2019年湖北省恩施州中考数学试卷

合集下载

湖北省恩施州2019-2020学年中考数学统考试题

湖北省恩施州2019-2020学年中考数学统考试题

2019-2020学年中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.如图,正方形ABCD 的边长为3cm ,动点P 从B 点出发以3cm/s 的速度沿着边BC ﹣CD ﹣DA 运动,到达A 点停止运动;另一动点Q 同时从B 点出发,以1cm/s 的速度沿着边BA 向A 点运动,到达A 点停止运动.设P 点运动时间为x (s ),△BPQ 的面积为y (cm 2),则y 关于x 的函数图象是( )A .B .C .D .2.下列四个多项式,能因式分解的是( ) A .a -1 B .a 2+1 C .x 2-4yD .x 2-6x +93.已知,C 是线段AB 的黄金分割点,AC <BC ,若AB=2,则BC=( ) A .3﹣5B .12(5+1) C .5﹣1D .12(5﹣1) 4.如图,已知二次函数y=ax 2+bx+c (a≠0)的图象如图所示,给出以下四个结论:①abc=0,②a+b+c >0,③a >b ,④4ac ﹣b 2<0;其中正确的结论有( )A .1个B .2个C .3个D .4个5.如图,AB CD ⊥,且AB CD =.E 、F 是AD 上两点,CE AD ⊥,BF AD ⊥.若CE a =,BF b =,EF c =,则AD 的长为( )A .a c +B .b c +C .a b c -+D .a b c +-6.随着“中国诗词大会”节目的热播,《唐诗宋词精选》一书也随之热销.如果一次性购买10本以上,超过10本的那部分书的价格将打折,并依此得到付款金额y (单位:元)与一次性购买该书的数量x (单位:本)之间的函数关系如图所示,则下列结论错误的是( )A .一次性购买数量不超过10本时,销售价格为20元/本B .a =520C .一次性购买10本以上时,超过10本的那部分书的价格打八折D .一次性购买20本比分两次购买且每次购买10本少花80元7.五个新篮球的质量(单位:克)分别是+5、﹣3.5、+0.7、﹣2.5、﹣0.6,正数表示超过标准质量的克数,负数表示不足标准质量的克数.仅从轻重的角度看,最接近标准的篮球的质量是( ) A .﹣2.5B .﹣0.6C .+0.7D .+58.若0<m <2,则关于x 的一元二次方程﹣(x+m )(x+3m )=3mx+37根的情况是( ) A .无实数根 B .有两个正根C .有两个根,且都大于﹣3mD .有两个根,其中一根大于﹣m9.下列长度的三条线段能组成三角形的是 A .2,3,5 B .7,4,2 C .3,4,8D .3,3,410.二次函数y=﹣(x ﹣1)2+5,当m≤x≤n 且mn <0时,y 的最小值为2m ,最大值为2n ,则m+n 的值为( ) A .B .2C .D .二、填空题(本题包括8个小题)11.一个不透明的口袋中有四个完全相同的小球,把它们分别标号为1,2,3,4,随机取出一个小球后不放回,再随机取出一个小球,则两次取出的小球标号的和等于4的概率是_____.12.如图,无人机在空中C 处测得地面A 、B 两点的俯角分别为60°、45°,如果无人机距地面高度CD 为1003米,点A 、D 、B 在同一水平直线上,则A 、B 两点间的距离是_____米.(结果保留根号)13.如图,O是矩形ABCD的对角线AC的中点,M是AD的中点,若AB=5,AD=12,则四边形ABOM的周长为.14.将抛物线y=2x2平移,使顶点移动到点P(﹣3,1)的位置,那么平移后所得新抛物线的表达式是_____.15.如图,在四边形纸片ABCD中,AB=BC,AD=CD,∠A=∠C=90°,∠B=150°.将纸片先沿直线BD对折,再将对折后的图形沿从一个顶点出发的直线裁剪,剪开后的图形打开铺平.若铺平后的图形中有一个是面积为2的平行四边形,则CD=_________.16.已知图中的两个三角形全等,则∠1等于____________.17.在一个不透明的盒子中装有8个白球,若干个黄球,它们除颜色不同外,其余均相同.若从中随机摸出一个球,它是白球的概率为23,则黄球的个数为______.18.利用1个a×a的正方形,1个b×b的正方形和2个a×b的矩形可拼成一个正方形(如图所示),从而可得到因式分解的公式________.三、解答题(本题包括8个小题)19.(6分)在国家的宏观调控下,某市的商品房成交价由去年10月份的14000元/2m下降到12月份的11340元/2m.求11、12两月份平均每月降价的百分率是多少?如果房价继续回落,按此降价的百分率,你预测到今年2月份该市的商品房成交均价是否会跌破10000元/2m ?请说明理由 20.(6分)如图,AB 是⊙O 的直径,C 是弧AB 的中点,弦CD 与AB 相交于E .若∠AOD =45°,求证:CE =2ED ;(2)若AE =EO ,求tan ∠AOD 的值.21.(6分)某运动品牌对第一季度A 、B 两款运动鞋的销售情况进行统计,两款运动鞋的销售量及总销售额如图6所示.1月份B 款运动鞋的销售量是A 款的,则1月份B 款运动鞋销售了多少双?第一季度这两款运动鞋的销售单价保持不变,求3月份的总销售额(销售额=销售单价×销售量);结合第一季度的销售情况,请你对这两款运动鞋的进货、销售等方面提出一条建议.22.(8分)数学不仅是一门学科,也是一种文化,即数学文化.数学文化包括数学史、数学美和数学应用等多方面.古时候,在某个王国里有一位聪明的大臣,他发明了国际象棋,献给了国王,国王从此迷上了下棋,为了对聪明的大臣表示感谢,国王答应满足这位大臣的一个要求.大臣说:“就在这个棋盘上放一些米粒吧.第1格放1粒米,第2格放2粒米,第3格放4粒米,然后是8粒、16粒、32粒······一只到第64格.”“你真傻!就要这么一点米粒?”国王哈哈大笑.大臣说:“就怕您的国库里没有这么多米!”国王的国库里真没有这么多米吗?题中问题就是求1236312222++++⋅⋅⋅+是多少?请同学们阅读以下解答过程就知道答案了.设1236312222S =++++⋅⋅⋅+, 则()123632212222S =++++⋅⋅⋅+ 2346364222222=++++⋅⋅⋅++()()2363236322122212222S S ∴-=+++⋅⋅⋅+-++++⋅⋅⋅+即:6421S =-事实上,按照这位大臣的要求,放满一个棋盘上的64个格子需要()12363641222221+++⋅⋅⋅+=-粒米.那么6421-到底多大呢?借助计算机中的计算器进行计算,可知答案是一个20位数:184467440737********,这是一个非常大的数,所以国王是不能满足大臣的要求.请用你学到的方法解决以下问题:()1我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有多少盏灯?()2计算: 13927...3.n +++++()3某中学“数学社团”开发了一款应用软件,推出了“解数学题获取软件激活码”的活动.这款软件的激活码为下面数学问题的答案:已知一列数:1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,⋅⋅⋅,其中第一项是02,接下来的两项是012,2,再接下来的三项是0122,2,2,⋅⋅⋅,以此类推,求满足如下条件的所有正整数:10100N N <<,且这一数列前N 项和为2的正整数幂.请直接写出所有满足条件的软件激活码正整数N 的值.23.(8分)如图,已知在Rt △ABC 中,∠ACB=90°,AC >BC ,CD 是Rt △ABC 的高,E 是AC 的中点,ED 的延长线与CB 的延长线相交于点F .求证:DF 是BF 和CF 的比例中项;在AB 上取一点G ,如果AE•AC=AG•AD ,求证:EG•CF=ED•DF .24.(10分)小昆和小明玩摸牌游戏,游戏规则如下:有3张背面完全相同,牌面标有数字1、2、3的纸牌,将纸牌洗匀后背面朝上放在桌面上,随机抽出一张,记下牌面数字,放回后洗匀再随机抽出一张.请用画树形图或列表的方法(只选其中一种),表示出两次抽出的纸牌数字可能出现的所有结果;若规定:两次抽出的纸牌数字之和为奇数,则小昆获胜,两次抽出的纸牌数字之和为偶数,则小明获胜,这个游戏公平吗?为什么?25.(10分)某电器超市销售每台进价分别为200元,170元的A ,B 两种型号的电风扇,表中是近两周的销售情况:销售时段销售数量销售收入A 种型号B 种型号 第一周3台5台1800元(进价、售价均保持不变,利润=销售收入-进货成本)求A,B两种型号的电风扇的销售单价.若超市准备用不多于5400元的金额再采购这两种型号的电风扇共30台,则A种型号的电风扇最多能采购多少台?在(2)的条件下,超市销售完这30台电风扇能否实现利润为1400元的目标?若能,请给出相应的采购方案;若不能,请说明理由.26.(12分)商场某种商品平均每天可销售30件,每件盈利50元,为了尽快减少库存,商场决定采取适当的降价措施.经调査发现,每件商品每降价1元,商场平均每天可多售出2件.若某天该商品每件降价3元,当天可获利多少元?设每件商品降价x元,则商场日销售量增加____件,每件商品,盈利______元(用含x的代数式表示);在上述销售正常情况下,每件商品降价多少元时,商场日盈利可达到2000元?参考答案一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.C【解析】试题分析:由题意可得BQ=x.①0≤x≤1时,P点在BC边上,BP=3x,则△BPQ的面积=12BP•BQ,解y=12•3x•x=232x;故A选项错误;②1<x≤2时,P点在CD边上,则△BPQ的面积=12BQ•BC,解y=12•x•3=32x;故B选项错误;③2<x≤3时,P点在AD边上,AP=9﹣3x,则△BPQ的面积=12AP•BQ,解y=12•(9﹣3x)•x=29322x x;故D选项错误.故选C.考点:动点问题的函数图象.2.D【解析】试题分析:利用平方差公式及完全平方公式的结构特征判断即可.试题解析:x2-6x+9=(x-3)2.故选D.考点:2.因式分解-运用公式法;2.因式分解-提公因式法.3.C 【解析】【分析】根据黄金分割点的定义,知BC为较长线段;则BC=51-AB,代入数据即可得出BC的值.【详解】解:由于C为线段AB=2的黄金分割点,且AC<BC,BC为较长线段;则BC=2×512-=5-1.故答案为:5-1.【点睛】本题考查了黄金分割,应该识记黄金分割的公式:较短的线段=原线段的352倍,较长的线段=原线段的512-倍.4.C【解析】【详解】根据图像可得:a<0,b<0,c=0,即abc=0,则①正确;当x=1时,y<0,即a+b+c<0,则②错误;根据对称轴可得:-=-,则b=3a,根据a<0,b<0可得:a>b;则③正确;根据函数与x轴有两个交点可得:-4ac>0,则④正确.故选C.【点睛】本题考查二次函数的性质.能通过图象分析a,b,c的正负,以及通过一些特殊点的位置得出a,b,c之间的关系是解题关键.5.D【解析】分析:详解:如图,∵AB⊥CD,CE⊥AD,∴∠1=∠2,又∵∠3=∠4,∴180°-∠1-∠4=180°-∠2-∠3,即∠A=∠C.∵BF⊥AD,∴∠CED=∠BFD=90°,∵AB=CD,∴△ABF≌△CDE,∴AF=CE=a,ED=BF=b,又∵EF=c,∴AD=a+b-c.故选:D.点睛:本题主要考查全等三角形的判定与性质,证明△ABF≌△CDE是关键.6.D【解析】【分析】A、根据单价=总价÷数量,即可求出一次性购买数量不超过10本时,销售单价,A选项正确;C、根据单价=总价÷数量结合前10本花费200元即可求出超过10本的那部分书的单价,用其÷前十本的单价即可得出C正确;B、根据总价=200+超过10本的那部分书的数量×16即可求出a值,B正确;D,求出一次性购买20本书的总价,将其与400相减即可得出D错误.此题得解.【详解】解:A、∵200÷10=20(元/本),∴一次性购买数量不超过10本时,销售价格为20元/本,A选项正确;C、∵(840﹣200)÷(50﹣10)=16(元/本),16÷20=0.8,∴一次性购买10本以上时,超过10本的那部分书的价格打八折,C选项正确;B、∵200+16×(30﹣10)=520(元),∴a=520,B选项正确;D、∵200×2﹣200﹣16×(20﹣10)=40(元),∴一次性购买20本比分两次购买且每次购买10本少花40元,D 选项错误. 故选D . 【点睛】考查了一次函数的应用,根据一次函数图象结合数量关系逐一分析四个选项的正误是解题的关键. 7.B 【解析】 【分析】求它们的绝对值,比较大小,绝对值小的最接近标准的篮球的质量. 【详解】解:|+5|=5,|-3.5|=3.5,|+0.7|=0.7,|-2.5|=2.5,|-0.6|=0.6, ∵5>3.5>2.5>0.7>0.6, ∴最接近标准的篮球的质量是-0.6, 故选B . 【点睛】本题考查了正数和负数,掌握正数和负数的定义以及意义是解题的关键. 8.A 【解析】 【分析】先整理为一般形式,用含m 的式子表示出根的判别式△,再结合已知条件判断△的取值范围即可. 【详解】方程整理为22x 7mx 3m 370+++=, △()()22249m 43m 3737m 4=-+=-, ∵0m 2<<, ∴2m 40-<, ∴△0<,∴方程没有实数根, 故选A . 【点睛】本题考查了一元二次方程根的判别式,当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根. 9.D 【解析】试题解析:A.∵3+2=5,∴2,3,5不能组成三角形,故A错误;B.∵4+2<7,∴7,4,2不能组成三角形,故B错误;C.∵4+3<8,∴3,4,8不能组成三角形,故C错误;D.∵3+3>4,∴3,3,4能组成三角形,故D正确;故选D.10.D【解析】【分析】由m≤x≤n和mn<0知m<0,n>0,据此得最小值为1m为负数,最大值为1n为正数.将最大值为1n 分两种情况,①顶点纵坐标取到最大值,结合图象最小值只能由x=m时求出.②顶点纵坐标取不到最大值,结合图象最大值只能由x=n求出,最小值只能由x=m求出.【详解】解:二次函数y=﹣(x﹣1)1+5的大致图象如下:.①当m≤0≤x≤n<1时,当x=m时y取最小值,即1m=﹣(m﹣1)1+5,解得:m=﹣1.当x=n时y取最大值,即1n=﹣(n﹣1)1+5,解得:n=1或n=﹣1(均不合题意,舍去);②当m≤0≤x≤1≤n时,当x=m时y取最小值,即1m=﹣(m﹣1)1+5,解得:m=﹣1.当x=1时y取最大值,即1n=﹣(1﹣1)1+5,解得:n=52,或x=n时y取最小值,x=1时y取最大值,1m=-(n-1)1+5,n=52,∴m=118,∵m<0,∴此种情形不合题意,所以m+n=﹣1+52=12.二、填空题(本题包括8个小题)11.1 6【解析】试题解析:画树状图得:由树状图可知:所有可能情况有12种,其中两次摸出的小球标号的和等于4的占2种,所以其概率=21= 126,故答案为16.12.100(3【解析】分析:如图,利用平行线的性质得∠A=60°,∠B=45°,在Rt△ACD中利用正切定义可计算出AD=100,在Rt△BCD中利用等腰直角三角形的性质得3,然后计算AD+BD即可.详解:如图,∵无人机在空中C处测得地面A、B两点的俯角分别为60°、45°,∴∠A=60°,∠B=45°,在Rt△ACD中,∵tanA=CD AD,∴1003,在Rt△BCD中,3,∴3(3).答:A、B两点间的距离为100(3)米.故答案为100(3.点睛:本题考查了解直角三角形的应用﹣仰角俯角问题:解决此类问题要了解角之间的关系,找到与已知和未知相关联的直角三角形,当图形中没有直角三角形时,要通过作高或垂线构造直角三角形.13.1.【解析】【详解】∵AB=5,AD=12,∴根据矩形的性质和勾股定理,得AC=13.∵BO为Rt△ABC斜边上的中线∴BO=6.5∵O是AC的中点,M是AD的中点,∴OM是△ACD的中位线∴OM=2.5∴四边形ABOM的周长为:6.5+2.5+6+5=1故答案为114.y=2(x+3)2+1【解析】【分析】由于抛物线平移前后二次项系数不变,然后根据顶点式写出新抛物线解析式.【详解】抛物线y=2x2平移,使顶点移到点P(﹣3,1)的位置,所得新抛物线的表达式为y=2(x+3)2+1.故答案为:y=2(x+3)2+1【点睛】本题考查了二次函数图象与几何变换:由于抛物线平移后的形状不变,故a不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.15.2【解析】【分析】根据裁开折叠之后平行四边形的面积可得CD的长度为或【详解】如图①,当四边形ABCE为平行四边形时,作AE∥BC,延长AE交CD于点N,过点B作BT⊥EC于点T.∵AB=BC,∴四边形ABCE是菱形.∵∠BAD=∠BCD=90°,∠ABC=150°,∴∠ADC=30°,∠BAN=∠BCE=30°,∴∠NAD=60°,∴∠AND=90°.设BT=x,则CN=x,BC=EC=2x.∵四边形ABCE面积为2,∴EC·BT=2,即2x×x=2,解得x=1,∴AE=EC=2,EN=22-=,213∴AN=AE+EN=2+3,∴CD=AD=2AN=4+23.如图②,当四边形BEDF是平行四边形,∵BE=BF,∴平行四边形BEDF是菱形.∵∠A=∠C=90°,∠ABC=150°,∴∠ADB=∠BDC=15°.∵BE=DE,∴∠EBD=∠ADB=15°,∴∠AEB=30°.设AB=y,则DE=BE=2y,AE3y.∵四边形BEDF的面积为2,∴AB·DE=2,即2y2=2,解得y=1,∴AE3DE=2,∴AD=AE+DE=23综上所述,CD的值为4+323【点睛】考核知识点:平行四边形的性质,菱形判定和性质.16.58°【解析】如图,∠2=180°−50°−72°=58°,∵两个三角形全等,∴∠1=∠2=58°.故答案为58°.17.1【解析】首先设黄球的个数为x个,然后根据概率公式列方程即可求得答案.解:设黄球的个数为x个,根据题意得:88x=2/3解得:x=1.∴黄球的个数为1.18.a1+1ab+b1=(a+b)1【解析】试题分析:两个正方形的面积分别为a1,b1,两个长方形的面积都为ab,组成的正方形的边长为a+b,面积为(a+b)1,所以a1+1ab+b1=(a+b)1.点睛:本题考查了运用完全平方公式分解因式,关键是理解题中给出的各个图形之间的面积关系.三、解答题(本题包括8个小题)19.(1)10%;(1)会跌破10000元/m1.【解析】【分析】(1)设11、11两月平均每月降价的百分率是x,那么4月份的房价为14000(1-x),11月份的房价为14000(1-x)1,然后根据11月份的11340元/m1即可列出方程解决问题;(1)根据(1)的结果可以计算出今年1月份商品房成交均价,然后和10000元/m1进行比较即可作出判断.【详解】(1)设11、11两月平均每月降价的百分率是x,则11月份的成交价是:14000(1-x),11月份的成交价是:14000(1-x)1,∴14000(1-x)1=11340,∴(1-x )1=0.81, ∴x 1=0.1=10%,x 1=1.9(不合题意,舍去)答:11、11两月平均每月降价的百分率是10%;(1)会跌破10000元/m 1.如果按此降价的百分率继续回落,估计今年1月份该市的商品房成交均价为:11340(1-x )1=11340×0.81=9184.5<10000,由此可知今年1月份该市的商品房成交均价会跌破10000元/m 1.【点睛】此题考查了一元二次方程的应用,和实际生活结合比较紧密,正确理解题意,找到关键的数量关系,然后列出方程是解题的关键.20.(1)见解析;(2)tan ∠AOD =34. 【解析】【分析】(1)作DF ⊥AB 于F ,连接OC ,则△ODF 是等腰直角三角形,得出OC=OD=2DF ,由垂径定理得出∠COE=90°,证明△DEF ∽△CEO 得出22ED OC DF CE DF DF===,即可得出结论; (2)由题意得OE=12OA=12OC ,同(1)得△DEF ∽△CEO ,得出12EF EO DF OC ==,设⊙O 的半径为2a (a >0),则OD=2a ,EO=a ,设EF=x ,则DF=2x ,在Rt △ODF 中,由勾股定理求出x=35a ,得出DF=65a ,OF=EF+EO=85a ,由三角函数定义即可得出结果. 【详解】(1)证明:作DF ⊥AB 于F ,连接OC ,如图所示:则∠DFE =90°,∵∠AOD =45°,∴△ODF 是等腰直角三角形,∴OC =OD 2DF ,∵C 是弧AB 的中点,∴OC ⊥AB ,∴∠COE =90°, ∵∠DEF =∠CEO , ∴△DEF ∽△CEO ,∴22ED OC DF CE DF DF ===, ∴CE =2ED ;(2)如图所示: ∵AE =EO ,∴OE=12OA=12OC , 同(1)得:,△DEF ∽△CEO ,∴12EF EO DF OC ==, 设⊙O 的半径为2a (a >0),则OD =2a ,EO =a ,设EF =x ,则DF =2x ,在Rt △ODF 中,由勾股定理得:(2x )2+(x+a )2=(2a )2,解得:x =35a ,或x =﹣a (舍去), ∴DF =65a ,OF =EF+EO =85a , ∴DF 3tan AOD OF 4∠==. 【点睛】本题考查了等腰直角三角形的判定与性质、相似三角形的判定与性质、勾股定理、垂径定理、三角函数等知识,熟练掌握相似三角形的判定与性质、勾股定理是关键.21.(1)1月份B 款运动鞋销售了40双;(2)3月份的总销售额为39000元;(3)详见解析.【解析】试题分析:(1)用一月份A 款的数量乘以,即可得出一月份B 款运动鞋销售量;(2)设A ,B 两款运动鞋的销量单价分别为x 元,y 元,根据图形中给出的数据,列出二元一次方程组,再进行计算即可;(3)根据条形统计图和折线统计图所给出的数据,提出合理的建议即可.试题解析:(1)根据题意,用一月份A 款的数量乘以:50×=40(双).即一月份B 款运动鞋销售了40双;(2)设A ,B 两款运动鞋的销量单价分别为x 元,y 元,根据题意得:,解得:.则三月份的总销售额是:400×65+500×26=39000=3.9(万元);(3)从销售量来看,A 款运动鞋销售量逐月增加,比B 款运动鞋销量大,建议多进A 款运动鞋,少进或不进B 款运动鞋.考点:1.折线统计图;2.条形统计图.22.(1)3;(2)1312n +-;(3)1218,95N N == 【解析】【分析】()1设塔的顶层共有x 盏灯,根据题意列出方程,进行解答即可.()2参照题目中的解题方法进行计算即可.()3由题意求得数列的每一项,及前n 项和S n =2n+1-2-n ,及项数,由题意可知:2n+1为2的整数幂.只需将-2-n 消去即可,分别分别即可求得N 的值【详解】()1设塔的顶层共有x 盏灯,由题意得01234562222222381x x x x x x x ++++++=.解得3x =,∴顶层共有3盏灯.()2设13927...3n S =+++++,133927...,33n n S +=+++++()()133927...3313927...3n n n S S +∴-=++++-++++++,即:1231,n S +=-1312n S +-=. 即13113927...3.2n n+-+++++= ()3由题意可知:20第一项,20,21第二项,20,21,22第三项,…20,21,22…,2n−1第n 项,根据等比数列前n 项和公式,求得每项和分别为:12321,21,21,,21n ---⋯-,每项含有的项数为:1,2,3,…,n , 总共的项数为1(1)232n n N n +=+++⋯+=, 所有项数的和为123:21212121,n n S -+-+-+⋯+-()1232222,n n =+++⋯+-()221,21n n -=--122n n +=--,由题意可知:12n +为2的整数幂,只需将−2−n 消去即可,则①1+2+(−2−n)=0,解得:n=1,总共有()111232+⨯+=,不满足N>10, ②1+2+4+(−2−n)=0,解得:n=5,总共有()1553182+⨯+=, 满足:10100N <<, ③1+2+4+8+(−2−n)=0,解得:n=13,总共有()113134952+⨯+=, 满足:10100N <<, ④1+2+4+8+16+(−2−n)=0,解得:n=29,总共有()1292954402+⨯+=, 不满足100N <, ∴1218,95N N ==【点睛】 考查归纳推理,读懂题目中等比数列的求和方法是解题的关键.23.证明见解析【解析】试题分析:(1)根据已知求得∠BDF=∠BCD ,再根据∠BFD=∠DFC ,证明△BFD ∽△DFC ,从而得BF :DF=DF :FC ,进行变形即得;(2)由已知证明△AEG ∽△ADC ,得到∠AEG=∠ADC=90°,从而得EG ∥BC ,继而得EG BF ED DF = , 由(1)可得BF DF DF CF = ,从而得EG DF ED CF= ,问题得证. 试题解析:(1)∵∠ACB=90°,∴∠BCD+∠ACD=90°,∵CD 是Rt △ABC 的高,∴∠ADC=∠BDC=90°,∴∠A+∠ACD=90°,∴∠A=∠BCD ,∵E 是AC 的中点,∴DE=AE=CE ,∴∠A=∠EDA ,∠ACD=∠EDC ,∵∠EDC+∠BDF=180°-∠BDC=90°,∴∠BDF=∠BCD ,又∵∠BFD=∠DFC ,∴△BFD ∽△DFC ,∴BF :DF=DF :FC ,∴DF 2=BF·CF ;(2)∵AE·AC=ED·DF,∴AE AGAD AC=,又∵∠A=∠A,∴△AEG∽△ADC,∴∠AEG=∠ADC=90°,∴EG∥BC,∴EG BFED DF=,由(1)知△DFD∽△DFC,∴BF DFDF CF=,∴EG DFED CF=,∴EG·CF=ED·DF.24.(1)结果见解析;(2)不公平,理由见解析.【解析】判断游戏是否公平,即是看双方取胜的概率是否相同,若相同,则公平,不相同则不公平.25.(1) A,B两种型号电风扇的销售单价分别为250元/台、210元/台;(2) A种型号的电风扇最多能采购10台;(3) 在(2)的条件下超市不能实现利润为1400元的目标.【解析】【分析】(1)设A、B两种型号电风扇的销售单价分别为x元、y元,根据3台A型号5台B型号的电扇收入1800元,4台A型号10台B型号的电扇收入3100元,列方程组求解;(2)设采购A种型号电风扇a台,则采购B种型号电风扇(30-a)台,根据金额不多余5400元,列不等式求解;(3)设利润为1400元,列方程求出a的值为20,不符合(2)的条件,可知不能实现目标.【详解】(1)设A,B两种型号电风扇的销售单价分别为x元/台、y元/台.依题意,得3518004103100x yx y+=⎧⎨+=⎩解得250210xy=⎧⎨=⎩答:A,B两种型号电风扇的销售单价分别为250元/台、210元/台.(2)设采购A种型号的电风扇a台,则采购B种型号的电风扇(30-a)台.依题意,得200a+170(30-a)≤5400,解得a≤10.答:A种型号的电风扇最多能采购10台.(3)依题意,有(250-200)a+(210-170)(30-a)=1400,解得a=20.∵a≤10,∴在(2)的条件下超市不能实现利润为1400元的目标.【点睛】本题考查了二元一次方程组和一元一次不等式的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系和不等关系,列方程组和不等式求解.26.(1)若某天该商品每件降价3元,当天可获利1692元;(2)2x;50﹣x.(3)每件商品降价1元时,商场日盈利可达到2000元.【解析】【分析】(1)根据“盈利=单件利润×销售数量”即可得出结论;(2)根据“每件商品每降价1元,商场平均每天可多售出2件”结合每件商品降价x元,即可找出日销售量增加的件数,再根据原来没见盈利50元,即可得出降价后的每件盈利额;(3)根据“盈利=单件利润×销售数量”即可列出关于x的一元二次方程,解之即可得出x的值,再根据尽快减少库存即可确定x的值.【详解】(1)当天盈利:(50-3)×(30+2×3)=1692(元).答:若某天该商品每件降价3元,当天可获利1692元.(2)∵每件商品每降价1元,商场平均每天可多售出2件,∴设每件商品降价x元,则商场日销售量增加2x件,每件商品,盈利(50-x)元.故答案为2x;50-x.(3)根据题意,得:(50-x)×(30+2x)=2000,整理,得:x2-35x+10=0,解得:x1=10,x2=1,∵商城要尽快减少库存,∴x=1.答:每件商品降价1元时,商场日盈利可达到2000元.【点睛】考查了一元二次方程的应用,解题的关键是根据题意找出数量关系列出一元二次方程(或算式).2019-2020学年中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.如图,点A、B、C是⊙O上的三点,且四边形ABCO是平行四边形,OF⊥OC交圆O于点F,则∠BAF 等于()A.12.5°B.15°C.20°D.22.5°2.△ABC在网络中的位置如图所示,则cos∠ACB的值为()A.12B.2C.32D.333.如图,在△ABC中,∠C=90°,点D在AC上,DE∥AB,若∠CDE=165°,则∠B的度数为()A.15°B.55°C.65°D.75°4.点P(1,﹣2)关于y轴对称的点的坐标是()A.(1,2)B.(﹣1,2)C.(﹣1,﹣2)D.(﹣2,1)5.如图,一个铁环上挂着6个分别编有号码1,2,3,4,5,6的铁片.如果把其中编号为2,4的铁片取下来,再先后把它们穿回到铁环上的仼意位置,则铁环上的铁片(无论沿铁环如何滑动)不可能排成的情形是()A.B.C.D.6.如图,∠ACB=90°,AC=BC,AD⊥CE,BE⊥CE,若AD=3,BE=1,则DE=( )A.1 B.2 C.3 D.47.如图,在平面直角坐标系中,点A在第一象限,点P在x轴上,若以P,O,A为顶点的三角形是等腰三角形,则满足条件的点P共有()A.2个B.3个C.4个D.5个8.《语文课程标准》规定:7﹣9年级学生,要求学会制订自己的阅读计划,广泛阅读各种类型的读物,课外阅读总量不少于260万字,每学年阅读两三部名著.那么260万用科学记数法可表示为()A.26×105B.2.6×102C.2.6×106D.260×1049.如图,四边形ABCD是菱形,∠A=60°,AB=2,扇形BEF的半径为2,圆心角为60°,则图中阴影部分的面积是()A.233πB.233πC.3π-D.3π-10.第24 届冬奥会将于2022 年在北京和张家口举行,冬奥会的项目有滑雪(如跳台滑雪、高山滑雪、单板滑雪等)、滑冰(如短道速滑、速度滑冰、花样滑冰等)、冰球、冰壶等.如图,有 5 张形状、大小、质地均相同的卡片,正面分别印有高山滑雪、速度滑冰、冰球、单板滑雪、冰壶五种不同的图案,背面完全相同.现将这 5 张卡片洗匀后正面向下放在桌子上,从中随机抽取一张,抽出的卡片正面恰A .15B .25C .12D .35二、填空题(本题包括8个小题)11.中国的《九章算术》是世界现代数学的两大源泉之一,其中有一问题:“今有牛五,羊二,值金十两.牛二,羊五,值金八两。

