初中数学三角函数综合练习题
初中数学三角函数练习题
初中数学三角函数练习题一、填空题1. 在直角三角形ABC中,已知∠A=30°,∠B=90°,那么∠C=______°。
2. 如果sinA=0.6,那么A的大小是______°。
3. tanθ=0.8,那么θ的大小是______°。
4. 已知cotA=-3,那么A的大小是______°。
二、选择题1. 在直角三角形ABC中,已知∠A=45°,则∠B=()A. 30°B. 60°C. 45°D. 90°2. 当sinA=0.8时,A的大小是多少度?()A. 45°B. 30°C. 53°D. 60°3. 如果tanθ=0.6,则θ的大小是()A. 30°B. 45°C. 53°D. 60°4. 已知sinA=0.6,则A的大小是多少度?()A. 30°B. 45°C. 53°D. 60°三、计算题1. 已知直角三角形中∠A=30°,AB=2,求BC的值。
2. 已知sinA=0.6,求cosA的值。
3. 已知sinA=0.8,求cosA的值。
4. 已知sinA=0.6,求tanA的值。
5. 已知tanA=0.6,求cotA的值。
6. 已知cotA=1.5,求tanA的值。
7. 一辆汽车以30°的角度上坡行驶,如果汽车行驶的速度是60 km/h,求汽车沿斜坡向上行驶的速度。
8. 一辆汽车以30°的角度上坡行驶,如果汽车行驶的速度是60 km/h,求汽车垂直于斜坡方向的速度。
9. 一辆汽车上坡行驶,如果汽车沿斜坡方向的速度为30 km/h,垂直于斜坡方向的速度为20 km/h,求汽车行驶的速度。
10. 已知直角三角形中∠A=30°,求cosA、sinA、tanA和cotA的值。
初中数学三角函数基础练习含答案
三角函数基础练习一.选择题(共40小题)1.如图,△ABC中,∠C=90o,tan A=2,则cos A的值为()A.B.C.D.2.在Rt△ABC中,∠C=90°,sin A=,则sin B的值为()A.B.C.D.3.如图,已知点C从点B出发,沿射线BD方向运动,运动到点D后停止,则在这个过程中,从A观测点C的俯角将()A.增大B.减小C.先增大后减小D.先减小后增大4.在Rt△ABC中,若∠ACB=90°,tan A=,则sin B=()A.B.C.D.5.一艘轮船在A处测得灯塔S在船的南偏东60°方向,轮船继续向正东航行30海里后到达B处,这时测得灯塔S在船的南偏西75°方向,则灯塔S离观测点A、B的距离分别是()A.(15﹣15)海里、15海里B.(15﹣15)海里、5海里C.(15﹣15)海里、15海里D.(15﹣15)海里、15海里6.如图,在边长为1的小正方形组成的网格中,△ABC的三个顶点均在格点上,则tan A=()A.B.C.D.7.在Rt△ABC中,∠C=90°,∠B=α,若BC=m,则AC的长为()A.B.m•cosαC.m•sinαD.m•tanα8.如图,在Rt△ABC中,∠C=90°,BC=4,AC=2,则tan A等于()A.B.2C.D.9.如图,测得一商场自动扶梯的长为l,自动扶梯与地面所成的角为θ,则该自动扶梯到达的高度h为()A.l•sinθB.C.l•cosθD.10.如图,在Rt△ABC中,直角边BC的长为m,∠A=40°,则斜边AB的长是()A.m sin40°B.m cos40°C.D.11.如图,在△ABC中,∠ACB=90°,AB=5,AC=3,则tan∠B的值为()A.B.C.D.12.如图,在Rt△ABC中,∠C=90°,AB=5,BC=3,则cos A的值是()A.B.C.D.13.如图,在Rt△ABC中,∠CAB=90°,AD⊥BC于点D,BD=2,tan∠C=,则线段AC的长为()A.10B.8C.D.14.如图,梯子AC的长为2.8米,则梯子顶端离地面的高度AD是()A.米B.米C.sinα米D.cosα米15.计算2sin30°﹣2cos60°+tan45°的结果是()A.2B.C.D.116.在Rt△ABC中,∠C=90°,BC=1,AB=4,则sin B的值是()A.B.C.D.17.在△ABC中,∠ACB=90°,AC=1,BC=2,则cos B的值为()A.B.C.D.18.若锐角A满足cos A=,则∠A的度数是()A.30°B.45°C.60°D.75°19.如图,某建筑物的顶部有一块标识牌CD,小明在斜坡上B处测得标识牌顶部C的仰角为45°,沿斜坡走下来在地面A处测得标识牌底部D的仰角为60°,已知斜坡AB的坡角为30°,AB=AE=10米.则标识牌CD的高度是()米.A.15﹣5B.20﹣10C.10﹣5D.5﹣520.在直角三角形中sin A的值为,则cos A的值等于()A.B.C.D.21.在Rt△ABC中,∠C=90°,AB=4,BC=3,则sin∠B的值为()A.B.C.D.22.已知在Rt△ABC中,∠C=90°,sin A=,则∠A的正切值为()A.B.C.D.23.在Rt△ABC中,∠C=90°,sin A=,BC=6,则AB长是()A.4B.6C.8D.1024.已知∠A与∠B互余,若tan∠A=,则cos∠B的值为()A.B.C.D.25.如图,A,B,C是3×1的正方形网格中的三个格点,则tan B的值为()A.B.C.D.26.Rt△ABC中,∠C=90°,AC=,AB=4,则cos B的值是()A.B.C.D.27.如图,在Rt△ABC中,∠C=90°,AB=13,BC=12,AC=5,则下列三角函数表示正确的是()A.sin A=B.cos A=C.tan A=D.tan B=28.如图,△ABC中,∠B=90°,BC=2AB,则sin C=()A.B.C.D.29.已知在Rt△ABC中,∠C=90°,AB=5,AC=4,则cos B的值为()A.B.C.D.30.锐角α满足,且,则α的取值范围为()A.30°<α<45°B.45°<α<60°C.60°<α<90°D.30°<α<60°31.如图,在△ABC中,AC=1,BC=2,AB=,则sin B的值是()A.B.C.2D.32.已知cosα=,且α是锐角,则α=()A.75°B.60°C.45°D.30°33.在Rt△ABC中,∠C=90°,AB=5,AC=3,则下列等式正确的是()A.sin A=B.cos A=C.tan A=D.cos A=34.某人沿着斜坡前进,当他前进50米时上升的高度为25米,则斜坡的坡度是i=()A.B.1:3C.D.1:235.如图,有一斜坡AB的长AB=10米,坡角∠B=36°,则斜坡AB的铅垂高度AC为()A.10sin36°B.10cos36°C.10tan36°D.36.某水库大坝的横断面是梯形,坝内一斜坡的坡度i=1:,则这个斜坡坡角为()A.30°B.45°C.60°D.90°37.如图,在Rt△ABC中,∠C=90°,AC=2,BC=3,则tan A=()A.B.C.D.38.在Rt△ABC中,AB=4,AC=2,∠C=90°,则∠A的度数为()A.30°B.40°C.45°D.60°39.如图,在5×4的正方形网格中,每个小正方形的边长都是1,△ABC的顶点都在这些小正方形的顶点上,则cos∠BAC的值为()A.B.C.D.40.在Rt△ABC中,∠C=90°,AC=1,BC=3,则∠B的正切值为()A.3B.C.D.三角函数基础练习参考答案与试题解析一.选择题(共40小题)1.解:∵△ABC中,∠C=90o,∴tan A==2,∴设CB=2k,AC=k,∴AB==k,∴cos A===,故选:B.2.解:∵Rt△ABC中,∠C=90°,sin A=,∴cos A===,∠A+∠B=90°,∴sin B=cos A=.故选:A.3.解:点C从点B出发,沿射线BD方向运动,运动到点D后停止,则在这个过程中,从A观测点C的俯角将增大,故选:A.4.解:如图,∵在Rt△ABC中,∠C=90°,tan A=,∴设AC=2k,BC=k,则AB==k,∴sin B===.故选:D.5.解:过S作SC⊥AB于C,在AB上截取CD=AC,∴AS=DS,∴∠CDS=∠CAS=30°,∵∠ABS=15°,∴∠DSB=15°,∴SD=BD,设CS=x,在Rt△ASC中,∵∠CAS=30°,∴AC=x,AS=DS=BD=2x,∵AB=30海里,∴x+x+2x=30,解得:x=,∴AS=(15﹣15)(海里);∴BS==15(海里),∴灯塔S离观测点A、B的距离分别是(15﹣15)海里、15海里,故选:D.6.解:由图可知:BC=4,AB=3,∠ABC=90°,在Rt△ABC中,tan A==.故选:A.7.解:在Rt△ABC中,∠C=90°,tan B=,∴AC=BC•tan B=m•tanα,故选:D.8.解:在Rt△ABC中,∠C=90°,∴tan A=═2,故选:B.9.解:∵sinθ=,∴h=l•sinθ,故选:A.10.解:∵sin A=,∴AB=,故选:C.11.解:由勾股定理得,BC==4,∴tan∠B==,故选:D.12.解:∵∠C=90°,AB=5,BC=3,∴AC==4,∴cos A==,故选:A.13.解:∵∠CAB=90°,AD⊥BC于点D,∴∠B+∠C=90°,∠B+∠BAD=90°,∴∠BAD=∠C.在Rt△ABD中,∠ADB=90°,BD=2,∵tan∠BAD==,∴AD=2BD=4,∴AB==2.在Rt△ABC中,∠CAB=90°,AB=2,∵tan∠C==,∴AC=2AB=4.故选:D.14.解:在Rt△ACD中,∠ADC=90°,AB=2.8m,∠ACD=α,∴AD=AC•sin∠ACD=2.8sinα=sinα米,故选:C.15.解:2sin30°﹣2cos60°+tan45°=2×﹣2×+1=1﹣1+1=1.故选:D.16.解:由勾股定理得,AC===则sin B==,故选:C.17.解:由勾股定理得,AB===,则cos B===,故选:B.18.解:∵cos A=,∴∠A=30°.故选:A.19.解:过点B作BM⊥EA的延长线于点M,过点B作BN⊥CE于点N,如图所示.在Rt△ABM中,AB=10米,∠BAM=30°,∴AM=AB•cos∠BAM=5米,BM=AB•sin∠BAM=5米.在Rt△ADE中,AE=10米,∠DAE=60°,∴DE=AE•tan∠DAE=10米.在Rt△BCN中,BN=AE+AM=(10+5)米,∠CBN=45°,∴CN=BN•tan∠CBN=(10+5)米,∴CD=CN+EN﹣DE=10+5+5﹣10=(15﹣5)米.故选:A.20.解:∵在直角三角形中sin A的值为,∴∠A=30°.∴cos A=cos30°=.故选:C.21.解:如图:∵∠C=90°,AB=4,BC=3,∴AC==,∴sin∠B=,故选:A.22.解:∵在Rt△ABC中,∠C=90°,sin A==,∴设BC=3x,AB=5x,由勾股定理得:AC==4x,∴tan A===,即∠A的正切值为,故选:D.23.解:∵∠C=90°,sin A==,BC=6,∴AB=BC=×6=10;故选:D.24.解:∵∠A与∠B互余,∴∠A、∠B可看作Rt△ABC的两锐角,∵tan∠A==,∴设BC=4x,AC=3x,∴AB=5x,∴cos∠B===.故选:B.25.解:如图所示,在Rt△ABD中,tan B==.故选:A.26.解:∵∠C=90°,AC=,AB=4,∴BC===1,∴cos B==,故选:D.27.解:A、sin A==,故原题说法正确;B、cos A==,故原题说法错误;C、tan A==,故原题说法错误;D、tan B==,故原题说法错误;故选:A.28.解:∵BC=2AB,∴设AB=a,BC=2a,∴AC==a,∴sin C===,故选:D.29.解:∵∠C=90°,AB=5,AC=4,∴BC==3,∴cos B==.故选:B.30.解:∵,且,∴45°<α<60°.故选:B.31.解:∵在△ABC中,∠ACB=90°,AC=1,BC=2,AB=,∴sin B=.故选:B.32.解:∵cosα=,且α是锐角,∴α=30°.故选:D.33.解:如图所示:∵∠C=90°,AB=5,AC=3,∴BC=4,∴sin A=,故A错误;cos A=,故B正确;tan A=;故C错误;cos A=,故D错误;故选:B.34.解:由题意得:某人在斜坡上走了50米,上升的高度为25米,则某人走的水平距离s==25,∴坡度i=25:25=1:.故选:A.35.解:由题意可得:sin B=,即sin36°=,故AC=10sin36°.故选:A.36.解:∵某水库大坝的横断面是梯形,坝内一斜坡的坡度i=1:,∴设这个斜坡的坡角为α,故tanα==,故α=30°.故选:A.37.解:在Rt△ABC中,∠C=90°,tan A==,故选:B.38.解:在Rt△ABC中,AB=4,AC=2,∴cos A===,则∠A=45°.故选:C.39.解:过点C作CD⊥AB于点D,∵AD=3,CD=4,∴由勾股定理可知:AC=5,∴cos∠BAC==,故选:C.40.解:在Rt△ABC中,tan B==,故选:B.。
初中三角函数练习题(经典版)
初中三角函数练习题(经典版)1. 已知直角三角形ABC,其中∠B = 90°,BC = 5cm,AC = 12cm,求∠A和∠C的正弦、余弦和正切值。
解答:根据直角三角形的定义,可以得知:∠A = 90° - ∠C根据正弦定理,可以得知:sin(∠A) = AC / hypotenusecos(∠A) = BC / hypotenusetan(∠A) = sin(∠A) / cos(∠A)代入已知数据,可以计算出:sin(∠A) = 12 / 13 ≈ 0.92cos(∠A) = 5 / 13 ≈ 0.38tan(∠A) ≈ 2.41同理,我们可以计算出:sin(∠C) ≈ 0.38cos(∠C) ≈ 0.92tan(∠C) ≈ 0.412. 已知角A的正弦值sin(∠A) = 0.6,∠A为锐角,求∠A的角度。
解答:根据正弦函数的定义,可以得知:sin(∠A) = opposite / hypotenuse代入已知数据,可以得到:0.6 = opposite / 1解方程,可以得到:opposite ≈ 0.6由于∠A为锐角,因此0° < ∠A < 90°通过查表或计算可以得知:∠A ≈ 36.87°3. 已知∠A = 60°,求sin(∠A)和cos(∠A)的值。
解答:根据正弦函数和余弦函数的定义,可以得知:sin(∠A) = opposite / hypotenusecos(∠A) = adjacent / hypotenuse对于∠A = 60°,可以设置一个等边三角形,即opposite = adjacent = hypotenuse,代入已知数据,可以计算出:sin(∠A) = 0.87cos(∠A) = 0.5...(继续列出更多练题)总结:通过解答以上练习题,我们可以更好地理解和掌握三角函数的概念和计算方法,同时加深对直角三角形的认识。
人教版九年级数学下册第28章:锐角三角函数 全章测试含答案
人教版初中数学九年级下册第28章《锐角三角函数》全章测试一、选择题1. 在直角三角形中,如果各边都扩大1倍,则其锐角的三角函数值( )A. 都扩大1倍B.都缩小为原来的一半C.都没有变化D. 不能确定2.Rt △ABC 中,∠C =90°,若BC =4,,32sin =A 则AC 的长为( )A .6B .52C .53D .132 3.已知β为锐角,cos β≤21,则β的取值范围为( ) A.30°≤β <90° B. 0°<β≤60° C. 60°≤β<90° D. 30°≤β<60° 4.化简:140tan 240tan 2+-︒︒ 的结果为( )A.1+tan40°B. 1-tan40°C. tan40°-1D. tan 240°+1 5.△ABC 中,若AB =6,BC =8,∠B =120°,则△ABC 的面积为( )A .312B .12C .324D .3486.如图,△ABC 中,,90︒=∠C AD 是BAC ∠的角平分线,交BC 于点D ,那么CDACAB -=( )(A )BAC ∠sin (B )BAC ∠cos (C )BAC ∠tan (D )无法确定7.已知:如图,AB 是⊙O 的直径,弦AD 、BC 相交于P 点,那么ABDC的值为( )A .sin ∠APCB .cos ∠APC C .tan ∠APCD .APC∠tan 18.铁路路基的横断面是一个等腰梯形,若腰的坡度为2∶3,顶宽为3m ,路基高为4m ,则路基的下底宽应为( )A .15mB .12mC .9mD .7m 9. 已知α是锐角,且sin α+cos α=332,则sin α·cos α值为( ) A. 32 B. 23 C. 61D. 110.P 为⊙O 外一点,PA 、PB 分别切⊙O 于A 、B 点,若∠APB =2,⊙O 的半径为R ,则AB 的长为( )A .ααtan sin RB .ααsin tan R C .ααtan sin 2R D .ααsin tan 2R二、填空题11. 计算:1sin 60cos302-= . 12.ABC △中,90C =∠,若1tan 2A =,则sin ______A =13. 已知山坡的坡度i =1,则坡角为________.14. 在△ABC 中,∠C =90°,∠ABC =60°,若D 是AC 边中点,则tan ∠DBC 的值为______. 15. 在Rt △ABC 中,∠C =90°,a =10,若△ABC 的面积为3350,则∠A =______度. 第6题 第7题16. 菱形的两条对角线长分别为23和6,则菱形的相邻的两内角分别为_________.17.如图,已知直线1l ∥2l ∥3l ∥4l ,相邻两条平行直线间的距离都是1,如果正方形ABCD 的四个顶点分别在四条直线上,则sin α= .18. 如图所示,四边形ABCD 中,∠B =90°,AB =2,CD =8,AC ⊥CD ,若,31s i n =∠A C B 则cos ∠ADC =______.19.如图,小明同学在东西方向的环海路A 处,测得海中灯塔P 在北偏东60°方向上,在A 处东500米的B 处,测得海中灯塔P 在北偏东30°方向上,则灯塔P 到环海路的距离PC = 米(用根号表示). 20.在数学活动课上,小敏,小颖分别画了△ABC •和△DEF ,数据如图7,如果把小敏画的三角形面积记作ABC S ∆,小颖画的三角形面积记作DEF S ∆,那么你认为小敏和小颖画的两个三角形的面积的大小关系是ABC S ∆ DEF S ∆.(填“>,<,或=”) 三、解答题 21.计算:(1) 200822)45cot (30cot 60tan 60cot 30sin 2︒-+︒︒-︒+︒ (2) 130cos 260sin 60tan 45tan 2+︒-︒+︒-︒ (3)已知α是锐角,且sin (α+15°)=32,求8 -4cos α—( 2 -1)0+tan α的值. 22. 在Rt △ABC 中,∠C = 90°,a =3 ,c =5,求sin A 和tan A 的值.23由于保管不慎,小明把一道数学题染上了污渍,变成了“如图,在△ABC 中∠A =30°,tan B = ▲,AC =AB 的长”。
初中数学中考复习:25锐角三角函数综合复习(含答案)
中考总复习:锐角三角函数综合复习—巩固练习(提高)【巩固练习】一、选择题1. 在△ABC中,∠C=90°,cosA=,则tan A等于( )A.B.C.D.2.在Rt△ABC中,∠C=90°,把∠A的邻边与对边的比叫做∠A的余切,记作cotA=.则下列关系式中不成立的是( )A.tanA•cotA=1 B.sinA=tanA•cosA C.cosA=cotA•sinA D.tan2A+cot2A=1第2题第3题3.如图,在四边形ABCD中,E、F分別是AB、AD的中点,若EF=2,BC=5,CD=3,则tanC等于( )A.B.C.D.4.如图所示,直角三角形纸片的两直角边长分别为6、8,现将△ABC如图那样折叠,使点A与点B重合,折痕为DE,则tan∠CBE的值是( )A.B.C.D.5.如图所示,已知∠α的终边OP⊥AB,直线AB的方程为y=-x+,则cosα等于( )A.B.C.D.第5题第6题6.如图所示,在数轴上点A所表示的数x的范围是( )A. B.C. D.;二、填空题7.设θ为锐角,且x2+3x+2sinθ=0的两根之差为.则θ=.8.如图,在矩形ABCD中,点E在AB边上,沿CE折叠矩形ABCD,使点B落在AD边上的点F处,若AB=4,BC=5,则tan∠AFE的值为.9.已知△ABC的外接圆O的半径为3,AC=4,则sinB= .第8题第9题第11题10.当0°<α<90°时,求的值为.11.如图,点E(0,4),O(0,0),C(5,0)在⊙A上,BE是⊙A上的一条弦.则tan∠OBE=.12.已知:正方形ABCD的边长为2,点P是直线CD上一点,若DP=1,则tan∠BPC的值是 .三、解答题13.如图所示,某拦河坝截面的原设计方案为AH∥BC,坡角∠ABC=74°,坝顶到坝脚的距离AB=6m 为了提高拦河坝的安全性,现将坡角改为55°,由此,点A需向右平移至点D,请你计算AD的长.(精确到0.1m)14. 为缓解“停车难”的问题,某单位拟建造地下停车库,建筑设计师提供了该地下停车库的设计示意图,如图所示.按规定,地下停车库坡道1:3上方要张贴限高标志,以便告知停车人车辆能否安全驶入,为标明限高,请你根据该图计算CE(精确到0.1 m)(sin18°≈0.3090,cos18°≈0.9511,tan18°≈0.3249)15.如图所示,某中学九年级一班数学课外活动小组利用周末开展课外实践活动,他们要在某公园人工湖旁的小山AB上,测量湖中两个小岛C、D间的距离.从山顶A处测得湖中小岛C的俯角为60°,测得湖中小岛D的俯角为45°.已知小山AB的高为180米,求小岛C、D间的距离.(计算过程和结果均不取近似值)16. 在△ABC中,AB=AC,CG⊥BA,交BA的延长线于点G.一等腰直角三角尺按如图①所示的位置摆放,该三角尺的直角顶点为F,一条直角边与AC边在一条直线上,另一条直角边恰好经过点B.(1)在图①中请你通过观察、测量BF与CG的长度,猜想并写出BF与CG满足的数量关系,然后证明你的猜想;(2)当三角尺沿AC方向平移到图②所示的位置时,一条直角边仍与AC边在同一直线上,另一条直角边交BC边于点D,过点D作DE⊥BA于点E.此时请你通过观察、测量DE、DF与CG的长度,猜想并写出DE+DF与CG之间满足的数量关系;然后证明你的猜想;(3)当三角尺在②的基础上沿AC方向继续平移到图③所示的位置(点F在线段AC上,且点F与点C不重合)时,(2)中的猜想是否仍然成立?(不用说明理由)【答案与解析】一、选择题1.【答案】D;【解析】在Rt△ABC中,设AC=3k,AB=5k,则BC=4k,由定义可知tan A=.故选D.2.【答案】D;【解析】根据锐角三角函数的定义,得A、tanA•cotA==1,关系式成立;B、sinA=,tanA•cosA=,关系式成立;C、cosA=,cotA•sinA=,关系式成立;D、tan2A+cot2A=()2+()2≠1,关系式不成立.故选D.3.【答案】B;【解析】连接BD.∵E、F分別是AB、AD的中点.∴BD=2EF=4∵BC=5,CD=3∴△BCD是直角三角形.∴tanC=故选B.4.【答案】C;【解析】设CE=x,则AE=8-x.由折叠性质知AE=BE=8-x.在Rt△CBE中,由勾股定理得BE2=CE2+BC2,即(8-x)2=x2+62,解得,∴tan∠CBE.5.【答案】A;【解析】∵y=-x+,∴当x=0时,y=,当y=0时,x=1,∴A(1,0),B,∴OB=,OA=1,∴AB==,∴cos∠OBA=.∴OP⊥AB,∴∠α+∠OAB=90°,又∵∠OBA+∠OAB=90°,∴∠α=∠OBA.∴cosα=cos∠OBA=.故选A.6.【答案】D;【解析】由数轴上A点的位置可知,<A<2.A、由sin30°<x<sin60°可知,×<x<,即<x<,故本选项错误;B、由cos30°<x<cos45°可知,<x<×,即<x<,故本选项错误;C、由tan30°<x<tan45°可知,×<x<1,即<x<1,故本选项错误;D、由cot45°<x<cot30°可知,×1<x<,即<x<,故本选项正确.故选D.二、填空题7.【答案】30°;【解析】x1·x2=2sinθ,x1+x2=-3,则(x1-x2)2=(x1+x2)2-4x1x2=9-8sinθ=()2,∴sinθ=,∴θ=30°.8.【答案】;【解析】∵四边形ABCD是矩形,∴∠A=∠B=∠D=90°,CD=AB=4,AD=BC=5,由题意得:∠EFC=∠B=90°,CF=BC=5,∴∠AFE+∠DFC=90°,∠DFC+∠FCD=90°,∴∠DCF=∠AFE,∵在Rt△DCF中,CF=5,CD=4,∴DF=3,∴tan∠AFE=tan∠DCF==.9.【答案】;【解析】连接AO并延长交圆于E,连CE.∴∠ACE=90°(直径所对的圆周角是直角);在直角三角形ACE中,AC=4,AE=6,∴sin∠E=;又∵∠B=∠E(同弧所对的的圆周角相等),∴sinB=.10.【答案】1;【解析】由sin2α+cos2α=1,可得1-sin2α=cos2α∵sin2α+cos2α=1,∴cos2α=1-sin2α.∴.∵0°<α<90°,∴cosα>0.∴原式==1.11.【答案】;【解析】连接EC.根据圆周角定理∠ECO=∠OBE.在Rt△EOC中,OE=4,OC=5,则tan∠ECO=.故tan∠OBE=.12.【答案】2或;【解析】此题有两种可能:(1)当点P在线段CD上时,∵BC=2,DP=1,CP=1,∠C=90°,∴tan∠BPC==2;(2)当点P在CD延长线上时,∵DP=1,DC=2,∴PC=3,又∵BC=2,∠C=90°,∴tan∠BPC=.故答案为:2或.三、解答题13.【答案与解析】解:如图所示,过点A作AE⊥BC于点E,过点D作DF⊥BC于点F.在Rt△ABE中,,∴AE=ABsin∠ABE=6sin 74°≈5.77(cm);,∴BE=ABcos∠ABE=6cos 74°≈1.65(m).∵AH∥BC,∴DF=AE≈5.77m.在Rt△BDF中,,∴(m).∴AD=EF=BF-BE=4.04-1.65≈2.4(m).14.【答案与解析】解:在Rt△ABD中,∠ABD=90°,∠BAD=18°,∴,BD=tan∠BAD·AB=tan 18°×9,∴CD=tan 18°×9-0.5.在Rt△DCE中,∠DEC=90°,∠CDE=72°,∴,=sin 72°×(tan 18°×9-0.5)≈2.3(m).即该图中CE的长约为2.3m.15.【答案与解析】解:如图所示,由已知可得∠ACB=60°,∠ADB=45°.∴在Rt△ABD中,BD=AB.又在Rt△ABC中,∵,∴,即.∵BD=BC+CD,∴.∴CD=AB-AB=180-180×=(180-60)米.答:小岛C、D间的距离为(180-)米.16.【答案与解析】解:(1)BF=CG.证明:在△ABF和△ACG中,∵∠F=∠G=90°,∠FAB=∠GAC,AB=AC,∴△ABF≌△ACG(AAS),∴BF=CG.(2)DE+DF=CG.证明:过点D作DH⊥CG于点H(如图所示).∵DE⊥BA于点E,∠G=90°,DH⊥CG,∴四边形EDHG为矩形,∴DE=HG.DH∥BG.∴∠GBC=∠HDC∴AB=AC.∴∠FCD=∠GBC=∠HDC.又∵∠F=∠DHC=90°,CD=DC,∴△FDC≌△HCD(AAS),∴DF=CH.∴GH+CH=DE+DF=CG,即DE+DF=CG.(3)仍然成立.(注:本题还可以利用面积来进行证明,比如(2)中连结AD)。
