化合物
1,3-丁二烯 1,3,5-己二烯 1,3,5,7-辛四烯
1,3,5,7,9-癸四烯 1,3,5,7,9,11-十二烷基六烯
紫外-可见分子吸收光谱法
NN
溶剂与溶质之相互作用增强 C H
溶质分子的振动受到限制
水中 环己烷中
振动引起的精细结构消失
蒸汽中
500
555
对称四嗪的吸收光谱
/nm
b. 溶剂极性对π →π*跃迁谱带的影响
➢ 溶剂极性增大时,由π →π*跃迁产生的吸收 带发生红移。
c. 溶剂极性对n →π*跃迁谱带的影响
➢ 溶剂极性增大,由n →π*跃迁产生的吸收谱 带发生蓝移。
(4)多通道分光光度计
以光二极管阵列作检测器
光源
透镜
光二极管阵列
试样池
光栅
三、光吸收定律
1、朗伯-比尔定律
A lg T lg I0 bc 或 A lg T lg I0 abc
I
I
2、吸光度的加和性
当溶液中含有多种对光产生吸收的物质,且各组分之
间不存在相互作用时,则该溶液对波长λ光的总吸光度A总
➢ 根据分子轨道理论,这三种电子的能级高 低为: σ<π<n <π*<σ*
三种价电子可能产生六种形式电子跃迁:
σ→ σ*, σ→ π*, π→ σ*对应的吸收光谱处于 远紫外区,研究少。
(1) n → σ* 跃迁:
➢ 吸收光谱出现在远紫外光区和近紫外光区 ➢ 某些含有氧、氮、硫、卤素等杂原子的基 团(如—NH2、—OH、—SH、—X等)的 有机物可产生n → σ* 跃迁。 例如:CH3OH:λmax=183 nm 、CH3NH2:λmax=213 nm
② 吸收峰通常位于200~400nm之间。
(7) K带
➢ 由共轭体系的π →π*跃迁产生的吸收带。
特点:
ε ① 强度大,一般 > 104 L ·mol-1 ·cm-1 ;
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验九有机化合物的紫外吸收光谱及溶剂效应
实验目的:
(1)学习有机化合物结构与其紫外光谱之间的关系;
(2)了解不同极性溶剂对有机化合物紫外吸收带位置、形状及强度的影响。
(3)学习紫外—可见分光光度计的使用方法
实验原理:
与紫外-可见吸收光谱有关的电子有三种,即形成单键的σ电子、形成双键的π电子以及未参与成键的n电子。
跃迁类型有:σ→σ*,n→σ* ,n→π*,π→π* 四种。
在以上几种跃迁中,只有π-π*和n-π*两种跃迁的能量小,相应波长出现在近紫外区甚至可见光区,且对光的吸收强烈,是我们研究的重点。
影响有机化合物紫外吸收光谱的因素有内因和外因两个方面。
内因是指有机物的结构,主要是共轭体系的电子结构。
随着共轭体系增大,吸收带向长波方向移动(称作红移),吸收强度增大。
紫外光谱中含有π键的不饱和基团称为生色团,如有C=C、C=O、NO2、苯环等。
含有生色团的化合物通常在紫外或可见光区域产生吸收带;含有杂原子的饱和基团称为助色团,如OH、NH2、OR、Cl等。
助色团本身在紫外及可见光区域不产生吸收带,但当其与生色团相连时,因形成n→π*共轭而使生色团的吸收带红移,吸收强度也有所增加。
影响有机化合物紫外吸收光谱的外因是指测定条件,如溶剂效应等。
所谓溶剂效应是指受溶剂的极性或酸碱性的影响,使溶质吸收峰的波长、强度以及形状发生不同程度的变化。
这是因为溶剂分子和溶质分子间可能形成氢键,或极性溶剂分子的偶极使溶质分子的极性增强,从而引起溶质分子能级的变化,使吸收带发生迁移。
例如异丙叉丙酮的溶剂的溶剂效应如表1所示。
随着溶剂极性的增加K带红移,而R带向短波方向移动(称作蓝移或紫移)。
这是因为在极性溶剂中π→π * 跃迁所需能量减小,吸收波长红移(向长波长方向移动)如图(a)所示;而n→π * 跃迁所需能量增大,吸收波长蓝移(向短波长方向移动),溶
剂效应示意图如(b)所示。
图1 电子跃迁类型
σ
π *
σ *
n
π∆
C*—C-△E n>△E p C=0 △E n>△E p
图2溶剂极性效应
(a)π→π * 跃迁(b)n→π * 跃迁
B吸收带,在不同极性溶剂中,其强度和形状均受到影响、在非极性溶剂正庚烷中,可清晰看到苯酚B吸收带的精细结构,但在极性溶剂乙醇中,苯酚B吸收带的精细结构消失,仅存在一个宽的吸收峰,而且其吸收强度也明显减弱。