2019年湖北省恩施州中考数学试题(含分析解答)

2019年湖北省恩施州中考数学试题(含分析解答)

的解集为 x>3,那么 a 的取值范围为( )
A.a>3 B.a<3 C.a≥3 D.a≤3 9.(3.00 分)由若干个完全相同的小正方体组成一个立体图形,它的左视图和俯视 图如图所示,则小正方体的个数不可能是( )
A.5 B.6 C.7 D.8 10.(3.00 分)一商店在某一时间以每件 120 元的价格卖出两件衣服,其中一件盈利 20%,另一件亏损 20%,在这次买卖中,这家商店( ) A.不盈不亏 B.盈利 20 元 C.亏损 10 元 D.亏损 30 元 11.(3.00 分)如图所示,在正方形 ABCD 中,G 为 CD 边中点,连接 AG 并延长交 BC 边 的延长线于 E 点,对角线 BD 交 AG 于 F 点.已知 FG=2,则线段 AE 的长度为( )
三、解答题(共有 8 个小题,共 72 分.请在答题卷指定区域内作答,解答应写出文字
第 3 页(共 27 页)
说明、证明过程或演算步骤.) 17.(8.00 分)先化简,再求值:
•(1+ )÷
,其中 x=2 ﹣1.
18.(8.00 分)如图,点 B、F、C、E 在一条直线上,FB=CE,AB∥ED,AC∥FD,AD 交 BE 于 O. 求证:AD 与 BE 互相平分.
第 2 页(共 27 页)
A.2 B.3 C.4 D.5
二、填空题(共有 4 小题,每小题 3 分,共 12 分.不要求写出解答过程,请把答案直接
填写在答题卷相应位置上)
13.(3.00 分)因式分解:8a3﹣2ab2=

14.(3.00 分)函数 y=
的自变量 x 的取值范围是

15.(3.00 分)在 Rt△ABC 中,AB=1,∠A=60°,∠ABC=90°,如图所示将 Rt△ABC 沿直线

湖北省恩施州2019年中考数学真题试题(含扫描答案)

湖北省恩施州2019年中考数学真题试题(含扫描答案)