锐角三角函数的综合常考50题
《各章节核心资料“锐角三角函数”50道常考题型》【韩春成内部核心资料(33)】知识构架一、 三角函数基础二、 锐角三角函数与代数综合 三、 化简求值 四、 比较大小五、 三角函数与几何综合典题精练三角函数基础1. 【易】︒的值是____________.2. 【易】(江西南昌十五校联考)计算:tan60︒=_______.3. 【易】(沈阳)在Rt ABC △中,C ∠为直角,sin A cos B 的值是( ) A .12 B C .1 D .4. 【易】(河南省实验中学内部中考数学第一轮复习资料4)在ABC △中,90C =︒∠,1tan 3A =,则sinB =( )A B .23 C .34D 5. 【易】(河南省实验中学内部中考数学第一轮复习资料4)若3cos 4A =,则下列结论正确的为( ) A .030A ︒<<︒∠ B .3045A ︒<<︒∠ C .4560A ︒<<︒∠ D .6090A ︒<<︒∠ 6. 【易】(2013年广东省佛山市高中阶段招生考试数学试题)如图,若60A ∠=︒,20m AC =,则BC 大约是(结果精确到0.1m )( )A .34.64mB .34.6mC .28.3mD .17.3mA CB7. 【易】(浙江省初中毕业生学业考试(湖州市))如图,已知在Rt ABC △中,90C ∠=︒,13AB =,12AC =,则cos B 的值为________8. 【易】如图,ABC △中,90C ∠=︒,12AC =,5BC =.⑴ 求AB 的长;⑵ 求sin A 、cos A 的值; ⑶ 求22sin cos A A +的值; ⑷ 比较sin A 与cos B 的大小.9. 【易】(石家庄市42中二模)在Rt ABC △中,90C ∠︒=,1BC =,2AC =,则tan A 的值为( )A .2B .12CD10. 【易】(莆田市初中毕业、升学考试试卷)已知在Rt ABC △中,90C ∠=︒,5sin 13A =,则tan B 的值为____________. 11. 【易】已知α为锐角,且5sin 13α=,求cos α的值;12. 【易】(贵阳市初中毕业生学业数学考试试题卷)如图,P 是α∠的边OA 上一点,点P的坐标为(12,5),则tan α等于( )A .513B .1213C .512D .125BCACBA13. 【难】用几何方法求15︒角的三角函数值.14. 【中】(杭州市各类高中招生文化考试)在Rt ABC △中,90C ∠=︒,2AB BC =,现给出下列结论:①sin A ;②1cos 2B =;③tan A ;④tan B 结论是__________(只需填上正确结论的序号)锐角三角函数与代数综合15. 【易】(淮南市洞山中学第四次质量检测)在ABC △中,若()2sin 1tan 0A B -=,则C ∠的度数是( )A .45︒B .60︒C .75︒D .105︒16. 【易】(海南省中考数学科模拟)在ABC △中,()2tan 12cos 0C B -=,则A ∠=______. 17. 【易】(安徽省芜湖市中考)已知锐角A 满足关系式22sin 7sin 30A A -+=,则sin A 的值为( )A .12B .3C .12或3D .418. 【易】求适合下列条件的锐角α:2cos(10)α+︒19. 【中】若方程222210x ax a -+-=的一个根是sin α,则它的另一个根必是cos α或cos α-.20. 【中】已知ABC △中,A ∠,B ∠,C ∠的对边分别是,,,a b c 若,a b 是关于x 的一元二次方程2(4)480x c x c -+++=的两个根,且925sin .c a A =⑴求证:ABC △是直角三角形; ⑵求ABC △的三边长.化简求值21. 【易】(北大附中初二第二学期期末考试)计算:tan60tan 45cos30︒-︒︒的值是___________.22. 【易】(延庆县2011-2012学年第一学期期末试卷)tan452cos30sin60-+23. 【易】(深圳初三月考)计算:2cos30cos45tan45-+°°°°24. 【易】(深圳初三月考)已知tan 2A =,求3sin cos sin cos A AA A-+的值25. 【易】(初三深圳实验第一次月考)()114cos0π 3.14tan 453-⎛⎫︒--+︒+ ⎪⎝⎭的值.26. 【易】(初三期末)sin30tan60+°°°的值为__________. 27. 【易】(河南省实验中学内部中考数学第一轮复习资料4)计算sin60tan 45cos30-的值是____________.已知3tan 0 A A ∠=则______.28. 【易】21220103tan303-⎛⎫-+-+︒ ⎪⎝⎭29. 【易】(滨州市初级中学学业水平考试)计算:()12112|52009π2-⎛⎫-++-⨯- ⎪⎝⎭.30. 【易】(怀化市初中毕业学业考试试卷)先化简,再求值:()20tan60a ab a b b a b-⨯--⋅︒-,其中1a b =,三角函数与几何综合31. 【易】(江苏沭阳银河学校质检题)在ABC △中,若tan 1A =,sin B ABC △是______三角形. 32. 【易】(江苏沭阳银河学校质检题)一等腰三角形的两边长分别为4cm 和6cm ,则其底角的余弦值为_____. 33. 【易】(兴仁中学一模)如图,在Rt ABC △中,90ACB ∠=︒,CD 是AB 边上的中线,若6BC =,8AC =,则tan ACD ∠的值为( )A .35B .45C .43D .3434. 【易】(温州市泰顺九校模拟、第一学期期末考试九年级数学试卷)直线2y x =与x 轴正半轴的夹角为α,那么下列结论正确的是( )A .tan 2α=B .1tan 2α=C .sin 2α=D .cos 2α=35. 【易】(河南省实验中学内部中考数学第一轮复习资料4)等腰ABC △中,5AB AC ==,8BC =,求底角B ∠的四个三角函数值.36. 【易】(南汇区九年级数学期末质量抽查试卷)在ABC △中,::2a b c =,那么cos A 的值为( ). ABC .12DDCBA37. 【易】(北京二中分校第一学期初三期中)已知:如图,ABC △中,135A ∠=︒,2tan 3B =,8AB =,求AC .38. 【易】(宝山区二模、北大附中2010-2011学年度初二第二学期期末考试)如图,ABC△中,AB AC =,4cos 5ABC ∠=,点D 在边BC 上,6BD =,CD AB =. ⑴求AB 的长;⑵求ADC ∠的正切值.39. 【易】(福建厦门)已知:如图,在ABC △中,90C ∠=︒DE BC ∥,3DE =,9BC =.⑴求ADAB的值; ⑵若10BD =,求sin A ∠的值.ABCCDABEDCBA40. 【易】(浦东新区中考预测)如果等腰三角形的腰长为13厘米,底边长为10厘米,那么底角的余切值等于( )A .513B .1213C .512D .12541. 【易】(罗湖初三第一次月考)如果ABC △中,sin cos A B ==,则下列最确切的结论是( )A .ABC △是直角三角形B .ABC △是等腰三角形 C .ABC △是等腰直角三角形D .ABC △是锐角三角形42. 【易】(延庆县第一学期期末试卷)在直角坐标平面内,O 为原点,点A 的坐标为(100),,点B 在第一象限内,5BO =,3sin 5BOA =∠.求:⑴点B 的坐标;⑵cos BAO ∠的值.43. 【易】(遂宁市初中毕业生学业考试)如图,已知O ⊙的两条弦AC ,BD 相交于点E ,70A =︒∠,50C =︒∠,那么sin AEB ∠的值为( )A .12BCD44. 【易】(九年级第一模拟试题)如图,在菱形ABCD 中,DE AB ⊥,4sin 5A =,2BE =,则tan BDE ∠的值是( )A .12BC .2 DABCDE45. 【易】(河南省实验中学内部中考数学第一轮复习资料4)(2012年初三期末)如图,在等腰梯形ABCD 中,AD BC ∥,2AB CD ==,AC AB ⊥,4AC =,则sin DAC ∠=( )A .12 BCD .2 46. 【易】(福建福州中考)如图,从热气球C 处测得地面A 、B 两点的俯角分别为30︒、45︒,如果此时热气球C 处的高度CD 为100米,点A 、D 、B 在同一条直线上,则A 、B 两点的距离是( )A .200米 B. C.D.)1001米47. 【易】(东城二模)如图,将三角板的直角顶点放置在直线AB 上的点O 处.使斜边CD AB ∥,则α∠的余弦值为__________.锐角三角函数48. 【易】(江苏省竞赛题)如图,等腰Rt ABC ∆中,︒=∠90C ,D 为BC 中点,将ABC ∆折叠,使A 点与D 点重合,若EF 为折痕,则BED ∠sin 的值为_______.DCBA45°30°DC BAACB DOα30°D EFABC49. 【易】(南充市中考题)如图,点E 是矩形ABCD 中CD 边上一点,BCE ∆沿BE 折叠为BFE ∆,点F 落在AD 上, ⑴ 求证:ABF ∆∽DFE ∆;⑵ 若31sin =∠DFE ,求EBC ∠tan 的值.50. 【易】(济南市中考题)如图,AOB ∠是放置在正方形网格中的一个角,则AOB ∠cos 的值是( )E《各章节核心资料“锐角三角函数”50道常考题型》答案【韩春成内部核心资料(33)】三角函数基础1.2.3. 【答案】D4. 【答案】D5. 【答案】B6.【答案】A7. 【答案】5138. 【答案】⑴∵90C ∠=︒,12AC =,5BC =,∴13AB ==. ⑵5sin 13BC A AB ==,12cos 13AC A AB ==. ⑶∵22525sin ()13169A ==,2212144cos ()13169A ==,∴2225144sin cos 1169169A A +=+= ⑷∵5cos 13BC B AB ==, ∴sin cos A B =.9. 【答案】B 10. 【答案】125 11. 【答案】121312. 【答案】C13. 【答案】如图所示,画Rt ABC ∆,使90ACB ∠=︒,D15︒30︒CBA1AC =,2AB =,30ABC ∠=︒,BC延长CB 到D ,使2BD BA ==,连接AD ,则15ADC ∠=︒.在Rt ACD ∆中,15ADC ∠=︒,1AC =,2DC =∵222AD DC AC =+2(21=+86432=+=++2262(2)=++2=∴AD =依定义得:sin15︒==;cos15︒==; tan152︒==- cot152︒=14. 【答案】②③④根据题意,因为90C =︒∠,2AB BC =,则该直角三角形是含30︒角的直角三角形,则12BC AB AC =∶∶1BC =,2AB =,AC 1sin 2BC A AB ==,②1cos 2BC B AB ==,③tan BC A AC ==④tan AC B BC ==,则答案为②③④. 锐角三角函数与代数综合15.【答案】C 16.【答案】105︒ 17.【答案】A18. 【答案】20α=︒【解析】∵2cos(10)α+︒=cos(10)α+︒=. ∵cos30︒=1030α+︒=︒,∴20α=︒. 19. 【答案】不妨设方程的另一根为m ,由一元二次方程的根系关系可知sin m a α+=,21sin 2a m α-=, 故2(sin )1sin 2m m αα+-=,整理可得22sin (sin )1m m αα=+-,即22sin 1m α+=,又22sin cos 1αα+=,故cos m α=±.20. 【答案】⑴∵,a b 是方程2(4)480x c x c -+++=的两个根,∴4,48a b c ab c +=+=+.∴222222()2(4)2(48)816816a b a b ab c c c c c c +=+-=+-+=++--=∴ABC ∆是直角三角形()90C ∠=︒.⑵在Rt ABC ∆中,sin a A c=,并代入925sin c a A =得22925.c a = ∴34,.55a cbc == 由344455a b c c c c +=++=+,. ∴10c =,且此时0∆>,从而68a b ==,化简求值21. 【答案】122. 【答案】tan452cos30sin60-+=12-+=1=1). 23. 【答案】124. 【答案】5325. 【答案】126. 27. 【答案】0,30︒28. 【答案】1029. 【答案】2-30. 【答案】()20tan60a ab a b b a b-⨯--⋅︒- ()1a a b b a b-=⨯--a b =-1a b =,∴原式12=-三角函数与几何综合31. 【答案】等腰直角.32. 【答案】34或13. 33. 【答案】D34. 【答案】A35. 【答案】3sin 5B =,4cos 5B =,3tan 4B =,4cot 3B =. 36. 【答案】B37.【答案】38. 【答案】⑴过点A 作AH BC ⊥,垂足为H∵AC AB =∴BC HC BH 21== 设x CD AC AB ===∵6=BD∴6+=x BC ,26+=x BH 在Rt △AHB 中,,又54cos =∠ABC ∴5426=+x x解得:10=x ,所以10=AB ⑵821===BC HC BH 2810=-=-=CH CD DH在Rt △AHB 中,222AB BH AH =+,又10=AB ,∴6=AH 在Rt △AHD 中,326tan ===∠DH AH ADC ∴ADC ∠的正切值是339. 【答案】⑴∵DE BC ∥,∴ADE ABC △∽△. ∴AD AB =13DE BC =. ⑵过点D 作DG BC ⊥,垂足为G .∴DG AC ∥.∴A BDG =∠∠.又∵DE BC ∥,∴四边形ECGD 是平行四边形.∴DE CG =.∴6BG =.在Rt DGB △中,GOB A ∠=∠∴sin A =∠35.AB BH ABC =∠cos40. 【答案】C41. 【答案】C42. 【答案】⑴如图,作BH OA ⊥,垂足为H在Rt OHB △中,5BO =,3sin 5BOA ∠=, 3BH ∴=.4OH ∴=.∴点B 的坐标为(43),.⑵10OA =,4OH =,6AH ∴=.在Rt AHB △中,3BH =,AB ∴=.cos AH BAO AB ∴∠==. 43.【答案】D 44.【答案】A 45.【答案】B 46. 【答案】D47. 【答案】12 锐角三角函数48. 【答案】35△AFE ≌△DFE ,45A FDE ∠=∠=︒,∵135135CDF EDB DEB EDB ∠+∠=︒∠+∠=︒,, ∴ 2DEB CDF AC CF x ∠=∠==,设,,则21DF AF x CD ==-=,,由2(2)x -= 22351 44x x DF +==,得,,3sin sin 5CF BED CDF DF ∠=∠== 49. 【答案】⑴略⑵由△ABF ∽△DFE,得EF DF BF AB ===,故tan tan EF EBC EBF BF ∠=∠=.50.△AOB 为直角三角形.。
初中数学三角函数习题有答案
一、计算题1、计算:.2、计算:3、计算:+() - ;4、计算:sin600cos300+5、小明的家在某公寓楼AD内.他家的前面新建了一座大厦BC.小明想知道大厦的高度.但由于施工原因.无法测出公寓底部A与大厦底部C的直线距离.于是小明在他家的楼底A处测得大厦顶部B的仰角为.爬上楼顶D处测得大厦的顶部B的仰角为.已知公寓楼AD的高为60米.请你帮助小明计算出大厦的高度BC。
6、(1)计算:;(2)已知∶∶=2∶3∶4.求的值.二、简答题7、先化简.再求值:.其中(tan45°-cos30°)8、已知.凸4n+2边形A1A2…A4n+2(n是非零自然数)各内角都是30°的整数倍,•又关于x的方程均有实根.求这凸4n+2边形各内角的度数.9、已知:sinα是关于x的一元二次方程的一个根.请计算代数式:tan2α-sinα+2cosα的值10、已知是锐角.且.计算11、如图.△A BC和△CDE均为等腰直角三角形.点B.C.D在一条直线上.点M是AE的中点.BC=3.CD=1.(1)求证tan∠AEC=;(2)请探究BM与DM的关系.并给出证明.12、先化简再求值:.其中a=tan60°13、观察与思考:阅读下列材料.并解决后面的问题.在锐角△ABC中.∠A、∠B、∠C的对边分别是a、b、c.过A作AD⊥BC于D(如图).则sinB=.sinC=.即AD=c sin B.AD=bsinC.于是csinB=bsinC.即.同理有:..所以即:在一个三角形中.各边和它所对角的正弦的比相等.在锐角三角形中.若已知三个元素(至少有一条边).运用上述结论和有关定理就可以求出其余三个未知元素.根据上述材料.完成下列各题.(1)如图.△ABC中.∠B=450.∠C=750.BC=60.则∠A= ;AC= ;(2)如图.一货轮在C处测得灯塔A在货轮的北偏西30°的方向上.随后货轮以60海里/时的速度按北偏东30°的方向航行.半小时后到达B处.此时又测得灯塔A在货轮的北偏西75°的方向上(如图).求此时货轮距灯塔A的距离AB.14、开放探索题:(1)如图.锐角的正弦值和余弦值都随着锐角的确定而确定、变化而变化. 试探索随着锐角度数的增大.它的正弦值和余弦值变化的规律.(2)根据你探索到的规律.试比较18°.34°.50°.62°.88°.这些锐角的正弦值和余弦值的大小.(3)比较大小(在空格处填“>”、“<”或“=”)若.则______;若.则______;若>45°.则______.(4)利用互为余角的两个角的正弦和余弦的关系.试比较下列正弦值和余弦值的大小:Sin10°、cos30°、sin50°、cos70°.15、学科内知识综合题:已知∠A是锐角.且tanA、cotA是关于x的一元二次方程=0的两个实数根.(1)求k的值;(2)问∠A能否等于45°?请说明你的理由.16、学习过三角函数.我们知道在直角三角形中.一个锐角的大小与两条边长的比值相互唯一确定.因此边长与角的大小之间可以相互转化.类似的.可以在等腰三角形中建立边角之间的联系.我们定义:等腰三角形中底边与腰的比叫做顶角的正对(sad).如图.在△ABC中.AB=AC.顶角A的正对记作sadA.这时sad A=.容易知道一个角的大小与这个角的正对值也是相互唯一确定的.根据上述对角的正对定义.解下列问题:(1)sad的值为()A. B. 1 C. D. 2(2)对于.∠A的正对值sad A的取值范围是 .(3)已知.其中为锐角.试求sad的值.17、已知:如图.在△ABC中....求:(1) △ABC的面积; (2) sinA的值.18、如图.在Rt△ABC中.BC、AC、AB三边的长分别为a、b、c.则sinA=. cosA=.tanA=.我们不难发现:sin260o+cos260o=1.…试探求sinA、cosA、tanA之间存在的一般关系.并说明理由.三、填空题19、在中.三边之比为.则=20、如图.在平面直角坐标系O中.已知点A(3.3)和点B(7.0).则sin∠ABO的值等于 .21、“赵爽弦图”是由四个全等的直角三角形与一个小正方形拼成的一个大正方形.如果小正方形的面积为4.大正方形的面积为100.直角三角形中较小的锐角为α.则tanα的值等于___________22、已知为锐角.若.=;若.则;23、已知Rt△中,若cos,则四、选择题24、已知在RT△ABC中.∠C=900.∠A、∠B、∠C的对边分别为a、b、c.则下列关系式错误的是(▲)A、a=btanAB、b=ccosAC、a=csinAD、c=25、直线y=2x与x轴正半轴的夹角为.那么下列结论正确的是()A. tan=2B. tan=C. sin=2D. cos=226、将两副三角板如下图摆放在一起.连结.则的余切值为( )A.B.C.2 D.327、关于的二次函数+.其中为锐角.则:①当为30°时.函数有最小值-;②函数图象与坐标轴必有三个交点.并且当为45°时.连结这三个交点所围成的三角形面积小于1;③当<60°时.函数在x >1时.y随x的增大而增大;④无论锐角怎么变化.函数图象必过定点。
初中数学三角函数巩固练习含答案
三角函数巩固练习一.选择题(共16小题)1.如图,港口A在观测站O的正东方向,某船从港口A出发,沿北偏东15°方向航行15km 到达B处,此时从观测站O处测得该船位于北偏东45°的方向,则观测站O距港口A 的距离为()A.km B.15km C.km D.15km2.在△ABC中,∠C=90°,AC=1,BC=2,则cos A的值是()A.B.C.D.3.如图,从地面B处测得热气球A的仰角为45°,从地面C处测得热气球A的仰角为30°,若BC为240米则热气球A的高度为()A.120米B.120(﹣1)米C.240米D.120(+1)米4.临沂高铁即将开通,这将极大方便市民的出行.如图,在距离铁轨200米处的B处,观察由东向西的动车,当动车车头在A处时,恰好位于B处的北偏东60°方向上,10秒钟后,动车车头到达C处,恰好位于B处西北方向上,则这时段动车的平均速度是()米/秒.A.20(+1)B.20(﹣1)C.200D.3005.如图,点P(x,y)(x>0,y>0)在半径为1的圆上,则cosα=()A.x B.y C.D.6.如图,广场上空有一个气球A,地面上点B,C,D在一条直线上,BC=20m.在点B,C分别测得气球A的仰角∠ABD=45°,∠ACD=60°.则气球A离地面的高度()A.(30﹣10)米B.20米C.(30+10)米D.40米7.如图,一辆小车沿着坡度为i=1:的斜坡向上行驶了50米,则此时该小车离水平面的垂直高度为()A.25米B.25米C.30米D.35米8.如图,小明为了测量大楼AB的高度,他从点C出发,沿着斜坡面CD走52米到点D处,测得大楼顶部点A的仰角为37°,大楼底部点B的俯角为45°,已知斜坡CD的坡度为i=1:2.4.大楼AB的高度约为()(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)A.32米B.35米C.36米D.40米9.△ABC在正方形网格中的位置如图所示,则cosα的值是()A.B.C.D.10.如图,从热气球C处测得地面A、B两点的俯角分别为30°、45°,如果此时热气球C 处的高度CD为100m,点A、D、B在同一直线上,CD⊥AB,则A、B两点的距离是()A.200m B.200m C.m D.11.如图,航拍无人机从A处测得一幢建筑物顶部B的仰角为30°,测得底部C的俯角为60°,此时航拍无人机与该建筑物的水平距离AD为90m,那么该建筑物的高度BC约为()A.100m B.120m C.100m D.120m12.如图,河流的两岸PQ,MN互相平行,河岸PQ上有一排小树,已知相邻两树CD之间的距离为50米,某人在河岸MN的A处测得∠DAN=45°,然后沿河岸走了130米到达B处,测得∠CBN=60°.则河流的宽度CE为()A.80B.40(3﹣)C.40(3+)D.4013.如图,在小山的东侧A点有一个热气球,由于受风的影响,以30米/分的速度沿与地面成75°角的方向飞行,25分钟后到达C处,此时热气球上的人测得小山西侧B点的俯角为30°,则小山东西两侧A,B两点间的距离为()米.A.750B.375C.375D.75014.朝天门,既是重庆城的起源地,也是“未来之城”来福士广场的停泊之地,广场上八幢塔楼临水北向,错落有致,宛若巨轮扬帆起航,成为我市新的地标性建筑﹣﹣“朝天扬帆”,来福士广场T3N塔楼核芯筒于2017年12月11日完成结构封顶,高度刷新了重庆的天际线,小明为了测量T3N的高度,他从塔楼底部B出发,沿广场前进185米至点C,继而沿坡度为i=1:2.4的斜坡向下走65米到达码头D,然后在浮桥上继续前行100米至趸船E,在E处小明操作无人勘测机,当无人勘测机飞行之点E的正上方点F时,测得码头D的俯角为58°.楼顶A的仰角为30°,点A、B、C、D、E、F、O在同一平面内,则T3N塔楼AB的高度约为()(结果精确到1米,参考数据:sin58°≈0.85,cos58°≈0.53,tan58°≈1.60,≈1.73)A.319米B.335米C.342米D.356米15.如图,数学实践活动小组要测量学校附近楼房CD的高度,在水平底面A处安置测角仪测一得楼房CD顶部点CD的仰角为45°,向前走20米到达A1处,测得点D的仰角为67.5°.已知测角仪AB的高度为1米,则楼房CD的高度为()A.()米B.()米C.()米D.()米16.在Rt△ABC中,把各边都缩小到,那么sin A的值()A.都缩小B.都不变C.都扩大5倍D.无法确定二.填空题(共4小题)17.如图,在边长相同的小正方形网格中,点A、B、C、D都在这些小正方形的顶点上,AB,CD相交于点P,则的值=______,tan∠APD的值=______.18.如图,在△ABC中,sin B=,tan C=,AB=3,则AC的长为______.19.如图所示是小明家房子的侧面图,屋面两侧的斜坡AB=AC=6米,屋顶∠BAC=150°,计划把图中△ABC(阴影部分)涂上墙漆,若墙漆的造价每平方米为100元,则这部分墙漆的造价共需______元.20.在Rt△ABC中,∠C=90°,AB=4,AC=1,则cos B=______.三.解答题(共7小题)21.小明学校门前有座山,山上有一电线杆PQ,他很想知道电线杆PQ的高度.于是,有一天,小明和他的同学小亮带着测角器和皮尺来到山下进行测量,测量方案如下:如图,首先,小明站在地面上的点A处,测得电线杆顶端点P的仰角是45°;然后小明向前走6米到达点B处,测得电线杆顶端点P和电线杆底端点Q的仰角分则是60°和30°,设小明的眼睛到地面的距离为1.6米,请根据以上测量的数据,计算电线杆PQ的高度(结果精确到1米,参考数据=1.7,=1.4).22.如图,在Rt△ABC中,∠C=90°,AD是∠BAC的平分线,AB:BD=.(1)求tan∠DAC的值;(2)若BD=4,求S△ABC.23.我国海域辽阔,渔业资源丰富,如图所示.现有渔船B在海岛A,C附近捕鱼作业,已知海岛C位于海岛A的北偏东45°方向上,在渔船B上测得海岛A位于渔船B的北偏西30°的方向上,此时海岛C恰好位于渔船B的正北方向海里处,则海岛A,C之间的距离为多少海里?24.