在许多芳香烃化合物中均有此现象。
由于有机化合物在极性溶剂中存在溶剂效应,所以在记录紫外吸收光谱时,应注明所用的溶剂。
另外,由于溶剂本身在紫外光谱区也有其吸收波长范围,故在选用溶剂时,必须考虑它们的干扰。
表2列举某些溶剂的波长极限,测定波长范围应大于波长极限或用纯溶剂做空白,才不至于受到溶剂吸收的干扰。
本实验通过苯、苯酚、乙酰苯和异丙叉丙酮等在正庚烷、氯仿、甲醇和水等溶剂中紫外吸收光谱的绘测,观察分子结构以及溶剂效应对有机化合物紫外吸收光谱的影响。
表2 某些溶剂吸收波长极限
一、仪器
UV—2401,UV—2450型紫外分光光度计
二、试剂和试样
1.苯、苯酚、乙酰苯、异丙叉丙酮、正庚烷、正己烷、氯仿、甲醇等均为分析纯
2.纯水去离子水或蒸馏水
3.异丙叉丙酮的正己烷溶液、氯仿溶液、甲醇溶液,水溶液的配制取四只100mL容量瓶,各注入10μL的异丙叉丙酮,然后分别用正己烷、氯仿、甲醇和去离子水稀释到刻度,摇匀,得到约0.1mg/mL的异丙叉丙酮溶液。
另取四只100mL容量瓶各注入500μL的异丙叉丙酮配制相应的约5mg/mL的异丙叉丙酮溶液。
4.苯的正庚烷溶液和乙醇溶液(约0.1mg/mL)的配制取两只100mL容量瓶,各注入10μL苯,然后分别用正庚烷和乙醇稀释到刻度摇匀
5.苯酚的正庚烷溶液和乙醇的溶液(约0.1mg/mL)的配置配制方法同上
6.乙酰苯的正庚烷溶液和乙醇的溶液(约0.1mg/mL)的配置配制方法同上配制方法同上
三、实验条件
1.仪器UV—2401,UV—2450型紫外分光光度计
2、波长扫描范围400~190nm
3、带宽10nm
4、石英吸收池1cm
5、扫描速度200nm/cm
6、参比溶液使用被测溶液的相应溶剂
四、实验步骤
1.根据实验条件,将UV—2401,UV—2450型紫外分光光度计按仪器操作步骤进行调节(详见仪器操作说明书)。
2、测试各溶液的吸光度
五、数据及处理
1,记录实验条件
2,比较在同一种溶剂中苯,苯酚,乙酰苯的紫外吸收光谱,讨论有机物结构对紫外吸收光谱的影响。
3,比较非极性溶剂正庚烷和极性溶剂乙醇对苯、苯酚、乙酰苯的紫外吸收光谱中最大的吸收波长λMax以及吸收峰形状的影响。
4,从异丙叉丙酮的四张紫外吸收光谱中确定其K带和R带最大吸收波长λMax,并说明在不同极性溶剂中异丙叉丙酮吸收峰波长移动的情况。
思考题
1,当助色团或生色团与苯环相连时,紫外吸收光谱有那些变化?
2,在异丙叉丙酮紫外吸收光谱图上能有几个吸收峰?它们分别属于什么类型跃迁,如何区分它们?
3,举例说明极性溶剂对π→π*跃迁和n→π*跃迁的吸收峰产生如何影响
4,当被测试液浓度太大或太小时,对测量将产生怎样影响,应如何加以调节?
5,在本实验中是否可用去离子水来代替各溶剂作参比溶液,为什么?
思考题答案:
1,当助色团或生色团与苯环相连时,紫外吸收光谱有那些变化?
当助色团与苯环相连时:紫外吸收光谱中K红移,B红移,增色,但精细结构消失。
;当生色团与苯环相连时:紫外吸收光谱中K,B红移,有时B会被K带淹没。
2,在异丙叉丙酮紫外吸收光谱图上能有几个吸收峰?它们分别属于什么类型跃迁,如何区分它们?
在异丙叉丙酮紫外吸收光谱图上会有两个吸收峰。
羰基中的n→π*跃迁λmax在270~350nm 波长范围内有低强度吸收峰是羰基化合物(双键上有杂原子)的特征吸收带,称为R带。
二个键共轭时的π-π*跃迁,λmax在190~220nm波长范围内,称为K带。
3,举例说明极性溶剂对π→π*跃迁和n→π*跃迁的吸收峰产生如何影响
在极性溶剂中π→π*跃迁所需能量减小,而n→π*跃迁所需能量增大。
所以例如异丙叉丙酮随着溶剂极性的增加K带红移,而R带蓝移。
4,当被测试液浓度太大或太小时,对测量将产生怎样影响,应如何加以调节?
当被测试液浓度太大时,对吸收强度大的带会出现平头峰的现象,应降低溶液浓度;当被测试液浓度太小时,对吸收强度小的带会出现吸收峰很小的现象,应用高浓度溶液。
5,在本实验中是否可用去离子水来代替各溶剂作参比溶液,为什么?
不行,因为有的溶剂本身在紫外光谱区也有一定的吸收波长范围,参比溶液是为了使不受到溶剂吸收的干扰,所以测定时应该选用纯溶剂作空白。