湖北省恩施州2019年中考数学真题试题一、选择题(本大题共12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确选择项前的字母代号填涂在答题卷相应位置.......上)1.8-的倒数是( )A .8-B .8C .18-D .182.下列计算正确的是( )A .459a a a +=B .23246(2)4a b a b =C .22(3)26a a a a -+=-+D .222(2)4a b a b -=-3.在下列图形中,既是轴对称图形又是中心对称图形的是( )A .B .C .D .4.已知某新型感冒病毒的直径约为0.000000823米,将0.000000823用科学记数法表示为()A .68.2310-⨯B .78.2310-⨯C .68.2310⨯D .78.2310⨯5.已知一组数据、2、3、x 、5,它们的平均数是3,则这一组数据的方差为( )A .B .2C .3D .46.如图所示,直线//a b ,135∠=︒,290∠=︒,则3∠的度数为( )A .125︒B .135︒C .145︒D .155︒7.64的立方根为( )A .8B .8-C .4D .4-8.关于x 的不等式2(1)40x a x ->⎧⎨-<⎩的解集为3x >,那么a 的取值范围为( )A .3a >B .3a <C .3a ≥D .3a ≤9.由若干个完全相同的小正方体组成一个立体图形,它的左视图和俯视图如图所示,则小正方体的个数不.可能..是( )A .5B .6C .7D .810.一商店在某一时间以每件120元的价格卖出两件衣服,其中一件盈利20%,另一件亏损20%,在这次买卖中,这家商店( )A .不盈不亏B .盈利20元C .亏损10元D .亏损30元11.如图所示,在正方形ABCD 中,G 为CD 边中点,连接AG 并延长交BC 边的延长线于E 点,对角线BD交AG 于F 点,已知2FG =,则线段AE 的长度为( )A .6B .8C .10D .1212.抛物线2y ax bx c =++的对称轴为直线1x =-,部分图象如图所示,下列判断中:①0abc >;②240b ac ->;③930a b c -+=;④若点1(0.5,)y -,2(2,)y -均在抛物线上,则12y y >;⑤520a b c -+<.其中正确的个数有( )A .2B .3C .4D .5二、填空题(本大题共有4小题,每小题3分,共12分.不要求写出解答过程,请把答案直接填写在答题..卷相应位置.....上) 13.因式分解:3282a ab -= . 14.函数213x y x +=-的自变量x 的取值范围是 . 15.在Rt ABC ∆中,1AB =,60A ∠=︒,90ABC ∠=︒,如图所示将Rt ABC ∆沿直线无滑动地滚动至Rt DEF ∆,则点B 所经过的路径与直线所围成的封闭图形的面积为 .(结果不取近似值.....)16.我国古代《易经》一书中记载,远古时期,人们通过在绳子上打结来记录数量,即“结绳记数”.如图,一位妇女在从右到左依次排列的绳子上打结,满六进一,用来记录采集到的野果数量,由图可知,她一共采集到的野果数量为 个.三、解答题(本大题共有8个小题,共72分.请在答题卷指定区域内........作答,解答应写出文字说明、证明过程或演算步骤.)17.先化简,再求值:2213212111x x x x x +⎛⎫⋅+÷ ⎪++--⎝⎭,其中251x =-. 18.如图,点B 、F 、C 、E 在一条直线上,FB CE =,//AB ED ,//AC FD ,AD 交BE 于O . 求证:AD 与BE 互相平分.19.为了解某校九年级男生1000米跑的水平,从中随机抽取部分男生进行测试,并把测试成绩分为D 、C 、B 、A 四个等次绘制成如图所示的不完整的统计图,请你依图解答下列问题:(1)a =________,b =________,c =________;(2)扇形统计图中表示C 等次的扇形所对的圆心角的度数为________度;(3)学校决定从A 等次的甲、乙、丙、丁四名男生中,随机选取两名男生参加全市中学生1000米跑比赛,请用列表法或画树状图法,求甲、乙两名男生同时被选中的概率.20.如图所示,为测量旗台A 与图书馆C 之间的直线距离,小明在A 处测得C 在北偏东30︒方向上,然后向正东方向前进100米至B 处,测得此时C 在北偏西15︒方向上,求旗台与图书馆之间的距离. (结果精确到米,参考数据2 1.41≈,3 1.73≈)21.如图,直线24y x =-+交x 轴于点A ,交y 轴于点B ,与反比例函数k y x=的图象有唯一的公共点C . (1)求k 的值及C 点坐标;(2)直线与直线24y x =-+关于x 轴对称,且与y 轴交于点'B ,与双曲线6y x=交于D 、E 两点,求CDE ∆的面积.22.某学校为改善办学条件,计划采购A 、B 两种型号的空调,已知采购3台A 型空调和2台B 型空调,需费用39000元;4台A 型空调比5台B 型空调的费用多6000元.(1)求A 型空调和B 型空调每台各需多少元;(2)若学校计划采购A 、B 两种型号空调共30台,且A 型空调的台数不少于B 型空调的一半,两种型号空调的采购总费用不超过217000元,该校共有哪几种采购方案?(3)在(2)的条件下,采用哪一种采购方案可使总费用最低,最低费用是多少元?23.如图,AB 为O 直径,P 点为半径OA 上异于O 点和A 点的一个点,过P 点作与直径AB 垂直的弦CD ,连接AD ,作BE AB ⊥,//OE AD 交BE 于E 点,连接AE 、DE 、AE 交CD 于F 点.(1)求证:DE 为O 切线; (2)若O 的半径为3,1sin 3ADP ∠=,求AD ; (3)请猜想PF 与FD 的数量关系,并加以证明.24.如图,已知抛物线交x 轴于A 、B 两点,交y 轴于C 点,A 点坐标为(1,0)-,2OC =,3OB =,点D 为抛物线的顶点.(1)求抛物线的解析式;(2)P 为坐标平面内一点,以B 、C 、D 、P 为顶点的四边形是平行四边形,求P 点坐标;(3)若抛物线上有且仅有三个点1M 、2M 、3M 使得1M BC ∆、2M BC ∆、3M BC ∆的面积均为定值S ,求出定值S 及1M 、2M 、3M 这三个点的坐标.。

2019年恩施州中考数学试题、试卷(解析版)

2019年恩施州中考数学试题、试卷(解析版)