如图是某路灯在铅锤面内的示意图,灯柱AC的高为15.25米,灯杆AB与灯柱AC的夹角∠A=120°,路灯采用锥形灯罩,在地面上的照射区域DE长为22米,从D、E两处测得路灯B的仰角分别为α和β,且tanα=8,tanβ=,求灯杆AB的长度.25.如图,在Rt△ABC中,∠C=90°,点D在边BC上,AD=BD=5,sin∠ADC=,求tan∠ABC的值.26.如图,一艘船由A港沿北偏东65°方向航行30km至B港,然后再沿北偏西40°方向航行至C港,C港在A港北偏东20°方向,求(1)∠C的度数.(2)A,C两港之间的距离为多少km.27.已知:如图,在△ABC中,AB=AC=5,BC=8,D是边AB上一点,且tan∠DCB=.(1)试求cos B的值;(2)试求△BCD的面积.三角函数巩固练习参考答案与试题解析一.选择题(共16小题)1.解:如图,过点A作AD⊥OB于D.在Rt△AOD中,∠B=180°﹣45°﹣90°﹣15°=30°,∴AD=AB•sin30°=15×=km,∴OA=AD=km.即观测站O距港口A的距离为km.故选:A.2.解:在Rt△ACB中,∠C=90°,AC=1,BC=2,∴AB===,∴cos A===,故选:C.3.解:如图所示,过点A作AD⊥BC于点D,由题意知,∠B=45°,∠C=30°,BC=240米,设AD=x米,则BD=AD=x米,CD===x米,由BC=BD+CD可得x+x=240,解得:x=120(﹣1),即热气球的高度为120(﹣1)米,故选:B.4.解:作BD⊥AC于点D.∵在Rt△ABD中,∠ABD=60°,∴AD=BD•tan∠ABD=200(米),同理,CD=BD=200(米).则AC=200+200(米).则平均速度是=20(+1)米/秒.故选:A.5.解:如图,过点P作PQ⊥x轴于点Q,则OQ=x、PQ=y,OP=1,∴cosα==x,故选:A.6.解:作AE⊥BD于E,在Rt△ACE中,CE==AE,∵∠ABE=45°,∴BE=AE,由题意得BE﹣CE=20,即AE﹣AE=20,解得AE=30+10.答:气球A离地面的高度约为(30+10)m.故选:C.7.解:设此时该小车离水平面的垂直高度为x米,则水平前进了x米.根据勾股定理可得:x2+(x)2=502.解得x=25.即此时该小车离水平面的垂直高度为25米.故选:A.8.解:作DE⊥AB于E,作DF⊥BC于F,∵CD的坡度为i=1:2.4,CD=52米,∴=1:2.4,∴=52,∴DF=20(米);∴BE=DF=20(米),∵∠BDE=45°,∴DE=BE=40m,在Rt△ADE中,∠ADE=37°,∴AE=tan37°•20=15(米)∴AB=AE+BE=35(米).故选:B.9.解:如图所示:∵AD=3,CD=4,∴AC=5∴cosα==.故选:C.10.解:∵从热气球C处测得地面A、B两点的俯角分别为30°、45°,∴∠BCD=90°﹣45°=45°,∠ACD=90°﹣30°=60°,∵CD⊥AB,CD=100m,∴△BCD是等腰直角三角形,∴BD=CD=100m,在Rt△ACD中,∵CD=100m,∠ACD=60°,∴AD=CD•tan60°=100×=100m,∴AB=AD+BD=100+100=100(+1)m.故选:D.11.解:由题意可得:tan30°===,解得:BD=30,tan60°===,解得:DC=90,故该建筑物的高度为:BC=BD+DC=120(m),故选:D.12.解:过点C作CF∥DA交AB于点F.∵MN∥PQ,CF∥DA,∴四边形AFCD是平行四边形.∴AF=CD=50,∠CFB=∠DAN=45°,∴FE=CE,设BE=x,∵∠CBN=60°,∴EC=x,∵FB+BE=EF,∴130﹣50+x=x,解得:x=40(+1),∴CE=x=40(3+),故选:C.13.解:如图,过点A作AD⊥BC,垂足为D,在Rt△ACD中,∠ACD=75°﹣30°=45°,AC=30×25=750(米),∴AD=AC•sin45°=375(米).在Rt△ABD中,∵∠B=30°,∴AB=2AD=750(米).故选:A.14.解:如图,作FG⊥AB于点G,CH⊥DO于点H,由i==可设CH=x、DH=2.4x,∵CD2=CH2+DH2,且CD=65,∴652=x2+(2.4x)2,解得:x=25,则BO=CH=25,DH=2.4x=60,∴FG=EO=ED+DH+OH=100+60+185=345,则AG=FG tan∠AFG=345×=115,又∵GO=EF=ED×tan∠FDE=100×tan58°≈100×1.60=160.∴AB=AG+OG﹣OB=115+160﹣25≈198.95+135≈335(米)故选:B.15.解:过B作BF⊥CD于F,作B′E⊥BD,∵∠BDB'=∠B'DC=22.5°,∴EB'=B'F,在Rt△BEE′中,∵∠BEB′=45°,BB′=20米,∴EB′=B′F=10(米),∴BF=BB′+B′F=(20+10)(米)∴DF=(20+10)(米)∴DC=DF+FC=20+10+1=(21+10)米故选:B.16.解:根据锐角三角函数的定义,知若各边都缩小到,则∠A的大小没有变化,所以sin A的值不变.故选:B.二.填空题(共4小题)17.解:∵四边形BCED是正方形,∴DB∥AC,∴△DBP∽△CAP,∴==3,连接BE,∵四边形BCED是正方形,∴DF=CF=CD,BF=BE,CD=BE,BE⊥CD,∴BF=CF,根据题意得:AC∥BD,∴△ACP∽△BDP,∴DP:CP=BD:AC=1:3,∴DP:DF=1:2,∴DP=PF=CF=BF,在Rt△PBF中,tan∠BPF==2,∵∠APD=∠BPF,∴tan∠APD=2,故答案为:3,2.18.解:过A作AD⊥BC,在Rt△ABD中,sin B=,AB=3,∴AD=AB•sin B=1,在Rt△ACD中,tan C=,∴=,即CD=,根据勾股定理得:AC===,故答案为.19.解:如图,过点B作BD垂直于CA延长线于点D,∵∠BAC=150°,∴∠BAD=30°.∴BD=AB•sin30°=AB=3米.∴S阴影=AC•BD==9(平方米)则造价为:9×100=900(元)故答案是:900.20.解:由勾股定理可知:BC==,∴cos B==,故答案为:三.解答题(共7小题)21.解:设QH=x米,由题意得,∠PDH=60°,∠QDH=30°,∴∠DPH=30°,在Rt△QDH中,tan∠QDH=,则DH===x,在Rt△PDH中,tan∠PDH=,则PH==3x,∵∠PCH=45°,∴CH=PH,即6+x=3x,解得,x=3+,则PQ=3x﹣x=2x=6+2≈9,答:电线杆PQ的高度约为9米.22.解:(1)过D作DE⊥AB于E,∴∠BED=∠C=90°,∵AD是∠BAC的平分线,∴DE=DC,∵∠B=∠B,∴△BDE∽△BAC,∴=,∵AB:BD=,∴tan∠DAC==;(2)∵tan∠DAC=,∴∠DAC=30°,∴∠ADC=60°,∠BAD=∠CAD=30°,∴∠B=30°,∴∠ABD=∠DAB,∴AD=BD=4,∴CD=AD=2,AC=AD=2,∴BC=6,∴S△ABC=AC•BC=6×=.23.解:作AD⊥BC于D,设AC=x海里,在Rt△ACD中,AD=AC×sin∠ACD=x,则CD=x,在Rt△ABD中,BD=x,则x+x=28(1+),解得,x=28,答:A,C之间的距离为28海里.24.解:过点B作BF⊥CE,交CE于点F,过点A作AG⊥BF,交BF于点G,则FG=AC =15.25.由题意得∠BDE=α,tan∠β=.设BF=4x,则EF=5x在Rt△BDF中,∵tan∠BDF==8,∴DF==,∵DE=22,∴x+5x=22.∴x=4.∴BF=16,∴BG=BF﹣GF=16﹣15.25=0.75,∵∠BAC=120°,∴∠BAG=∠BAC﹣∠CAG=120°﹣90°=30°.∴AB=2BG=1.5,答:灯杆AB的长度为1.5米25.解:在Rt△ADC中,sin∠ADC==,∴=,∴AC=4,CD===3,∴BC=CD+DB=3+5=8,在Rt△ABC中,tan∠ABC===.26.解:(1)由题意得:∠ACB=20°+40°=60°;(2)由题意得,∠CAB=65°﹣20°=45°,∠ACB=40°+20°=60°,AB=30,过B作BE⊥AC于E,如图所示:∴∠AEB=∠CEB=90°,在Rt△ABE中,∵∠ABE=45°,∴△ABE是等腰直角三角形,∵AB=30,∴AE=BE=AB=30,在Rt△CBE中,∵∠ACB=60°,tan∠ACB=,∴CE===10,∴AC=AE+CE=30+10,∴A,C两港之间的距离为(30+10)km.27.解:(1)作AE⊥BC于E,如图,∵AB=AC,∴BE=CE=BC=×8=4,在Rt△ABC中,cos B==;(2)作DF⊥BC于F,如图,在Rt△CDF中,tan∠DCF==,设DF=3x,则CF=5x,在Rt△ABE中,AE==3,∴tan B==,在Rt△BDF中,tan B==,而DF=3x,∴BF=4x,∴BC=BF+CF=4x+5x=9x,即9x=8,解得x=,∴DF=3x=,∴S△BCD=×DF×BC=××8=.。
人教版九年级下册: 圆和三角函数综合练习(含答案)
圆与三角函数1.已知,如图,AB是⊙O的直径,点C为⊙O上一点,OF⊥BC于点F,交⊙O于点E,AE 与BC交于点H,点D为OE的延长线上一点,且∠ODB=∠AEC.(1)求证:BD是⊙O的切线;(2)求证:CE2=EH•EA;(3)若⊙O的半径为5,sinA=,求BH的长.2.如图,已知AB是⊙O的直径,C是⊙O上任一点(不与A,B重合),AB⊥CD于E,BF为⊙O的切线,OF∥AC,连结AF,FC,AF与CD交于点G,与⊙O交于点H,连结CH.(1)求证:FC是⊙O的切线;(2)求证:GC=GE;(3)若cos∠AOC=,⊙O的半径为r,求CH的长.3.已知⊙O是以AB为直径的△ABC的外接圆,OD∥BC交⊙O于点D,交AC于点E,连接AD、BD,BD交AC于点F.(1)求证:BD平分∠ABC;(2)延长AC到点P,使PF=PB,求证:PB是⊙O的切线;(3)如果AB=10,cos∠ABC=,求AD.4.如图,在矩形ABCD中,点O在对角线AC上,以OA的长为半径的圆O与AD、AC分别交于点E、F,且∠ACB=∠DCE.(1)判断直线CE与⊙O的位置关系,并证明你的结论;(2)若tan∠ACB=,BC=2,求⊙O的半径.5.如图,AB是⊙O的直径,D、E为⊙O上位于AB异侧的两点,连接BD并延长至点C,使得CD=BD,连接AC交⊙O于点F,连接AE、DE、DF.(1)证明:∠E=∠C;(2)若∠E=55°,求∠BDF的度数;(3)设DE交AB于点G,若DF=4,cosB=,E是的中点,求EG•ED的值.6.AB,CD是⊙O的两条弦,直线AB,CD互相垂直,垂足为点E,连接AD,过点B作BF⊥AD,垂足为点F,直线BF交直线CD于点G.(1)如图1,当点E在⊙O外时,连接BC,求证:BE平分∠GBC;(2)如图2,当点E在⊙O内时,连接AC,AG,求证:AC=AG;(3)如图3,在(2)条件下,连接BO并延长交AD于点H,若BH平分∠ABF,AG=4,tan ∠D=,求线段AH的长.7.如图,已知AB是⊙O的直径,BP是⊙O的弦,弦CD⊥AB于点F,交BP于点G,E在CD的延长线上,EP=EG,(1)求证:直线EP为⊙O的切线;(2)点P在劣弧AC上运动,其他条件不变,若BG2=BF•BO.试证明BG=PG;(3)在满足(2)的条件下,已知⊙O的半径为3,sinB=.求弦CD的长.8.如图,在Rt△ABC中,∠ACB=90°,AO是△ABC的角平分线.以O为圆心,OC为半径作⊙O.(1)求证:AB是⊙O的切线.(2)已知AO交⊙O于点E,延长AO交⊙O于点D,tanD=,求的值.(3)在(2)的条件下,设⊙O的半径为3,求AB的长.9.如图,四边形ABCD内接于⊙O,对角线AC为⊙O的直径,过点C作AC的垂线交AD的延长线于点E,点F为CE的中点,连接DB,DC,DF.(1)求∠CDE的度数;(2)求证:DF是⊙O的切线;(3)若AC=2DE,求tan∠ABD的值.10.如图,已知在△ABP中,C是BP边上一点,∠PAC=∠PBA,⊙O是△ABC的外接圆,AD 是⊙O的直径,且交BP于点E.(1)求证:PA是⊙O的切线;(2)过点C作CF⊥AD,垂足为点F,延长CF交AB于点G,若AG•AB=12,求AC的长;(3)在满足(2)的条件下,若AF:FD=1:2,GF=1,求⊙O的半径及sin∠ACE的值.11.已知Rt△ABC中,AB是⊙O的弦,斜边AC交⊙O于点D,且AD=DC,延长CB交⊙O于点E.(1)图1的A、B、C、D、E五个点中,是否存在某两点间的距离等于线段CE的长?请说明理由;(2)如图2,过点E作⊙O的切线,交AC的延长线于点F.①若CF=CD时,求sin∠CAB的值;②若CF=aCD(a>0)时,试猜想sin∠CAB的值.(用含a的代数式表示,直接写出结果)12.如图,在Rt△ABC中,∠C=90°,以BC为直径的⊙O交斜边AB于点M,若H是AC的中点,连接MH.(1)求证:MH为⊙O的切线.(2)若MH=,tan∠ABC=,求⊙O的半径.(3)在(2)的条件下分别过点A、B作⊙O的切线,两切线交于点D,AD与⊙O相切于N 点,过N点作NQ⊥BC,垂足为E,且交⊙O于Q点,求线段NQ的长度.13.如图,⊙O的半径r=25,四边形ABCD内接于圆⊙O,AC⊥BD于点H,P为CA延长线上的一点,且∠PDA=∠ABD.(1)试判断PD与⊙O的位置关系,并说明理由;(2)若tan∠ADB=,PA=AH,求BD的长;(3)在(2)的条件下,求四边形ABCD的面积.14.如图,PA为⊙O的切线,A为切点,直线PO交⊙O与点E,F过点A作PO的垂线AB垂足为D,交⊙O与点B,延长BO与⊙O交与点C,连接AC,BF.(1)求证:PB与⊙O相切;(2)试探究线段EF,OD,OP之间的数量关系,并加以证明;(3)若AC=12,tan∠F=,求cos∠ACB的值.15.如图,在⊙O中,弦AB与弦CD相交于点G,OA⊥CD于点E,过点B的直线与CD的延长线交于点F,AC∥BF.(1)若∠FGB=∠FBG,求证:BF是⊙O的切线;(2)若tan∠F=,CD=a,请用a表示⊙O的半径;(3)求证:GF2﹣GB2=DF•GF.16.如图,在⊙O中,直径AB⊥CD,垂足为E,点M在OC上,AM的延长线交⊙O于点G,交过C的直线于F,∠1=∠2,连结CB与DG交于点N.(1)求证:CF是⊙O的切线;(2)求证:△ACM∽△DCN;(3)若点M是CO的中点,⊙O的半径为4,cos∠BOC=,求BN的长.17.如图所示,在Rt△ABC与Rt△OCD中,∠ACB=∠DCO=90°,O为AB的中点.(1)求证:∠B=∠ACD.(2)已知点E在AB上,且BC2=AB•BE.(i)若tan∠ACD=,BC=10,求CE的长;(ii)试判定CD与以A为圆心、AE为半径的⊙A的位置关系,并请说明理由.18.如图,AB为⊙O的直径,直线CD切⊙O于点M,BE⊥CD于点E.(1)求证:∠BME=∠MAB;(2)求证:BM2=BE•AB;(3)若BE=,sin∠BAM=,求线段AM的长.19.如图,线段AB是⊙O的直径,弦CD⊥AB于点H,点M是上任意一点,AH=2,CH=4.(1)求⊙O的半径r的长度;(2)求sin∠CMD;(3)直线BM交直线CD于点E,直线MH交⊙O于点N,连接BN交CE于点F,求HE•HF 的值.20.已知AB、CD是⊙O的两条弦,直线AB、CD互相垂直,垂足为E,连接AC,过点B作BF⊥AC,垂足为F,直线BF交直线CD于点M.(1)如图1,当点E在⊙O内时,连接AD,AM,BD,求证:AD=AM;(2)如图2,当点E在⊙O外时,连接AD,AM,求证:AD=AM;(3)如图3,当点E在⊙O外时,∠ABF的平分线与AC交于点H,若tan∠C=,求tan∠ABH 的值.2018年01月10日金博初数2的初中数学组卷参考答案与试题解析一.解答题(共25小题)1.已知,如图,AB是⊙O的直径,点C为⊙O上一点,OF⊥BC于点F,交⊙O于点E,AE 与BC交于点H,点D为OE的延长线上一点,且∠ODB=∠AEC.(1)求证:BD是⊙O的切线;(2)求证:CE2=EH•EA;(3)若⊙O的半径为5,sinA=,求BH的长.【分析】(1)由圆周角定理和已知条件证出∠ODB=∠ABC,再证出∠ABC+∠DBF=90°,即∠OBD=90°,即可得出BD是⊙O的切线;(2)连接AC,由垂径定理得出,得出∠CAE=∠ECB,再由公共角∠CEA=∠HEC,证明△CEH∽△AEC,得出对应边成比例,即可得出结论;(3)连接BE,由圆周角定理得出∠AEB=90°,由三角函数求出BE,再根据勾股定理求出EA,得出BE=CE=6,由(2)的结论求出EH,然后根据勾股定理求出BH即可.【解答】(1)证明:∵∠ODB=∠AEC,∠AEC=∠ABC,∴∠ODB=∠ABC,∵OF⊥BC,∴∠BFD=90°,∴∠ODB+∠DBF=90°,∴∠ABC+∠DBF=90°,即∠OBD=90°,∴BD⊥OB,∴BD是⊙O的切线;(2)证明:连接AC,如图1所示:∵OF⊥BC,∴,∴∠CAE=∠ECB,∵∠CEA=∠HEC,∴△CEH∽△AEC,∴,∴CE2=EH•EA;(3)解:连接BE,如图2所示:∵AB是⊙O的直径,∴∠AEB=90°,∵⊙O的半径为5,sin∠BAE=,∴AB=10,BE=AB•sin∠BAE=10×=6,∴EA===8,∵,∴BE=CE=6,∵CE2=EH•EA,∴EH==,在Rt△BEH中,BH===.【点评】本题是圆的综合题目,考查了切线的判定、圆周角定理、圆心角、弧、弦之间的关系定理、勾股定理、三角函数、相似三角形的判定与性质等知识;本题难度较大,综合性强,特别是(2)(3)中,需要通过作辅助线证明三角形相似和运用三角函数、勾股定理才能得出结果.2.如图,已知AB是⊙O的直径,C是⊙O上任一点(不与A,B重合),AB⊥CD于E,BF为⊙O的切线,OF∥AC,连结AF,FC,AF与CD交于点G,与⊙O交于点H,连结CH.(1)求证:FC是⊙O的切线;(2)求证:GC=GE;(3)若cos∠AOC=,⊙O的半径为r,求CH的长.【分析】(1)首先根据OF∥AC,OA=OC,判断出∠BOF=∠COF;然后根据全等三角形判定的方法,判断出△BOF≌△COF,推得∠OCF=∠OBF=90°,再根据点C在⊙O上,即可判断出FC 是⊙O的切线.(2)延长AC、BF交点为M.由△BOF≌△COF可知:BF=CF然后再证明:FM=CF,从而得到BF=MF,因为DC∥BM,所以△AEG∽△ABF,△AGC∽△AFM,然后依据相似三角形的性质可证GC=GE;(3)因为cos∠AOC=,OE=,AE=.由勾股定理可求得EC=.AC=.因为EG=GC,所以EG=.由(2)可知△AEG∽△ABF,可求得CF=BF=.在Rt△ABF中,由勾股定理可求得AF=3r.然后再证明△CFH∽△AFC,由相似三角形的性质可求得CH的长.【解答】(1)证明:∵OF∥AC,∴∠BOF=∠OAC,∠COF=∠OCA,∵OA=OC,∴∠OAC=∠OCA,∴∠BOF=∠COF,在△BOF和△COF中,,∴△BOF≌△COF,∴∠OCF=∠OBF=90°,又∵点C在⊙O上,∴FC是⊙O的切线.(2)如下图:延长AC、BF交点为M.由(1)可知:△BOF≌△COF,∴∠OFB=∠CFO,BF=CF.∵AC∥OF,∴∠M=∠OFB,∠MCF=∠CFO.∴∠M=∠MCF.∴CF=MF.∴BF=FM.∵DC∥BM,∴△AEG∽△ABF,△AGC∽△AFM.∴,.∴又∵BF=FM,∴EG=GC.(3)如下图所示:∵cos∠AOC=,∴OE=,AE=.在Rt△EOC中,EC==.在Rt△AEC中,AC==.∵EG=GC,∴EG=.∵△AEG∽△ABF,∴,即.∴BF=.∴CF=.在Rt△ABF中,AF===3r.∵CF是⊙O的切线,AC为弦,∴∠HCF=∠HAC.又∵∠CFH=∠AFC,∴△CFH∽△AFC.∴,即:.∴CH=.【点评】本题主要考查的是圆的综合应用,同时还涉及了勾股定理,锐角三角形函数,相似三角形的性质和判定,全等三角形的性质和判定,证得BF=FM是解答本题的关键.3.已知:⊙O上两个定点A,B和两个动点C,D,AC与BD交于点E.(1)如图1,求证:EA•EC=EB•ED;(2)如图2,若=,AD是⊙O的直径,求证:AD•AC=2BD•BC;(3)如图3,若AC⊥BD,点O到AD的距离为2,求BC的长.【分析】(1)根据同弧所对的圆周角相等得到角相等,从而证得三角形相似,于是得到结论;(2)如图2,连接CD,OB交AC于点F由B是弧AC的中点得到∠BAC=∠ADB=∠ACB,且AF=CF=0.5AC.证得△CBF∽△ABD.即可得到结论;(3)如图3,连接AO并延长交⊙O于F,连接DF得到AF为⊙O的直径于是得到∠ADF=90°,过O作OH⊥AD于H,根据三角形的中位线定理得到DF=2OH=4,通过△ABE∽△ADF,得到1=∠2,于是结论可得.【解答】(1)证明:∵∠EAD=∠EBC,∠BCE=∠ADE,∴△AED∽△BEC,∴,∴EA•EC=EB•ED;(2)证明:如图2,连接CD,OB交AC于点F∵B是弧AC的中点,∴∠BAC=∠ADB=∠ACB,且AF=CF=0.5AC.又∵AD为⊙O直径,∴∠ABD=90°,又∠CFB=90°.∴△CBF∽△DAB.∴,故CF•AD=BD•BC.∴AC•AD=2BD•BC;(3)解:如图3,连接AO并延长交⊙O于F,连接DF,∴AF为⊙O的直径,∴∠ADF=90°,过O作OH⊥AD于H,∴AH=DH,OH∥DF,∵AO=OF,∴DF=2OH=4,∵AC⊥BD,∴∠AEB=∠ADF=90°,∵∠ABD=∠F,∴△ABE∽△ADF,∴∠1=∠2,∴,∴BC=DF=4.【点评】本题考查了圆周角定理,垂径定理,相似三角形的判定和性质,三角形的中位线的性质,正确作出辅助线是解题的关键.4.已知⊙O是以AB为直径的△ABC的外接圆,OD∥BC交⊙O于点D,交AC于点E,连接AD、BD,BD交AC于点F.(1)求证:BD平分∠ABC;(2)延长AC到点P,使PF=PB,求证:PB是⊙O的切线;(3)如果AB=10,cos∠ABC=,求AD.【分析】(1)先由OD∥BC,根据两直线平行内错角相等得出∠D=∠CBD,由OB=OD,根据等边对等角得出∠D=∠OBD,等量代换得到∠CBD=∠OBD,即BD平分∠ABC;(2)先由圆周角定理得出∠ACB=90°,根据直角三角形两锐角互余得到∠CFB+∠CBF=90°.再由PF=PB,根据等边对等角得出∠PBF=∠CFB,而由(1)知∠OBD=∠CBF,等量代换得到∠PBF+∠OBD=90°,即∠OBP=90°,根据切线的判定定理得出PB是⊙O的切线;(3)连结AD.在Rt△ABC中,由cos∠ABC===,求出BC=6,根据勾股定理得到AC==8.再由OD∥BC,得出△AOE∽△ABC,∠AED=∠OEC=180°﹣∠ACB=90°,根据相似三角形对应边成比例求出AE=4,OE=3,那么DE=OD﹣OE=2,然后在Rt△ADE中根据勾股定理求出AD==2.【解答】(1)证明:∵OD∥BC,∴∠D=∠CBD,∵OB=OD,∴∠D=∠OBD,∴∠CBD=∠OBD,∴BD平分∠ABC;(2)证明:∵⊙O是以AB为直径的△ABC的外接圆,∴∠ACB=90°,∴∠CFB+∠CBF=90°.∵PF=PB,∴∠PBF=∠CFB,由(1)知∠OBD=∠CBF,∴∠PBF+∠OBD=90°,∴∠OBP=90°,∴PB是⊙O的切线;(3)解:连结AD.∵在Rt△ABC中,∠ACB=90°,AB=10,∴cos∠ABC===,∴BC=6,AC==8.∵OD∥BC,∴△AOE∽△ABC,∠AED=∠OEC=180°﹣∠ACB=90°,∴==,==,∴AE=4,OE=3,∴DE=OD﹣OE=5﹣3=2,∴AD===2.【点评】本题是圆的综合题,其中涉及到平行线的性质、等腰三角形的性质、圆周角定理、直角三角形两锐角互余的性质、切线的判定定理、锐角三角函数的定义、勾股定理、相似三角形的判定和性质等知识,综合性较强,难度适中.本题中第(2)问要证某线是圆的切线,当已知条件中明确指出直线与圆有公共点时,常连接过该公共点的半径,证明该半径垂直于这条直线是常用的方法,需熟练掌握.5.如图1,△ABC内接于⊙O,∠BAC的平分线交⊙O于点D,交BC于点E(BE>EC),且BD=2.过点D作DF∥BC,交AB的延长线于点F.(1)求证:DF为⊙O的切线;(2)若∠BAC=60°,DE=,求图中阴影部分的面积;(3)若=,DF+BF=8,如图2,求BF的长.【分析】(1)连结OD,如图1,由角平分线定义得∠BAD=∠CAD,则根据圆周角定理得到=,再根据垂径定理得OD⊥BC,由于BC∥EF,则OD⊥DF,于是根据切线的判定定理即可判断DF为⊙O的切线;(2)连结OB,OD交BC于P,作BH⊥DF于H,如图1,先证明△OBD为等边三角形得到∠ODB=60°,OB=BD=2,易得∠BDF=∠DBP=30°,根据含30度的直角三角形三边的关系,在Rt △DBP 中得到PD=BD=,PB=PD=3,接着在Rt △DEP 中利用勾股定理计算出PE=2,由于OP ⊥BC ,则BP=CP=3,所以CE=1,然后利用△BDE ∽△ACE ,通过相似比可得到AE=,再证明△ABE ∽△AFD ,利用相似比可得DF=12,最后根据扇形面积公式,利用S阴影部分=S △BDF ﹣S 弓形BD =S △BDF ﹣(S 扇形BOD ﹣S △BOD )进行计算;(3)连结CD ,如图2,由=可设AB=4x ,AC=3x ,设BF=y ,由=得到CD=BD=2,先证明△BFD ∽△CDA ,利用相似比得到xy=4,再证明△FDB ∽△FAD ,利用相似比得到16﹣4y=xy ,则16﹣4y=4,然后解方程易得BF=3.【解答】证明:(1)连结OD ,如图1,∵AD 平分∠BAC 交⊙O 于D ,∴∠BAD=∠CAD ,∴=,∴OD ⊥BC ,∵BC ∥EF ,∴OD ⊥DF ,∴DF 为⊙O 的切线;(2)连结OB ,连结OD 交BC 于P ,作BH ⊥DF 于H ,如图1,∵∠BAC=60°,AD 平分∠BAC ,∴∠BAD=30°,∴∠BOD=2∠BAD=60°,∴△OBD 为等边三角形,∴∠ODB=60°,OB=BD=2,∴∠BDF=30°,∵BC ∥DF ,∴∠DBP=30°,在Rt △DBP 中,PD=BD=,PB=PD=3,在Rt △DEP 中,∵PD=,DE=,∴PE==2,∵OP ⊥BC ,∴BP=CP=3, ∴CE=3﹣2=1,易证得△BDE ∽△ACE ,∴AE :BE=CE :DE ,即AE :5=1:,∴AE=∵BE ∥DF ,∴△ABE ∽△AFD ,∴=,即=,解得DF=12,在Rt △BDH 中,BH=BD=,∴S 阴影部分=S △BDF ﹣S 弓形BD=S △BDF ﹣(S 扇形BOD ﹣S △BOD )=•12•﹣+•(2)2=9﹣2π;(3)连结CD,如图2,由=可设AB=4x,AC=3x,设BF=y,∵=,∴CD=BD=2,∵∠F=∠ABC=∠ADC,∵∠FDB=∠DBC=∠DAC,∴△BFD∽△CDA,∴=,即=,∴xy=4,∵∠FDB=∠DBC=∠DAC=∠FAD,而∠DFB=∠AFD,∴△FDB∽△FAD,∴=,即=,整理得16﹣4y=xy,∴16﹣4y=4,解得y=3,即BF的长为3.