2019年恩施州中考数学试题、试卷(解析版)一、选择题(本大题共有12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将选择项前的字母代号填涂在答题卷相应位置上)1.(3分)2的相反数是( )A .2B .2-C .12D .2±2.(3分)天文单位是天文学中计量天体之间距离的一种单位,其数值取地球与太阳之间的平均距离,即149597870700m ,约为149600000km .将数149600000用科学记数法表示为( )A .714.9610⨯B .71.49610⨯C .814.9610⨯D .81.49610⨯3.(3分)在下列图形中是轴对称图形的是( )A .B .C .D .4.(3分)下列计算正确的是( )A .4373()a b a b =B .232(4)82b a b ab b --=--C .32242aa a a a +=D .22(5)25a a -=-5.(3分)某中学规定学生的学期体育成绩满分为100分,其中早锻炼及体育课外活动占20%,期中考试成绩占30%,期末考试成绩占50%.小桐的三项成绩(百分制)依次为95,90,85.则小桐这学期的体育成绩是( )A .88.5B .86.5C .90D .90.56.(3分)如图,在ABC ∆中,点D 、E 、F 分别是AB 、AC 、BC 的中点,已知65ADE ∠=︒,则CFE ∠的度数为( )A.60︒B.65︒C.70︒D.75︒7.(3分)函数1231y xx=--+中,自变量x 的取值范围是()A.23x B.23x C.23x<且1x≠-D.23x且1x≠-8.(3分)桌上摆放着一个由相同正方体组成的组合体,其俯视图如图所示,图中数字为该位置小正方体的个数,则这个组合体的左视图为()A.B.C.D.9.(3分)某商店销售富硒农产品,今年1月开始盈利,2月份盈利240000元,4月份盈利290400元,且从2月份到4月份,每月盈利的平均增长率相同,则每月盈利的平均增长率是()A.8%B.9%C.10%D.11%10.(3分)已知关于x的不等式组321123x xx a--⎧-⎪⎨⎪-<⎩恰有3个整数解,则a的取值范围为( )A.12a<B.12a<<C.12a<D.12a11.(3分)如图,对折矩形纸片ABCD ,使AD 与BC 重合,得到折痕EF .把纸片展平,再一次折叠纸片,使点A 落在EF 上的点A '处,并使折痕经过点B ,得到折痕BM .若矩形纸片的宽4AB =,则折痕BM 的长为( )A .83B .43C .8D .8312.(3分)抛物线2y ax bx c =++的对称轴是直线1x =-,且过点(1,0).顶点位于第二象限,其部分图象如图4所示,给出以下判断:①0ab >且0c <;②420a b c -+>;③80a c +>;④33c a b =-;⑤直线22y x =+与抛物线2y ax bx c =++两个交点的横坐标分别为1x ,2x ,则12125x x x x ++=.其中正确的个数有( )A .5个B .4个C .3个D .2个二、填空题(本大题共有小题,每小题分,共分.不要求写出解答过程,请把答案直接填写在答题卷相应位置上)13.(3分)0.01的平方根是 .14.(3分)因式分解:334a b ab -= . 15.(3分)如图,在ABC ∆中,4AB =,若将ABC ∆绕点B 顺时针旋转60︒,点A 的对应点为点A ',点C 的对应点为点C ',点D 为A B '的中点,连接AD .则点A 的运动路径与线段AD 、A D '围成的阴影部分面积是 .16.(3分)观察下列一组数的排列规律:13,15,25,19,29,13,117,217,317,417,133,233,111,433,533,⋯ 那么,这一组数的第2019个数是 .三、解答题(本大题共有个小题,共分.请在答题卷指定区域内作答,解答时应写出文字说明.证明过程或演算步骤)17.(8分)先化简,再求值:22111211x x x x x +÷-++++,其中31x =-. 18.(8分)如图,在四边形ABCD 中,//AD BC ,点O 是对角线AC 的中点,过点O 作AC 的垂线,分别交AD 、BC 于点E 、F ,连接AF 、CE .试判断四边形AECF 的形状,并证明.19.(8分)为了解某县建档立卡贫困户对精准扶贫政策落实的满意度,现从全县建档立卡贫困户中随机抽取了部分贫困户进行了调查(把调查结果分为四个等级:A 级:非常满意;B 级:满意;C 级:基本满意;D 级:不满意),并将调查结果绘制成如下两幅不完整的统计图.请根据统计图中的信息解决下列问题:(1)本次抽样调查测试的建档立卡贫困户的总户数是 .(2)图1中,α∠的度数是 ,并把图2条形统计图补充完整.(3)某县建档立卡贫困户有10000户,如果全部参加这次满意度调查,请估计非常满意的人数约为多少户?(4)调查人员想从5户建档立卡贫困户(分别记为a ,b ,c ,d ,)e 中随机选取两户,调查他们对精准扶贫政策落实的满意度,请用列表或画树状图的方法求出选中贫困户e 的概率.20.(8分)如图,某地有甲、乙两栋建筑物,小明于乙楼楼顶A 点处看甲楼楼底D 点处的俯角为45︒,走到乙楼B 点处看甲楼楼顶E 点处的俯角为60︒,已知6AB m =,10DE m =.求乙楼的高度AC 的长.(参考数据:2 1.41≈,3 1.73≈,精确到0.1m .)21.(8分)如图,已知90AOB ∠=︒,30OAB ∠=︒,反比例函数3(0)y x x=-<的图象过点(3,)B a -,反比例函数(0)k y x x=>的图象过点A . (1)求a 和k 的值;(2)过点B作//BC x轴,与双曲线kyx=交于点C.求OAC∆的面积.22.(10分)某县有A、B两个大型蔬菜基地,共有蔬菜700吨.若将A基地的蔬菜全部运往甲市所需费用与B基地的蔬菜全部运往甲市所需费用相同.从A、B两基地运往甲、乙两市的运费单价如下表:甲市(元/吨)乙市(元/吨)A基地2025B基地1524(1)求A、B两个蔬菜基地各有蔬菜多少吨?(2)现甲市需要蔬菜260吨,乙市需要蔬菜440吨.设从A基地运送m吨蔬菜到甲市,请问怎样调运可使总运费最少?23.(10分)如图,在O中,AB是直径,BC是弦,BC BD=,连接CD交O于点E,BCD DBE∠=∠.(1)求证:BD是O的切线.(2)过点E作EF AB⊥于F,交BC于G,已知210DE=,3EG=,求BG的长.24.(12分)如图,抛物线22y ax ax c =-+的图象经过点(0,2)C -,顶点D 的坐标为8(1,)3-,与x 轴交于A 、B 两点.(1)求抛物线的解析式.(2)连接AC ,E 为直线AC 上一点,当AOC AEB ∆∆∽时,求点E 的坐标和AE AB 的值. (3)点(0,)F y 是y 轴上一动点,当y 为何值时,5FC BF +的值最小.并求出这个最小值.(4)点C 关于x 轴的对称点为H ,当5FC BF +取最小值时,在抛物线的对称轴上是否存在点Q ,使QHF ∆是直角三角形?若存在,请求出点Q 的坐标;若不存在,请说明理由.2019年湖北省恩施州中考数学试卷参考答案与试题解析一、选择题(本大题共有12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将选择项前的字母代号填涂在答题卷相应位置上)1.(3分)2的相反数是()A.2B.2-C.12D.2±【考点】14:相反数【分析】直接利用相反数的定义得出答案.【解答】解:2的相反数是:2-.故选:B.【点评】此题主要考查了相反数,正确把握相反数的定义是解题关键.2.(3分)天文单位是天文学中计量天体之间距离的一种单位,其数值取地球与太阳之间的平均距离,即149597870700m,约为149600000km.将数149600000用科学记数法表示为( )A.714.9610⨯B.71.49610⨯C.814.9610⨯D.81.49610⨯【考点】1I:科学记数法-表示较大的数【分析】科学记数法的表示形式为10na⨯的形式,其中1||10a<,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值1>时,n是正数;当原数的绝对值1<时,n是负数.【解答】解:将数149600000用科学记数法表示为81.49610⨯.故选:D.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为10na⨯的形式,其中1||10a<,n为整数,表示时关键要正确确定a的值以及n的值.3.(3分)在下列图形中是轴对称图形的是()A.B.C .D .【考点】3P :轴对称图形【分析】根据轴对称图形的概念求解.【解答】解:A 、不是轴对称图形,因为找不到任何这样的一条直线,使它沿这条直线折叠后,直线两旁的部分能够重合,即不满足轴对称图形的定义.不符合题意;B 、是轴对称图形,符合题意;C 、不是轴对称图形,因为找不到任何这样的一条直线,使它沿这条直线折叠后,直线两旁的部分能够重合,即不满足轴对称图形的定义.不符合题意;D 、不是轴对称图形,因为找不到任何这样的一条直线,使它沿这条直线折叠后,直线两旁的部分能够重合,即不满足轴对称图形的定义.不符合题意.故选:B .【点评】此题主要考查了轴对称图形的概念:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.4.(3分)下列计算正确的是( )A .4373()a b a b =B .232(4)82b a b ab b --=--C .32242aa a a a +=D .22(5)25a a -=-【考点】4I :整式的混合运算【分析】直接利用积的乘方运算法则以及合并同类项法则和完全平方公式分别判断得出答案.【解答】解:A 、43123()a b a b =,故此选项不合题意; B 、232(4)82b a b ab b --=-+,故此选项不合题意;C 、32242aa a a a +=,故此选项符合题意;D 、22(5)1025a a a -=-+,故此选项不合题意;故选:C .【点评】此题主要考查了积的乘方运算以及合并同类项和完全平方公式,正确掌握相关运算法则是解题关键.5.(3分)某中学规定学生的学期体育成绩满分为100分,其中早锻炼及体育课外活动占20%,期中考试成绩占30%,期末考试成绩占50%.小桐的三项成绩(百分制)依次为95,90,85.则小桐这学期的体育成绩是()A.88.5B.86.5C.90D.90.5【考点】2W:加权平均数【分析】直接利用每部分分数所占百分比进而计算得出答案.【解答】解:由题意可得,小桐这学期的体育成绩是:9520%9030%8550%192742.588.5⨯+⨯+⨯=++=(分).故选:A.【点评】此题主要考查了加权平均数,正确理解各部分所占百分比是解题关键.6.(3分)如图,在ABC∆中,点D、E、F分别是AB、AC、BC的中点,已知65ADE∠=︒,则CFE∠的度数为()A.60︒B.65︒C.70︒D.75︒【考点】KX:三角形中位线定理【分析】根据三角形的中位线定理得到//DE BC,//EF AB,由平行线的性质得出ADE B∠=∠,B EFC∠=∠,即可得出答案.【解答】证明:点D、E、F分别是AB、AC、BC的中点,//DE BC∴,//EF AB,ADE B∴∠=∠,B EFC∠=∠,65ADE EFC∴∠=∠=︒,故选:B.【点评】本题考查了三角形的中位线定理,平行线的性质的应用,注意:两直线平行,同位角相等.7.(3分)函数1231y xx=-+x的取值范围是()A .23xB .23xC .23x <且1x ≠- D .23x且1x ≠- 【考点】4E :函数自变量的取值范围【分析】根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,可以求出x 的范围.【解答】解:根据题意得:230x -且10x +≠, 解得:23x且1x ≠-. 故选:D .【点评】考查了函数自变量的范围,函数自变量的范围一般从三个方面考虑: (1)当函数表达式是整式时,自变量可取全体实数; (2)当函数表达式是分式时,考虑分式的分母不能为0; (3)当函数表达式是二次根式时,被开方数非负.8.(3分)桌上摆放着一个由相同正方体组成的组合体,其俯视图如图所示,图中数字为该位置小正方体的个数,则这个组合体的左视图为( )A .B .C .D .【考点】2U :简单组合体的三视图;3U :由三视图判断几何体【分析】俯视图中的每个数字是该位置小立方体的个数,分析其中的数字,得左视图有3列,从左到右分别是2,3,2个正方形.【解答】解:由俯视图中的数字可得:左视图有3列,从左到右分别是2,3,2个正方形. 故选:D .【点评】本题考查了由三视图判断几何体,学生的思考能力和对几何体三种视图的空间想象能力.9.(3分)某商店销售富硒农产品,今年1月开始盈利,2月份盈利240000元,4月份盈利290400元,且从2月份到4月份,每月盈利的平均增长率相同,则每月盈利的平均增长率是( ) A .8%B .9%C .10%D .11%【考点】AD :一元二次方程的应用【分析】设该商店的月平均增长率为x ,根据等量关系:2月份盈利额(1⨯+增长率)24=月份的盈利额列出方程求解即可.【解答】解:设该商店的每月盈利的平均增长率为x ,根据题意得:2240000(1)290400x +=,解得:110%x =,2 2.1x =-(舍去). 故选:C .【点评】此题主要考查了一元二次方程的应用,属于增长率的问题,一般公式为原来的量2(1)x ⨯±=后来的量,其中增长用+,减少用-,难度一般.10.(3分)已知关于x 的不等式组321123x x x a --⎧-⎪⎨⎪-<⎩恰有3个整数解,则a 的取值范围为( )A .12a <B .12a <<C .12a <D .12a【考点】CC :一元一次不等式组的整数解【分析】先求出不等式组的解集(含字母)a ,因为不等式组有3个整数解,可推出a 的值. 【解答】解:3211230x x x a --⎧-⎪⎨⎪-<⎩①②解①得:1x -, 解②得:x a <,不等式组的整数解有3个,∴不等式组的整数解为1-、0、1,则12a <,【点评】本题考查了解一元一次不等式组,一元一次不等式组的整数解的应用,解此题的关键是能根据题意求出关于a 的不等式组.11.(3分)如图,对折矩形纸片ABCD ,使AD 与BC 重合,得到折痕EF .把纸片展平,再一次折叠纸片,使点A 落在EF 上的点A '处,并使折痕经过点B ,得到折痕BM .若矩形纸片的宽4AB =,则折痕BM 的长为( )A 83B 43C .8D .83【考点】PB :翻折变换(折叠问题);LB :矩形的性质【分析】在Rt ABM ∆中,解直角三角形求出30BA E ∠'=︒,再证明30ABM ∠=︒即可解决问题.【解答】解:将矩形纸片ABCD 对折一次,使边AD 与BC 重合,得到折痕EF ,2AB BE ∴=,90A EB ∠'=︒,//EF BC .再一次折叠纸片,使点A 落在EF 的A '处并使折痕经过点B ,得到折痕BM ,2A B AB BE ∴'==.在Rt △A EB '中,90A EB ∠'=︒, 1sin 2BE EA B BA ∴∠'==', 30EA B ∴∠'=︒, //EF BC ,30CBA EA B ∴∠'=∠'=︒, 90ABC ∠=︒, 60ABA ∴∠'=︒,30ABM MBA ∴∠=∠'=︒,83cos303AB BM ∴===︒.【点评】本题考查了翻折变换,锐角三角函数的定义,平行线的性质,难度适中,熟练掌握并灵活运用翻折变换的性质是解题的关键.12.(3分)抛物线2y ax bx c =++的对称轴是直线1x =-,且过点(1,0).顶点位于第二象限,其部分图象如图4所示,给出以下判断: ①0ab >且0c <; ②420a b c -+>; ③80a c +>; ④33c a b =-;⑤直线22y x =+与抛物线2y ax bx c =++两个交点的横坐标分别为1x ,2x ,则12125x x x x ++=.其中正确的个数有( )A .5个B .4个C .3个D .2个【考点】8F :一次函数图象上点的坐标特征;4H :二次函数图象与系数的关系;5H :二次函数图象上点的坐标特征【分析】根据二次函数的性质一一判断即可. 【解答】解:抛物线对称轴1x =-,经过(1,0), 12ba∴-=-,0a b c ++=, 2b a ∴=,3c a =-, 0a <, 0b ∴<,0c >,0ab ∴>且0c >,故①错误,抛物线对称轴1x =-,经过(1,0), (2,0)∴-和(0,0)关于对称轴对称, 2x ∴=-时,0y >,420a b c ∴-+>,故②正确,抛物线与x 轴交于(3,0)-, 4x ∴=-时,0y <,1640a b c ∴-+<, 2b a =,1680a a c ∴-+<,即80a c +<,故③错误, 336c a a a =-=-,2b a =, 33c a b ∴=-,故④正确,直线22y x =+与抛物线2y ax bx c =++两个交点的横坐标分别为1x ,2x ,∴方程2(2)20ax b x c +-+-=的两个根分别为1x ,2x ,122b x x a -∴+=-,122c x x a-=, 12122222325b c a a x x x x a a a a-----∴++=-+=-+=-,故⑤错误, 故选:D .【点评】本题考查二次函数与系数的关系,二次函数图象上的点的特征,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.二、填空题(本大题共有小题,每小题分,共分.不要求写出解答过程,请把答案直接填写在答题卷相应位置上)13.(3分)0.01的平方根是 0.1± . 【考点】21:平方根【分析】根据平方根的定义即可求出答案. 【解答】解:0.01的平方根是0.1±, 故答案为:0.1±;【点评】本题考查平方根,解题的关键是熟练运用平方根的定义,本题属于基础题型. 14.(3分)因式分解:334a b ab -= (21)(21)ab ab ab +- . 【考点】55:提公因式法与公式法的综合运用【分析】原式提取公因式,再利用平方差公式分解即可. 【解答】解:原式22(41)(21)(21)ab a b ab ab ab =-=+-, 故答案为:(21)(21)ab ab ab +-【点评】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.15.(3分)如图,在ABC ∆中,4AB =,若将ABC ∆绕点B 顺时针旋转60︒,点A 的对应点为点A ',点C 的对应点为点C ',点D 为A B '的中点,连接AD .则点A 的运动路径与线段AD 、A D '围成的阴影部分面积是8233π- .【考点】4O :轨迹;MO :扇形面积的计算;2R :旋转的性质【分析】连接AA ',由题意BAA ∆'是等边三角形.根据ABD BAA S S S ∆'=-阴扇形计算即可. 【解答】解:连接AA ',由题意BAA ∆'是等边三角形.BD DA =',211342322ADB ABA S S ∆∆'∴=== 2604823233603ABD BAA S S S ππ∆'⋅⋅∴=-=-=-阴扇形.故答案为8233π-【点评】本题考查轨迹,扇形的面积,等边三角形的判定和性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型. 16.(3分)观察下列一组数的排列规律:13,15,25,19,29,13,117,217,317,417,133,233,111,433,533,⋯那么,这一组数的第2019个数是64312+ . 【考点】37:规律型:数字的变化类【分析】根据题目数字的特点,可以发现数字的变化规律,从而可以求得这一组数的第2019个数,本题得以解决.【解答】解:一列数为:,13,15,25,19,29,13,117,217,317,417,133,233,111,433,533,⋯ 则这列数也可变为:13,15,25,19,29,39,117,217,317,417,133,233,333,433,533,⋯ 由上列数字可知,第一个数的分母是1123+=,这样的数有1个; 第二个数的分母是2125+=,这样的数有2个; 第三个数的分母是3129+=,这样的数有3个;⋯,1236320162019+++⋯+=<,∴这一组数的第2019个数是:64312+, 故答案为:64312+. 【点评】本题考查数字的变化类,解答本题的关键是明确题意,发现题目中数字的变化特点,求出相应的数据.三、解答题(本大题共有个小题,共分.请在答题卷指定区域内作答,解答时应写出文字说明.证明过程或演算步骤)17.(8分)先化简,再求值:22111211x x x x x +÷-++++,其中1x =.【考点】6D :分式的化简求值【分析】先根据分式的混合运算顺序和运算法则化简原式,再将x 的值代入计算可得. 【解答】解:原式221(1)(1)(1)x x x x +=+--+221111x x x x +-=-++ 21x =+,当1x 时,原式233==. 【点评】本题主要考查分式的化简求值,解题的关键是掌握分式的混合运算顺序和运算法则. 18.(8分)如图,在四边形ABCD 中,//AD BC ,点O 是对角线AC 的中点,过点O 作AC 的垂线,分别交AD 、BC 于点E 、F ,连接AF 、CE .试判断四边形AECF 的形状,并证明.【考点】KG :线段垂直平分线的性质;KD :全等三角形的判定与性质【分析】由条件可先证四边形AFCE 为平行四边形,再结合线段垂直平分线的性质可证得结论.【解答】解:四边形AECF 为菱形. 证明如下://AD BC ,12∴∠=∠.O 是AC 中点,AO CO ∴=.在AOE ∆和COF ∆中 12AOE COF AO CO ∠=∠⎧⎪∠=∠⎨⎪=⎩()AOE COF AAS ∴∆≅∆. AE CF ∴=.又//AE CF ,∴四边形AECF 为平行四边形,EF AC ⊥,∴平行四边形AECF 为菱形.【点评】本题主要考查了全等三角形的判定与性质以及菱形的判定,解题时注意:在应用全等三角形的判定时,要注意三角形间的公共边和公共角,必要时添加适当辅助线构造三角形.19.(8分)为了解某县建档立卡贫困户对精准扶贫政策落实的满意度,现从全县建档立卡贫困户中随机抽取了部分贫困户进行了调查(把调查结果分为四个等级:A级:非常满意;B级:满意;C级:基本满意;D级:不满意),并将调查结果绘制成如下两幅不完整的统计图.请根据统计图中的信息解决下列问题:(1)本次抽样调查测试的建档立卡贫困户的总户数是60(户).(2)图1中,α∠的度数是,并把图2条形统计图补充完整.(3)某县建档立卡贫困户有10000户,如果全部参加这次满意度调查,请估计非常满意的人数约为多少户?(4)调查人员想从5户建档立卡贫困户(分别记为a,b,c,d,)e中随机选取两户,调查他们对精准扶贫政策落实的满意度,请用列表或画树状图的方法求出选中贫困户e的概率.【考点】VB:扇形统计图;2V:用样本估计总体;VC:条V:全面调查与抽样调查;5形统计图;6X:列表法与树状图法【分析】(1)由B级别户数及其对应百分比可得答案;(2)求出A级对应百分比可得α∠的度数,再求出C级户数即可把图2条形统计图补充完整;(3)利用样本估计总体思想求解可得;(4)画树状图或列表将所有等可能的结果列举出来,利用概率公式求解即可.【解答】解:(1)由图表信息可知本次抽样调查测试的建档立卡贫困户的总户数2135%60=÷=(户)故答案为:60(户)(2)图1中,α∠的度数93605460=⨯︒=︒;C级户数为:60921921---=(户),补全条形统计图如图2所示:故答案为:54︒;(3)估计非常满意的人数约为910000150060⨯=(户);(4)由题可列如下树状图:由树状图可以看处,所有可能出现的结果共有20种,选中e的结果有8种P∴(选中82 )205e==.【点评】本题考查的是条形统计图和扇形统计图以及用列表法或画树形图法求随机事件的概率的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.20.(8分)如图,某地有甲、乙两栋建筑物,小明于乙楼楼顶A 点处看甲楼楼底D 点处的俯角为45︒,走到乙楼B 点处看甲楼楼顶E 点处的俯角为60︒,已知6AB m =,10DE m =.求乙楼的高度AC 的长.(参考数据:2 1.41≈,3 1.73≈,精确到0.1m .)【考点】TA :解直角三角形的应用-仰角俯角问题【分析】过点E 作EF AC ⊥于F ,得出EF CD =,10CF DE ==,设AC xm =,得出CD EF xm ==,(16)BF x m =-,在Rt BEF ∆中,根据tan EF EBF BF∠=,代值计算即可求出x 的值.【解答】解:如图,过点E 作EF AC ⊥于F ,则四边形CDEF 为矩形,EF CD ∴=,10CF DE ==, 设AC xm =,则CD EF xm ==,(16)BF x m =-,在Rt BEF ∆中,60EBF ∠=︒,tan EF EBF BF ∠=, ∴316x x =- 248337.8x m ∴=+≈答:乙楼的高度AC 的长约为37.8m .【点评】本题考查的是解直角三角形的应用-仰角俯角问题,根据题意作出辅助线,构造出直角三角形是解答此题的关键21.(8分)如图,已知90AOB ∠=︒,30OAB ∠=︒,反比例函数3(0)y x x=-<的图象过点(3,)B a -,反比例函数(0)k y x x=>的图象过点A . (1)求a 和k 的值;(2)过点B 作//BC x 轴,与双曲线k y x=交于点C .求OAC ∆的面积.【考点】6G :反比例函数图象上点的坐标特征;5G :反比例函数系数k 的几何意义;KO :含30度角的直角三角形【分析】(1)把(3,)B a -代入反比例函数3y x=-即可求得a 的值,分别过点A 、B 作AD x ⊥轴于D ,BE x ⊥轴于E ,易证得BOE OAD ∆∆∽,根据相似三角形的性质即可求得A 点的坐标,然后代入反比例函数(0)k y x x=>,根据待定系数法即可求得k 的值; (2)由B 的纵坐标求得C 的纵坐标,根据图象上点的坐标特征求得C 的坐标,然后根据AOC AOD COF ADFC ADCF S S S S S ∆∆∆=+-=梯形梯形求得即可.【解答】解:(1)比例函数3(0)y x x=-<的图象过点(3,)B a -,313a ∴=-=-, 3OE ∴=,1BE =,分别过点A 、B 作AD x ⊥轴于D ,BE x ⊥轴于E ,90BOE OBE ∴∠+∠=︒,90AOB ∠=︒,30OAB ∠=︒,90BOE AOD ∴∠+∠=︒,tan 30OB OA ︒==, OBE AOD ∴∠=∠,90OEB ADO ∠=∠=︒,BOE OAD ∴∆∆∽∴OE BE OB AD OD OA ===,33AD OE ∴==⨯=,31OD BE ==⨯=A ∴,,反比例函数(0)k y x x=>的图象过点A ,9k ∴=;(2)由(1)可知AD =OD =//BC x 轴,(3,1)B -,C ∴点的纵坐标为1,过点C 作CF x ⊥轴于F ,点C 在双曲线9y x =上, 91x∴=,解得9x =, (9,1)C ∴,1CF ∴=,AOC AOD COF ADFC ADCF S S S S S ∆∆∆∴=+-=梯形梯形1()()2AD CF OF OD =+- 11)(92=133=.【点评】本题考查了反比例函数系数k的几何意义,待定系数法求反比例函数的解析式,反比例函数图象上点的坐标特征,三角形相似的判定和性质,解直角三角形等,求得A、C点的坐标是解题的关键.22.(10分)某县有A、B两个大型蔬菜基地,共有蔬菜700吨.若将A基地的蔬菜全部运往甲市所需费用与B基地的蔬菜全部运往甲市所需费用相同.从A、B两基地运往甲、乙两市的运费单价如下表:甲市(元/吨)乙市(元/吨)A基地2025B基地1524(1)求A、B两个蔬菜基地各有蔬菜多少吨?(2)现甲市需要蔬菜260吨,乙市需要蔬菜440吨.设从A基地运送m吨蔬菜到甲市,请问怎样调运可使总运费最少?【考点】FH:一次函数的应用;9A:二元一次方程组的应用;CE:一元一次不等式组的应用【分析】(1)根据题意列方程组解答即可;(2)先列不等式组确定m的取值范围,再求出总运费w与m的关系式,然后根据一次函数的性质解答即可.【解答】解:(1)设A、B两基地的蔬菜总量分别为x吨、y吨.于是有:700 2015x yx y+=⎧⎨=⎩,解得:300400xy=⎧⎨=⎩,答:A、B两基地的蔬菜总量分别为300吨和400吨;(2)由题可知:26003000400(260)0mmmm⎧⎪-⎪⎨-⎪⎪--⎩,0260m∴<,2025(300)15(260)24[400(260)]414760w m m m m m=+-+-+--=+,40>,w∴随m的增大而增大,14760w∴=最小答:当A基地运300吨到乙市,B基地运260吨到甲市,B基地运140吨到乙市时,总运费最少为14760元.【点评】此题主要考查了一次函数的应用以及一元一次方程组的应用等知识,根据题意找出等量关系是解答本题的关键.23.(10分)如图,在O中,AB是直径,BC是弦,BC BD=,连接CD交O于点E,BCD DBE∠=∠.(1)求证:BD是O的切线.(2)过点E作EF AB⊥于F,交BC于G,已知210DE=,3EG=,求BG的长.【考点】5M:圆周角定理;ME:切线的判定与性质;9S:相似三角形的判定与性质【分析】(1)连接AE ,由条件可得出90AEB ∠=︒,证明C DBE ∠=∠,得出90ABE DBE ∠+∠=︒,即90ABD ∠=︒,结论得证;(2)延长EF 交O 于H ,证明EBC GBE ∆∆∽,得出BE BC BG BE=,求出BE 长,求出3CG GE ==,则3BC BG =+,可得出210210=,解出5BG =. 【解答】(1)证明:如图1,连接AE ,则A C ∠=∠,AB 是直径,90AEB ∴∠=︒,90A ABE ∴∠+∠=︒,C DBE ∠=∠,90ABE DBE ∴∠+∠=︒,即90ABD ∠=︒,BD ∴是O 的切线(2)解:如图2,延长EF 交O 于H ,EF AB ⊥,AB 是直径,∴BE BH =,ECB BEH ∴∠=∠,EBC GBE ∠=∠,EBC GBE ∴∆∆∽, ∴BE BC BG BE=, BC BD =,D C ∴∠=∠,C DBE ∠=∠,D DBE ∴∠=∠,BE DE ∴==,又90AFE ABD ∠=∠=︒,//BD EF ∴,D CEF ∴∠=∠,C CEF ∴∠=∠,3CG GE ∴==,3BC BG CG BG ∴=+=+,∴=, 8BG ∴=-(舍)或5BG =,即BG 的长为5.【点评】本题考查了切线的判定定理、圆周角定理、垂径定理、相似三角形的判定与性质的综合应用,正确作出辅助线,用好圆的性质是解题的关键.24.(12分)如图,抛物线22y ax ax c =-+的图象经过点(0,2)C -,顶点D 的坐标为8(1,)3-,与x 轴交于A 、B 两点.(1)求抛物线的解析式.(2)连接AC ,E 为直线AC 上一点,当AOC AEB ∆∆∽时,求点E 的坐标和AE AB 的值.(3)点(0,)F y 是y 轴上一动点,当y BF +的值最小.并求出这个最小值.(4)点C 关于x 轴的对称点为H,当5FC BF +取最小值时,在抛物线的对称轴上是否存在点Q ,使QHF ∆是直角三角形?若存在,请求出点Q 的坐标;若不存在,请说明理由.【考点】HF :二次函数综合题 【分析】(1)将点C 、D 的坐标代入抛物线表达式,即可求解;(2)当AOC AEB ∆∆∽时,2255()()16AOC AEB S AC S AB ∆∆===,求出85E y =-,由AOC AEB ∆∆∽得:5AO AE AC AB ==,即可求解; (3)如图2,连接BF ,过点F 作FG AC ⊥于G ,当折线段BFG 与BE 重合时,取得最小值,即可求解; (4)①当点Q 为直角顶点时,由Rt QHM Rt FQM ∆∆∽得:2QM HM FM =;②当点H 为直角顶点时,点(0,2)H ,则点(1,2)Q ;③当点F 为直角顶点时,同理可得:点3(1,)2Q -. 【解答】解:(1)由题可列方程组:2823c a a c =-⎧⎪⎨-+=-⎪⎩,解得:232a c ⎧=⎪⎨⎪=-⎩ ∴抛物线解析式为:224233y x x =--;(2)如图1,90AOC ∠=︒,5AC 4AB =,设直线AC 的解析式为:y kx b =+,则02k b b -+=⎧⎨=-⎩,解得:22k b =-⎧⎨=-⎩, ∴直线AC 的解析式为:22y x =--;当AOC AEB ∆∆∽时2255()()16AOC AEB S ACS AB ∆∆===, 1AOC S ∆=,165AEB S ∆∴=, ∴116||25E AB y ⨯=,4AB =,则85E y =-, 则点1(5E -,8)5-; 由AOC AEB ∆∆∽得:5AO AE AC AB == ∴5AE AB =;(3)如图2,连接BF ,过点F 作FG AC ⊥于G ,则5sin FG CF FCG =∠=,∴5CF BF GF BF BE +=+, 当折线段BFG 与BE 重合时,取得最小值, 由(2)可知ABE ACO ∠=∠85cos cos 45BE AB ABE AB ACO ∴=∠=∠=⨯=, 13||tan tan 322y OB ABE OB ACO =∠=∠=⨯=, ∴当32y =-时,即点3(0,)2F -,5CF BF +有最小值为85;(4)①当点Q 为直角顶点时(如图3):由(3)易得3(0,)2F -,(0C ,2)(0H -∴,2)设(1,)Q m ,过点Q 作QM y ⊥轴于点M . 则Rt QHM Rt FQM ∆∆∽2QM HM FM ∴=,231(2)()2m m ∴=-+, 解得:133m ±=, 则点133)Q +或133- 当点H 为直角顶点时:点(0,2)H ,则点(1,2)Q ;当点F为直角顶点时:同理可得:点3 (1,)2Q-;综上,点Q的坐标为:或或(1,2)Q或3(1,)2Q-.【点评】本题考查的是二次函数综合运用,涉及到一次函数、点的对称性、三角形相似、图形的面积计算等,其中(4),要注意分类求解,避免遗漏.第31页(共31页)。

恩施州利川市2019年中考数学训练试卷(2)(有答案)

恩施州利川市2019年中考数学训练试卷(2)(有答案)

中考数学训练试卷一、选择题(本大题共12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是满足题目要求的,请把其代号填在答题栏中相应题号的下面).1.下列实数中,是有理数的为()A.B.C.πD.02.不等式组的解集在数轴上表示为()A.B.C.D.3.一元二次方程x2﹣2x=0的根是()A.x1=0,x2=﹣2 B.x1=1,x2=2 C.x1=1,x2=﹣2 D.x1=0,x2=24.如图,⊙O是△ABC的外接圆,AD是⊙O的直径,若⊙O的半径为,AC=2,则sinB的值是()A.B.C.D.5.如图,四边形ABCD是⊙O的内接四边形,若∠BOD=88°,则∠BCD的度数是()A.88° B.92° C.106°D.136°6.下列计算正确的是()A.a2•a3=a6B.(﹣2ab)2=4a2b2C.(a2)3=a5D.3a3b2÷a2b2=3ab7.下列几何体中,俯视图是矩形的是()A. B.C.D.8.函数y=与y=﹣kx2+k(k≠0)在同一直角坐标系中的大致图象可能是()A.B.C.D.9.如图,在▱ABCD中,用直尺和圆规作∠BAD的平分线AG交BC于点E.若BF=6,AB=5,则AE的长为()A.4 B.6 C.8 D.1010.某商品进价是200元,标价是300元,要使该商品利润为20%,则该商品销售应按()A.7折B.8折C.9折D.6折11.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示对称轴为x=﹣1则下列式子正确的个数是(1)abc >0(2)2a+b=0(3)4a+2b+c<0(4)b2﹣4ac<0()A.1个B.2个C.3个D.4个12.如图所示,在平面直角坐标系中,半径均为1个单位长度的半圆O1、O2、O3,…组成一条平滑的曲线,点P从原点O出发,沿这条曲线向右运动,速度为每秒个单位长度,则第2015秒时,点P的坐标是()A.(2014,0)B.(2015,﹣1)C.(2015,1)D.(2019,0)二、填空题(本大题共4个小题,每小题3分,共12分.请把答案填在题中的横线上).13.如图,在⊙O中,CD是直径,弦AB⊥CD,垂足为E,连接BC.若AB=2,∠BCD=30°,则⊙O的半径为.14.如果代数式﹣2a+3b+8的值为18,那么代数式9b﹣6a+2的值等于.15.如图,在平面直角坐标系中,抛物线y=x2经过平移得到抛物线y=x2﹣2x,其对称轴与两抛物线所围成的阴影部分的面积是.16.如图,正方形ABCB1中,AB=1.AB与直线l的夹角为30°,延长CB1交直线l于点A1,作正方形A1B1C1B2,延长C1B2交直线l于点A2,作正方形A2B2C2B3,延长C2B3交直线l于点A3,作正方形A3B3C3B4,…,依此规律,则A2014A2015= .三、解答题(本大题共7个小题,共72分.解答应写出文字说明、证明过程或演算步骤).17.解不等式组.18.先化简再求值:,x是不等式2x﹣3(x﹣2)≥1的一个非负整数解.19.如图,一次函数y=kx+b(k≠0)的图象过点P(﹣,0),且与反比例函数y=(m≠0)的图象相交于点A(﹣2,1)和点B.(1)求一次函数和反比例函数的解析式;(2)求点B的坐标,并根据图象回答:当x在什么范围内取值时,一次函数的函数值小于反比例函数的函数值?20.如图,E,F是四边形ABCD的对角线AC上点,AF=CE,DF=BE,DF∥BE.求证:(1)△AFD≌△CEB.(2)四边形ABCD是平行四边形.21.如图所示,从地面上一点A测出山顶电视塔的上端P点的仰角是45°,向前走60米到B点测得P点的仰角是60°,电视塔底部Q的仰角是30°,求电视塔PQ的高度(精确到1米)22.为了提高学生书写汉字的能力,增强保护汉字的意识,我市举办了首届“汉字听写大赛”,经选拔后有50名学生参加决赛,这50名学生同时听写50个汉字,若每正确听写出一个汉字得1分,根据测试成绩绘制出部分频数分布表和部分频数分布直方图如图表:组别成绩x分频数(人数)第1组25≤x<30 6第2组30≤x<35 8第3组35≤x<40 16第4组40≤x<45 a第5组45≤x<50 10请结合图表完成下列各题:(1)求表中a的值;(2)请把频数分布直方图补充完整;(3)第5组10名同学中,有4名男同学,现将这10名同学平均分成两组进行对抗练习,且4名男同学每组分两人,求小宇与小强两名男同学能分在同一组的概率.23.2013年1月,由于雾霾天气持续笼罩我国中东部大部分地区,口罩市场出现热卖,某旗舰网店用8000元购进甲、乙两种口罩,销售完后共获利2800元,进价和售价如下表:甲种口罩乙种口罩品名价格进价(元/袋)20 25售价(元/袋)26 35(1)求该网店购进甲、乙两种口罩各多少袋?(2)该网店第二次以原价购进甲、乙、两种口罩,购进乙种口罩袋数不变,而购进甲种口罩袋数是第一次的2倍.甲种口罩按原售价出售,而乙种口罩让利销售.若两种口罩销售完毕,要使第二次销售活动获利不少于3680元,乙种口罩最低售价为每袋多少元?24.如图,在平面直角坐标系中,顶点为(4,﹣1)的抛物线交y轴于A点,交x轴于B,C两点(点B在点C的左侧),已知A点坐标为(0,3).(1)求此抛物线的解析式;(2)过点B作线段AB的垂线交抛物线于点D,如果以点C为圆心的圆与直线BD相切,请判断抛物线的对称轴l与⊙C有怎样的位置关系,并给出证明;(3)已知点P是抛物线上的一个动点,且位于A,C两点之间,问:当点P运动到什么位置时,△PAC的面积最大?并求出此时P点的坐标和△PAC的最大面积.2019年湖北省恩施州利川市中考数学训练试卷(2)参考答案与试题解析一、选择题(本大题共12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是满足题目要求的,请把其代号填在答题栏中相应题号的下面).1.下列实数中,是有理数的为()A.B.C.πD.0【考点】实数.【分析】根据有理数能写成有限小数和无限循环小数,而无理数只能写成无限不循环小数进行判断即可.【解答】解:是无理数,A不正确;是无理数,B不正确;π是无理数,C不正确;0是有理数,D正确;故选:D.【点评】此题主要考查了无理数和有理数的区别,解答此题的关键是要明确:有理数能写成有限小数和无限循环小数,而无理数只能写成无限不循环小数.2.不等式组的解集在数轴上表示为()A.B.C.D.【考点】在数轴上表示不等式的解集;解一元一次不等式组.【分析】先将每一个不等式解出来,然后根据求解的口诀即可解答.【解答】解:,解不等式①得:x≥﹣5,解不等式②得:x<2,由大于向右画,小于向左画,有等号画实点,无等号画空心,∴不等式的解集在数轴上表示为:故选C.【点评】此题考查了不等式组的解法及不等式组解集在数轴上的表示,解题的关键是:熟记口诀大于向右画,小于向左画,有等号画实点,无等号画空心.3.一元二次方程x2﹣2x=0的根是()A.x1=0,x2=﹣2 B.x1=1,x2=2 C.x1=1,x2=﹣2 D.x1=0,x2=2【考点】解一元二次方程﹣因式分解法.【分析】先分解因式,即可得出两个一元一次方程,求出方程的解即可.【解答】解:x2﹣2x=0,x(x﹣2)=0,x=0,x﹣2=0,x1=0,x2=2,故选D.【点评】本题考查了解一元二次方程的应用,解此题的关键是能把一元二次方程转化成一元一次方程,难度适中.4.如图,⊙O是△ABC的外接圆,AD是⊙O的直径,若⊙O的半径为,AC=2,则sinB的值是()A.B.C.D.【考点】锐角三角函数的定义;圆周角定理;三角形的外接圆与外心.【分析】求角的三角函数值,可以转化为求直角三角形边的比,连接DC.根据同弧所对的圆周角相等,就可以转化为:求直角三角形的锐角的三角函数值的问题.【解答】解:连接DC.根据直径所对的圆周角是直角,得∠ACD=90°.根据同弧所对的圆周角相等,得∠B=∠D.∴sinB=sinD==.故选A.【点评】综合运用了圆周角定理及其推论.注意求一个角的锐角三角函数时,能够根据条件把角转化到一个直角三角形中.5.如图,四边形ABCD是⊙O的内接四边形,若∠BOD=88°,则∠BCD的度数是()A.88° B.92° C.106°D.136°【考点】圆内接四边形的性质;圆周角定理.【分析】首先根据∠BOD=88°,应用圆周角定理,求出∠BAD的度数多少;然后根据圆内接四边形的性质,可得∠BAD+∠BCD=180°,据此求出∠BCD的度数是多少即可.【解答】解:∵∠BOD=88°,∴∠BAD=88°÷2=44°,∵∠BAD+∠BCD=180°,∴∠BCD=180°﹣44°=136°,即∠BCD的度数是136°.故选:D.【点评】(1)此题主要考查了圆内接四边形的性质和应用,要熟练掌握,解答此题的关键是要明确:①圆内接四边形的对角互补.②圆内接四边形的任意一个外角等于它的内对角(就是和它相邻的内角的对角).(2)此题还考查了圆周角定理的应用,要熟练掌握,解答此题的关键是要明确:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.6.下列计算正确的是()A.a2•a3=a6B.(﹣2ab)2=4a2b2C.(a2)3=a5D.3a3b2÷a2b2=3ab【考点】整式的除法;同底数幂的乘法;幂的乘方与积的乘方.【分析】根据同底数幂的乘法、积的乘方、幂的乘方、整式的除法,即可解答.【解答】解:A、a2•a3=a5,故正确;B、正确;C、(a2)3=a6,故错误;D、3a2b2÷a2b2=3,故错误;故选:B.【点评】本题考查了同底数幂的乘法、积的乘方、幂的乘方、整式的除法,解决本题的关键是熟记同底数幂的乘法、积的乘方、幂的乘方、整式的除法的法则.7.下列几何体中,俯视图是矩形的是()A. B.C.D.【考点】简单几何体的三视图.【分析】根据简单和几何体的三视图判断方法,判断圆柱、圆锥、三棱柱、球的俯视图,即可解答.【解答】解:A、俯视图为圆,故错误;B、俯视图为矩形,正确;C、俯视图为三角形,故错误;D、俯视图为圆,故错误;故选:B.【点评】本题考查了几何体的三种视图,掌握定义是关键.8.函数y=与y=﹣kx2+k(k≠0)在同一直角坐标系中的大致图象可能是()A.B.C.D.【考点】反比例函数的图象;二次函数的图象.【分析】本题可先由反比例函数的图象得到字母系数的正负,再与二次函数的图象相比较看是否一致.【解答】解:由解析式y=﹣kx2+k可得:抛物线对称轴x=0;A、由双曲线的两支分别位于二、四象限,可得k<0,则﹣k>0,抛物线开口方向向上、抛物线与y轴的交点为y轴的负半轴上;本图象与k的取值相矛盾,故A错误;B、由双曲线的两支分别位于一、三象限,可得k>0,则﹣k<0,抛物线开口方向向下、抛物线与y轴的交点在y轴的正半轴上,本图象符合题意,故B正确;C、由双曲线的两支分别位于一、三象限,可得k>0,则﹣k<0,抛物线开口方向向下、抛物线与y轴的交点在y轴的正半轴上,本图象与k的取值相矛盾,故C错误;D、由双曲线的两支分别位于一、三象限,可得k>0,则﹣k<0,抛物线开口方向向下、抛物线与y轴的交点在y轴的正半轴上,本图象与k的取值相矛盾,故D错误.故选:B.【点评】本题主要考查了二次函数及反比例函数和图象,解决此类问题步骤一般为:(1)先根据图象的特点判断k取值是否矛盾;(2)根据二次函数图象判断抛物线与y轴的交点是否符合要求.9.如图,在▱ABCD中,用直尺和圆规作∠BAD的平分线AG交BC于点E.若BF=6,AB=5,则AE的长为()A.4 B.6 C.8 D.10【考点】平行四边形的性质;等腰三角形的判定与性质;勾股定理;作图—基本作图.【专题】计算题.【分析】由基本作图得到AB=AF,加上AO平分∠BAD,则根据等腰三角形的性质得到AO⊥BF,BO=FO=BF=3,再根据平行四边形的性质得AF∥BE,所以∠1=∠3,于是得到∠2=∠3,根据等腰三角形的判定得AB=EB,然后再根据等腰三角形的性质得到AO=OE,最后利用勾股定理计算出AO,从而得到AE的长.【解答】解:连结EF,AE与BF交于点O,如图,∵AB=AF,AO平分∠BAD,∴AO⊥BF,BO=FO=BF=3,∵四边形ABCD为平行四边形,∴AF∥BE,∴∠1=∠3,∴∠2=∠3,∴AB=EB,而BO⊥AE,∴AO=OE,在Rt△AOB中,AO===4,∴AE=2AO=8.故选C.【点评】本题考查了平行四边形的性质:平行四边形的对边相等;平行四边形的对角相等;平行四边形的对角线互相平分.也考查了等腰三角形的判定与性质和基本作图.10.某商品进价是200元,标价是300元,要使该商品利润为20%,则该商品销售应按()A.7折B.8折C.9折D.6折【考点】一元一次方程的应用.【专题】销售问题.【分析】要求该商品销售应按几折,就要先求出售价,这就要先设出一个未知数,然后根据题中的等量关系列方程求解.【解答】解:商品利润为20%,则利润应是:200×20%=40元,则售价是:200+40=240元.设该商品销售应按x折销售,则:300x=240解得:x=0.8,即8折.故选B.【点评】解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.11.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示对称轴为x=﹣1则下列式子正确的个数是(1)abc >0(2)2a+b=0(3)4a+2b+c<0(4)b2﹣4ac<0()A.1个B.2个C.3个D.4个【考点】二次函数图象与系数的关系.【分析】由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.【解答】解:①图象开口向下,与y轴交于正半轴,对称轴在y轴右侧,能得到:a<0,c>0,﹣<0,b<0,∴abc>0,故①正确;②对称轴x=﹣1,∴﹣=﹣1,∴2a﹣b=0,故②错误;③当x=2时,y<0,∴4a+2b+c<0,故③正确.图象与x轴有2个不同的交点,依据根的判别式可知b2﹣4ac>0,故③正确.④图象与x轴有2个不同的交点,依据根的判别式可知b2﹣4ac>0,故④错误;综上所述正确的个数为2个故选:B.【点评】本题主要考查了二次函数图象与系数的关系,解题的关键是会利用对称轴的范围求2a与b的关系,以及二次函数与方程之间的转换,根的判别式的熟练运用.12.如图所示,在平面直角坐标系中,半径均为1个单位长度的半圆O1、O2、O3,…组成一条平滑的曲线,点P从原点O出发,沿这条曲线向右运动,速度为每秒个单位长度,则第2015秒时,点P的坐标是()A.(2014,0)B.(2015,﹣1)C.(2015,1)D.(2019,0)【考点】规律型:点的坐标.【专题】压轴题;规律型.【分析】根据图象可得移动4次图象完成一个循环,从而可得出点A2015的坐标.【解答】解:半径为1个单位长度的半圆的周长为:,∵点P从原点O出发,沿这条曲线向右运动,速度为每秒个单位长度,∴点P1秒走个半圆,当点P从原点O出发,沿这条曲线向右运动,运动时间为1秒时,点P的坐标为(1,1),当点P从原点O出发,沿这条曲线向右运动,运动时间为2秒时,点P的坐标为(2,0),当点P从原点O出发,沿这条曲线向右运动,运动时间为3秒时,点P的坐标为(3,﹣1),当点P从原点O出发,沿这条曲线向右运动,运动时间为4秒时,点P的坐标为(4,0),当点P从原点O出发,沿这条曲线向右运动,运动时间为5秒时,点P的坐标为(5,1),当点P从原点O出发,沿这条曲线向右运动,运动时间为6秒时,点P的坐标为(6,0),…,∵2015÷4=503 (3)∴A2015的坐标是(2015,﹣1),故选:B.【点评】此题考查了点的规律变化,解答本题的关键是仔细观察图象,得到点的变化规律,解决问题.二、填空题(本大题共4个小题,每小题3分,共12分.请把答案填在题中的横线上).13.如图,在⊙O中,CD是直径,弦AB⊥CD,垂足为E,连接BC.若AB=2,∠BCD=30°,则⊙O的半径为.【考点】垂径定理;勾股定理;圆周角定理.【分析】连接OB,根据垂径定理求出BE,求出∠BOE=60°,解直角三角形求出OB即可.【解答】解:连接OB,∵OC=OB,∠BCD=30°,∴∠BCD=∠CBO=30°,∴∠BOE=∠BCD+∠CBO=60°,∵直径CD⊥弦AB,AB=2,∴BE=AB=,∠OEB=90°,∴OB==,即⊙O的半径为,故答案为:.【点评】本题考查了垂径定理,等腰三角形的性质,解直角三角形,三角形外角性质的应用,能根据垂径定理求出BE和解直角三角形求出OB长是解此题的关键,难度适中.14.如果代数式﹣2a+3b+8的值为18,那么代数式9b﹣6a+2的值等于32 .【考点】代数式求值.【分析】将代数式9b﹣6a+2变形为3(﹣2a+3b)+2,再将﹣2a+3b=10代入可得出结果.【解答】解:由题意得:﹣2a+3b=109b﹣6a+2=3(﹣2a+3b)+2=32故填32【点评】本题考查代数式的求值,关键在于整体代入法的运用.15.如图,在平面直角坐标系中,抛物线y=x2经过平移得到抛物线y=x2﹣2x,其对称轴与两抛物线所围成的阴影部分的面积是 1 .【考点】二次函数图象与几何变换.【分析】先利用配方法得到抛物线y=x2﹣2x的顶点坐标为(1,﹣1),则抛物线y=x2向右平移1个单位,向下平移1个单位得到抛物线y=x2﹣2x,然后利用阴影部分的面积等于三角形面积进行计算.【解答】解:y=x2﹣2x=(x﹣1)2﹣1,即平移后抛物线的顶点坐标为(1,﹣1),所以抛物线y=x2向右平移1个单位,向下平移1个单位得到抛物线y=x2﹣2x,所以对称轴与两抛物线所围成的阴影部分的面积=×1×2=1.故答案为1.【点评】本题考查了二次函数图象与几何变换:由于抛物线平移后的形状不变,故a不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.16.如图,正方形ABCB1中,AB=1.AB与直线l的夹角为30°,延长CB1交直线l于点A1,作正方形A1B1C1B2,延长C1B2交直线l于点A2,作正方形A2B2C2B3,延长C2B3交直线l于点A3,作正方形A3B3C3B4,…,依此规律,则A2014A2015= 2()2014.【考点】相似三角形的判定与性质;正方形的性质.【专题】压轴题;规律型.【分析】由四边形ABCB1是正方形,得到AB=AB1,AB∥CB1,于是得到AB∥A1C,根据平行线的性质得到∠CA1A=30°,解直角三角形得到A1B1=,AA1=2,同理:A2A3=2()2,A3A4=2()3,找出规律A n A n+1=2()n,答案即可求出.【解答】解:∵四边形ABCB1是正方形,∴AB=AB1,AB∥CB1,∴AB∥A1C,∴∠CA1A=30°,∴A1B1=,AA1=2,∴A1B2=A1B1=,∴A1A2=2,同理:A2A3=2()2,A3A4=2()3,…∴A n A n+1=2()n,∴A2014A2015=2()2014,故答案为:2()2014.【点评】本题考查了正方形的性质,含30°直角三角形的性质,平行线的性质,熟记各性质并求出后一个正方形的边长是前一个正方形的边长的倍是解题的关键.三、解答题(本大题共7个小题,共72分.解答应写出文字说明、证明过程或演算步骤).17.解不等式组.【考点】解一元一次不等式组.【分析】先分别求出各不等式的解集,再求出其公共解集即可.【解答】解:,解不等式①得x<﹣,(2分)解不等式②得x≥﹣1,(4分)∴不等式组的解集为﹣1≤x<﹣.(5分)【点评】求不等式的公共解,要遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.18.先化简再求值:,x是不等式2x﹣3(x﹣2)≥1的一个非负整数解.【考点】分式的化简求值;一元一次不等式的整数解.【分析】先根据分式混合运算的法则把原式进行化简,再求出不等式的解集,找出不等式解集的整数,选出合适的x的值代入进行计算即可.【解答】解:原式=÷=•=•=(2﹣x)(3﹣x)=x2﹣5x+6,解不等式得x≤5,符合不等式解集的整数是0,1,2,3,4,5.由题意知x≠3且x≠﹣2,所以x可取0,1,2,4,5;当x=0时,原式=6(答案不唯一).【点评】本题考查的是分式的化简求值,在解答此类题目时要注意x的取值要保证分式有意义.19.如图,一次函数y=kx+b(k≠0)的图象过点P(﹣,0),且与反比例函数y=(m≠0)的图象相交于点A(﹣2,1)和点B.(1)求一次函数和反比例函数的解析式;(2)求点B的坐标,并根据图象回答:当x在什么范围内取值时,一次函数的函数值小于反比例函数的函数值?【考点】反比例函数与一次函数的交点问题.【专题】数形结合;待定系数法.【分析】(1)根据待定系数法,可得函数解析式;(2)根据二元一次方程组,可得函数图象的交点,根据一次函数图象位于反比例函数图象的下方,可得答案.【解答】解:(1)一次函数y=kx+b(k≠0)的图象过点P(﹣,0)和A(﹣2,1),∴,解得,∴一次函数的解析式为y=﹣2x﹣3,反比例函数y=(m≠0)的图象过点A(﹣2,1),∴,解得m=﹣2,∴反比例函数的解析式为y=﹣;(2),解得,或,∴B(,﹣4)由图象可知,当﹣2<x<0或x>时,一次函数的函数值小于反比例函数的函数值.【点评】本题考查了反比例函数与一次函数的交点问题,待定系数法是求函数解析式的关键.20.如图,E,F是四边形ABCD的对角线AC上点,AF=CE,DF=BE,DF∥BE.求证:(1)△AFD≌△CEB.(2)四边形ABCD是平行四边形.【考点】全等三角形的判定与性质;平行四边形的判定.【分析】(1)由已知条件以及平行四边形的性质即可证明△AFD≌△CEB;(2)由(1)可得到AD=CB,∠DAF=∠BCE,可证出AD∥CB,根据一条对边平行且相等的四边形是平行四边形可证出结论.【解答】解:(1)证明:∵DF∥BE,∴∠AFD=∠CEB,又∵AF=CE DF=BE,∴在△AFD和△CEB中,∴△AFD≌△CEB(SAS),(2)∵△AFD≌△CEB,∴AD=CB,∠DAF=∠BCE,∴AD∥CB,∴四边形ABCD是平行四边形(一组对边平行且相等的四边形是平行四边形).【点评】此题主要考查了平行四边形的判定,以及三角形全等的判定与性质,解题的关键是根据条件证出△AFD≌△CEB.21.如图所示,从地面上一点A测出山顶电视塔的上端P点的仰角是45°,向前走60米到B点测得P点的仰角是60°,电视塔底部Q的仰角是30°,求电视塔PQ的高度(精确到1米)【考点】解直角三角形的应用﹣仰角俯角问题.【分析】延长PQ交直线AB于点E,设PE=x米,在直角△APE和直角△BPE中,根据三角函数利用x表示出AE和BE,根据AB=AE﹣BE即可列出方程求得x的值,再在直角△BQE中利用三角函数求得QE的长,则PQ 的长度即可求解.【解答】解:延长PQ交直线AB于点E,设PE=x米.在直角△APE中,∠A=45°,则AE=PE=x米;∵∠PBE=60°∴∠BP E=30°在直角△BPE中,BE=PE=x米,∵AB=AE﹣BE=60米,则x﹣x=60,解得:x=90+30,则BE=(30+30)米.在直角△BEQ中,QE=BE=(30+30)=(30+10)米.∴PQ=PE﹣QE=90+30﹣(30+10)=60+20≈95(米).答:电线杆PQ的高度是95米.【点评】本题考查了解直角三角形的应用﹣仰角俯角的问题,仰角的定义,以及三角函数,正确求得PE的长度是关键.22.为了提高学生书写汉字的能力,增强保护汉字的意识,我市举办了首届“汉字听写大赛”,经选拔后有50名学生参加决赛,这50名学生同时听写50个汉字,若每正确听写出一个汉字得1分,根据测试成绩绘制出部分频数分布表和部分频数分布直方图如图表:组别成绩x分频数(人数)第1组25≤x<30 6第2组30≤x<35 8第3组35≤x<40 16第4组40≤x<45 a第5组45≤x<50 10请结合图表完成下列各题:(1)求表中a的值;(2)请把频数分布直方图补充完整;(3)第5组10名同学中,有4名男同学,现将这10名同学平均分成两组进行对抗练习,且4名男同学每组分两人,求小宇与小强两名男同学能分在同一组的概率.【考点】频数(率)分布直方图;频数(率)分布表;列表法与树状图法.【分析】(1)利用总数50减去其它项的频数即可求得;(2)根据(1)的计算结果即可补全直方图;(3)利用树状图方表示出所有可能的结果,然后利用频率公式即可求解.【解答】解:(1)表中a的值是:a=50﹣6﹣8﹣16﹣10=10;(2)根据题意画图如下:(3)用A 表示小宇B 表示小强,C 、D 表示其他两名同学, 根据题意画树状图如下:从上图可知共有12种等可能情况,小宇与小强两名男同学分在同一组的情况有4种,则小宇与小强两名男同学分在同一组的概率是P==.【点评】本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.23. 2013年1月,由于雾霾天气持续笼罩我国中东部大部分地区,口罩市场出现热卖,某旗舰网店用8000元购进甲、乙两种口罩,销售完后共获利2800元,进价和售价如下表: 品名价格 甲种口罩 乙种口罩进价(元/袋) 20 25 售价(元/袋)2635(1)求该网店购进甲、乙两种口罩各多少袋?(2)该网店第二次以原价购进甲、乙、两种口罩,购进乙种口罩袋数不变,而购进甲种口罩袋数是第一次的2倍.甲种口罩按原售价出售,而乙种口罩让利销售.若两种口罩销售完毕,要使第二次销售活动获利不少于3680元,乙种口罩最低售价为每袋多少元? 【考点】一元一次不等式的应用;二元一次方程组的应用.【分析】(1)分别根据旗舰网店用8000元购进甲、乙两种口罩,销售完后共获利2800元,得出等式组成方程求出即可;(2)根据甲种口罩袋数是第一次的2倍,要使第二次销售活动获利不少于3680元,得出不等式求出即可. 【解答】解;(1)设网店购进甲种口罩x 袋,乙种口罩y 袋, 根据题意得出:,解得:,答:甲种口罩200袋,乙种口罩160袋;(2)设乙种口罩每袋售价z元,根据题意得出:160(z﹣25)+2×200×(26﹣20)≥3680,解得:z≥33,答:乙种口罩每袋售价为每袋33元.【点评】本题考查了列二元一次方程组解实际问题的运用及二元一次方程组的解法,列一元一次不等式解实际问题的运用及解法,在解答过程中寻找能够反映整个题意的等量关系是解答本题的关键.24.如图,在平面直角坐标系中,顶点为(4,﹣1)的抛物线交y轴于A点,交x轴于B,C两点(点B在点C的左侧),已知A点坐标为(0,3).(1)求此抛物线的解析式;(2)过点B作线段AB的垂线交抛物线于点D,如果以点C为圆心的圆与直线BD相切,请判断抛物线的对称轴l与⊙C有怎样的位置关系,并给出证明;(3)已知点P是抛物线上的一个动点,且位于A,C两点之间,问:当点P运动到什么位置时,△PAC的面积最大?并求出此时P点的坐标和△PAC的最大面积.【考点】二次函数综合题.【专题】压轴题.【分析】(1)已知抛物线的顶点坐标,可用顶点式设抛物线的解析式,然后将A点坐标代入其中,即可求出此二次函数的解析式;(2)根据抛物线的解析式,易求得对称轴l的解析式及B、C的坐标,分别求出直线AB、BD、CE的解析式,再求出CE的长,与到抛物线的对称轴的距离相比较即可;(3)过P作y轴的平行线,交AC于Q;易求得直线AC的解析式,可设出P点的坐标,进而可表示出P、Q 的纵坐标,也就得出了PQ的长;然后根据三角形面积的计算方法,可得出关于△PAC的面积与P点横坐标的函数关系式,根据所得函数的性质即可求出△PAC的最大面积及对应的P点坐标.【解答】解:(1)设抛物线为y=a(x﹣4)2﹣1,∵抛物线经过点A(0,3),∴3=a(0﹣4)2﹣1,;。