【点评】本题考查了圆的综合题:熟练掌握垂径定理、圆周角定理和切线的判定定理;会计算不规则几何图形的面积;会灵活运用相似三角形的判定与性质计算线段的长.6.如图,在矩形ABCD中,点O在对角线AC上,以OA的长为半径的圆O与AD、AC分别交于点E、F,且∠ACB=∠DCE.(1)判断直线CE与⊙O的位置关系,并证明你的结论;(2)若tan∠ACB=,BC=2,求⊙O的半径.【分析】(1)连接OE.欲证直线CE与⊙O相切,只需证明∠CEO=90°,即OE⊥CE即可;(2)在直角三角形ABC中,根据三角函数的定义可以求得AB=,然后根据勾股定理求得AC=,同理知DE=1;方法一、在Rt△COE中,利用勾股定理可以求得CO2=OE2+CE2,即=r2+3,从而易得r的值;方法二、过点O作OM⊥AE于点M,在Rt△AMO中,根据三角函数的定义可以求得r的值.【解答】解:(1)直线CE与⊙O相切.…(1分)理由如下:∵四边形ABCD是矩形,∴BC∥AD,∠ACB=∠DAC;又∵∠ACB=∠DCE,∴∠DAC=∠DCE;连接OE,则∠DAC=∠AEO=∠DCE;∵∠DCE+∠DEC=90°∴∠AE0+∠DEC=90°∴∠OEC=90°,即OE⊥CE.又OE是⊙O的半径,∴直线CE与⊙O相切.…(5分)(2)∵tan∠ACB==,BC=2,∴AB=BC•tan∠ACB=,∴AC=;又∵∠ACB=∠DCE,∴tan∠DCE=tan∠ACB=,∴DE=DC•tan∠DCE=1;方法一:在Rt△CDE中,CE==,连接OE,设⊙O的半径为r,则在Rt△COE中,CO2=OE2+CE2,即=r2+3解得:r=方法二:AE=AD﹣DE=1,过点O作OM⊥AE于点M,则AM=AE=在Rt△AMO中,OA==÷=…(9分)【点评】本题考查了圆的综合题:圆的切线垂直于过切点的半径;利用勾股定理计算线段的长.7.如图,在Rt△ABC中,∠ABC=90°,AC的垂直平分线分别与AC,BC及AB的延长线相较于点D,E,F,且BF=BC,⊙O是△BEF的外接圆,∠EBF的平分线交EF于点G,交⊙O于点H,连接BD,FH.(1)求证:△ABC≌△EBF;(2)试判断BD与⊙O的位置关系,并说明理由;(3)若AB=1,求HG•HB的值.【分析】(1)由垂直的定义可得∠EBF=∠ADF=90°,于是得到∠C=∠BFE,从而证得△ABC≌△EBF;(2)BD与⊙O相切,如图1,连接OB证得∠DBO=90°,即可得到BD与⊙O相切;(3)如图2,连接CF,HE,有等腰直角三角形的性质得到CF=BF,由于DF垂直平分AC,得到AF=CF=AB+BF=1+BF=BF,求得BF=,有勾股定理解出EF=,推出△EHF是等腰直角三角形,求得HF=EF=,通过△BHF∽△FHG,列比例式即可得到结论.【解答】(1)证明:∵∠ABC=90°,∴∠EBF=90°,∵DF⊥AC,∴∠ADF=90°,∴∠C+∠A=∠A+∠AFD=90°,∴∠C=∠BFE,在△ABC与△EBF中,,∴△ABC≌△EBF;(2)BD与⊙O相切,如图1,连接OB证明如下:∵OB=OF,∴∠OBF=∠OFB,∵∠ABC=90°,AD=CD,∴BD=CD,∴∠C=∠DBC,∵∠C=∠BFE,∴∠DBC=∠OBF,∵∠CBO+∠OBF=90°,∴∠DBC+∠CBO=90°,∴∠DBO=90°,∴BD与⊙O相切;(3)解:如图2,连接CF,HE,∵∠CBF=90°,BC=BF,∴CF=BF,∵DF垂直平分AC,∴AF=CF=AB+BF=1+BF=BF,∴BF=,∵△ABC≌△EBF,∴BE=AB=1,∴EF==,∵BH平分∠CBF,∴,∴EH=FH,∴△EHF是等腰直角三角形,∴HF=EF=,∵∠EFH=∠HBF=45°,∠BHF=∠BHF,∴△BHF∽△FHG,∴,∴HG•HB=HF2=2+.【点评】本题考查了全等三角形的判定和性质,相似三角形的判定和性质,圆周角定理,勾股定理,线段的垂直平分线的性质,直角三角形的性质,等腰直角三角形的判定和性质,熟练掌握这些定理是解题的关键.8.如图,AB是⊙O的直径,D、E为⊙O上位于AB异侧的两点,连接BD并延长至点C,使得CD=BD,连接AC交⊙O于点F,连接AE、DE、DF.(1)证明:∠E=∠C;(2)若∠E=55°,求∠BDF的度数;(3)设DE交AB于点G,若DF=4,cosB=,E是的中点,求EG•ED的值.【分析】(1)直接利用圆周角定理得出AD⊥BC,再利用线段垂直平分线的性质得出AB=AC,即可得出∠E=∠C;(2)利用圆内接四边形的性质得出∠AFD=180°﹣∠E,进而得出∠BDF=∠C+∠CFD,即可得出答案;(3)根据cosB=,得出AB的长,即可求出AE的长,再判断△AEG∽△DEA,求出EG•ED 的值.【解答】(1)证明:连接AD,∵AB是⊙O的直径,∴∠ADB=90°,即AD⊥BC,∵CD=BD,∴AD垂直平分BC,∴AB=AC,∴∠B=∠C,又∵∠B=∠E,∴∠E=∠C;(2)解:∵四边形AEDF是⊙O的内接四边形,∴∠AFD=180°﹣∠E,又∵∠CFD=180°﹣∠AFD,∴∠CFD=∠E=55°,又∵∠E=∠C=55°,∴∠BDF=∠C+∠CFD=110°;(3)解:连接OE,∵∠CFD=∠E=∠C,∴FD=CD=BD=4,在Rt△ABD中,cosB=,BD=4,∴AB=6,∵E是的中点,AB是⊙O的直径,∴∠AOE=90°,∵AO=OE=3,∴AE=3,∵E是的中点,∴∠ADE=∠EAB,∴△AEG∽△DEA,∴=,即EG•ED=AE2=18.【点评】此题主要考查了圆的综合题、圆周角定理以及相似三角形的判定与性质以及圆内接四边形的性质等知识,根据题意得出AE,AB的长是解题关键.9.AB,CD是⊙O的两条弦,直线AB,CD互相垂直,垂足为点E,连接AD,过点B作BF⊥AD,垂足为点F,直线BF交直线CD于点G.(1)如图1,当点E在⊙O外时,连接BC,求证:BE平分∠GBC;(2)如图2,当点E在⊙O内时,连接AC,AG,求证:AC=AG;(3)如图3,在(2)条件下,连接BO并延长交AD于点H,若BH平分∠ABF,AG=4,tan ∠D=,求线段AH的长.【分析】(1)利用圆内接四边形的性质得出∠D=∠EBC,进而利用互余的关系得出∠GBE=∠EBC,进而求出即可;(2)首先得出∠D=∠ABG,进而利用全等三角形的判定与性质得出△BCE≌△BGE(ASA),则CE=EG,再利用等腰三角形的性质求出即可;(3)首先求出CO的长,再求出tan∠ABH===,利用OP2+PB2=OB2,得出a的值进而求出答案.【解答】(1)证明:如图1,∵四边形ABCD内接于⊙O,∴∠D+∠ABC=180°,∵∠ABC+∠EBC=180°,∴∠D=∠EBC,∵GF⊥AD,AE⊥DG,∴∠A+∠ABF=90°,∠A+∠D=90°,∴∠ABF=∠D,∵∠ABF=∠GBE,∴∠GBE=∠EBC,即BE平分∠GBC;(2)证明:如图2,连接CB,∵AB⊥CD,BF⊥AD,∴∠D+∠BAD=90°,∠ABG+∠BAD=90°,∴∠D=∠ABG,∵∠D=∠ABC,∴∠ABC=∠ABG,∵AB⊥CD,∴∠CEB=∠GEB=90°,在△BCE和△BGE中,∴△BCE≌△BGE(ASA),∴CE=EG,∵AE⊥CG,∴AC=AG;(3)解:如图3,连接CO并延长交⊙O于M,连接AM,∵CM是⊙O的直径,∴∠MAC=90°,∵∠M=∠D,tanD=,∴tanM=,∴=,∵AG=4,AC=AG,∴AC=4,AM=3,∴MC==5,∴CO=,过点H作HN⊥AB,垂足为点N,∵tanD=,AE⊥DE,∴tan∠BAD=,∴=,设NH=3a,则AN=4a,∴AH==5a,∵HB平分∠ABF,NH⊥AB,HF⊥BF,∴HF=NH=3a,∴AF=8a,cos∠BAF===,∴AB==10a,∴NB=6a,∴tan∠ABH===,过点O作OP⊥AB垂足为点P,∴PB=AB=5a,tan∠ABH==,∴OP=a,∵OB=OC=,OP2+PB2=OB2,∴25a2+a2=,∴解得:a=,∴AH=5a=.【点评】此题主要考查了圆的综合以及勾股定理和锐角三角函数关系等、全等三角形的判定与性质知识,正确作出辅助线得出tan∠ABH==是解题关键.10.如图,已知AB是⊙O的直径,BP是⊙O的弦,弦CD⊥AB于点F,交BP于点G,E在CD的延长线上,EP=EG,(1)求证:直线EP为⊙O的切线;(2)点P在劣弧AC上运动,其他条件不变,若BG2=BF•BO.试证明BG=PG;(3)在满足(2)的条件下,已知⊙O的半径为3,sinB=.求弦CD的长.【分析】(1)连结OP,先由EP=EG,证出∠EPG=∠BGF,再由∠BFG=∠BGF+∠OBP=90°,推出∠EPG+∠OPB=90°来求证.(2)连结OG,由BG2=BF•BO,得出△BFG∽△BGO,得出∠BGO=∠BFG=90°,根据垂径定理可得出结论.(3)连结AC、BC、OG,由sinB=,求出OG,由(2)得出∠B=∠OGF,求出OF,再求出BF,FA,利用直角三角形来求斜边上的高,再乘以2得出CD长度.【解答】(1)证明:连结OP,∵EP=EG,∴∠EPG=∠EGP,又∵∠EGP=∠BGF,∴∠EPG=∠BGF,∵OP=OB,∴∠OPB=∠OBP,∵CD⊥AB,∴∠BFG=∠BGF+∠OBP=90°,∴∠EPG+∠OPB=90°,∴直线EP为⊙O的切线;(2)证明:如图,连结OG,OP,∵BG2=BF•BO,∴=,∴△BFG∽△BGO,∴∠BGO=∠BFG=90°,由垂径定理知:BG=PG;(3)解:如图,连结AC、BC、OG、OP,∵sinB=,∴=,∵OB=r=3,∴OG=,由(2)得∠EPG+∠OPB=90°,∠B+∠BGF=∠OGF+∠BGF=90°,∴∠B=∠OGF,∴sin∠OGF==∴OF=1,∴BF=BO﹣OF=3﹣1=2,FA=OF+OA=1+3=4,在Rt△BCA中,CF2=BF•FA,∴CF===2.∴CD=2CF=4.【点评】本题主要考查了圆的综合题,解题的关键是通过作辅助线,找准角之间的关系,灵活运用直角三角形中的正弦值.11.如图,在Rt△ABC中,∠ACB=90°,AO是△ABC的角平分线.以O为圆心,OC为半径作⊙O.(1)求证:AB是⊙O的切线.(2)已知AO交⊙O于点E,延长AO交⊙O于点D,tanD=,求的值.(3)在(2)的条件下,设⊙O的半径为3,求AB的长.【分析】(1)由于题目没有说明直线AB与⊙O有交点,所以过点O作OF⊥AB于点F,然后证明OC=OF即可;(2)连接CE,先求证∠ACE=∠ODC,然后可知△ACE∽△ADC,所以,而tan∠D==;(3)由(2)可知,AC2=AE•AD,所以可求出AE和AC的长度,由(1)可知,△OFB∽△ABC,所以,然后利用勾股定理即可求得AB的长度.【解答】(1)如图,过点O作OF⊥AB于点F,∵AO平分∠CAB,OC⊥AC,OF⊥AB,∴OC=OF,∴AB是⊙O的切线;(2)如图,连接CE,∵ED是⊙O的直径,∴∠ECD=90°,∴∠ECO+∠OCD=90°,∵∠ACB=90°,∴∠ACE+∠ECO=90°,∴∠ACE=∠OCD,∵OC=OD,∴∠OCD=∠ODC,∴∠ACE=∠ODC,∵∠CAE=∠CAE,∴△ACE∽△ADC,∴,∵tan∠D=,∴=,∴=;(3)由(2)可知:=,∴设AE=x,AC=2x,∵△ACE∽△ADC,∴,∴AC2=AE•AD,∴(2x)2=x(x+6),解得:x=2或x=0(不合题意,舍去),∴AE=2,AC=4,由(1)可知:AC=AF=4,∠OFB=∠ACB=90°,∵∠B=∠B,∴△OFB∽△ACB,∴=,设BF=a,∴BC=,∴BO=BC﹣OC=﹣3,在Rt△BOF中,BO2=OF2+BF2,∴(﹣3)2=32+a2,∴解得:a=或a=0(不合题意,舍去),∴AB=AF+BF=.【点评】本题考查圆的综合问题,解题的关键是证明△ACE∽△ADC.本题涉及勾股定理,解方程,圆的切线判定知识,内容比较综合,需要学生构造辅助线才能解决问题,对学生综合能力要求较高.12.如图,四边形ABCD内接于⊙O,对角线AC为⊙O的直径,过点C作AC的垂线交AD的延长线于点E,点F为CE的中点,连接DB,DC,DF.(1)求∠CDE的度数;(2)求证:DF是⊙O的切线;(3)若AC=2DE,求tan∠ABD的值.【分析】(1)直接利用圆周角定理得出∠CDE的度数;(2)直接利用直角三角形的性质结合等腰三角形的性质得出∠ODF=∠ODC+∠FDC=∠OCD+∠DCF=90°,进而得出答案;(3)利用相似三角形的性质结合勾股定理表示出AD,DC的长,再利用圆周角定理得出tan ∠ABD的值.【解答】(1)解:∵对角线AC为⊙O的直径,∴∠ADC=90°,∴∠EDC=90°;(2)证明:连接DO,∵∠EDC=90°,F是EC的中点,∴DF=FC,∴∠FDC=∠FCD,∵OD=OC,∴∠OCD=∠ODC,∵∠OCF=90°,∴∠ODF=∠ODC+∠FDC=∠OCD+∠DCF=90°,∴DF是⊙O的切线;(3)解:方法一:设DE=1,则AC=2,由AC2=AD×AE∴20=AD(AD+1)∴AD=4或﹣5(舍去)∵DC2=AC2﹣AD2∴DC=2,∴tan∠ABD=tan∠ACD==2;方法二:如图所示:可得∠ABD=∠ACD,∵∠E+∠DCE=90°,∠DCA+∠DCE=90°,∴∠DCA=∠E,又∵∠ADC=∠CDE=90°,∴△CDE∽△ADC,∴=,∴DC2=AD•DE∵AC=2DE,∴设DE=x,则AC=2x,则AC2﹣AD2=AD•DE,期(2x)2﹣AD2=AD•x,整理得:AD2+AD•x﹣20x2=0,解得:AD=4x或﹣5x(负数舍去),则DC==2x,故tan∠ABD=tan∠ACD===2.【点评】此题主要考查了圆的综合以及切线的判定、相似三角形的判定与性质、勾股定理等知识,根据题意表示出AD,DC的长是解题关键.。
人教中考数学专题训练---锐角三角函数的综合题分类含答案
一、锐角三角函数真题与模拟题分类汇编(难题易错题)1.某地是国家AAAA 级旅游景区,以“奇山奇水奇石景,古賨古洞古部落”享誉巴渠,被誉为 “小九寨”.端坐在观音崖旁的一块奇石似一只“啸天犬”,昂首向天,望穿古今.一个周末,某数学兴趣小组的几名同学想测出“啸天犬”上嘴尖与头顶的距离.他们把蹲着的“啸天犬”抽象成四边形ABCD ,想法测出了尾部C 看头顶B 的仰角为40,从前脚落地点D 看上嘴尖A 的仰角刚好60,5CB m =, 2.7CD m =.景区管理员告诉同学们,上嘴尖到地面的距离是3m .于是,他们很快就算出了AB 的长.你也算算?(结果精确到0.1m .参考数据:400.64400.77400.84sin cos tan ︒≈︒≈︒≈,,.2 1.41,3 1.73≈≈)【答案】AB 的长约为0.6m . 【解析】 【分析】作BF CE ⊥于F ,根据正弦的定义求出BF ,利用余弦的定义求出CF ,利用正切的定义求出DE ,结合图形计算即可. 【详解】解:作BF CE ⊥于F ,在Rt BFC ∆中, 3.20BF BC sin BCF ⋅∠≈=,3.85CF BC cos BCF ⋅∠≈=,在Rt ADE ∆E 中,3 1.73tan 3AB DE ADE ===≈∠, 0.200.58BH BF HF AH EF CD DE CF ∴+=﹣=,==﹣=由勾股定理得,22BH AH 0.6(m)AB =+≈, 答:AB 的长约为0.6m .【点睛】考查的是解直角三角形的应用﹣仰角俯角问题,掌握仰角俯角的概念、熟记锐角三角函数的定义是解题的关键.2.在正方形ABCD中,对角线AC,BD交于点O,点P在线段BC上(不含点B),∠BPE=12∠ACB,PE交BO于点E,过点B作BF⊥PE,垂足为F,交AC于点G.(1)当点P与点C重合时(如图1).求证:△BOG≌△POE;(2)通过观察、测量、猜想:BFPE=,并结合图2证明你的猜想;(3)把正方形ABCD改为菱形,其他条件不变(如图3),若∠ACB=α,求BF PE的值.(用含α的式子表示)【答案】(1)证明见解析(2)12BFPE=(3)1tan2BFPEα=【解析】解:(1)证明:∵四边形ABCD是正方形,P与C重合,∴OB="OP" ,∠BOC=∠BOG=90°.∵PF⊥BG ,∠PFB=90°,∴∠GBO=90°—∠BGO,∠EPO=90°—∠BGO.∴∠GBO=∠EPO .∴△BOG≌△POE(AAS).(2)BF1PE2=.证明如下:如图,过P作PM//AC交BG于M,交BO于N,∴∠PNE=∠BOC=900,∠BPN=∠OCB.∵∠OBC=∠OCB =450,∴∠NBP=∠NPB.∴NB=NP.∵∠MBN=900—∠BMN , ∠NPE=900—∠BMN ,∴∠MBN=∠NPE . ∴△BMN ≌△PEN (ASA ).∴BM=PE .∵∠BPE=12∠ACB ,∠BPN=∠ACB ,∴∠BPF=∠MPF . ∵PF ⊥BM ,∴∠BFP=∠MFP=900.又∵PF=PF , ∴△BPF ≌△MPF (ASA ).∴BF="MF" ,即BF=12BM . ∴BF=12PE , 即BF 1PE 2=. (3)如图,过P 作PM//AC 交BG 于点M ,交BO 于点N ,∴∠BPN=∠ACB=α,∠PNE=∠BOC=900.由(2)同理可得BF=12BM , ∠MBN=∠EPN . ∵∠BNM=∠PNE=900,∴△BMN ∽△PEN .∴BM BNPE PN=. 在Rt △BNP 中,BN tan =PN α, ∴BM =tan PE α,即2BF=tan PEα. ∴BF 1=tan PE 2α. (1)由正方形的性质可由AAS 证得△BOG ≌△POE .(2)过P 作PM//AC 交BG 于M ,交BO 于N ,通过ASA 证明△BMN ≌△PEN 得到BM=PE ,通过ASA 证明△BPF ≌△MPF 得到BF=MF ,即可得出BF 1PE 2=的结论. (3)过P 作PM//AC 交BG 于点M ,交BO 于点N ,同(2)证得BF=12BM , ∠MBN=∠EPN ,从而可证得△BMN ∽△PEN ,由BM BN PE PN =和Rt △BNP 中BNtan =PNα即可求得BF 1=tan PE 2α.3.已知Rt △ABC 中,AB 是⊙O 的弦,斜边AC 交⊙O 于点D ,且AD=DC ,延长CB 交⊙O 于点E .(1)图1的A、B、C、D、E五个点中,是否存在某两点间的距离等于线段CE的长?请说明理由;(2)如图2,过点E作⊙O的切线,交AC的延长线于点F.①若CF=CD时,求sin∠CAB的值;②若CF=aCD(a>0)时,试猜想sin∠CAB的值.(用含a的代数式表示,直接写出结果)【答案】(1)AE=CE;(2)①;②.【解析】试题分析:(1)连接AE、DE,如图1,根据圆周角定理可得∠ADE=∠ABE=90°,由于AD=DC,根据垂直平分线的性质可得AE=CE;(2)连接AE、ED,如图2,由∠ABE=90°可得AE是⊙O的直径,根据切线的性质可得∠AEF=90°,从而可证到△ADE∽△AEF,然后运用相似三角形的性质可得=AD•AF.①当CF=CD时,可得,从而有EC=AE=CD,在Rt△DEC中运用三角函数可得sin∠CED=,根据圆周角定理可得∠CAB=∠DEC,即可求出sin∠CAB的值;②当CF=aCD(a>0)时,同①即可解决问题.试题解析:(1)AE=CE.理由:连接AE、DE,如图1,∵∠ABC=90°,∴∠ABE=90,∴∠ADE=∠ABE=90°,∵AD=DC,∴AE=CE;(2)连接AE、ED,如图2,∵∠ABE=90°,∴AE是⊙O的直径,∵EF是⊙OO的切线,∴∠AEF=90°,∴∠ADE=∠AEF=90°,又∵∠DAE=∠EAF,∴△ADE∽△AEF,∴,∴=AD•AF.①当CF=CD时,AD=DC=CF,AF=3DC,∴=DC•3DC=,∴AE=DC,∵EC=AE,∴EC=DC,∴sin∠CAB=sin∠CED===;②当CF=aCD(a>0)时,sin∠CAB=.∵CF=aCD,AD=DC,∴AF=AD+DC+CF=(a+2)CD,∴=DC•(a+2)DC=(a+2),∴AE=DC,∵EC=AE,∴EC=DC,∴sin∠CAB=sin∠CED==.考点:1.圆的综合题;2.探究型;3.存在型.4.如图,抛物线C1:y=(x+m)2(m为常数,m>0),平移抛物线y=﹣x2,使其顶点D 在抛物线C1位于y轴右侧的图象上,得到抛物线C2.抛物线C2交x轴于A,B两点(点A 在点B的左侧),交y轴于点C,设点D的横坐标为a.(1)如图1,若m=.①当OC=2时,求抛物线C2的解析式;②是否存在a,使得线段BC上有一点P,满足点B与点C到直线OP的距离之和最大且AP=BP?若存在,求出a的值;若不存在,请说明理由;(2)如图2,当OB=2﹣m(0<m<)时,请直接写出到△ABD的三边所在直线的距离相等的所有点的坐标(用含m的式子表示).【答案】(1) ①y=﹣x2+x+2.②.(2)P1(﹣m,1),P2(﹣m,﹣3),P3(﹣﹣m,3),P4(3﹣m,3).【解析】试题分析:(1)①首先写出平移后抛物线C2的解析式(含有未知数a),然后利用点C (0,2)在C2上,求出抛物线C2的解析式;②认真审题,题中条件“AP=BP”意味着点P在对称轴上,“点B与点C到直线OP的距离之和最大”意味着OP⊥BC.画出图形,如图1所示,利用三角函数(或相似),求出a的值;(2)解题要点有3个:i)判定△ABD为等边三角形;ii)理论依据是角平分线的性质,即角平分线上的点到角两边的距离相等;iii)满足条件的点有4个,即△ABD形内1个(内心),形外3个.不要漏解.试题解析:(1)当m=时,抛物线C1:y=(x+)2.∵抛物线C2的顶点D在抛物线C1上,且横坐标为a,∴D(a,(a+)2).∴抛物线C2:y=﹣(x﹣a)2+(a+)2(I).①∵OC=2,∴C(0,2).∵点C在抛物线C2上,∴﹣(0﹣a)2+(a+)2=2,解得:a=,代入(I)式,得抛物线C2的解析式为:y=﹣x2+x+2.②在(I)式中,令y=0,即:﹣(x﹣a)2+(a+)2=0,解得x=2a+或x=﹣,∴B(2a+,0);令x=0,得:y=a+,∴C(0,a+).设直线BC的解析式为y=kx+b,则有:,解得,∴直线BC的解析式为:y=﹣x+(a+).假设存在满足条件的a值.∵AP=BP,∴点P在AB的垂直平分线上,即点P在C2的对称轴上;∵点B与点C到直线OP的距离之和≤BC,只有OP⊥BC时等号成立,∴OP⊥BC.如图1所示,设C2对称轴x=a(a>0)与BC交于点P,与x轴交于点E,则OP⊥BC,OE=a.∵点P在直线BC上,∴P(a,a+),PE=a+.∵tan∠EOP=tan∠BCO=,∴,解得:a=.∴存在a=,使得线段BC上有一点P,满足点B与点C到直线OP的距离之和最大且AP="BP"(3)∵抛物线C2的顶点D在抛物线C1上,且横坐标为a,∴D(a,(a+m)2).∴抛物线C2:y=﹣(x﹣a)2+(a+m)2.令y=0,即﹣(x﹣a)2+(a+m)2=0,解得:x1=2a+m,x2=﹣m,∴B(2a+m,0).∵OB=2﹣m,∴2a+m=2﹣m,∴a=﹣m.∴D(﹣m,3).AB=OB+OA=2﹣m+m=2.如图2所示,设对称轴与x轴交于点E,则DE=3,BE=AB=,OE=OB﹣BE=﹣m.∵tan∠ABD=,∴∠ABD=60°.又∵AD=BD,∴△ABD为等边三角形.作∠ABD的平分线,交DE于点P1,则P1E=BE•tan30°=×=1,∴P1(﹣m,1);在△ABD形外,依次作各个外角的平分线,它们相交于点P2、P3、P4.在Rt△BEP2中,P2E=BE•tan60°=•=3,∴P2(﹣m,﹣3);易知△ADP3、△BDP4均为等边三角形,∴DP3=DP4=AB=2,且P3P4∥x轴.∴P3(﹣﹣m,3)、P4(3﹣m,3).综上所述,到△ABD的三边所在直线的距离相等的所有点有4个,其坐标为:P1(﹣m,1),P2(﹣m,﹣3),P3(﹣﹣m,3),P4(3﹣m,3).【考点】二次函数综合题.5.如图(1),已知正方形ABCD在直线MN的上方BC在直线MN上,E是BC上一点,以AE为边在直线MN的上方作正方形AEFG.(1)连接GD,求证:△ADG≌△ABE;(2)连接FC,观察并直接写出∠FCN的度数(不要写出解答过程)(3)如图(2),将图中正方形ABCD改为矩形ABCD,AB=6,BC=8,E是线段BC上一动点(不含端点B、C),以AE为边在直线MN的上方作矩形AEFG,使顶点G恰好落在射线CD上.判断当点E由B向C运动时,∠FCN的大小是否总保持不变,若∠FCN的大小不变,请求出tan∠FCN的值.若∠FCN的大小发生改变,请举例说明.【答案】(1)见解析;(2)∠FCN =45°,理由见解析;(3)当点E 由B 向C 运动时,∠FCN 的大小总保持不变,tan ∠FCN =43.理由见解析. 【解析】 【分析】(1)根据三角形判定方法进行证明即可.(2)作FH ⊥MN 于H .先证△ABE ≌△EHF ,得到对应边相等,从而推出△CHF 是等腰直角三角形,∠FCH 的度数就可以求得了.(3)解法同(2),结合(1)(2)得:△EFH ≌△GAD ,△EFH ∽△ABE ,得出EH=AD=BC=8,由三角函数定义即可得出结论. 【详解】(1)证明:∵四边形ABCD 和四边形AEFG 是正方形, ∴AB =AD ,AE =AG =EF ,∠BAD =∠EAG =∠ADC =90°, ∴∠BAE +∠EAD =∠DAG +∠EAD ,∠ADG =90°=∠ABE , ∴∠BAE =∠DAG , 在△ADG 和△ABE 中,ADG ABE DAG BAE AD AB ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△ADG ≌△ABE (AAS ). (2)解:∠FCN =45°,理由如下: 作FH ⊥MN 于H ,如图1所示:则∠EHF =90°=∠ABE , ∵∠AEF =∠ABE =90°,∴∠BAE +∠AEB =90°,∠FEH +∠AEB =90°, ∴∠FEH =∠BAE ,在△EFH 和△ABE 中,EHF ABE FEH BAE AE EF ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△EFH ≌△ABE (AAS ), ∴FH =BE ,EH =AB =BC , ∴CH =BE =FH , ∵∠FHC =90°, ∴∠FCN =45°.