2019年湖北省恩施州中考数学试题

2019年湖北省恩施州中考数学试题

根式有意义,被开方数大于等于 0.
8.桌上摆放着一个由相同正方体组成的组合体,其俯视图如图所示,图中数字为
试卷第 4页,总 28页
该位置小正方体的个数,则这个组合体的左视图为( )
A.
B.
C.
D.
【答案】D
【解析】
【分析】
根据从左边看到的图形是左视图解答即可.
【详解】
由俯视图可知,该组合体的左视图有 3 列,其中中间有 3 层,两边有 2 层,
不了.
11.如图,对折矩形纸片 ABCD,使 AD 与 BC 重合,得到折痕 EF.把纸片展平,
试卷第 6页,总 28页
再一次折叠纸片,使点 A 落在 EF 上的点 A′处,并使折痕经过点 B,得到折痕 BM. 若矩形纸片的宽 AB=4,则折痕 BM 的长为( )
A. 8 3 3
【答案】A 【解析】 【分析】
时 y>0,可对②进行判断;由对称轴方程可得 b=2a,由图象过点(1,0)可知 a+b+c=0,
即可得出 3a+c=0,可对③④进行判断;由 ax2+bx+c=2x+2 可得 ax2+(b-2)x+c-2=0,根据
一元二次方程根与系数的故选可对⑤进行判断,综上即可得答案.
【详解】
∵对称轴在 y 轴左侧,图象与 y 轴交于 y 轴正半轴,
∴8a+c=5a<0,故③错误,
∵3a+c=0,
∴c=-3a,
∴3a-3b=3a-3×2a=-3a=c,故④正确,
ax2+bx+c=2x+2, 整理得:ax2+(b-2)x+c-2=0,
∵直线 y 2x 2 与抛物线 y ax2 bx c 两个交点的横坐标分别为 x1、x2 ,

湖北省恩施州2019-2020学年中考第四次质量检测数学试题含解析

湖北省恩施州2019-2020学年中考第四次质量检测数学试题含解析

湖北省恩施州2019-2020学年中考第四次质量检测数学试题一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.去年二月份,某房地产商将房价提高40%,在中央“房子是用来住的,不是用来炒的”指示下达后,立即降价30%.设降价后房价为x,则去年二月份之前房价为()A.(1+40%)×30%x B.(1+40%)(1﹣30%)xC.x(140%)30%+⨯D.()()130%140%x+﹣2.如图,点E是矩形ABCD的边AD的中点,且BE⊥AC于点F,则下列结论中错误的是()A.AF=12CF B.∠DCF=∠DFCC.图中与△AEF相似的三角形共有5个D.tan∠CAD=23.二元一次方程组43624x yx y+=⎧⎨+=⎩的解为()A.32xy=-⎧⎨=⎩B.21xy=-⎧⎨=⎩C.32xy=⎧⎨=-⎩D.21xy=⎧⎨=-⎩4.若a+b=3,,则ab等于()A.2 B.1 C.﹣2 D.﹣1 5.实数a b、在数轴上的点的位置如图所示,则下列不等关系正确的是( )A.a+b>0 B.a-b<0 C.ab<0 D.2a>2b6.31-的值是()A.1 B.﹣1 C.3 D.﹣37.如图,在▱ABCD中,AC,BD相交于点O,点E是OA的中点,连接BE并延长交AD于点F,已知S△AEF=4,则下列结论:①12AFFD=;②S△BCE=36;③S△ABE=12;④△AEF~△ACD,其中一定正确的是()A .①②③④B .①④C .②③④D .①②③8.下列左图表示一个由相同小立方块搭成的几何体的俯视图,小正方形中的数字表示该位置上小立方块的个数,则该几何体的主视图为( )A .B .C .D .9.12的倒数是( ) A .﹣12 B .2 C .﹣2 D .1210.在下列二次函数中,其图象的对称轴为2x =-的是A .()22y x =+B .222y x =-C .222y x =--D .()222y x =- 11.已知△ABC 中,∠BAC=90°,用尺规过点A 作一条直线,使其将△ABC 分成两个相似的三角形,其作法不正确的是( )A .B .C .D .12.如图,在矩形ABCD 中,E ,F 分别是边AB ,CD 上的点,AE=CF ,连接EF ,BF ,EF 与对角线AC 交于点O ,且BE=BF ,∠BEF=2∠BAC ,FC=2,则AB 的长为( )A .83B .8C .43D .6二、填空题:(本大题共6个小题,每小题4分,共24分.)13.若式子123x +有意义,则x 的取值范围是______. 14.甲、乙两点在边长为100m 的正方形ABCD 上按顺时针方向运动,甲的速度为5m/秒,乙的速度为10m/秒,甲从A 点出发,乙从CD 边的中点出发,则经过__秒,甲乙两点第一次在同一边上. 15.如图,BP 是△ABC 中∠ABC 的平分线,CP 是∠ACB 的外角的平分线,如果∠ABP=20°,∠ACP=50°,则∠P=______°.16.使x 2-有意义的x 的取值范围是______.17.用配方法解方程3x 2﹣6x+1=0,则方程可变形为(x ﹣__)2=__.18.有5张背面看上去无差别的扑克牌,正面分别写着5,6,7,8,9,洗匀后正面向下放在桌子上,从中随机抽取2张,抽出的卡片上的数字恰好是两个连续整数的概率是__.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)为了落实国务院的指示精神,某地方政府出台了一系列“三农”优惠政策,使农民收入大幅度增加.某农户生产经销一种农产品,已知这种产品的成本价为每千克20元,市场调查发现,该产品每天的销售量y (千克)与销售价x (元/千克)有如下关系:y=﹣2x+1.设这种产品每天的销售利润为w 元.求w 与x 之间的函数关系式.该产品销售价定为每千克多少元时,每天的销售利润最大?最大利润是多少元?如果物价部门规定这种产品的销售价不高于每千克28元,该农户想要每天获得150元的销售利润,销售价应定为每千克多少元?20.(6分)如图,在平面直角坐标系xOy 中,直线16y k x =+与函数()20k y x x=>的图象的两个交点分别为A (1,5),B .(1)求1k ,2k 的值;(2)过点P (n ,0)作x 轴的垂线,与直线16y k x =+和函数()20k y x x=>的图象的交点分别为点M ,N ,当点M 在点N 下方时,写出n 的取值范围.21.(6分)如图,四边形ABCD 中,AC 平分∠DAB ,AC 2=AB•AD ,∠ADC =90°,E 为AB 的中点. (1)求证:△ADC ∽△ACB ;(2)CE 与AD 有怎样的位置关系?试说明理由;(3)若AD =4,AB =6,求AC AF的值.22.(8分)由于雾霾天气频发,市场上防护口罩出现热销,某医药公司每月固定生产甲、乙两种型号的防雾霾口罩共20万只,且所有产品当月全部售出,原料成本、销售单价及工人生产提成如表:若该公司五月份的销售收入为300万元,求甲、乙两种型号的产品分别是多少万只?公司实行计件工资制,即工人每生产一只口罩获得一定金额的提成,如果公司六月份投入总成本(原料总成本+生产提成总额)不超过239万元,应怎样安排甲、乙两种型号的产量,可使该月公司所获利润最大?并求出最大利润(利润=销售收入﹣投入总成本)23.(8分)图中的每个小方格都是边长为1个单位长度的正方形,每个小正方形的顶点叫格点,△ABC 的顶点均在格点上(1)画出将△ABC 绕点B 按逆时针方向旋转90°后所得到的△A 1BC 1;(2)画出将△ABC 向右平移6个单位后得到的△A 2B 2C 2;(3)在(1)中,求在旋转过程中△ABC 扫过的面积.24.(10分)如图,AB 为⊙O 的直径,C 为⊙O 上一点,∠ABC 的平分线交⊙O 于点D ,DE ⊥BC 于点E .试判断DE 与⊙O 的位置关系,并说明理由;过点D 作DF ⊥AB 于点F ,若BE=33,DF=3,求图中阴影部分的面积.25.(10分)如图①,一次函数y=12x ﹣2的图象交x 轴于点A ,交y 轴于点B ,二次函数y=12-x 2+bx+c 的图象经过A 、B 两点,与x 轴交于另一点C .(1)求二次函数的关系式及点C 的坐标;(2)如图②,若点P 是直线AB 上方的抛物线上一点,过点P 作PD ∥x 轴交AB 于点D ,PE ∥y 轴交AB 于点E ,求PD+PE 的最大值;(3)如图③,若点M 在抛物线的对称轴上,且∠AMB=∠ACB ,求出所有满足条件的点M 的坐标.26.(12分)如图,Rt ABC ∆中,90ACB ∠=︒,CE AB ⊥于E ,BC mAC nDC ==,D 为BC 边上一点.。