(3)当点E 由B 向C 运动时,∠FCN 的大小总保持不变,理由如下: 作FH ⊥MN 于H ,如图2所示:由已知可得∠EAG =∠BAD =∠AEF =90°,结合(1)(2)得:△EFH ≌△GAD ,△EFH ∽△ABE , ∴EH =AD =BC =8, ∴CH =BE , ∴EH FH FHAB BE CH==; 在Rt △FEH 中,tan ∠FCN =8463FH EH CH AB ===, ∴当点E 由B 向C 运动时,∠FCN 的大小总保持不变,tan ∠FCN =43. 【点睛】本题是四边形综合题目,考查了正方形,矩形的判定及全等三角形的判定方法等知识点的综合运用,其重点是通过证三角形全等或相似来得出线段的相等或成比例.6.如图,在平面直角坐标系xOy 中,抛物线y =﹣14x 2+bx +c 与直线y =12x ﹣3分别交x 轴、y 轴上的B 、C 两点,设该抛物线与x 轴的另一个交点为点A ,顶点为点D ,连接CD 交x 轴于点E .(1)求该抛物线的表达式及点D 的坐标; (2)求∠DCB 的正切值;(3)如果点F 在y 轴上,且∠FBC =∠DBA +∠DCB ,求点F 的坐标.【答案】(1)21y 234x x =-+-,D (4,1);(2)13;(3)点F 坐标为(0,1)或(0,﹣18). 【解析】 【分析】 (1)y =12x ﹣3,令y =0,则x =6,令x =0,则y =﹣3,求出点B 、C 的坐标,将点B 、C 坐标代入抛物线y =﹣14x 2+bx+c ,即可求解; (2)求出则点E (3,0),EH =EB•sin ∠OBC =5,CE =32,则CH =5,即可求解;(3)分点F 在y 轴负半轴和在y 轴正半轴两种情况,分别求解即可. 【详解】 (1)y =12x ﹣3,令y =0,则x =6,令x =0,则y =﹣3, 则点B 、C 的坐标分别为(6,0)、(0,﹣3),则c =﹣3, 将点B 坐标代入抛物线y =﹣14x 2+bx ﹣3得:0=﹣14×36+6b ﹣3,解得:b =2, 故抛物线的表达式为:y =﹣14x 2+2x ﹣3,令y =0,则x =6或2, 即点A (2,0),则点D (4,1); (2)过点E 作EH ⊥BC 交于点H ,C 、D 的坐标分别为:(0,﹣3)、(4,1), 直线CD 的表达式为:y =x ﹣3,则点E (3,0), tan ∠OBC =3162OC OB ==,则sin ∠OBC 5,则EH =EB•sin ∠OBC 5CE=32,则CH=5,则tan∠DCB=13 EHCH=;(3)点A、B、C、D、E的坐标分别为(2,0)、(6,0)、(0,﹣3)、(4,1)、(3,0),则BC=35,∵OE=OC,∴∠AEC=45°,tan∠DBE=164-=12,故:∠DBE=∠OBC,则∠FBC=∠DBA+∠DCB=∠AEC=45°,①当点F在y轴负半轴时,过点F作FG⊥BG交BC的延长线与点G,则∠GFC=∠OBC=α,设:GF=2m,则CG=GFtanα=m,∵∠CBF=45°,∴BG=GF,即:5=2m,解得:m=5CF22GF CG+5=15,故点F(0,﹣18);②当点F在y轴正半轴时,同理可得:点F(0,1);故:点F坐标为(0,1)或(0,﹣18).【点睛】本题考查的是二次函数综合运用,涉及到一次函数、解直角三角形等相关知识,其中(3),确定∠FBC =∠DBA+∠DCB =∠AEC =45°,是本题的突破口.7.已知AB 是⊙O 的直径,弦CD ⊥AB 于H ,过CD 延长线上一点E 作⊙O 的切线交AB 的延长线于F ,切点为G ,连接AG 交CD 于K . (1)如图1,求证:KE =GE ; (2)如图2,连接CABG ,若∠FGB =12∠ACH ,求证:CA ∥FE ; (3)如图3,在(2)的条件下,连接CG 交AB 于点N ,若sin E =35,AK =10,求CN 的长.【答案】(1)证明见解析;(2)△EAD 是等腰三角形.证明见解析;(3201013【解析】 试题分析:(1)连接OG ,则由已知易得∠OGE=∠AHK=90°,由OG=OA 可得∠AGO=∠OAG ,从而可得∠KGE=∠AKH=∠EKG ,这样即可得到KE=GE ;(2)设∠FGB=α,由AB 是直径可得∠AGB=90°,从而可得∠KGE=90°-α,结合GE=KE 可得∠EKG=90°-α,这样在△GKE 中可得∠E=2α,由∠FGB=12∠ACH 可得∠ACH=2α,这样可得∠E=∠ACH ,由此即可得到CA ∥EF ; (3)如下图2,作NP ⊥AC 于P ,由(2)可知∠ACH=∠E ,由此可得sinE=sin ∠ACH=35AH AC =,设AH=3a ,可得AC=5a ,CH=4a ,则tan ∠CAH=43CH AH =,由(2)中结论易得∠CAK=∠EGK=∠EKG=∠AKC ,从而可得CK=AC=5a ,由此可得HK=a ,tan ∠AKH=3AHHK=,10a ,结合10可得a=1,则AC=5;在四边形BGKH 中,由∠BHK=∠BKG=90°,可得∠ABG+∠HKG=180°,结合∠AKH+∠GKG=180°,∠ACG=∠ABG 可得∠ACG=∠AKH , 在Rt △APN 中,由tan ∠CAH=43PN AP=,可设PN=12b ,AP=9b ,由tan ∠ACG=PN CP =tan ∠AKH=3可得CP=4b ,由此可得AC=AP+CP=13b =5,则可得b=513,由此即可在Rt △CPN 中由勾股定理解出CN 的长. 试题解析:(1)如图1,连接OG .∵EF 切⊙O 于G , ∴OG ⊥EF ,∴∠AGO+∠AGE=90°, ∵CD ⊥AB 于H , ∴∠AHD=90°, ∴∠OAG=∠AKH=90°, ∵OA=OG , ∴∠AGO=∠OAG , ∴∠AGE=∠AKH , ∵∠EKG=∠AKH , ∴∠EKG=∠AGE , ∴KE=GE . (2)设∠FGB=α, ∵AB 是直径, ∴∠AGB=90°,∴∠AGE =∠EKG=90°﹣α, ∴∠E=180°﹣∠AGE ﹣∠EKG=2α,∵∠FGB=12∠ACH , ∴∠ACH=2α, ∴∠ACH=∠E , ∴CA ∥FE .(3)作NP ⊥AC 于P . ∵∠ACH=∠E , ∴sin ∠E=sin ∠ACH=35AH AC =,设AH=3a ,AC=5a , 则224AC CH a -=,tan ∠CAH=43CH AH =, ∵CA ∥FE , ∴∠CAK=∠AGE , ∵∠AGE=∠AKH ,∴∠CAK=∠AKH,∴AC=CK=5a,HK=CK﹣CH=4a,tan∠AKH=AHHK =3,AK=2210AH HK a+=,∵AK=10,∴1010a=,∴a=1.AC=5,∵∠BHD=∠AGB=90°,∴∠BHD+∠AGB=180°,在四边形BGKH中,∠BHD+∠HKG+∠AGB+∠ABG=360°,∴∠ABG+∠HKG=180°,∵∠AKH+∠HKG=180°,∴∠AKH=∠ABG,∵∠ACN=∠ABG,∴∠AKH=∠ACN,∴tan∠AKH=tan∠ACN=3,∵NP⊥AC于P,∴∠APN=∠CPN=90°,在Rt△APN中,tan∠CAH=43PNAP=,设PN=12b,则AP=9b,在Rt△CPN中,tan∠ACN=PNCP=3,∴CP=4b,∴AC=AP+CP=13b,∵AC=5,∴13b=5,∴b=513,∴CN=22PN CP+=410b⋅=2010 13.8.如图,AB为⊙O的直径,P是BA延长线上一点,CG是⊙O的弦∠PCA=∠ABC,CG⊥AB,垂足为D(1)求证:PC是⊙O的切线;(2)求证:PA AD PC CD;(3)过点A作AE∥PC交⊙O于点E,交CD于点F,连接BE,若sin∠P=35,CF=5,求BE的长.【答案】(1)见解析;(2)BE=12.【解析】【分析】(1)连接OC,由PC切⊙O于点C,得到OC⊥PC,于是得到∠PCA+∠OCA=90°,由AB为⊙O的直径,得到∠ABC+∠OAC=90°,由于OC=OA,证得∠OCA=∠OAC,于是得到结论;(2)由AE∥PC,得到∠PCA=∠CAF根据垂径定理得到弧AC=弧AG,于是得到∠ACF=∠ABC,由于∠PCA=∠ABC,推出∠ACF=∠CAF,根据等腰三角形的性质得到CF=AF,在R t△AFD中,AF=5,sin∠FAD=35,求得FD=3,AD=4,CD=8,在R t△OCD中,设OC=r,根据勾股定理得到方程r2=(r-4)2+82,解得r=10,得到AB=2r=20,由于AB为⊙O的直径,得到∠AEB=90°,在R t△ABE中,由sin∠EAD=35,得到BEAB=35,于是求得结论.【详解】(1)证明:连接OC,∵PC切⊙O于点C,∴OC⊥PC,∴∠PCO=90°,∴∠PCA+∠OCA=90°,∵AB为⊙O的直径,∴∠ACB=90°,∴∠ABC+∠OAC=90°,∵OC=OA,∴∠OCA=∠OAC,∴∠PCA=∠ABC;(2)解:∵AE∥PC,∴∠PCA=∠CAF,∵AB⊥CG,∴弧AC=弧AG,∴∠ACF=∠ABC,∵∠PCA=∠ABC,∴∠ACF=∠CAF,∴CF=AF,∵CF=5,∴AF=5,∵AE∥PC,∴∠FAD=∠P,∵sin∠P=35,∴sin∠FAD=35,在R t△AFD中,AF=5,sin∠FAD=35,∴FD=3,AD=4,∴CD=8,在R t△OCD中,设OC=r,∴r2=(r﹣4)2+82,∴r=10,∴AB=2r=20,∵AB为⊙O的直径,∴∠AEB=90°,在R t△ABE中,∵sin∠EAD=35,∴35BEAB,∵AB=20,∴BE=12.【点睛】本题考查切线的性质,锐角三角函数,圆周角定理,等腰三角形的性质,解题关键是连接OC构造直角三角形.9.我市在创建全国文明城市的过程中,某社区在甲楼的A处与E处之间悬挂了一副宣传条幅,在乙楼顶部C点测得条幅顶端A点的仰角为45°,条幅底端E点的俯角为30°,若甲、乙两楼之间的水平距离BD为12米,求条幅AE的长度.(结果保留根号)【答案】AE 的长为(123)+ 【解析】 【分析】在Rt ACF 中求AF 的长, 在Rt CEF 中求EF 的长,即可求解. 【详解】过点C 作CF AB ⊥于点F 由题知:四边形CDBF 为矩形12CF DB ∴==在Rt ACF 中,45ACF ∠=︒tan 1AFACF CF∴∠== 12AF ∴=在Rt CEF 中,30ECF ∠=︒ tan EFECF CF∴∠= 3123EF ∴=43EF ∴=1243AE AF EF ∴=+=+∴求得AE 的长为(1243+【点睛】本题考查了三角函数的实际应用,中等难度,作辅助线构造直角三角形是解题关键.10.已知:如图,在Rt △ABO 中,∠B =90°,∠OAB =30°,OA =3.以点O 为原点,斜边OA 所在直线为x 轴,建立平面直角坐标系,以点P (4,0)为圆心,PA 长为半径画圆,⊙P 与x 轴的另一交点为N ,点M 在⊙P 上,且满足∠MPN =60°.⊙P 以每秒1个单位长度的速度沿x 轴向左运动,设运动时间为ts ,解答下列问题: (发现)(1)MN 的长度为多少;(2)当t =2s 时,求扇形MPN (阴影部分)与Rt △ABO 重叠部分的面积.(探究)当⊙P 和△ABO 的边所在的直线相切时,求点P 的坐标.(拓展)当MN 与Rt △ABO 的边有两个交点时,请你直接写出t 的取值范围.【答案】【发现】(1)MN 的长度为π3;(23P 的坐标为10(,);或230)或230();【拓展】t 的取值范围是23t ≤<或45t ≤<,理由见解析.【解析】 【分析】发现:(1)先确定出扇形半径,进而用弧长公式即可得出结论; (2)先求出PA =1,进而求出PQ ,即可用面积公式得出结论; 探究:分圆和直线AB 和直线OB 相切,利用三角函数即可得出结论;拓展:先找出MN 和直角三角形的两边有两个交点时的分界点,即可得出结论. 【详解】 [发现](1)∵P (4,0),∴OP =4. ∵OA =3,∴AP =1,∴MN 的长度为6011803ππ⨯=. 故答案为3π; (2)设⊙P 半径为r ,则有r =4﹣3=1,当t =2时,如图1,点N 与点A 重合,∴PA =r =1,设MP 与AB 相交于点Q .在Rt △ABO 中,∵∠OAB =30°,∠MPN =60°. ∵∠PQA =90°,∴PQ 12=PA 12=,∴AQ =AP ×cos30°3=∴S 重叠部分=S △APQ 12=PQ ×AQ 3= 即重叠部分的面积为38. [探究]①如图2,当⊙P 与直线AB 相切于点C 时,连接PC ,则有PC ⊥AB ,PC =r =1. ∵∠OAB =30°,∴AP =2,∴OP =OA ﹣AP =3﹣2=1; ∴点P 的坐标为(1,0);②如图3,当⊙P 与直线OB 相切于点D 时,连接PD ,则有PD ⊥OB ,PD =r =1,∴PD ∥AB ,∴∠OPD =∠OAB =30°,∴cos ∠OPD PD OP =,∴OP 123303cos ==︒,∴点P 的坐标为(233,0); ③如图4,当⊙P 与直线OB 相切于点E 时,连接PE ,则有PE ⊥OB ,同②可得:OP 233=; ∴点P 的坐标为(233-,0);[拓展]t 的取值范围是2<t ≤3,4≤t <5,理由:如图5,当点N 运动到与点A 重合时,MN 与Rt △ABO 的边有一个公共点,此时t =2; 当t >2,直到⊙P 运动到与AB 相切时,由探究①得:OP =1,∴t 411-==3,MN 与Rt △ABO 的边有两个公共点,∴2<t ≤3.如图6,当⊙P 运动到PM 与OB 重合时,MN 与Rt △ABO 的边有两个公共点,此时t =4; 直到⊙P 运动到点N 与点O 重合时,MN 与Rt △ABO 的边有一个公共点,此时t =5; ∴4≤t <5,即:t 的取值范围是2<t ≤3,4≤t <5.【点睛】本题是圆的综合题,主要考查了弧长公式,切线的性质,锐角三角函数,三角形面积公式,作出图形是解答本题的关键.。
初中数学三角函数习题有答案
一、计算题1、计算:.2、计算:3、计算:+() - ;4、计算:、计算:sin60sin6000cos3000+5、小明的家在某公寓楼AD 内,他家的前面新建了一座大厦BC BC,小明想知道大厦的高度,但由于施工原因,无法测,小明想知道大厦的高度,但由于施工原因,无法测出公寓底部A 与大厦底部C 的直线距离,于是小明在他家的楼底A 处测得大厦顶部B 的仰角为,爬上楼顶D 处测得大厦的顶部B 的仰角为,已知公寓楼AD 的高为60米,请你帮助小明计算出大厦的高度BC BC。
6、(、(11)计算:;(2)已知∶∶=2∶3∶4,求的值的值. .二、简答题7、先化简,再求值:,其中(tan45tan45°°-cos30-cos30°)°)8、已知,凸4n +2边形A 1A 2…A 4n+2(n 是非零自然数)各内角都是3030°的整数倍°的整数倍°的整数倍,• ,•又关于x 的方程均有实根,求这凸4n +2边形各内角的度数边形各内角的度数. .9、已知:、已知:sin sin α是关于x 的一元二次方程的一个根,请计算代数式:的一个根,请计算代数式:tan tan 22α-sin α+2cos α的值1010、已知、已知是锐角,且,计算1111、如图,△、如图,△、如图,△A A BC 和△CDE 均为等腰直角三角形,点B ,C ,D 在一条直线上,点M 是AE 的中点,BC =3=3,,CD=1.(1)(1)求证求证tan tan∠∠AEC =;(2);(2)请探究请探究BM 与DM 的关系,并给出证明的关系,并给出证明. .1212、、 先化简再求值:先化简再求值:其中a=tan60a=tan60°° 1313、观察与思考:阅读下列材料,并解决后面的问题.在锐角△、观察与思考:阅读下列材料,并解决后面的问题.在锐角△ABC 中,∠A 、∠B 、∠C 的对边分别是a 、b 、c ,过A 作 AD ⊥BC 于D (如图如图)),则sinB =,sinC =,即AD =c sin B ,AD =bsinC ,于是csinB =bsinC ,即.同理有:,,所以即:在一个三角形中,各边和它所对角的正弦的比相等.在锐角三角形中,若已知三个元素(至少有一条边),运用上述结论和有关定理就可以求出其余三个未知元素根据上述材料,完成下列各题(1)如图,△ABC 中,∠B =450,∠C =750,BC =60=60,则∠,则∠A = = ;;AC = = ;; (2)如图,一货轮在C 处测得灯塔A 在货轮的北偏西3030°的方向上,随后货轮以°的方向上,随后货轮以60海里/时的速度按北偏东3030°的方向航行,半小时后到达°的方向航行,半小时后到达B 处,此时又测得灯塔A 在货轮的北偏西7575°的方向上°的方向上°的方向上((如图如图)),求此时货轮距灯塔A 的距离AB .1414、开放探索题:、开放探索题:、开放探索题:(1)如图,锐角的正弦值和余弦值都随着锐角的确定而确定、变化而变化)如图,锐角的正弦值和余弦值都随着锐角的确定而确定、变化而变化. . . 试探索随试探索随着锐角度数的增大,它的正弦值和余弦值变化的规律着锐角度数的增大,它的正弦值和余弦值变化的规律. .(2)根据你探索到的规律,试比较1818°,°,°,343434°,°,°,505050°,°,°,626262°,°,°,888888°,这些锐角的正弦°,这些锐角的正弦值和余弦值的大小值和余弦值的大小. .(3)比较大小(在空格处填“)比较大小(在空格处填“>>”、“”、“<<”或“”或“==”)”)若,则______;若,则______;若>45>45°,则°,则______.(4)利用互为余角的两个角的正弦和余弦的关系,试比较下列正弦值和余弦值的大小:)利用互为余角的两个角的正弦和余弦的关系,试比较下列正弦值和余弦值的大小:Sin10 Sin10°、°、°、cos30cos30cos30°、°、°、sin50sin50sin50°、°、°、cos70cos70cos70°°.1515、学科内知识综合题:、学科内知识综合题:、学科内知识综合题:已知∠已知∠A A 是锐角,且tanA tanA、、cotA 是关于x 的一元二次方程=0的两个实数根的两个实数根. . (1)求k 的值;的值;(2)问∠)问∠A A 能否等于4545°?请说明你的理由°?请说明你的理由°?请说明你的理由. .1616、、 学习过三角函数,我们知道在直角三角形中,一个锐学习过三角函数,我们知道在直角三角形中,一个锐角的大小与两条边长的比值相互唯一确定,因此边长与角的大小之间可以相互转化小之间可以相互转化. . 类似的,可以在等腰三角形中建立边角之间的联系,我们定义:等腰三角形中底边与腰的比叫做顶角的正对(sad ).如图,在△ABC 中,AB =AC ,顶角A 的正对记作sadA ,这时sad A =.容易知道一个角的大小与这个角的正对值也是相互唯一确定的相互唯一确定的. .根据上述对角的正对定义,解下列问题:根据上述对角的正对定义,解下列问题:根据上述对角的正对定义,解下列问题:(1)sad的值为(的值为( ))A. B. 1 C. D. 2(2)对于,∠A 的正对值sad A 的取值范围是的取值范围是 . .(3)已知,其中为锐角,试求sad 的值的值. .1717、已知:如图,在△、已知:如图,在△ABC 中,,,.求:求:求:(1) (1) (1) △△ABC 的面积;的面积; (2) (2) sinA 的值.的值.1818、如图,在、如图,在Rt Rt△△ABC 中,中,BC BC BC、、AC AC、、AB 三边的长分别为a 、b 、c ,则,则sinA=, cosA=,tanA=.我们不难发现:我们不难发现:sin sin 260o +cos 260o =1=1,…,… 试探求sinA sinA、、cosA cosA、、tanA 之间存在的一般关系,并说明理由.之间存在的一般关系,并说明理由.三、填空题1919、在、在中,三边之比为,则=2020、如图,在平面直角坐标系、如图,在平面直角坐标系O 中,已知点A (3,3)和点B (7,0),则sin ∠ABO 的值等于的值等于 . .2121、、“赵爽弦图”是由四个全等的直角三角形与一个小正方形拼成的一个大正方形.如果小正方形的面积为4,大正方形的面积为100100,直角三角形中较小的锐角为,直角三角形中较小的锐角为α,则tan α的值等于的值等于___________ ___________2222、已知、已知为锐角,若,= ;若;若,则;2323、已知、已知Rt Rt△△中,若cos ,则 四、选择题2424、已知在、已知在RT RT△△ABC 中,∠中,∠C=90C=900,∠,∠A A 、∠、∠B B 、∠、∠C C 的对边分别为a 、b 、c ,则下列关系式错误的是(▲),则下列关系式错误的是(▲)A 、a=btanAB a=btanA B、、b=ccosAC b=ccosA C、、a=csinAD a=csinA D、、c=2525、直线、直线y=2x 与x 轴正半轴的夹角为,那么下列结论正确的是(,那么下列结论正确的是( )A. tan =2B. tan =C. sin =2D. cos=22626、将两副三角板如下图摆放在一起,连结、将两副三角板如下图摆放在一起,连结,则的余切值为的余切值为( ) ( )A .B B..C C..2D 2 D..32727、关于、关于的二次函数+,其中为锐角,则:为锐角,则:① 当为3030°时,函数有最小值°时,函数有最小值°时,函数有最小值--;② 函数图象与坐标轴必有三个交点,并且当为4545°时,连结这三个交点所围成的三角形面积小于°时,连结这三个交点所围成的三角形面积小于1; ③ 当<60<60°时,函数在°时,函数在x >1时,y 随x 的增大而增大;的增大而增大;④ 无论锐角怎么变化,函数图象必过定点。
初中数学三角函数考题
一 . 选择题1、如图,已知: 45A 90 ,则以下各式建立的是()A .sinA=cosAB . sinA>cosAC . sinA>tanAD .sinA<cosA2. Rt △ABC 中,∠ C=90 °, a 、 b 、 c 分别是∠ A 、∠ B 、∠ C 的对边,那么 c 等于( )A. a cosAb sin BB. a sin Ab sin Ba babC.sin B D.sin A cos A sin B3、如图,将一个 Rt △ ABC 形状的楔子从木桩的底端点P 处沿水平方向打入木桩底下,使木桩向上运动,已知楔子斜面的倾斜角为20 ,若楔子沿水平方向前移8cm(如箭头所示 ),则木桩上涨了 ()AP20ACPBB20C( 第 14 题图 )A 、 8tan20B 、8D 、 8cos20C 、 8sin 20tan204、如下图,在数轴上点 A 所表示的数 x 的范围是()A 、C 、3sin 30 x sin 60 ,B 、 cos30x3cos45 223tan30 x tan 45D 、3cot 45 x cot 30 221、如图,小明家在 A 处,门前有一口池塘,隔着池塘有一条公路l ,AB 是 A 到 l 的小道 . 现新修一条路AC 到公路l . 小明丈量出∠ ACD =30o,∠ ABD=45o, BC=50m. 请你帮小明计算他家到公路l 的距离 AD 的长度(精准到;参照数据: 2 1.414 ,3 1.732 ).D B C lA第 17 题图2、如图,某高速公路建设中需要确立地道AB 的长度 .已知在离地面1500m,高度 C 处的飞机,丈量人员测得正前面 A 、B 两点处的俯角分别为60°和 45°,求地道AB 的长 .第 19 题图3、如图,自来水厂 A 和乡村 B 在小河 l 的双侧,现要在A,B 间铺设一知输水管道.为了搞好工程估算,需测算出A,B 间的距离.一小船在点P 处测得 A 在正北方向, B 位于南偏东 24.5 °方向,前行1200m,抵达点 Q 处,测得 A 位于北偏东49°方向, B 位于南偏西 41°方向.北(1)线段 BQ 与 PQ 能否相等?请说明原因;A 西东(2)求 A, B 间的距离.(参照数据cos41°=)南P49°Q 41°24. 5°B4、如图,为了丈量某建筑物CD 的高度,先在地面上用测角仪自 A 处测得建筑物顶部的仰角是 30°,而后在水平川面上向建筑物行进了100m,此时自 B 处测得建筑物顶部的仰角是 45°.已知测角仪的高度是,请你计算出该建筑物的高度.(取 3 =,结果精准到1m)CA 30B 45 E100 D(第 23 题)、5、某建筑物BC 上有一旗杆AB,小明在与BC 相距 12m 的 F 处,由 E 点观察到旗杆顶部 A 的仰角为 52°、底部 B 的仰角为 45°,小明的观察点与地面的距离EF 为 1.6m .⑴求建筑物 BC 的高度; A⑵求旗杆 AB 的高度.B(结果精准到.参照数据: 2 ≈,sin52°≈0.,79tan52°≈1.)28EF C图 76、某兴趣小组用高为 1.2 米的仪器丈量建筑物 CD 的高度.如表示图,由距 CD 必定距离的A 处用仪器察看建筑物顶部 D 的仰角为,在 A 和 C 之间选一点 B,由B 处用仪器察看建筑物顶部 D 的仰角为.测得 A, B 之间的距离为 4 米,tan1.6 ,tan1.2 ,试求建筑物 CD 的高度.DG EFC B A。
(完整)初中数学三角函数练习题
(完整)初中数学三角函数练习题初中数学三角函数练题1. 求下列三角函数的值:a) sin 30°b) cos 45°c) tan 60°2. 在直角三角形 ABC 中,∠ACB = 90°,AC = 5 cm,BC = 12 cm。
求 sin A、cos A 和 tan A 的值。
3. 如果 sin x = 0.6,求 x 的值(0° ≤ x ≤ 180°)。
4. 已知 sin y = 0.8,求 cos y 的值(0° ≤ y ≤ 180°)。
5. 在直角三角形 DEF 中,∠E = 30°,EF = 6 cm,DE = 8 cm。
求 sin F、cos F 和 tan F 的值。
6. 如果 cos z = 0.4,求 z 的值(0° ≤ z ≤ 180°)。
7. 已知 cos w = 0.7,求 sin w 的值(0° ≤ w ≤ 180°)。
8. 在直角三角形 GHI 中,∠H = 60°,GH = 9 cm,HI = 3 cm。
求 sin G、cos G 和 tan G 的值。
9. 如果 tan v = 1.5,求 v 的值(0° ≤ v ≤ 180°)。
10. 已知 tan u = 2,求 sin u 的值(0° ≤ u ≤ 180°)。
11. 在直角三角形 ___ 中,∠K = 45°,JK = 6 cm,KL = 6 cm。
求 sin L、cos L 和 tan L 的值。
12. 如果 cot t = 0.75,求 t 的值(0° ≤ t ≤ 180°)。