湖北省恩施州2019-2020学年中考数学教学质量调研试卷含解析

湖北省恩施州2019-2020学年中考数学教学质量调研试卷含解析

湖北省恩施州2019-2020学年中考数学教学质量调研试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.小丽只带2元和5元的两种面额的钞票(数量足够多),她要买27元的商品,而商店不找零钱,要她刚好付27元,她的付款方式有( )种. A .1B .2C .3D .42.射击训练中,甲、乙、丙、丁四人每人射击10次,平均环数均为8.7环,方差分别为 2s 0.51=甲,2s 0.62=乙,2s 0.48=丙,2s 0.45=丁,则四人中成绩最稳定的是( )A .甲B .乙C .丙D .丁3.已知平面内不同的两点A (a+2,4)和B (3,2a+2)到x 轴的距离相等,则a 的值为( ) A .﹣3B .﹣5C .1或﹣3D .1或﹣54.如图,AB ∥CD ,DB ⊥BC ,∠2=50°,则∠1的度数是( )A .40°B .50°C .60°D .140°5.cos30°的相反数是( ) A .3-B .12-C .3-D .22-6.把图中的五角星图案,绕着它的中心点O 进行旋转,若旋转后与自身重合,则至少旋转( )A .36°B .45°C .72°D .90°7.将抛物线y =﹣(x+1)2+4平移,使平移后所得抛物线经过原点,那么平移的过程为( ) A .向下平移3个单位 B .向上平移3个单位 C .向左平移4个单位D .向右平移4个单位8.如图是由若干个相同的小正方体搭成的一个几何体的主视图和俯视图,则所需的小正方体的个数最少是( )9.计算 22x x x+-的结果为( ) A .1B .xC .1xD .2x x+ 10.小红上学要经过三个十字路口,每个路口遇到红、绿灯的机会都相同,小红希望小学时经过每个路口都是绿灯,但实际这样的机会是( ) A .12B .18C .38D .111222++ 11.如图是某个几何体的展开图,该几何体是( )A .三棱柱B .圆锥C .四棱柱D .圆柱12.碳纳米管的硬度与金刚石相当,却拥有良好的柔韧性,可以拉伸,我国某物理所研究组已研制出直径为0.5纳米的碳纳米管,1纳米=0.000000001米,则0.5纳米用科学记数法表示为( ) A .0.5×10﹣9米B .5×10﹣8米C .5×10﹣9米D .5×10﹣10米二、填空题:(本大题共6个小题,每小题4分,共24分.)13.若正多边形的一个内角等于120°,则这个正多边形的边数是_____. 14.如图,若正五边形和正六边形有一边重合,则∠BAC =_____.15.如图所示,一个宽为2cm 的刻度尺在圆形光盘上移动,当刻度尺的一边与光盘相切时,另一边与光盘边缘两个交点处的读数恰好是“2”和“10”(单位:cm ),那么该光盘的半径是____cm.16.如图所示,四边形ABCD 中,60BAD ∠=︒,对角线AC 、BD 交于点E ,且BD BC =,30ACD ∠=︒,若19AB =7AC =,则CE 的长为_____.17.将一副直角三角板如图放置,使含30°角的三角板的短直角边和含45°角的三角板的一条直角边重合,则∠1的度数为__度.18.分解因式2x 2+4x +2=__________.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图所示是一幢住房的主视图,已知:120BAC ∠=︒,房子前后坡度相等,4AB =米,6AC =米,设后房檐B 到地面的高度为a 米,前房檐C 到地面的高度b 米,求-a b 的值.20.(6分)讲授“轴对称”时,八年级教师设计了如下:四种教学方法: ① 教师讲,学生听 ② 教师让学生自己做③ 教师引导学生画图发现规律④ 教师让学生对折纸,观察发现规律,然后画图为调查教学效果,八年级教师将上述教学方法作为调研内容发到全年级8个班420名同学手中,要求每位同学选出自己最喜欢的一种.他随机抽取了60名学生的调查问卷,统计如图 (1) 请将条形统计图补充完整;(2) 计算扇形统计图中方法③的圆心角的度数是 ;(3) 八年级同学中最喜欢的教学方法是哪一种?选择这种教学方法的约有多少人?21.(6分)如图所示,小王在校园上的A处正面观测一座教学楼墙上的大型标牌,测得标牌下端D处的仰角为30°,然后他正对大楼方向前进5m到达B处,又测得该标牌上端C处的仰角为45°.若该楼高为16.65m,小王的眼睛离地面1.65m,大型标牌的上端与楼房的顶端平齐.求此标牌上端与下端之间的距离(3≈1.732,结果精确到0.1m).22.(8分)如图,抛物线y=﹣x2+5x+n经过点A(1,0),与y轴交于点B.(1)求抛物线的解析式;(2)P是y轴正半轴上一点,且△PAB是以AB为腰的等腰三角形,试求P点坐标.23.(8分)(1)计算:﹣2212﹣4|+(13)-1+2tan60°(2)求不等式组620{21xx x-≥->的解集.24.(10分)已知:如图1,抛物线的顶点为M,平行于x轴的直线与该抛物线交于点A,B(点A在点B左侧),根据对称性△AMB恒为等腰三角形,我们规定:当△AMB为直角三角形时,就称△AMB为该抛物线的“完美三角形”.(1)①如图2,求出抛物线2y x =的“完美三角形”斜边AB 的长; ②抛物线21y x +=与2y x =的“完美三角形”的斜边长的数量关系是 ; (2)若抛物线24y ax +=的“完美三角形”的斜边长为4,求a 的值;(3)若抛物线225y mx x+n =+-的“完美三角形”斜边长为n ,且225y mx x+n =+-的最大值为-1,求m ,n 的值.25.(10分)水龙头关闭不紧会造成滴水,小明用可以显示水量的容器做图①所示的试验,并根据试验数据绘制出图②所示的容器内盛水量W (L )与滴水时间t (h )的函数关系图象,请结合图象解答下列问题:容器内原有水多少?求W 与t 之间的函数关系式,并计算在这种滴水状态下一天的滴水量是多少升?图 ① 图②26.(12分)已知:如图,在平面直角坐标系xOy 中,直线AB 分别与x 轴、y 轴交于点B ,A ,与反比例函数的图象分别交于点C ,D ,CE ⊥x 轴于点E ,tan ∠ABO=12,OB=4,OE=1. (1)求该反比例函数的解析式; (1)求三角形CDE 的面积.(1)求证:DF是BF和CF的比例中项;(2)在AB上取一点G,如果AE•AC=AG•AD,求证:EG•CF=ED•DF.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.C【解析】分析:先根据题意列出二元一次方程,再根据x,y都是非负整数可求得x,y的值.详解:解:设2元的共有x张,5元的共有y张,由题意,2x+5y=27∴x=12(27-5y)∵x,y是非负整数,∴15xy⎧⎨⎩==或111xy⎧⎨⎩==或63xy⎧⎨⎩==,∴付款的方式共有3种.故选C.点睛:本题考查二元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再根据实际意义求解.2.D【解析】【分析】【详解】∵0.45<0.51<0.62,∴丁成绩最稳定,故选D.【点睛】此题主要考查了方差,关键是掌握方差越小,稳定性越大.3.A【解析】分析:根据点A(a+2,4)和B(3,2a+2)到x轴的距离相等,得到4=|2a+2|,即可解答.详解:∵点A(a+2,4)和B(3,2a+2)到x轴的距离相等,∴4=|2a+2|,a+2≠3,解得:a=−3,故选A.点睛:考查点的坐标的相关知识;用到的知识点为:到x轴和y轴的距离相等的点的横纵坐标相等或互为相反数.4.A【解析】试题分析:根据直角三角形两锐角互余求出∠3,再根据两直线平行,同位角相等解答.解:∵DB⊥BC,∠2=50°,∴∠3=90°﹣∠2=90°﹣50°=40°,∵AB∥CD,∴∠1=∠3=40°.故选A.5.C【解析】【分析】先将特殊角的三角函数值代入求解,再求出其相反数.【详解】∴cos30°的相反数是2-, 故选C . 【点睛】本题考查了特殊角的三角函数值,解答本题的关键是掌握几个特殊角的三角函数值以及相反数的概念. 6.C 【解析】分析:五角星能被从中心发出的射线平分成相等的5部分,再由一个周角是360°即可求出最小的旋转角度.详解:五角星可以被中心发出的射线平分成5部分,那么最小的旋转角度为:360°÷5=72°. 故选C .点睛:本题考查了旋转对称图形的概念:把一个图形绕着一个定点旋转一个角度后,与初始图形重合,这种图形叫做旋转对称图形,这个定点叫做旋转对称中心,旋转的角度叫做旋转角. 7.A 【解析】将抛物线()214y x =-++平移,使平移后所得抛物线经过原点,若左右平移n 个单位得到,则平移后的解析式为:()214y x n =-+++,将(0,0)代入后解得:n=-3或n=1,所以向左平移1个单位或向右平移3个单位后抛物线经过原点;若上下平移m 个单位得到,则平移后的解析式为:()214m y x =-+++,将(0,0)代入后解得:m=-3,所以向下平移3个单位后抛物线经过原点, 故选A. 8.B 【解析】 【分析】主视图、俯视图是分别从物体正面、上面看,所得到的图形. 【详解】综合主视图和俯视图,底层最少有4个小立方体,第二层最少有1个小立方体,因此搭成这个几何体的小正方体的个数最少是5个. 故选:B . 【点睛】此题考查由三视图判断几何体,解题关键在于识别图形【分析】根据同分母分式的加减运算法则计算可得.【详解】原式=22xx+-=xx=1,故选:A.【点睛】本题主要考查分式的加减法,解题的关键是掌握同分母分式的加减运算法则.10.B【解析】分析:列举出所有情况,看各路口都是绿灯的情况占总情况的多少即可.详解:画树状图,得∴共有8种情况,经过每个路口都是绿灯的有一种,∴实际这样的机会是1 8 .故选B.点睛:此题考查了树状图法求概率,树状图法适用于三步或三步以上完成的事件,解题时要注意列出所有的情形.用到的知识点为:概率=所求情况数与总情况数之比.11.A【解析】【分析】侧面为三个长方形,底边为三角形,故原几何体为三棱柱.【详解】解:观察图形可知,这个几何体是三棱柱.故选A.【点睛】本题考查的是三棱柱的展开图,对三棱柱有充分的理解是解题的关键..解:0.5纳米=0.5×0.000 000 001米=0.000 000 000 5米=5×10﹣10米.故选D .点睛:在负指数科学计数法10n a -⨯ 中,其中110a ≤< ,n 等于第一个非0数字前所有0的个数(包括下数点前面的0).二、填空题:(本大题共6个小题,每小题4分,共24分.) 13.6 【解析】试题分析:设所求正n 边形边数为n ,则120°n=(n ﹣2)•180°,解得n=6; 考点:多边形内角与外角. 14.132° 【解析】解:∵正五边形的内角=180°-360°÷5=108°,正六边形的内角=180°-360°÷6=120°,∴∠BAC=360°-108°-120°=132°.故答案为132°. 15.5 【解析】 【分析】本题先根据垂径定理构造出直角三角形,然后在直角三角形中已知弦长和弓形高,根据勾股定理求出半径,从而得解. 【详解】解:如图,设圆心为O ,弦为AB ,切点为C .如图所示.则AB=8cm ,CD=2cm . 连接OC ,交AB 于D 点.连接OA .∵尺的对边平行,光盘与外边缘相切, ∴OC ⊥AB . ∴AD=4cm .设半径为Rcm ,则R 2=42+(R-2)2,故答案为5【点睛】此题考查了切线的性质及垂径定理,建立数学模型是关键.16.165【解析】【分析】此题有等腰三角形,所以可作BH ⊥CD ,交EC 于点G ,利用三线合一性质及邻补角互补可得∠BGD=120°,根据四边形内角和360°,得到∠ABG+∠ADG=180°.此时再延长GB 至K ,使AK=AG ,构造出等边△AGK .易证△ABK ≌△ADG ,从而说明△ABD 是等边三角形,BD=AB=19,根据DG 、CG 、GH 线段之间的关系求出CG 长度,在Rt △DBH 中利用勾股定理及三角函数知识得到∠EBG 的正切值,然后作EF ⊥BG ,求出EF ,在Rt △EFG 中解出EG 长度,最后CE=CG+GE 求解.【详解】如图,作BH CD ⊥于H ,交AC 于点G ,连接DG .∵BD BC =,∴BH 垂直平分CD ,∴DG CG =,∴GDC GCD 30∠∠==︒,∴DGH 60EGD EGB BAD ∠∠∠∠=︒===,∴ABG ADG 180∠∠+=︒,延长GB 至K ,连接AK 使AK AG =,则ΔAGK 是等边三角形,∴K 60AGD ∠∠=︒=,又ABK ADG ∠∠=,∴ΔABK ≌ΔADG (AAS ),∴AB AD =,∴ΔABD 是等边三角形,∴BD AB 19==,设GH a =,则DG CG KB 2a ===,AG KG 72a ==-,∴BG 72a 2a 74a =--=-,∴BH 73a =-,在Rt ΔDBH 中,()()2273a 3a 19-+=,解得1a 1=,25a 2=, 当5a 2=时,BH 0<,所以a 1=, ∴CG 2=,BG 3=,DH 3tan EBG BH 4∠==, 作EF FG ⊥,设FG b =,EG 2b =,EF 3b =,BF 4b =,BG 4b b 5b =+=,∴5b 3=,3b 5=, ∴6EG 2b 5==,则616CE 255=+=, 故答案为165【点睛】本题主要考查了等腰三角形的性质及等边三角形、全等三角形的判定和性质以及勾股定理的运用,综合性较强,正确作出辅助线是解题的关键.17.1.【解析】【分析】根据一副直角三角板的各个角的度数,结合三角形内角和定理,即可求解.【详解】∵∠3=60°,∠4=45°,∴∠1=∠5=180°﹣∠3﹣∠4=1°.故答案为:1.【点睛】本题主要考查三角形的内角和定理以及对顶角的性质,掌握三角形的内角和等于180°,是解题的关键. 18.2(x+1)2。