13. 已知 cot s = 4,求 sin s 的值(0° ≤ s ≤ 180°)。
14. 已知cos α = 0.6,求sin^2 α 和cos^2 α 的值。
初三数学上册综合算式专项练习题三角函数的运算
初三数学上册综合算式专项练习题三角函数的运算初三数学上册综合算式专项练习题:三角函数的运算三角函数在初中数学的学习中占据着重要的地位。
掌握三角函数的运算规则,不仅可以解决与角度相关的问题,还可以在几何图形的计算中起到重要的作用。
本文将围绕三角函数的运算,给出一些综合算式专项练习题,帮助同学们熟练掌握三角函数的运算方法。
一、计算题1. 计算以下各式的值:a) sin30°b) cos60°c) tan45°2. 分别求以下各式的值:a) cos(90° + x)b) sin(180° - x)c) tan(270° + x)3. 确定以下各式的符号:a) cos(-45°)b) sin(-120°)c) tan(-60°)二、简化题1. 简化以下各式:a) cos^2x + sin^2xb) tan^2x + 12. 简化以下各式,并求出其值:a) sin^2x - cos^2xb) 1 - sin^2x三、综合题1. 已知在直角三角形中,∠A = 30°,边AC = 5,边BC = 3。
求:a) sinAb) cosAc) tanA2. 已知在直角三角形中,∠A = 60°,边AB = 4,边BC = 2。
求:a) sinAb) cosAc) tanA四、复杂题1. 已知在任意三角形ABC中,AB = 5,BC = 7,AC = 8。
求:a) sinAb) cosAc) tanA2. 已知在任意三角形ABC中,∠B = 45°,c = 10。
求:a) sinBb) cosBc) tanB以上是初三数学上册综合算式专项练习题,通过解答这些题目,同学们可以加深对三角函数的运算规则的理解,同时也能够巩固自己的计算能力和运算技巧。
希望同学们认真对待这些练习题,刻苦锻炼自己的数学能力,提高自己的成绩。
初中数学三角函数综合练习题(1)
三角函数综合练习题一.选择题(共10小题)1.如图,在网格中,小正方形の边长均为1,点A,B,C都在格点上,则∠ABCの正切值是()A.2 B.C.D.2.如图,点D(0,3),O(0,0),C(4,0)在⊙A上,BD是⊙Aの一条弦,则sin∠OBD=()A.B.C.D.3.如图,在Rt△ABC中,斜边ABの长为m,∠A=35°,则直角边BCの长是()A.msin35° B.mcos35° C.D.4.如图,△ABC中AB=AC=4,∠C=72°,D是AB中点,点E在AC上,DE⊥AB,则cosAの值为()A.B.C.D.5.如图,厂房屋顶人字形(等腰三角形)钢架の跨度BC=10米,∠B=36°,则中柱AD(D 为底边中点)の长是()A.5sin36°米B.5cos36°米C.5tan36°米D.10tan36°米6.一座楼梯の示意图如图所示,BC是铅垂线,CA是水平线,BA与CAの夹角为θ.现要在楼梯上铺一条地毯,已知CA=4米,楼梯宽度1米,则地毯の面积至少需要()A.米2B.米2C.(4+)米2D.(4+4tanθ)米27.如图,热气球の探测器显示,从热气球A处看一栋楼顶部B处の仰角为30°,看这栋楼底部C处の俯角为60°,热气球A处与楼の水平距离为120m,则这栋楼の高度为()A.160m B.120m C.300m D.160m8.如图,为了测量某建筑物MNの高度,在平地上A处测得建筑物顶端Mの仰角为30°,向N点方向前进16m到达B处,在B处测得建筑物顶端Mの仰角为45°,则建筑物MNの高度等于()A.8()m B.8()m C.16()m D.16()m9.某数学兴趣小组同学进行测量大树CD高度の综合实践活动,如图,在点A处测得直立于地面の大树顶端Cの仰角为36°,然后沿在同一剖面の斜坡AB行走13米至坡顶B处,然后再沿水平方向行走6米至大树脚底点D处,斜面ABの坡度(或坡比)i=1:2.4,那么大树CDの高度约为(参考数据:sin36°≈0.59,cos36°≈0.81,tan36°≈0.73)()A.8.1米B.17.2米C.19.7米D.25.5米10.如图是一个3×2の长方形网格,组成网格の小长方形长为宽の2倍,△ABCの顶点都是网格中の格点,则cos∠ABCの值是()A.B.C.D.二.解答题(共13小题)11.计算:(﹣)0+()﹣1﹣|tan45°﹣|12.计算:.13.计算:sin45°+cos230°﹣+2sin60°.14.计算:cos245°﹣+cot230°.15.计算:sin45°+sin60°﹣2tan45°.16.计算:cos245°+tan60°•cos30°﹣3cot260°.17.如图,某办公楼ABの后面有一建筑物CD,当光线与地面の夹角是22°时,办公楼在建筑物の墙上留下高2米の影子CE,而当光线与地面夹角是45°时,办公楼顶A在地面上の影子F与墙角C有25米の距离(B,F,C在一条直线上).(1)求办公楼ABの高度;(2)若要在A,E之间挂一些彩旗,请你求出A,E之间の距离.(参考数据:sin22°≈,cos22°,tan22)18.某国发生8.1级强烈地震,我国积极组织抢险队赴地震灾区参与抢险工作,如图,某探测对在地面A、B两处均探测出建筑物下方C处有生命迹象,已知探测线与地面の夹角分别是25°和60°,且AB=4米,求该生命迹象所在位置Cの深度.(结果精确到1米,参考数据:sin25°≈0.4,cos25°≈0.9,tan25°≈0.5,≈1.7)19.如图,为测量一座山峰CFの高度,将此山の某侧山坡划分为AB和BC两段,每一段山坡近似是“直”の,测得坡长AB=800米,BC=200米,坡角∠BAF=30°,∠CBE=45°.(1)求AB段山坡の高度EF;(2)求山峰の高度CF.( 1.414,CF结果精确到米)20.如图所示,某人在山坡坡脚A处测得电视塔尖点Cの仰角为60°,沿山坡向上走到P 处再测得Cの仰角为45°,已知OA=200米,山坡坡度为(即tan∠PAB=),且O,A,B 在同一条直线上,求电视塔OCの高度以及此人所在の位置点Pの垂直高度.(侧倾器の高度忽略不计,结果保留根号)21.如图,为了测量出楼房ACの高度,从距离楼底C处60米の点D(点D与楼底C在同一水平面上)出发,沿斜面坡度为i=1:の斜坡DB前进30米到达点B,在点B处测得楼顶Aの仰角为53°,求楼房ACの高度(参考数据:sin53°≈0.8,cos53°≈0.6,tan53°≈,计算结果用根号表示,不取近似值).22.如图,大楼AB右侧有一障碍物,在障碍物の旁边有一幢小楼DE,在小楼の顶端D处测得障碍物边缘点Cの俯角为30°,测得大楼顶端Aの仰角为45°(点B,C,E在同一水平直线上),已知AB=80m,DE=10m,求障碍物B,C两点间の距离(结果精确到0.1m)(参考数据:≈1.414,≈1.732)23.某型号飞机の机翼形状如图,根据图示尺寸计算AC和ABの长度(精确到0.1米,≈1.41,≈1.73 ).2016年12月23日三角函数综合练习题初中数学组卷参考答案与试题解析一.选择题(共10小题)1.(2016•安顺)如图,在网格中,小正方形の边长均为1,点A,B,C都在格点上,则∠ABCの正切值是()A.2 B.C.D.【分析】根据勾股定理,可得AC、ABの长,根据正切函数の定义,可得答案.【解答】解:如图:,由勾股定理,得AC=,AB=2,BC=,∴△ABC为直角三角形,∴tan∠B==,故选:D.【点评】本题考查了锐角三角函数の定义,先求出AC、ABの长,再求正切函数.2.(2016•攀枝花)如图,点D(0,3),O(0,0),C(4,0)在⊙A上,BD是⊙Aの一条弦,则sin∠OBD=()A.B.C.D.【分析】连接CD,可得出∠OBD=∠OCD,根据点D(0,3),C(4,0),得OD=3,OC=4,由勾股定理得出CD=5,再在直角三角形中得出利用三角函数求出sin∠OBD即可.【解答】解:∵D(0,3),C(4,0),∴OD=3,OC=4,∵∠COD=90°,∴CD==5,连接CD,如图所示:∵∠OBD=∠OCD,∴sin∠OBD=sin∠OCD==.故选:D.【点评】本题考查了圆周角定理,勾股定理、以及锐角三角函数の定义;熟练掌握圆周角定理是解决问题の关键.3.(2016•三明)如图,在Rt△ABC中,斜边ABの长为m,∠A=35°,则直角边BCの长是()A.msin35° B.mcos35° C.D.【分析】根据正弦定义:把锐角Aの对边a与斜边cの比叫做∠Aの正弦可得答案.【解答】解:sin∠A=,∵AB=m,∠A=35°,∴BC=msin35°,故选:A.【点评】此题主要考查了锐角三角函数,关键是掌握正弦定义.4.(2016•绵阳)如图,△ABC中AB=AC=4,∠C=72°,D是AB中点,点E在AC上,DE⊥AB,则cosAの值为()A.B.C.D.【分析】先根据等腰三角形の性质与判定以及三角形内角和定理得出∠EBC=36°,∠BEC=72°,AE=BE=BC.再证明△BCE∽△ABC,根据相似三角形の性质列出比例式=,求出AE,然后在△ADE中利用余弦函数定义求出cosAの值.【解答】解:∵△ABC中,AB=AC=4,∠C=72°,∴∠ABC=∠C=72°,∠A=36°,∵D是AB中点,DE⊥AB,∴AE=BE,∴∠ABE=∠A=36°,∴∠EBC=∠ABC﹣∠ABE=36°,∠BEC=180°﹣∠EBC﹣∠C=72°,∴∠BEC=∠C=72°,∴BE=BC,∴AE=BE=BC.设AE=x,则BE=BC=x,EC=4﹣x.在△BCE与△ABC中,,∴△BCE∽△ABC,∴=,即=,解得x=﹣2±2(负值舍去),∴AE=﹣2+2.在△ADE中,∵∠ADE=90°,∴cosA===.故选C.【点评】本题考查了解直角三角形,等腰三角形の性质与判定,三角形内角和定理,线段垂直平分线の性质,相似三角形の判定与性质,难度适中.证明△BCE∽△ABC是解题の关键.5.(2016•南宁)如图,厂房屋顶人字形(等腰三角形)钢架の跨度BC=10米,∠B=36°,则中柱AD(D为底边中点)の长是()A.5sin36°米B.5cos36°米C.5tan36°米D.10tan36°米【分析】根据等腰三角形の性质得到DC=BD=5米,在Rt△ABD中,利用∠Bの正切进行计算即可得到ADの长度.【解答】解:∵AB=AC,AD⊥BC,BC=10米,∴DC=BD=5米,在Rt△ADC中,∠B=36°,∴tan36°=,即AD=BD•tan36°=5tan36°(米).故选:C.【点评】本题考查了解直角三角形の应用.解决此问题の关键在于正确理解题意の基础上建立数学模型,把实际问题转化为数学问题.6.(2016•金华)一座楼梯の示意图如图所示,BC是铅垂线,CA是水平线,BA与CAの夹角为θ.现要在楼梯上铺一条地毯,已知CA=4米,楼梯宽度1米,则地毯の面积至少需要()A.米2B.米2C.(4+)米2D.(4+4tanθ)米2【分析】由三角函数表示出BC,得出AC+BCの长度,由矩形の面积即可得出结果.【解答】解:在Rt△ABC中,BC=AC•tanθ=4tanθ(米),∴AC+BC=4+4tanθ(米),∴地毯の面积至少需要1×(4+4tanθ)=4+4tanθ(米2);故选:D.【点评】本题考查了解直角三角形の应用、矩形面积の计算;由三角函数表示出BC是解决问题の关键.7.(2016•长沙)如图,热气球の探测器显示,从热气球A处看一栋楼顶部B处の仰角为30°,看这栋楼底部C处の俯角为60°,热气球A处与楼の水平距离为120m,则这栋楼の高度为()A.160m B.120m C.300m D.160m【分析】首先过点A作AD⊥BC于点D,根据题意得∠BAD=30°,∠CAD=60°,AD=120m,然后利用三角函数求解即可求得答案.【解答】解:过点A作AD⊥BC于点D,则∠BAD=30°,∠CAD=60°,AD=120m,在Rt△ABD中,BD=AD•tan30°=120×=40(m),在Rt△ACD中,CD=AD•tan60°=120×=120(m),∴BC=BD+CD=160(m).故选A.【点评】此题考查了仰角俯角问题.注意准确构造直角三角形是解此题の关键.8.(2016•南通)如图,为了测量某建筑物MNの高度,在平地上A处测得建筑物顶端Mの仰角为30°,向N点方向前进16m到达B处,在B处测得建筑物顶端Mの仰角为45°,则建筑物MNの高度等于()A.8()m B.8()m C.16()m D.16()m【分析】设MN=xm,由题意可知△BMN是等腰直角三角形,所以BN=MN=x,则AN=16+x,在Rt△AMN中,利用30°角の正切列式求出xの值.【解答】解:设MN=xm,在Rt△BMN中,∵∠MBN=45°,∴BN=MN=x,在Rt△AMN中,tan∠MAN=,∴tan30°==,解得:x=8(+1),则建筑物MNの高度等于8(+1)m;故选A.【点评】本题是解直角三角形の应用,考查了仰角和俯角の问题,要明确哪个角是仰角或俯角,知道仰角是向上看の视线与水平线の夹角;俯角是向下看の视线与水平线の夹角;并与三角函数相结合求边の长.9.(2016•重庆)某数学兴趣小组同学进行测量大树CD高度の综合实践活动,如图,在点A 处测得直立于地面の大树顶端Cの仰角为36°,然后沿在同一剖面の斜坡AB行走13米至坡顶B处,然后再沿水平方向行走6米至大树脚底点D处,斜面ABの坡度(或坡比)i=1:2.4,那么大树CDの高度约为(参考数据:sin36°≈0.59,cos36°≈0.81,tan36°≈0.73)()A.8.1米B.17.2米C.19.7米D.25.5米【分析】作BF⊥AE于F,则FE=BD=6米,DE=BF,设BF=x米,则AF=2.4米,在Rt△ABF中,由勾股定理得出方程,解方程求出DE=BF=5米,AF=12米,得出AEの长度,在Rt△ACE中,由三角函数求出CE,即可得出结果.【解答】解:作BF⊥AE于F,如图所示:则FE=BD=6米,DE=BF,∵斜面ABの坡度i=1:2.4,∴AF=2.4BF,设BF=x米,则AF=2.4x米,在Rt△ABF中,由勾股定理得:x2+(2.4x)2=132,解得:x=5,∴DE=BF=5米,AF=12米,∴AE=AF+FE=18米,在Rt△ACE中,CE=AE•tan36°=18×0.73=13.14米,∴CD=CE﹣DE=13.14米﹣5米≈8.1米;故选:A.【点评】本题考查了解直角三角形の应用、勾股定理、三角函数;由勾股定理得出方程是解决问题の关键.10.(2016•广东模拟)如图是一个3×2の长方形网格,组成网格の小长方形长为宽の2倍,△ABCの顶点都是网格中の格点,则cos∠ABCの值是()A.B.C.D.【分析】根据题意可得∠D=90°,AD=3×1=3,BD=2×2=4,然后由勾股定理求得ABの长,又由余弦の定义,即可求得答案.【解答】解:如图,∵由6块长为2、宽为1の长方形,∴∠D=90°,AD=3×1=3,BD=2×2=4,∴在Rt△ABD中,AB==5,∴cos∠ABC==.故选D.【点评】此题考查了锐角三角函数の定义以及勾股定理.此题比较简单,注意数形结合思想の应用.二.解答题(共13小题)11.(2016•成都模拟)计算:(﹣)0+()﹣1﹣|tan45°﹣|【分析】本题涉及零指数幂、负整数指数幂、特殊角の三角函数值、二次根式化简四个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数の运算法则求得计算结果.【解答】解:原式=1+3×﹣︳1﹣︳=1+2﹣+1=.【点评】本题考查实数の综合运算能力,是各地中考题中常见の计算题型.解决此类题目の关键是熟记特殊角の三角函数值,熟练掌握负整数指数幂、零指数幂、二次根式、绝对值等考点の运算.12.(2016•顺义区二模)计算:.【分析】要根据负指数,绝对值の性质和三角函数值进行计算.注意:()﹣1=3,|1﹣|=﹣1,cos45°=.【解答】解:原式===2.【点评】本题考查实数の运算能力,解决此类题目の关键是熟记特殊角の三角函数值,熟练掌握负整数指数幂、二次根式、绝对值等考点の运算.注意:负指数为正指数の倒数;任何非0数の0次幂等于1;二次根式の化简是根号下不能含有分母和能开方の数.13.(2016•天门模拟)计算:sin45°+cos230°﹣+2sin60°.【分析】先把各特殊角の三角函数值代入,再根据二次根式混合运算の法则进行计算即可.【解答】解:原式=•+()2﹣+2×=+﹣+=1+.【点评】本题考查の是特殊角の三角函数值,熟记各特殊角度の三角函数值是解答此题の关键.14.(2016•黄浦区一模)计算:cos245°﹣+cot230°.【分析】根据特殊角三角函数值,可得实数の运算,根据实数の运算,可得答案.【解答】解:原式=()2﹣+()2=﹣+3=.【点评】本题考查了特殊角三角函数值,熟记特殊角三角函数值是解题关键.15.(2016•深圳校级模拟)计算:sin45°+sin60°﹣2tan45°.【分析】根据特殊角の三角函数值进行计算.【解答】解:原式=×+2×﹣2×1=+3﹣2=.【点评】本题考查了特殊角の三角函数值.特指30°、45°、60°角の各种三角函数值.sin30°=; cos30°=;tan30°=;sin45°=;cos45°=;tan45°=1;sin60°=;cos60°=; tan60°=.16.(2016•虹口区一模)计算:cos245°+tan60°•cos30°﹣3cot260°.【分析】将特殊角の三角函数值代入求解.【解答】解:原式=()2+×﹣3×()2=1.【点评】本题考查了特殊角の三角函数值,解答本题の关键是掌握几个特殊角の三角函数值.17.(2016•青海)如图,某办公楼ABの后面有一建筑物CD,当光线与地面の夹角是22°时,办公楼在建筑物の墙上留下高2米の影子CE,而当光线与地面夹角是45°时,办公楼顶A 在地面上の影子F与墙角C有25米の距离(B,F,C在一条直线上).(1)求办公楼ABの高度;(2)若要在A,E之间挂一些彩旗,请你求出A,E之间の距离.(参考数据:sin22°≈,cos22°,tan22)【分析】(1)首先构造直角三角形△AEM,利用tan22°=,求出即可;(2)利用Rt△AME中,cos22°=,求出AE即可【解答】解:(1)如图,过点E作EM⊥AB,垂足为M.设AB为x.Rt△ABF中,∠AFB=45°,∴BF=AB=x,∴BC=BF+FC=x+25,在Rt△AEM中,∠AEM=22°,AM=AB﹣BM=AB﹣CE=x﹣2,tan22°=,则=,解得:x=20.即教学楼の高20m.(2)由(1)可得ME=BC=x+25=20+25=45.在Rt△AME中,cos22°=.∴AE=,即A、E之间の距离约为48m【点评】此题主要考查了解直角三角形の应用,根据已知得出tan22°=是解题关键18.(2016•自贡)某国发生8.1级强烈地震,我国积极组织抢险队赴地震灾区参与抢险工作,如图,某探测对在地面A、B两处均探测出建筑物下方C处有生命迹象,已知探测线与地面の夹角分别是25°和60°,且AB=4米,求该生命迹象所在位置Cの深度.(结果精确到1米,参考数据:sin25°≈0.4,cos25°≈0.9,tan25°≈0.5,≈1.7)【分析】过C点作ABの垂线交ABの延长线于点D,通过解Rt△ADC得到AD=2CD=2x,在Rt △BDC中利用锐角三角函数の定义即可求出CDの值.【解答】解:作CD⊥AB交AB延长线于D,设CD=x米.在Rt△ADC中,∠DAC=25°,所以tan25°==0.5,所以AD==2x.Rt△BDC中,∠DBC=60°,由tan 60°==,解得:x≈3.即生命迹象所在位置Cの深度约为3米.【点评】本题考查の是解直角三角形の应用,根据题意作出辅助线,构造出直角三角形是解答此题の关键.19.(2016•黄石)如图,为测量一座山峰CFの高度,将此山の某侧山坡划分为AB和BC两段,每一段山坡近似是“直”の,测得坡长AB=800米,BC=200米,坡角∠BAF=30°,∠CBE=45°.(1)求AB段山坡の高度EF;(2)求山峰の高度CF.( 1.414,CF结果精确到米)【分析】(1)作BH⊥AF于H,如图,在Rt△ABF中根据正弦の定义可计算出BHの长,从而得到EFの长;(2)先在Rt△CBE中利用∠CBEの正弦计算出CE,然后计算CE和EFの和即可.【解答】解:(1)作BH⊥AF于H,如图,在Rt△ABF中,∵sin∠BAH=,∴BH=800•sin30°=400,∴EF=BH=400m;(2)在Rt△CBE中,∵sin∠CBE=,∴CE=200•sin45°=100≈141.4,∴CF=CE+EF=141.4+400≈541(m).答:AB段山坡高度为400米,山CFの高度约为541米.【点评】本题考查了解直角三角形の应用﹣坡度与坡角问题:坡度是坡面の铅直高度h和水平宽度lの比,又叫做坡比,它是一个比值,反映了斜坡の陡峭程度,一般用i表示,常写成i=1:mの形式.把坡面与水平面の夹角α叫做坡角,坡度i与坡角α之间の关系为:i ═tanα.20.(2016•天水)如图所示,某人在山坡坡脚A处测得电视塔尖点Cの仰角为60°,沿山坡向上走到P处再测得Cの仰角为45°,已知OA=200米,山坡坡度为(即tan∠PAB=),且O,A,B在同一条直线上,求电视塔OCの高度以及此人所在の位置点Pの垂直高度.(侧倾器の高度忽略不计,结果保留根号)【分析】在直角△AOC中,利用三角函数即可求解;在图中共有三个直角三角形,即RT△AOC、RT△PCF、RT△PAE,利用60°、45°以及坡度比,分别求出CO、CF、PE,然后根据三者之间の关系,列方程求解即可解决.【解答】解:作PE⊥OB于点E,PF⊥CO于点F,在Rt△AOC中,AO=200米,∠CAO=60°,∴CO=AO•tan60°=200(米)(2)设PE=x米,∵tan∠PAB==,∴AE=3x.在Rt△PCF中,∠CPF=45°,CF=200﹣x,PF=OA+AE=200+3x,∵PF=CF,∴200+3x=200﹣x,解得x=50(﹣1)米.答:电视塔OCの高度是200米,所在位置点Pの铅直高度是50(﹣1)米.【点评】考查了解直角三角形の应用﹣仰角俯角问题以及坡度坡角问题,本题要求学生借助仰角关系构造直角三角形,并结合图形利用三角函数解直角三角形.21.(2016•泸州)如图,为了测量出楼房ACの高度,从距离楼底C处60米の点D(点D 与楼底C在同一水平面上)出发,沿斜面坡度为i=1:の斜坡DB前进30米到达点B,在点B处测得楼顶Aの仰角为53°,求楼房ACの高度(参考数据:sin53°≈0.8,cos53°≈0.6,tan53°≈,计算结果用根号表示,不取近似值).【分析】如图作BN⊥CD于N,BM⊥AC于M,先在RT△BDN中求出线段BN,在RT△ABM中求出AM,再证明四边形CMBN是矩形,得CM=BN即可解决问题.【解答】解:如图作BN⊥CD于N,BM⊥AC于M.在RT△BDN中,BD=30,BN:ND=1:,∴BN=15,DN=15,∵∠C=∠CMB=∠CNB=90°,∴四边形CMBN是矩形,∴CM=BM=15,BM=CN=60﹣15=45,在RT△ABM中,tan∠ABM==,∴AM=60,∴AC=AM+CM=15+60.【点评】本题考查解直角三角形、仰角、坡度等概念,解题の关键是添加辅助线构造直角三角形,记住坡度の定义,属于中考常考题型.22.(2016•昆明)如图,大楼AB右侧有一障碍物,在障碍物の旁边有一幢小楼DE,在小楼の顶端D处测得障碍物边缘点Cの俯角为30°,测得大楼顶端Aの仰角为45°(点B,C,E在同一水平直线上),已知AB=80m,DE=10m,求障碍物B,C两点间の距离(结果精确到0.1m)(参考数据:≈1.414,≈1.732)【分析】如图,过点D作DF⊥AB于点F,过点C作CH⊥DF于点H.通过解直角△AFD得到DFの长度;通过解直角△DCE得到CEの长度,则BC=BE﹣CE.【解答】解:如图,过点D作DF⊥AB于点F,过点C作CH⊥DF于点H.则DE=BF=CH=10m,在直角△ADF中,∵AF=80m﹣10m=70m,∠ADF=45°,∴DF=AF=70m.在直角△CDE中,∵DE=10m,∠DCE=30°,∴CE===10(m),∴BC=BE﹣CE=70﹣10≈70﹣17.32≈52.7(m).答:障碍物B,C两点间の距离约为52.7m.【点评】本题考查了解直角三角形﹣仰角俯角问题.要求学生能借助仰角构造直角三角形并解直角三角形.23.(2016•丹东模拟)某型号飞机の机翼形状如图,根据图示尺寸计算AC和ABの长度(精确到0.1米,≈1.41,≈1.73 ).【分析】在Rt△CAE中,∠ACE=45°,则△ACE是等腰直角三角形即可求得ACの长;在Rt △BFD中已知∠BDF与FBの长,进而得出ABの长.【解答】解:在Rt△CAE中,∠ACE=45°,∴AE=CE=5(m),∴AC=CE=5≈5×1.414≈7.1(m),在Rt△BFD中,∠BDF=30°,∴BF=FD•tan30°=5×≈5×≈2.89(m),∵DC=EF=3.4(m),∴AF=1.6m,则AB=2.89﹣1.6=1.29≈1.3(m),答:AC约为7.1米,BA约为1.3米.【点评】此题考查了三角函数の基本概念,主要是正切函数の概念及运算,关键把实际问题转化为数学问题加以计算.。
初中数学锐角三角函数练习、解直角三角形练习及详细解答
初中三角函数练习及解答1.锐角三角函数1.比较下列各组三角函数值的大小:(1)sin19︒与cos70︒;(2)cot 65︒与cos40︒;(3)cos1︒,tan 46︒,sin88︒和cot 38︒.2.化简求值:(1)tan1tan 2tan3tan89︒⋅︒⋅︒⋅⋅︒ ;(2sin83︒;(3)2222tan sin tan sin αααα⋅-;(4cos 79sin 79-︒-︒;3.若tan 3α=求2sin sin 13sin cos αααα-+的值.4.下列四个数中哪个最大:A .tan 48cot 48︒+︒B .sin 48cos48︒+︒C .tan 48cos48︒+︒D .cot 48sin 48︒+︒5.设x 为锐角,且满足sin 3cos x x =,求sin cos x x .6.已知sin cos αα+=,求sin cos αα的值.7.已知m 为实数,且sin α、cos α是关于x 的方程2310x mx -+=的两根.求44sin cos αα+的值.8.设A 、B 是一个直角三角形的两个锐角,满足2sin sin 2A B -=.求sin A 及sin B 的值.9.已知关于x 的一元二次方程()()22211120m x m x +--+=的两个根是一个直角三角形的两个锐角的正弦,求实数m 的值.10.已知方程2450x x k -+=的两根是直角三角形的两个锐角的正弦,求k .11.若直角三角形中的两个锐角A 、B 的正弦是方程20x px q ++=的两个根;(1)那么,实数p 、q 应满足哪些条件?(2)如果p 、q 满足这些条件,方程20x px q ++=的两个根是否等于直角三角形的两个锐角A 、B 的正弦?12.已知方程()24210x m x m -++=的两个根恰好是一个直角三角形的两个锐角的余弦,试求m 的值.13.不查表,求15︒的四种三角函数值.14.求22.5︒角的正切值(不查表,不借助计算器).15.求sin18︒的值.16.若x 、y 为实数,221x y +=,α为锐角,求证:sin cos x y αα+的绝对值不大于1.2解直角三角形1.如图,在直角三角形ABC 中,90C ∠=︒,AD 是A ∠的平分线,且CD =,DB =求ABC △的三边长.2.在Rt ABC △中(如图),D 、E 是斜边AB 的三等分点,已知sin CD x =,()cos 090CE x x =︒<<︒.试求AB 的长.3.如图,ABC △中,90C ∠=︒,10AB =,6AC =,AD 是BAC ∠的平分线,求点B 到直线AD 的距离BH .4.已知ABC △是非等腰直角三角形,90BAC ∠=︒,在BC 所在直线上取两点D 、E 使DB BC CE ==,连结AD 、AE .已知45BAD ∠=︒.求tan CAE ∠的值.5.设有一张矩形纸片ABCD (如图),3AB =,4BC =.现将纸片折叠,使C 点与A 点重合,试求折痕EF 的长.6.已知三角形两边之和是10,这两边的夹角为30︒,面积为254,求证:此三角形为等腰三角形.7.在ABC △中,90C ∠=︒,其周长为2+,且已知斜边上的中线长为1.如果BC AC >,求tan A的值.8.已知a 、b 、c 分别是ABC △中A ∠、B ∠,C ∠的对边,且a 、b 是关于x 的一元二次方程()()2 424x c c x ++=+的两个根.(1)判断ABC △的形状;(2)若3tan 4A =求a 、b 、c .9.在Rt ABC △中,90C ∠=︒,12ABC S m =△,且两直角边长满足条件32a b m +=.(1)证明:24m ≥;(2)当m 取最小值时,求ABC △中最小内角的正切值.10.如图所示.90A BEF EBC ECD ∠=∠=∠=∠=︒,30ABF ∠=︒,45BFE ∠=︒,60ECB ∠=︒且2AB CD =.求tan CDE ∠的值.11.如图所示.在锐角ABC △中,4sin 5B =,tan 2C =,且10ABC S =△.求BC .12.如图所示.在ACD △中,45A ∠=︒,5CB =,7CD =,3BD =.求CBD ∠及AC .13.如图,已知ABC △中,1AB =,D 是AB 的中点,90DCA ∠=︒,45DCB ∠=︒.求BC 的长.14.如图,ABC △中,90ACB ∠=︒,CD AB ⊥于D ,DE AC ⊥于E ,DF BC ⊥于F .求证:33AE AC BF BC =.15.如图,在ABC △中,90A ∠=︒,AB AC =,M 是AC 边的中点,AD 垂直于BM 且交BC 于D .求证:AMB CMD ∠=∠.16.如图(a ),正方形ABCD 的边长E 、F 分别是AB 、BC 的中点,AF 分别交DE 、DB 于点M 、N ,求DMN △的面积.17.已知a 、b 、c 是ABC △三边的长,其中b a c >=,且方程20ax c +=两根的差的绝对值等.求ABC △中最大角的度数.18.如图,AB 是圆的直径,弦CD AB ∥,AC 与BD 相交于E ,已知AED θ∠=,试求:CDE ABE S S △△.19.如图所示,已知电线杆AB 直立于地面上,它的影子恰好照在土坡的坡面CD 和地面BC 上.如果CD与地面成45︒,60A ∠=︒,4m CD =,(m BC =-,求电线杆AB 的长(精确到0.1m ).20.如图,某岛S 周围42海里内存在着大量的暗礁.现在一轮船自西向东以每小时15海里的速度航行,在、A 处测得S 在北偏东60︒,2小时后在B 处测得S 在正东北方向,试问轮船是否需要改变航行方向行驶,才能避免触礁危险,说明理由.21.如图,某污水处理站计划砌一段截面为等腰梯形的排污渠,如果渠深为h ,截面积为S ,试求当倾角θ为多少时造价最小?1.锐角三角函数(详细解答)1.比较下列各组三角函数值的大小:(1)sin19︒与cos70︒;(2)cot 65︒与cos40︒;(3)cos1︒,tan 46︒,sin88︒和cot 38︒.解析(1)利用互余角的三角函数关系式,将cos70︒化sin 20︒,再与sin19︒比大小.因为()cos70cos 9020sin 20︒=︒-︒=︒,而sin19sin 20︒<︒,所以sin19cos70︒<︒.(2)余切函数与余弦函数无法化为同名函数,但是可以利用某些特殊的三角函数值,间接比较它们的大小.32cot 60cos 4532︒=<︒=,再将cot 65︒,cos40︒分别与cot 60︒,cos45︒比大小.因为cot 65cot 60︒<︒=,cos 40cos 45︒>︒>,所以cot 60cos45︒<︒,所以cot 65cos40︒<︒.(3)tan 451︒=,显然cos1︒,sin88︒均小于1,而tan 46︒,cot 38︒均大于1.再分别比较cos1︒与sin88︒,以及tan 46︒与cot 38︒的大小即可.因为()cos38cot 9052tan52︒=︒-︒=︒,所以tan52tan 46tan 451︒>︒>︒=.因为()cos1cos 9089sin89︒=︒-︒=︒,所以sin88sin891︒<︒<,所以cot 38tan 46cos1sin88︒>︒>︒>︒.评注比较三角函数值的大小,一般分为三种类型:(1)同名的两个锐角三角函数值,可直接利用三角函数值随角变化的规律,通过比较角的大小来确定三角函数值的大小.(2)互为余函数的两锐角三角函数值,可利用互余角的三角函数关系式化为同名三角函数,比较其大小.(3)不能化为同名的两个三角函数,可通过与某些“标准量”比大小,间接判断它们的大小关系,常选择的标准量有:0,1以及其他一些特殊角如30︒,45︒,60︒的三角函数值.2.化简求值:(1)tan1tan 2tan3tan89︒⋅︒⋅︒⋅⋅︒ ;(2sin83︒;(3)2222tan sin tan sin αααα⋅-;(4cos 79sin 79-︒-︒;解析(1)原式=tan1tan 2tan3tan 44tan 45cot 44cot 43cot 3cot 2cot1︒⋅︒⋅︒⋅⋅︒⋅︒⋅︒⋅︒⋅⋅︒⋅︒⋅︒ ()()()tan1cot1tan 2cot 2tan 44cot 44tan 45=︒⋅︒⋅︒⋅︒⋅⋅︒⋅︒⋅︒ 1111=⋅⋅⋅= .(2)原式1cos7cos71cos7=︒=⋅︒=︒.(3)原式()22442242222sin sin sin sin cos 1sin sin sin 1cos sin cos ααααααααααα⋅====--.(4)原式sin11cos11sin11cos11sin11cos110-︒-︒=︒-︒-︒-︒=.3.若tan 3α=求2sin sin 13sin cos αααα-+的值.原式2222sin cos sin sin cos sin 13sin cos sin cos 3sin cos αααααααααααα--==+++2222tan tan 336tan 13tan 313319αααα--===-++++⨯.4.下列四个数中哪个最大:A .tan 48cot 48︒+︒B .sin 48cos48︒+︒C .tan 48cos48︒+︒D .cot 48sin 48︒+︒解析显然0sin 481<︒<,0cos481<︒<0<cos48°<1.因此有:sin 48sin 48tan 48cos 48︒︒<=︒︒,cos 48cos 48cot 48sin 48︒︒<=︒︒所以A 最大.5.设x 为锐角,且满足sin 3cos x x =,求sin cos x x .解析我们将sin 3cos x x =代入22sin cos 1x x +=,得到210cos 1x =,并且x 是锐角,因此cos x=所以sin x =.因此3sin cos 10x x =.6.已知sin cos αα+=,求sin cos αα的值.解析由sin cos αα+=两边平方得()22sin cos αα+=.又22sin cos 1αα+=,所以12sin cos 2αα+=,得1sin cos 2αα=.7.已知m 为实数,且sin α、cos α是关于x 的方程2310x mx -+=的两根.求44sin cos αα+的值.解析由根与系数的关系知1sin cos 3αα=.则有()()2244227sin cos sin cos 2sin cos 9αααααα+=+-=.8.设A 、B 是一个直角三角形的两个锐角,满足2sin sin 2A B -=.求sin A 及sin B 的值.解析由于90A B +=︒,故由互余关系得()sin sin 90cos B A A =︒-=.因此条件即为sin cos A A -=,①将上式平方,得221sin cos 2sin cos 2A A A A +-=,由正、余弦的平方关系,即有12sin cos 2A A =,所以()2223sin cos sin cos 2sin cos 12sin cos 2A A A A A A A A +=++=+=,因sin A 、cos A 均为正数,故sin cos 0A A +>.因此由上式得sin cos A A +=,②由①、②得sin A =,cos A =sin B =9.已知关于x 的一元二次方程()()22211120m x m x +--+=的两个根是一个直角三角形的两个锐角的正弦,求实数m 的值.解析设方程的两个实根1x 、2x 分别是直角三角形ABC 的锐角A 、B 的正弦.则()22222212sin sin sin cos 190x x A B A A A B +=+=+=+=︒,又122112m x x m -+=+,12122x x m =+,所以()2222111212211242122m x x x x x x m m -⎛⎫+=+-=-= ⎪++⎝⎭.化简得224230m m -+=,解得1m =或23.检验,当1m =时,()()22114820m m =--+<△;当23m =时,()()22114820m m =--+△≥.所以23m =.评注本题是三角函数与一元二次方程的综合,基本解法是利用韦达定理和22sin cos 1αα+=列方程求解.要注意最后检验方程有无实数根.10.已知方程2450x x k -+=的两根是直角三角形的两个锐角的正弦,求k .解析根据韦达定理,有12125 , 4.4x x k x x ⎧+=-⎪⎪⎨⎪=⎪⎩并且由于其两根是直角三角形的两个锐角的正弦,所以又有22121x x +=.于是有()2222121212512244k x x x x x x ⎛⎫=+=+-=--⨯ ⎪⎝⎭.解得98k =.11.若直角三角形中的两个锐角A 、B 的正弦是方程20x px q ++=的两个根;(1)那么,实数p 、q 应满足哪些条件?(2)如果p 、q 满足这些条件,方程20x px q ++=的两个根是否等于直角三角形的两个锐角A 、B 的正弦?解析(1)设A 、B 是某个直角三角形两个锐角,sin A 、sin B 是方程20x px q ++=的两个根,则有240p q =-△≥.①由韦达定理,sin sin A B p +=-,sin sin A B q =.又sin 0A >,sin 0B >,于是0p <,0q >.由于()sin sin 90cos B A A =︒-=.所以sin cos A A p +=-,sin cos A A q =,所以()()22sin cos 1sin cos 12p A A A A q -=+=+=+,即221p q -=.由①得21240q p q -=-≥,则12q ≤.故所求条件是0p <,102p <≤,221p q -=.②(2)设条件②成立,则24120p q q -=-≥,故方程有两个实根:α==,β==.由②知p -=p <=-,所以0p p <--+,故0βα>≥.又()2222221p q αβαβαβ+=+-=-=,故01αβ<<≤.12.已知方程()24210x m x m -++=的两个根恰好是一个直角三角形的两个锐角的余弦,试求m 的值.解析设题中所述的两个锐角为A 及B ,由题设得()241160 , 1cos cos , 2cos cos .4m m m A B m A B ⎧=+-⎪⎪+⎪+=⎨⎪⎪=⎪⎩△≥因为cos sin B A =,故()2, 1cos sin , 2cos sin , 410m A A m A m m A ++==⎧=-⇒⎪⎪⎪⎨⎪⎪⎪⎩可△≥取任意实数①②①式两边平方,并利用恒等式22sin cos 1A A +=,得()()221cos sin 12sin cos 4m A A A A ++=+=.再由②得()21124m m ++=,解得m =.由cos 0A >,sin 0A >及②知0m >.所以m =.13.不查表,求15︒的四种三角函数值.解析30︒、45︒、60︒这些特殊角的三角函数值,我们可以利用含有这些特殊角的直角三角形的几何性质及勾股定理直接推出.同样,15︒角的三角函数值,也可以利用直角三角形的性质将其推出.如图所示.在ABC △中,90C ∠=︒,30ABC ∠=︒,延长CB 到D ,使BD BA =,则1152D BAD ABC ∠=∠=∠=︒.设1AC =,则2AB =,3BC =2BD =,所以 23CD CB BD =+=+所以()()())2222123843242323123162AD AC CD =++++++=+=+.所以162sin15462AC AD -︒===+,2362cos15462CD AD ++︒===+1tan152323AC CD ︒===-+cot1523CDAC︒==.评注将15︒角的三角函数求值问题,通过构造适当的三角形,将它转化为30︒角的三角函数问题,这种将新的未知问题通过一定途径转化为旧的已解决了的问题的方法,是我们研究解决新问题的重要方法.根据互余三角函数关系式,我们很容易得到75︒角的四种三角函数值.14.求22.5︒角的正切值(不查表,不借助计算器).解析4522.52︒︒=,所以设法构造一个含22.5︒角的直角三角形,用定义求值.如图,Rt ABC △中,90C ∠=︒,45B ∠=︒,延长CB 到D ,使BD BA =,则122.52D B ∠=∠=︒.设AC b =,有222AB b b b =+=,()21DC DB BC b =+=+.故()tan 22.52121ACDCb︒==+.15.求sin18︒的值.解析构造一个顶角A 为36︒的等腰ABC △,AB AC =,如图,作内角平分线则36ABD DBC ∠=∠=︒,设1AC =,BC x =.由于36DBA DAB ∠=∠=︒,72BDC BCD ∠=∠=︒,故CB BD DA x ===,而CAB △∽CBD △(36CAB CBD ∠=∠=︒),故AC BC BC DC =,故11xx x=-,有512x -=(舍去512-).再作AH BC ⊥于H ,则18CAH ∠=︒,514CH -=.所以1sin184-︒=.评注本题所构造的等腰三角形是圆内接正十边形的相邻顶点与圆心确定的三角形,利用它可以求出半径为R 的圆内接正十边形的边长.16.若x 、y 为实数,221x y +=,α为锐角,求证:sin cos x y αα+的绝对值不大于1.解析由221x y +=,22sin cos 1αα+=,得()()2222sin cos 1x y αα++=,即22222222sin cos cos sin 1x y x y αααα+++=,加一项减一项,得22222222sin 2sin cos cos cos 2cos sin sin 1x xy y x xy y αααααααα+++-+=.即()()2sin cos cos sin 1x y x y αααα2++-=,因为()2cos sin 0x y αα-≥,所以()2sin cos 1x y αα+≤,故sin cos 1x y αα+≤.2解直角三角形(详细解答)1.如图,在直角三角形ABC 中,90C ∠=︒,AD 是A ∠的平分线,且CD =,DB =求ABC △的三边长.解析由角平分线想到对称性,考虑过D 作DE AB ⊥,交AB 于E ,则由90C ∠=︒得CD DE ==.在直角三角形BDE 中,1sin 2DE B DB ==,则60B ∠=︒,所以3tan3AC BC B ==+⋅=,2sin ACAB AC B===,BC CD DB =+=.故ABC △的三边长分别为,.2.在Rt ABC △中(如图),D 、E 是斜边AB 的三等分点,已知sin CD x =,()cos 090CE x x =︒<<︒.试求AB 的长.解析作DF AC ⊥于F ,EG AC ⊥于G ;DP BC ⊥于P ,EQ BC ⊥于Q .令BP PQ QC a ===,AG GF FC b ===.则2DF a =,EG a =.在Rt CDF △和Rt CEG △中,由勾股定理,得()2222sin a b x +=,及()2222cos a b x +=,两式相加得()2251a b +=,2215a b +=.所以35AB BD ===.3.如图,ABC △中,90C ∠=︒,10AB =,6AC =,AD 是BAC ∠的平分线,求点B 到直线AD 的距离BH .解析已知Rt ABH △中,10AB =,要求BH ,可求出BAH ∠的正弦值,而BAH CAD ∠=∠,因而可先求出DC 的长.作DE AB ⊥于E ,有6AE AC ==,ED CD =.设3DC k =,由三角形内角平分线性质有106BD DC =,则5BD k =.Rt BDE △中,222DE BE BD +=,即()()()22231065k k +-=,得1k =.33CD k ==,AD ==sin10BHDAC ∠==,故BH =.4.已知ABC △是非等腰直角三角形,90BAC ∠=︒,在BC 所在直线上取两点D 、E 使DB BC CE ==,连结AD 、AE .已知45BAD ∠=︒.求tan CAE ∠的值.解析如图,过B 、C 两点作BM AC ∥、CN AB ∥分别交AD 、AE 于M 、N .易知2AC BM =,2AB CN =,tan BM BAD AB ∠=,tan CNCAE AC∠=,从而,1tan tan 4BAD CAE ∠∠=.因为tan 1BAD ∠=,则1tan 4CAE ∠=.5.设有一张矩形纸片ABCD (如图),3AB =,4BC =.现将纸片折叠,使C 点与A 点重合,试求折痕EF 的长.解析设O 是矩形对角线AC 的中点.连结CF ,由折叠知CF AF =,故FO AC ⊥,即EF AC ⊥.由3AB =,4BC =,得5AC =,从而1522AO AC ==.在Rt AOF △中,90AOF ∠=︒,故tan OF AO FAO =⋅∠.又由Rt ADC △得3tan tan 4DC FAO DAC AD ∠=∠==,所以5315248OF =⋅=,1524EF OF ==.7.已知三角形两边之和是10,这两边的夹角为30︒,面积为254,求证:此三角形为等腰三角形.解析由题意可设10a b +=,30α=︒,则125sin 24S ab α==△,即1125224ab ⋅=,得25ab =.于是,由10a b +=,25ab =,得a 、b 是方程210250x x -+=的两个根.而此方程有两个相等的根,所以5a b ==,即此三角形为等腰三角形.评注也可以直接由()()2240a b a b ab -=+-=,得a b =.7.在ABC △中,90C ∠=︒,其周长为2+,且已知斜边上的中线长为1.如果BC AC >,求tan A的值.解析由于斜边长是斜边上中线长的2倍,故2AB c ==.于是,由题设及勾股定理,得224. a b a b ⎧++==⎪⎨⎪⎩①②把①式两边平方,得2226a ab b ++=.再由②得1ab =.③由①、③知,a 、b 分别是二次方程210u +=的两根,解得622u ±=.因为BC AC >(即a b >),故12BC =,12AC =,所以tan 2BC A AC ===+.8.已知a 、b 、c 分别是ABC △中A ∠、B ∠,C ∠的对边,且a 、b 是关于x 的一元二次方程()()2 424x c c x ++=+的两个根.(1)判断ABC △的形状;(2)若3tan 4A =求a 、b 、c .解析(1)根据题意,尝试从边来判断.因为4a b c +=+,()42ab c =+,所以()2222a b a b ab +=+-()()224242c c c =+-⨯+=,从而知ABC △是直角三角形,90C ∠=︒.(2)由90C ∠=︒,3tan 4A ∠=,得34a b =.令3a =,()40b k k =>,则5c k =,于是754k k =+,得2k =,从而有6a =,8b =,10c =.9.在Rt ABC △中,90C ∠=︒,12ABC S m =△,且两直角边长满足条件32a b m +=.(1)证明:24m ≥;(2)当m 取最小值时,求ABC △中最小内角的正切值.解析(1)由题设得 , 32.ab m a b m =⎧⎨+=⎩消去b ,得32m a a m -⎛⎫= ⎪⎝⎭,故实数a 满足二次方程2320x mx m -+=.①所以()224240m m m m =-=-△≥.因为0m >,所以24m ≥.10.如图所示.90A BEF EBC ECD ∠=∠=∠=∠=︒,30ABF ∠=︒,45BFE ∠=︒,60ECB ∠=︒且2AB CD =.求tan CDE ∠的值.解析因为tan CECDE CD∠=,已知2AB CD =,因此,只需求出AB 与CE 的比值即可.不妨设1CD =,则2AB =.在Rt ABF △中,90A ∠=︒,30ABF ∠=︒,所以cos30AB BF ==︒.在Rt BEF △中,90BEF ∠=︒,45BFE ∠=︒,所以2cos 452BE BF =︒==在Rt BEC △中,90EBC ∠=︒,60ECB ∠=︒,42sin 603BE CE ===︒,所以42tan 3CE CDE CD ∠==.11.如图所示.在锐角ABC △中,4sin 5B =,tan 2C =,且10ABC S =△.求BC.解析作AD BC ⊥于D ,设AD x =,在Rt ABD △中,因为4sin 5B =,所以3cos 5B ==,所以sin 4tan cos 3B B B ==,所以43AD BD =,34BD x =.在Rt ADC △中,因为tan 2AD C DC ==,所以22AD x CD ==,所以35424x BC BD CD x x =+=+=.①因为1102ABC S BC AD =⨯=△,所以151024x x ⨯⋅=,所以4x =.由①知5454BC =⨯=.评注在一般三角形中,在适当位置作高线,将其转化为直角三角形求解,这是解斜三角形常采用的方法.12.如图所示.在ACD △中,45A ∠=︒,5CB =,7CD =,3BD =.求CBD ∠及AC.解析作CE AD ⊥于E ,设CE x =,BE y =,则有()2222225 , 37. x y x y ⎧+=⎪⎨++=⎪⎩①②②-①得22697524y +=-=,所以52y =.因为2x =,所以512cos 52BE CBE CB ∠===,所以60CBE ∠=︒,18060120CBD ∠=︒-︒=︒,所以5356sin 4522CE AC ==︒.13.如图,已知ABC △中,1AB =,D 是AB 的中点,90DCA ∠=︒,45DCB ∠=︒.求BC 的长.解析作BE AC ⊥B ,交AC 的延长线于E ,设BC x =.则sin 45BE BC =⨯︒=,cos 45CE BC =⋅︒=由DC BE ∥,D 是AB 的中点,知2AE EC ==.而222AE BE AB +=,得221+=.即x =,所以BC =.评注通过构造直角三角形,使用三角函数、勾股定理等知识将边角联系起来是求线段长的常用方法.14.如图,ABC △中,90ACB ∠=︒,CD AB ⊥于D ,DE AC ⊥于E ,DF BC ⊥于F .求证:33AE AC BF BC =.解析ADE ACD B ∠=∠=∠,而tan AE ADE DE ∠=,tan ED ACD EC ∠=,tan DFB BF=,所以tan AE ED DFB DE EC FB===,又DF EC =,所以3tan AE ED EC B DE EC BF ⋅⋅=,所以3tan AEB BF=.又tan ACB BC=,所以33AE AC BF BC =.15.如图,在ABC △中,90A ∠=︒,AB AC =,M 是AC 边的中点,AD 垂直于BM 且交BC 于D .求证:AMB CMD ∠=∠.解析作DF AC ⊥于F ,不妨设3AB =,因AD BM ⊥,90BAM ∠=︒,所以DAF ABM ∠=∠.又112tan 2AC MA ABM AB AB ∠===.1tan 2DF DAF FA ∠==.又90BAC ∠=︒,AB AC =,45C ∠=︒,而90DFC ∠=︒,故FC FD =.由于12FC FA =,而3FC FA +=,1FC =,2FA =,而32MC =,31122FM =-=,1FD =,即1tan 212FD CMD FM ∠===,又tan 2AB AMB AM ∠==,AMB ∠,CMD ∠是锐角.因此AMB CMD ∠=∠.16.如图(a ),正方形ABCD的边长E 、F 分别是AB 、BC 的中点,AF 分别交DE 、DB 于点M 、N ,求DMN △的面积.解析记正方形ABCD 的边长为2a .由题设易知BFN △∽DAN △,则有21AD AN DN BF NF BN ===,得2AN NF =,所以23AN AF =.在直角ABF △中,2AB a =,BF a =,则AF ==,于是cos 5AB BAF AF ∠==.由题设可知ADE △≌BAF△,所以AED AFB ∠=∠,18018090AME BAF AED BAF AFB ∠=︒-∠-∠=︒-∠-∠=︒.于是cos AM AE BAF =⋅∠=,23MN AN AM AF AM =-=-=,从而415MND AFD S MN S AF ==△△.又()()212222AFD S a a a =⋅⋅=△,所以2481515MND AFD S S a ==△△.因a =8MND S =△.17.已知a 、b 、c 是ABC △三边的长,其中b a c >=,且方程20ax c +=两根的差的绝对值等.求ABC △中最大角的度数.解析由已知条件b a c >=可知,这是一个等腰三角形,且底边b 最长,则最大角为B ∠,求出ABC △中的底角A (或C )即可.我们可以先求角A (或C )的三角函数值,再确定角的大小,如图所示.由图知2cos 2b AD b A AB c c===,则关键是求出b 与c 的比值.通过一元二次方程中的条件,可得到关于c 、b 的方程,则问题得到解决.因为a c =,所以方程为20cx c +=.设1x 、2x 为方程的两个根,则有122b x x c +=,121x x =.因为12x x -=,()2122x x -=,即()2121242x x x x +-=,所以2242c ⎛⎫-= ⎪ ⎪⎝⎭,c =,b c =,所以cos 22b A c ==,所以30A ∠=︒,所以1803030120B ∠=︒-︒-︒=︒.评注这是一道方程与几何知识的综合题.三角形的边是一元二次方程的系数,利用方程条件导出边的关系,由边的关系再进一步求角的大小.18.如图,AB 是圆的直径,弦CD AB ∥,AC 与BD 相交于E ,已知AED θ∠=,试求:CDE ABE S S △△.解析由AB CD ∥,得CDE △∽ABE △.所以22::CDE ABE S S DE BE =△△.连结AD ,则90ADB ∠=︒.故由Rt ADE △,有cos DE AEθ=,又AE BE =,所以2:cos CDE ABE S S θ=△△.19.如图所示,已知电线杆AB 直立于地面上,它的影子恰好照在土坡的坡面CD 和地面BC 上.如果CD 与地面成45︒,60A ∠=︒,4m CD =,(m BC =-,求电线杆AB 的长(精确到0.1m ).解析如图,延长AD 交地面于点E ,过点D 作DF CE ⊥于点F .因为45DCF ∠=︒,60A ∠=︒,4CD =,所以2sin 4542CF DF CD ==︒=⨯=,tan 60EF DF =︒==.因为3tan 303AB BE =︒=,所以(()8.5m 33AB BE ==++⨯=≈.20.如图,某岛S 周围42海里内存在着大量的暗礁.现在一轮船自西向东以每小时15海里的速度航行,在、A 处测得S 在北偏东60︒,2小时后在B 处测得S 在正东北方向,试问轮船是否需要改变航行方向行驶,才能避免触礁危险,说明理由.解析若设船不改变航向,与小岛S 的最近距离为SC .则有tan 60tan 45152SC SC ︒-︒=⨯,解得1542SC =<.因此需要改变航向,以免触礁.21.如图,某污水处理站计划砌一段截面为等腰梯形的排污渠,如果渠深为h ,截面积为S ,试求当倾角θ为多少时造价最小?解析要使造价最小,只需考虑AD DC CB ++最小,故首先设法用h 、S 、θ表示AD DC CB ++.()()()1122cot cot 22S AB CD h CD h h CD h h θθ=+=+=+.有cot S CD h h θ=-,则2AD DC CB AD CD ++=+2cot sin h S h θθ⎛⎫=+- ⎪⎝⎭()2cos sin h S hθθ-=+.因S 、h 为常数,则要求AD DC CB ++的最小值,只需求2cos sin m θθ-=的最小值.设2cos sin m θθ-=,两边平方整理得()()2221cos 4cos 40m m θθ+---=,cos θ=由上式知()2230m m -≥,解得m m =时,2cos sin θθ-有最小值.当m =时,221cos 12m θ==+,从而得60θ=︒,此时排污渠造价最小.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三角函数综合练习题一.选择题(共10小题)1.如图,在网格中,小正方形の边长均为1,点A,B,C都在格点上,则∠ABCの正切值是()A.2 B.C.D.2.如图,点D(0,3),O(0,0),C(4,0)在⊙A上,BD是⊙Aの一条弦,则sin∠OBD=()A.B.C.D.3.如图,在Rt△ABC中,斜边ABの长为m,∠A=35°,则直角边BCの长是()A.msin35° B.mcos35° C.D.4.如图,△ABC中AB=AC=4,∠C=72°,D是AB中点,点E在AC上,DE⊥AB,则cosAの值为()A.B.C.D.5.如图,厂房屋顶人字形(等腰三角形)钢架の跨度BC=10米,∠B=36°,则中柱AD(D 为底边中点)の长是()A.5sin36°米B.5cos36°米C.5tan36°米D.10tan36°米6.一座楼梯の示意图如图所示,BC是铅垂线,CA是水平线,BA与CAの夹角为θ.现要在楼梯上铺一条地毯,已知CA=4米,楼梯宽度1米,则地毯の面积至少需要()A.米2B.米2C.(4+)米2D.(4+4tanθ)米27.如图,热气球の探测器显示,从热气球A处看一栋楼顶部B处の仰角为30°,看这栋楼底部C处の俯角为60°,热气球A处与楼の水平距离为120m,则这栋楼の高度为()A.160m B.120m C.300m D.160m8.如图,为了测量某建筑物MNの高度,在平地上A处测得建筑物顶端Mの仰角为30°,向N点方向前进16m到达B处,在B处测得建筑物顶端Mの仰角为45°,则建筑物MNの高度等于()A.8()m B.8()m C.16()m D.16()m9.某数学兴趣小组同学进行测量大树CD高度の综合实践活动,如图,在点A处测得直立于地面の大树顶端Cの仰角为36°,然后沿在同一剖面の斜坡AB行走13米至坡顶B处,然后再沿水平方向行走6米至大树脚底点D处,斜面ABの坡度(或坡比)i=1:2.4,那么大树CDの高度约为(参考数据:sin36°≈0.59,cos36°≈0.81,tan36°≈0.73)()A.8.1米B.17.2米C.19.7米D.25.5米10.如图是一个3×2の长方形网格,组成网格の小长方形长为宽の2倍,△ABCの顶点都是网格中の格点,则cos∠ABCの值是()A.B.C.D.二.解答题(共13小题)11.计算:(﹣)0+()﹣1﹣|tan45°﹣|12.计算:.13.计算:sin45°+cos230°﹣+2sin60°.14.计算:cos245°﹣+cot230°.15.计算:sin45°+sin60°﹣2tan45°.16.计算:cos245°+tan60°•cos30°﹣3cot260°.17.如图,某办公楼ABの后面有一建筑物CD,当光线与地面の夹角是22°时,办公楼在建筑物の墙上留下高2米の影子CE,而当光线与地面夹角是45°时,办公楼顶A在地面上の影子F与墙角C有25米の距离(B,F,C在一条直线上).(1)求办公楼ABの高度;(2)若要在A,E之间挂一些彩旗,请你求出A,E之间の距离.(参考数据:sin22°≈,cos22°,tan22)18.某国发生8.1级强烈地震,我国积极组织抢险队赴地震灾区参与抢险工作,如图,某探测对在地面A、B两处均探测出建筑物下方C处有生命迹象,已知探测线与地面の夹角分别是25°和60°,且AB=4米,求该生命迹象所在位置Cの深度.(结果精确到1米,参考数据:sin25°≈0.4,cos25°≈0.9,tan25°≈0.5,≈1.7)19.如图,为测量一座山峰CFの高度,将此山の某侧山坡划分为AB和BC两段,每一段山坡近似是“直”の,测得坡长AB=800米,BC=200米,坡角∠BAF=30°,∠CBE=45°.(1)求AB段山坡の高度EF;(2)求山峰の高度CF.( 1.414,CF结果精确到米)20.如图所示,某人在山坡坡脚A处测得电视塔尖点Cの仰角为60°,沿山坡向上走到P 处再测得Cの仰角为45°,已知OA=200米,山坡坡度为(即tan∠PAB=),且O,A,B 在同一条直线上,求电视塔OCの高度以及此人所在の位置点Pの垂直高度.(侧倾器の高度忽略不计,结果保留根号)21.如图,为了测量出楼房ACの高度,从距离楼底C处60米の点D(点D与楼底C在同一水平面上)出发,沿斜面坡度为i=1:の斜坡DB前进30米到达点B,在点B处测得楼顶Aの仰角为53°,求楼房ACの高度(参考数据:sin53°≈0.8,cos53°≈0.6,tan53°≈,计算结果用根号表示,不取近似值).22.如图,大楼AB右侧有一障碍物,在障碍物の旁边有一幢小楼DE,在小楼の顶端D处测得障碍物边缘点Cの俯角为30°,测得大楼顶端Aの仰角为45°(点B,C,E在同一水平直线上),已知AB=80m,DE=10m,求障碍物B,C两点间の距离(结果精确到0.1m)(参考数据:≈1.414,≈1.732)23.某型号飞机の机翼形状如图,根据图示尺寸计算AC和ABの长度(精确到0.1米,≈1.41,≈1.73 ).2016年12月23日三角函数综合练习题初中数学组卷参考答案与试题解析一.选择题(共10小题)1.(2016•安顺)如图,在网格中,小正方形の边长均为1,点A,B,C都在格点上,则∠ABCの正切值是()A.2 B.C.D.【分析】根据勾股定理,可得AC、ABの长,根据正切函数の定义,可得答案.【解答】解:如图:,由勾股定理,得AC=,AB=2,BC=,∴△ABC为直角三角形,∴tan∠B==,故选:D.【点评】本题考查了锐角三角函数の定义,先求出AC、ABの长,再求正切函数.2.(2016•攀枝花)如图,点D(0,3),O(0,0),C(4,0)在⊙A上,BD是⊙Aの一条弦,则sin∠OBD=()A.B.C.D.【分析】连接CD,可得出∠OBD=∠OCD,根据点D(0,3),C(4,0),得OD=3,OC=4,由勾股定理得出CD=5,再在直角三角形中得出利用三角函数求出sin∠OBD即可.【解答】解:∵D(0,3),C(4,0),∴OD=3,OC=4,∵∠COD=90°,∴CD==5,连接CD,如图所示:∵∠OBD=∠OCD,∴sin∠OBD=sin∠OCD==.故选:D.【点评】本题考查了圆周角定理,勾股定理、以及锐角三角函数の定义;熟练掌握圆周角定理是解决问题の关键.3.(2016•三明)如图,在Rt△ABC中,斜边ABの长为m,∠A=35°,则直角边BCの长是()A.msin35° B.mcos35° C.D.【分析】根据正弦定义:把锐角Aの对边a与斜边cの比叫做∠Aの正弦可得答案.【解答】解:sin∠A=,∵AB=m,∠A=35°,∴BC=msin35°,故选:A.【点评】此题主要考查了锐角三角函数,关键是掌握正弦定义.4.(2016•绵阳)如图,△ABC中AB=AC=4,∠C=72°,D是AB中点,点E在AC上,DE⊥AB,则cosAの值为()A.B.C.D.【分析】先根据等腰三角形の性质与判定以及三角形内角和定理得出∠EBC=36°,∠BEC=72°,AE=BE=BC.再证明△BCE∽△ABC,根据相似三角形の性质列出比例式=,求出AE,然后在△ADE中利用余弦函数定义求出cosAの值.【解答】解:∵△ABC中,AB=AC=4,∠C=72°,∴∠ABC=∠C=72°,∠A=36°,∵D是AB中点,DE⊥AB,∴AE=BE,∴∠ABE=∠A=36°,∴∠EBC=∠ABC﹣∠ABE=36°,∠BEC=180°﹣∠EBC﹣∠C=72°,∴∠BEC=∠C=72°,∴BE=BC,∴AE=BE=BC.设AE=x,则BE=BC=x,EC=4﹣x.在△BCE与△ABC中,,∴△BCE∽△ABC,∴=,即=,解得x=﹣2±2(负值舍去),∴AE=﹣2+2.在△ADE中,∵∠ADE=90°,∴cosA===.故选C.【点评】本题考查了解直角三角形,等腰三角形の性质与判定,三角形内角和定理,线段垂直平分线の性质,相似三角形の判定与性质,难度适中.证明△BCE∽△ABC是解题の关键.5.(2016•南宁)如图,厂房屋顶人字形(等腰三角形)钢架の跨度BC=10米,∠B=36°,则中柱AD(D为底边中点)の长是()A.5sin36°米B.5cos36°米C.5tan36°米D.10tan36°米【分析】根据等腰三角形の性质得到DC=BD=5米,在Rt△ABD中,利用∠Bの正切进行计算即可得到ADの长度.【解答】解:∵AB=AC,AD⊥BC,BC=10米,∴DC=BD=5米,在Rt△ADC中,∠B=36°,∴tan36°=,即AD=BD•tan36°=5tan36°(米).故选:C.【点评】本题考查了解直角三角形の应用.解决此问题の关键在于正确理解题意の基础上建立数学模型,把实际问题转化为数学问题.6.(2016•金华)一座楼梯の示意图如图所示,BC是铅垂线,CA是水平线,BA与CAの夹角为θ.现要在楼梯上铺一条地毯,已知CA=4米,楼梯宽度1米,则地毯の面积至少需要()A.米2B.米2C.(4+)米2D.(4+4tanθ)米2【分析】由三角函数表示出BC,得出AC+BCの长度,由矩形の面积即可得出结果.【解答】解:在Rt△ABC中,BC=AC•tanθ=4tanθ(米),∴AC+BC=4+4tanθ(米),∴地毯の面积至少需要1×(4+4tanθ)=4+4tanθ(米2);故选:D.【点评】本题考查了解直角三角形の应用、矩形面积の计算;由三角函数表示出BC是解决问题の关键.7.(2016•长沙)如图,热气球の探测器显示,从热气球A处看一栋楼顶部B处の仰角为30°,看这栋楼底部C处の俯角为60°,热气球A处与楼の水平距离为120m,则这栋楼の高度为()A.160m B.120m C.300m D.160m【分析】首先过点A作AD⊥BC于点D,根据题意得∠BAD=30°,∠CAD=60°,AD=120m,然后利用三角函数求解即可求得答案.【解答】解:过点A作AD⊥BC于点D,则∠BAD=30°,∠CAD=60°,AD=120m,在Rt△ABD中,BD=AD•tan30°=120×=40(m),在Rt△ACD中,CD=AD•tan60°=120×=120(m),∴BC=BD+CD=160(m).故选A.【点评】此题考查了仰角俯角问题.注意准确构造直角三角形是解此题の关键.8.(2016•南通)如图,为了测量某建筑物MNの高度,在平地上A处测得建筑物顶端Mの仰角为30°,向N点方向前进16m到达B处,在B处测得建筑物顶端Mの仰角为45°,则建筑物MNの高度等于()A.8()m B.8()m C.16()m D.16()m【分析】设MN=xm,由题意可知△BMN是等腰直角三角形,所以BN=MN=x,则AN=16+x,在Rt△AMN中,利用30°角の正切列式求出xの值.【解答】解:设MN=xm,在Rt△BMN中,∵∠MBN=45°,∴BN=MN=x,在Rt△AMN中,tan∠MAN=,∴tan30°==,解得:x=8(+1),则建筑物MNの高度等于8(+1)m;故选A.【点评】本题是解直角三角形の应用,考查了仰角和俯角の问题,要明确哪个角是仰角或俯角,知道仰角是向上看の视线与水平线の夹角;俯角是向下看の视线与水平线の夹角;并与三角函数相结合求边の长.9.(2016•重庆)某数学兴趣小组同学进行测量大树CD高度の综合实践活动,如图,在点A 处测得直立于地面の大树顶端Cの仰角为36°,然后沿在同一剖面の斜坡AB行走13米至坡顶B处,然后再沿水平方向行走6米至大树脚底点D处,斜面ABの坡度(或坡比)i=1:2.4,那么大树CDの高度约为(参考数据:sin36°≈0.59,cos36°≈0.81,tan36°≈0.73)()A.8.1米B.17.2米C.19.7米D.25.5米【分析】作BF⊥AE于F,则FE=BD=6米,DE=BF,设BF=x米,则AF=2.4米,在Rt△ABF中,由勾股定理得出方程,解方程求出DE=BF=5米,AF=12米,得出AEの长度,在Rt△ACE中,由三角函数求出CE,即可得出结果.【解答】解:作BF⊥AE于F,如图所示:则FE=BD=6米,DE=BF,∵斜面ABの坡度i=1:2.4,∴AF=2.4BF,设BF=x米,则AF=2.4x米,在Rt△ABF中,由勾股定理得:x2+(2.4x)2=132,解得:x=5,∴DE=BF=5米,AF=12米,∴AE=AF+FE=18米,在Rt△ACE中,CE=AE•tan36°=18×0.73=13.14米,∴CD=CE﹣DE=13.14米﹣5米≈8.1米;故选:A.【点评】本题考查了解直角三角形の应用、勾股定理、三角函数;由勾股定理得出方程是解决问题の关键.10.(2016•广东模拟)如图是一个3×2の长方形网格,组成网格の小长方形长为宽の2倍,△ABCの顶点都是网格中の格点,则cos∠ABCの值是()A.B.C.D.【分析】根据题意可得∠D=90°,AD=3×1=3,BD=2×2=4,然后由勾股定理求得ABの长,又由余弦の定义,即可求得答案.【解答】解:如图,∵由6块长为2、宽为1の长方形,∴∠D=90°,AD=3×1=3,BD=2×2=4,∴在Rt△ABD中,AB==5,∴cos∠ABC==.故选D.【点评】此题考查了锐角三角函数の定义以及勾股定理.此题比较简单,注意数形结合思想の应用.二.解答题(共13小题)11.(2016•成都模拟)计算:(﹣)0+()﹣1﹣|tan45°﹣|【分析】本题涉及零指数幂、负整数指数幂、特殊角の三角函数值、二次根式化简四个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数の运算法则求得计算结果.【解答】解:原式=1+3×﹣︳1﹣︳=1+2﹣+1=.【点评】本题考查实数の综合运算能力,是各地中考题中常见の计算题型.解决此类题目の关键是熟记特殊角の三角函数值,熟练掌握负整数指数幂、零指数幂、二次根式、绝对值等考点の运算.12.(2016•顺义区二模)计算:.【分析】要根据负指数,绝对值の性质和三角函数值进行计算.注意:()﹣1=3,|1﹣|=﹣1,cos45°=.【解答】解:原式===2.【点评】本题考查实数の运算能力,解决此类题目の关键是熟记特殊角の三角函数值,熟练掌握负整数指数幂、二次根式、绝对值等考点の运算.注意:负指数为正指数の倒数;任何非0数の0次幂等于1;二次根式の化简是根号下不能含有分母和能开方の数.13.(2016•天门模拟)计算:sin45°+cos230°﹣+2sin60°.【分析】先把各特殊角の三角函数值代入,再根据二次根式混合运算の法则进行计算即可.【解答】解:原式=•+()2﹣+2×=+﹣+=1+.【点评】本题考查の是特殊角の三角函数值,熟记各特殊角度の三角函数值是解答此题の关键.14.(2016•黄浦区一模)计算:cos245°﹣+cot230°.【分析】根据特殊角三角函数值,可得实数の运算,根据实数の运算,可得答案.【解答】解:原式=()2﹣+()2=﹣+3=.【点评】本题考查了特殊角三角函数值,熟记特殊角三角函数值是解题关键.15.(2016•深圳校级模拟)计算:sin45°+sin60°﹣2tan45°.【分析】根据特殊角の三角函数值进行计算.【解答】解:原式=×+2×﹣2×1=+3﹣2=.【点评】本题考查了特殊角の三角函数值.特指30°、45°、60°角の各种三角函数值.sin30°=; cos30°=;tan30°=;sin45°=;cos45°=;tan45°=1;sin60°=;cos60°=; tan60°=.16.(2016•虹口区一模)计算:cos245°+tan60°•cos30°﹣3cot260°.【分析】将特殊角の三角函数值代入求解.【解答】解:原式=()2+×﹣3×()2=1.【点评】本题考查了特殊角の三角函数值,解答本题の关键是掌握几个特殊角の三角函数值.17.(2016•青海)如图,某办公楼ABの后面有一建筑物CD,当光线与地面の夹角是22°时,办公楼在建筑物の墙上留下高2米の影子CE,而当光线与地面夹角是45°时,办公楼顶A 在地面上の影子F与墙角C有25米の距离(B,F,C在一条直线上).(1)求办公楼ABの高度;(2)若要在A,E之间挂一些彩旗,请你求出A,E之间の距离.(参考数据:sin22°≈,cos22°,tan22)【分析】(1)首先构造直角三角形△AEM,利用tan22°=,求出即可;(2)利用Rt△AME中,cos22°=,求出AE即可【解答】解:(1)如图,过点E作EM⊥AB,垂足为M.设AB为x.Rt△ABF中,∠AFB=45°,∴BF=AB=x,∴BC=BF+FC=x+25,在Rt△AEM中,∠AEM=22°,AM=AB﹣BM=AB﹣CE=x﹣2,tan22°=,则=,解得:x=20.即教学楼の高20m.(2)由(1)可得ME=BC=x+25=20+25=45.在Rt△AME中,cos22°=.∴AE=,即A、E之间の距离约为48m【点评】此题主要考查了解直角三角形の应用,根据已知得出tan22°=是解题关键18.(2016•自贡)某国发生8.1级强烈地震,我国积极组织抢险队赴地震灾区参与抢险工作,如图,某探测对在地面A、B两处均探测出建筑物下方C处有生命迹象,已知探测线与地面の夹角分别是25°和60°,且AB=4米,求该生命迹象所在位置Cの深度.(结果精确到1米,参考数据:sin25°≈0.4,cos25°≈0.9,tan25°≈0.5,≈1.7)【分析】过C点作ABの垂线交ABの延长线于点D,通过解Rt△ADC得到AD=2CD=2x,在Rt △BDC中利用锐角三角函数の定义即可求出CDの值.【解答】解:作CD⊥AB交AB延长线于D,设CD=x米.在Rt△ADC中,∠DAC=25°,所以tan25°==0.5,所以AD==2x.Rt△BDC中,∠DBC=60°,由tan 60°==,解得:x≈3.即生命迹象所在位置Cの深度约为3米.【点评】本题考查の是解直角三角形の应用,根据题意作出辅助线,构造出直角三角形是解答此题の关键.19.(2016•黄石)如图,为测量一座山峰CFの高度,将此山の某侧山坡划分为AB和BC两段,每一段山坡近似是“直”の,测得坡长AB=800米,BC=200米,坡角∠BAF=30°,∠CBE=45°.(1)求AB段山坡の高度EF;(2)求山峰の高度CF.( 1.414,CF结果精确到米)【分析】(1)作BH⊥AF于H,如图,在Rt△ABF中根据正弦の定义可计算出BHの长,从而得到EFの长;(2)先在Rt△CBE中利用∠CBEの正弦计算出CE,然后计算CE和EFの和即可.【解答】解:(1)作BH⊥AF于H,如图,在Rt△ABF中,∵sin∠BAH=,∴BH=800•sin30°=400,∴EF=BH=400m;(2)在Rt△CBE中,∵sin∠CBE=,∴CE=200•sin45°=100≈141.4,∴CF=CE+EF=141.4+400≈541(m).答:AB段山坡高度为400米,山CFの高度约为541米.【点评】本题考查了解直角三角形の应用﹣坡度与坡角问题:坡度是坡面の铅直高度h和水平宽度lの比,又叫做坡比,它是一个比值,反映了斜坡の陡峭程度,一般用i表示,常写成i=1:mの形式.把坡面与水平面の夹角α叫做坡角,坡度i与坡角α之间の关系为:i ═tanα.20.(2016•天水)如图所示,某人在山坡坡脚A处测得电视塔尖点Cの仰角为60°,沿山坡向上走到P处再测得Cの仰角为45°,已知OA=200米,山坡坡度为(即tan∠PAB=),且O,A,B在同一条直线上,求电视塔OCの高度以及此人所在の位置点Pの垂直高度.(侧倾器の高度忽略不计,结果保留根号)【分析】在直角△AOC中,利用三角函数即可求解;在图中共有三个直角三角形,即RT△AOC、RT△PCF、RT△PAE,利用60°、45°以及坡度比,分别求出CO、CF、PE,然后根据三者之间の关系,列方程求解即可解决.【解答】解:作PE⊥OB于点E,PF⊥CO于点F,在Rt△AOC中,AO=200米,∠CAO=60°,∴CO=AO•tan60°=200(米)(2)设PE=x米,∵tan∠PAB==,∴AE=3x.在Rt△PCF中,∠CPF=45°,CF=200﹣x,PF=OA+AE=200+3x,∵PF=CF,∴200+3x=200﹣x,解得x=50(﹣1)米.答:电视塔OCの高度是200米,所在位置点Pの铅直高度是50(﹣1)米.【点评】考查了解直角三角形の应用﹣仰角俯角问题以及坡度坡角问题,本题要求学生借助仰角关系构造直角三角形,并结合图形利用三角函数解直角三角形.21.(2016•泸州)如图,为了测量出楼房ACの高度,从距离楼底C处60米の点D(点D 与楼底C在同一水平面上)出发,沿斜面坡度为i=1:の斜坡DB前进30米到达点B,在点B处测得楼顶Aの仰角为53°,求楼房ACの高度(参考数据:sin53°≈0.8,cos53°≈0.6,tan53°≈,计算结果用根号表示,不取近似值).【分析】如图作BN⊥CD于N,BM⊥AC于M,先在RT△BDN中求出线段BN,在RT△ABM中求出AM,再证明四边形CMBN是矩形,得CM=BN即可解决问题.【解答】解:如图作BN⊥CD于N,BM⊥AC于M.在RT△BDN中,BD=30,BN:ND=1:,∴BN=15,DN=15,∵∠C=∠CMB=∠CNB=90°,∴四边形CMBN是矩形,∴CM=BM=15,BM=CN=60﹣15=45,在RT△ABM中,tan∠ABM==,∴AM=60,∴AC=AM+CM=15+60.【点评】本题考查解直角三角形、仰角、坡度等概念,解题の关键是添加辅助线构造直角三角形,记住坡度の定义,属于中考常考题型.22.(2016•昆明)如图,大楼AB右侧有一障碍物,在障碍物の旁边有一幢小楼DE,在小楼の顶端D处测得障碍物边缘点Cの俯角为30°,测得大楼顶端Aの仰角为45°(点B,C,E在同一水平直线上),已知AB=80m,DE=10m,求障碍物B,C两点间の距离(结果精确到0.1m)(参考数据:≈1.414,≈1.732)【分析】如图,过点D作DF⊥AB于点F,过点C作CH⊥DF于点H.通过解直角△AFD得到DFの长度;通过解直角△DCE得到CEの长度,则BC=BE﹣CE.【解答】解:如图,过点D作DF⊥AB于点F,过点C作CH⊥DF于点H.则DE=BF=CH=10m,在直角△ADF中,∵AF=80m﹣10m=70m,∠ADF=45°,∴DF=AF=70m.在直角△CDE中,∵DE=10m,∠DCE=30°,∴CE===10(m),∴BC=BE﹣CE=70﹣10≈70﹣17.32≈52.7(m).答:障碍物B,C两点间の距离约为52.7m.【点评】本题考查了解直角三角形﹣仰角俯角问题.要求学生能借助仰角构造直角三角形并解直角三角形.23.(2016•丹东模拟)某型号飞机の机翼形状如图,根据图示尺寸计算AC和ABの长度(精确到0.1米,≈1.41,≈1.73 ).【分析】在Rt△CAE中,∠ACE=45°,则△ACE是等腰直角三角形即可求得ACの长;在Rt △BFD中已知∠BDF与FBの长,进而得出ABの长.【解答】解:在Rt△CAE中,∠ACE=45°,∴AE=CE=5(m),∴AC=CE=5≈5×1.414≈7.1(m),在Rt△BFD中,∠BDF=30°,∴BF=FD•tan30°=5×≈5×≈2.89(m),∵DC=EF=3.4(m),∴AF=1.6m,则AB=2.89﹣1.6=1.29≈1.3(m),答:AC约为7.1米,BA约为1.3米.【点评】此题考查了三角函数の基本概念,主要是正切函数の概念及运算,关键把实际问题转化为数学问题加以计算.。