2019年中考数学湖北省恩施州试卷及答案_2018年中考数学试卷及答案

2019年中考数学湖北省恩施州试卷及答案_2018年中考数学试卷及答案

《2019年中考数学湖北省恩施州试卷及答案_2018年中考数学试卷及答案》摘要:数学试题卷及答案、选择题(题共有题每题3分共36分.每题给出四选项只有项是合题目要请将选择项前母代填涂答题卷相应位置上)相反数是 B 天单位是天学计量天体距离种单位其数值取地球与太阳平距离即9597870700约9600000k 将数9600000用科学记数法表示 B 3 下列图形是轴对称图形是B 下列计算正确是 B 5 某学规定学生学期体育成绩满分00分其早锻炼及体育课外活动占0%期考试成绩占30%期末考试成绩占50% 桐三项成绩(分制)依次959085则桐这学期体育成绩是 885B865 90 905 6 如图△B、、分别是B、、B已知∠65°则∠数60° B65° 70° 75° 7...09年恩施州初毕业生学业水平考试数学试题卷及答案、选择题(题共有题每题3分共36分.每题给出四选项只有项是合题目要请将选择项前母代填涂答题卷相应位置上)相反数是B 天单位是天学计量天体距离种单位其数值取地球与太阳平距离即9597870700约9600000k 将数9600000用科学记数法表示 B 3 下列图形是轴对称图形是 B 下列计算正确是 B5 某学规定学生学期体育成绩满分00分其早锻炼及体育课外活动占0%期考试成绩占30%期末考试成绩占50% 桐三项成绩(分制)依次959085则桐这学期体育成绩是 885 B865 90 905 6 如图△B、、分别是B、、B已知∠65°则∠数60° B65° 70° 75°7 函数变量取值围是 B 8 桌上摆放着由相正方体组成组合体其俯视图如图所示图数该位置正方体数则这组合体左视图 9 某商店销售富硒农产品今年月开始盈利月份盈利0000元月份盈利9000元且从月份到月份每月盈利平增长率相则每月盈利平增长率是 8% B9% 0% % 0 已知关不等式组恰有3整数则取值围 B 如图3对折矩形纸片B使与B重合得到折痕把纸片展平再次折叠纸片使落上’处并使折痕B得到折痕B 若矩形纸片宽B则折痕B长 B 8 抛物线对称轴是直线且(0)顶位二象限其部分图像如图所示给出以下判断①且;②;③;④;⑤直线与抛物线两交横坐标分别则其正确数有5 B 3 二、填空题(题共有题每题分共分.不要写出答程请把答案直接填写答题卷相应位置上) 3 00平方根是▲ 因式分▲ 5 如图5△BB若将△B绕B顺针旋60°对应’对应’’B连接则运动路径与线段、’围成阴影部分面积是▲ 6 观察下列组数排列规律… 那么这组数09数是▲ 三、答题(题共有题共分.请答题卷指定区域作答答应写出说明证明程或演算步骤) 7 (题满分8分)先化简再值其 8 (题满分8分)如图6四边形B∥B是对角线作垂线分别交、B、连接、试判断四边形形状并证明 9 (题满分8分)了某县建档立卡贫困户对精准扶贫政策落实满现从全县建档立卡贫困户随机抽取了部分贫困户进行了调(把调结分四等级级非常满;B级满;级基满;级不满)并将调结绘制成如下两幅不完整统计图请根据统计图信息下列问题()次抽样调测试建档立卡贫困户总户数是▲ ()图7∠α数是▲ 并把图8条形统计图补充完整(3)某县建档立卡贫困户有0000户如全部参加这次满调请估计非常满人数约多少户?()调人员想从5户建档立卡贫困户(分别记)随机选取两户调他们对精准扶贫政策落实满请用列表或画树状图方法出选贫困户概率 0 (题满分8分)如图9某地有甲、乙两栋建筑物明乙楼楼顶处看甲楼楼底处俯角5°走到乙楼B处看甲楼楼顶处俯角60°已知B60 乙楼高长(参考数据精确到0)(题满分8分)如图0已知∠B90°∠B30°反比例函数图象反比例函数图象()和值;() B作B∥轴与双曲线交△面积(题满分0分)某县有、B两型蔬菜基地共有蔬菜700吨若将基地蔬菜全部运往甲市所费用与B基地蔬菜全部运往甲市所费用相从、B两基地运往甲、乙两市运费单价如下表甲市(元吨)乙市(元吨)基地 0 5 B基地 5 ()、B两蔬菜基地各有蔬菜多少吨?()现甲市要蔬菜60吨乙市要蔬菜0吨设从基地运送吨蔬菜到甲市请问怎样调运可使总运费少? 3 (题满分0分)如图⊙B是直径B是弦BB连接交⊙∠B∠B ()证B是⊙切线()作⊥B交BG已知G3BG长(题满分分)如图抛物线图象(0)顶坐标()与轴交、B两 () 抛物线析式 () 连接直线上当△∽△B坐标和值(3)(0)是轴上动当何值值并出这值()关轴对称当取值抛物线对称轴上是否存Q使△Q是直角三角形?若存请出Q坐标;若不存请说明理由参考答案、选择题(题共题每题3分共36分)题 3 5 6 7 8 9 0 答案B B B 二、填空题(题共题每题3分共分) 3 5 6 三、答题(题共8题,共7分) 7原式………………………………(分) ………………………………(分) ………………………………(6分) 当原式……… …………………(7分) ………………………(8分) (提示处如有其它法参照给分) 8 四边形菱形…………………………(分)证明如下∵∥B∴∠∠ ∵是∴ …………………………(分)△和△ ∴△≌△()…………………………(分)∴ 又∥ ∴四边形平行四边形…………(6分)∵⊥ ∴平行四边形菱形………………………(8分)(提示处如有其它法参照给分) 9 ()60 ……………………………………(分)()5° ……………………………………(分)级户数6099(户)补全条形统计图如图所示……………(3分)(3)(户)……………(分)()由题可列如下树状图……………(6分)由树状图可以看处所有可能出现结共有0种选结有8种∴(选)…………………………………(8分)(提示处如有其它法参照给分)0 法如图3作⊥则四边形矩形∴0 ………………………………(分)设则B ………………………………(3分)R△B∠B60°∴ ………………………………(5分)∴ ………………………………(6分)≈378 …………………………………(7分)答乙楼高长约378 …………………………………(8分)法二如图3作⊥则四边形矩形∴0 ………………………(分)设B则B+B+ R△B∠B60° ∴60°∴ …………………(3分)R△∠5° ∴ ∴ ∴ ………………(5分)∴ …………………………………(6分)≈ 378 …………………………………(7分)答乙楼高长约378 …………………………………(8分)(提示处如有其它法参照给分)()∵反比例函数B ∴ …………………………………(分)∴3B 如图分别、B作⊥x轴B⊥x轴易证△B∽△ ∴ ∴ ∴………………(分)()由()可知∵B∥X轴B(3,)∴ ∵双曲线上∴9 ∴(9,)∴ ……………(5分)法如图5作⊥x轴∴ ……………(6分)∴ ………………(8分)法二如图6作⊥轴延长交轴G (0)……………(6分)而∠G 即∴ ∴………(7分)∴ …(8分)(提示处如有其它法参照给分)()设、B两基地蔬菜总量分别吨、吨是有…………………………(分)得…………………………(3分)答、B两基地蔬菜总量分别300吨和00吨…………………………(分)()由题可知∴ ………………(5分)∵ …………………………(7分)∵0 ∴随增而增…………………………(8分)∴760 答当基地运300吨到乙市B基地运60吨到甲市B基地运0吨到乙市总运费少760元…………………………(0分)(提示处如有其它法参照给分) 3 ()证明如图7连接则∠∠ ……………………(分)∵B是直径∴∠B90° ∴∠+∠B90° ……………………(分)∵∠∠B ∴∠B+∠B90°即∠B90° ……………………(3分)∴B是⊙切线……………………(分)()如图7延长交⊙ ∵⊥BB是直径∴弧B弧B ∴∠B∠B …………………(5分)∵∠B∠GB∴△B∽△GB ∴ …………………(6分)∵BB ∴∠∠ ∵∠∠B ∴∠∠B ∴B ………………………(7分)又∠∠B90° ∴B∥ ∴∠∠ ∴∠∠ ∴GG3 ………………(8分)∴BBG+GBG+3 ∴………(9分)∴BG8(舍)或BG5 即BG长5 …………………………(0分)(提示处如有其它法参照给分)()由题可列方程组………………(分)得……………………(分)∴抛物线析式…………………(3分)()由题∠90°B 设直线析式则得∴直线析式当△∽△B(如图8)∵ ∴ ∴ 即∴ ∴ 将代入得∴ ………………(5分)由△∽△B得∴ …………(6分)(3)如图9连接B作G⊥G 则G ∴ …………(7分)当折线段BG与B重合取得值由()可知∠B∠ ∴ …………………(8分)∴当有值…………………(9分)()法可分如下三种情况当Q直角顶(如图0)由(3)易得∵(0)∴(0)设Q()Q作Q轴则R△Q∽R△Q ∴ ∴ 即……………………………(0分)当和直角顶易得Q或Q …………………(分)综上所述Q坐标或或或…………(分)法二由题得(0)∴坐标(0)设Q()当Q直角顶即∴ ……………………………(0分)当或直角顶易得Q或……………………………(分)综上所述Q坐标或或或…………(分)(提示处如有其它法参照给分)。

(3份试卷汇总)2019-2020学年湖北省恩施州中考数学统考试题

(3份试卷汇总)2019-2020学年湖北省恩施州中考数学统考试题

2019-2020学年中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.如图,点A是反比例函数y=kx的图象上的一点,过点A作AB⊥x轴,垂足为B.点C为y轴上的一点,连接AC,BC.若△ABC的面积为3,则k的值是()A.3 B.﹣3 C.6 D.﹣62.如图,一次函数1y axb和反比例函数2kyx=的图象相交于A,B两点,则使12y y>成立的x取值范围是()A.20x-<<或04x<<B.2x<-或04x<<C.2x<-或4x>D.20x-<<或4x>3.如图,已知O的周长等于6cmπ,则它的内接正六边形ABCDEF的面积是()A93B273C273D.34.若数a使关于x的不等式组()3x a2x11x2x2⎧-≥--⎪⎨--≥⎪⎩有解且所有解都是2x+6>0的解,且使关于y的分式方程y51y--+3=ay1-有整数解,则满足条件的所有整数a的个数是()A.5 B.4 C.3 D.25.如图,在正方形ABCD中,G为CD边中点,连接AG并延长,分别交对角线BD于点F,交BC边延长线于点E.若FG=2,则AE的长度为( )A .6B .8C .10D .126.已知代数式x+2y 的值是5,则代数式2x+4y+1的值是( )A .6B .7C .11D .127.如图,实数﹣3、x 、3、y 在数轴上的对应点分别为M 、N 、P 、Q ,这四个数中绝对值最小的数对应的点是( )A .点MB .点NC .点PD .点Q8.抛物线y=ax 2﹣4ax+4a ﹣1与x 轴交于A ,B 两点,C (x 1,m )和D (x 2,n )也是抛物线上的点,且x 1<2<x 2,x 1+x 2<4,则下列判断正确的是( )A .m <nB .m≤nC .m >nD .m≥n9.关于x 的方程2(5)410a x x ---=有实数根,则a 满足( )A .1a ≥B .1a >且5a ≠C .1a ≥且5a ≠D .5a ≠10.按如下方法,将△ABC 的三边缩小的原来的12,如图,任取一点O ,连AO 、BO 、CO ,并取它们的中点D 、E 、F ,得△DEF ,则下列说法正确的个数是( )①△ABC 与△DEF 是位似图形 ②△ABC 与△DEF 是相似图形③△ABC 与△DEF 的周长比为1:2 ④△ABC 与△DEF 的面积比为4:1.A .1B .2C .3D .4二、填空题(本题包括8个小题)11.如图,若正五边形和正六边形有一边重合,则∠BAC =_____.12.某公司销售一种进价为21元的电子产品,按标价的九折销售,仍可获利20%,则这种电子产品的标价为_________元. 13.太阳半径约为696000千米,数字696000用科学记数法表示为 千米.14.如图,矩形OABC 的边OA ,OC 分别在轴、轴上,点B 在第一象限,点D 在边BC 上,且∠AOD=30°,四边形OA′B′D 与四边形OABD 关于直线OD 对称(点A′和A ,B′和B 分别对应),若AB=1,反比例函数(0)k y k x=≠的图象恰好经过点A′,B ,则的值为_________.15.将一次函数2y x =-的图象平移,使其经过点(2,3),则所得直线的函数解析式是______. 16.如果一个扇形的弧长等于它的半径,那么此扇形成为“等边扇形”.则半径为2的“等边扇形”的面积为 .17.方程21x -=1的解是_____. 18.如图,已知函数y =x+2的图象与函数y =k x (k≠0)的图象交于A 、B 两点,连接BO 并延长交函数y =k x(k≠0)的图象于点C ,连接AC ,若△ABC 的面积为1.则k 的值为_____.三、解答题(本题包括8个小题)19.(6分)八年级(1)班学生在完成课题学习“体质健康测试中的数据分析”后,利用课外活动时间积极参加体育锻炼,每位同学从篮球、跳绳、立定跳远、长跑、铅球中选一项进行训练,训练后都进行了测试.现将项目选择情况及训练后篮球定时定点投篮测试成绩整理后作出如下统计图.请你根据上面提供的信息回答下列问题:扇形图中跳绳部分的扇形圆心角为 度,该班共有学生 人, 训练后篮球定时定点投篮平均每个人的进球数是 .老师决定从选择铅球训练的3名男生和1名女生中任选两名学生先进行测试,请用列表或画树形图的方法求恰好选中两名男生的概率. 20.(6分)如图,以D 为顶点的抛物线y=﹣x 2+bx+c 交x 轴于A 、B 两点,交y 轴于点C ,直线BC 的表达式为y=﹣x+1.求抛物线的表达式;在直线BC 上有一点P ,使PO+PA 的值最小,求点P 的坐标;在x 轴上是否存在一点Q ,使得以A 、C 、Q 为顶点的三角形与△BCD 相似?若存在,请求出点Q 的坐标;若不存在,请说明理由.21.(6分)观察下列等式:第1个等式:1111a 11323==⨯-⨯(); 第2个等式:21111a 35235==⨯-⨯(); 第3个等式:31111a 57257==⨯-⨯(); 第4个等式:41111a 79279==⨯-⨯(); …请解答下列问题:按以上规律列出第5个等式:a 5= = ;用含有n 的代数式表示第n 个等式:a n = = (n 为正整数);求a 1+a 2+a 3+a 4+…+a 100的值.22.(8分)如图中的小方格都是边长为1的正方形,△ABC 的顶点和O 点都在正方形的顶点上.以点O 为位似中心,在方格图中将△ABC 放大为原来的2倍,得到△A′B′C′;△A′B′C′绕点B′顺时针旋转90°,画出旋转后得到的△A″B′C″,并求边A′B′在旋转过程中扫过的图形面积.23.(8分)解不等式组:3(1)72323x x x x x --<⎧⎪-⎨-≤⎪⎩,并把解集在数轴上表示出来. 24.(10分)小李在学习了定理“直角三角形斜边上的中线等于斜边的一半”之后做了如下思考,请你帮他完成如下问题:他认为该定理有逆定理:“如果一个三角形某条边上的中线等于该边长的一半,那么这个三角形是直角三角形”应该成立.即如图①,在ABC ∆中,AD 是BC 边上的中线,若AD BD CD ==,求证:90BAC ∠=︒.如图②,已知矩形ABCD ,如果在矩形外存在一点E ,使得AE CE ⊥,求证:BE DE ⊥.(可以直接用第(1)问的结论)在第(2)问的条件下,如果AED ∆恰好是等边三角形,请求出此时矩形的两条邻边AB 与BC 的数量关系.25.(10分)石狮泰禾某童装专卖店在销售中发现,一款童装每件进价为80元,销售价为120元时,每天可售出20件,为了迎接“十一”国庆节,商店决定采取适当的降价措施,以扩大销售量,增加利润,经市场调查发现,如果每件童装降价1元,那么平均可多售出2件.设每件童装降价x 元时,每天可销售______ 件,每件盈利______ 元;(用x 的代数式表示)每件童装降价多少元时,平均每天赢利1200元.要想平均每天赢利2000元,可能吗?请说明理由.26.(12分)如图,AB 为⊙O 的直径,D 为⊙O 上一点,以AD 为斜边作△ADC ,使∠C=90°,∠CAD=∠DAB 求证:DC 是⊙O 的切线;若AB=9,AD=6,求DC 的长.参考答案一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.D【解析】试题分析:连结OA ,如图,∵AB ⊥x 轴,∴OC ∥AB ,∴S △OAB =S △CAB =3,而S △OAB =|k|,∴|k|=3,∵k<0,∴k=﹣1.故选D .考点:反比例函数系数k 的几何意义.2.B【解析】【分析】根据图象找出一次函数图象在反比例函数图象上方时对应的自变量的取值范围即可.【详解】观察函数图象可发现:2x <-或04x <<时,一次函数图象在反比例函数图象上方,∴使12y y >成立的x 取值范围是2x <-或04x <<,故选B .【点睛】本题考查了反比例函数与一次函数综合,函数与不等式,利用数形结合思想是解题的关键.3.C【解析】【分析】过点O 作OH ⊥AB 于点H ,连接OA ,OB ,由⊙O 的周长等于6πcm ,可得⊙O 的半径,又由圆的内接多边形的性质可得∠AOB=60°,即可证明△AOB 是等边三角形,根据等边三角形的性质可求出OH 的长,根据S 正六边形ABCDEF =6S △OAB 即可得出答案.【详解】过点O 作OH ⊥AB 于点H ,连接OA ,OB ,设⊙O 的半径为r ,∵⊙O 的周长等于6πcm ,∴2πr=6π,解得:r=3,∴⊙O 的半径为3cm ,即OA=3cm ,∵六边形ABCDEF 是正六边形,∴∠AOB=16×360°=60°,OA=OB,∴△OAB是等边三角形,∴AB=OA=3cm,∵OH⊥AB,∴AH=12AB,∴AB=OA=3cm,∴AH=32cm,OH=22OA AH-=332cm,∴S正六边形ABCDEF=6S△OAB=6×12×3×33=273(cm2).故选C.【点睛】此题考查了正多边形与圆的性质.此题难度适中,注意掌握数形结合思想的应用.4.D【解析】【分析】由不等式组有解且满足已知不等式,以及分式方程有整数解,确定出满足题意整数a的值即可.【详解】不等式组整理得:13x ax≥-⎧⎨≤⎩,由不等式组有解且都是2x+6>0,即x>-3的解,得到-3<a-1≤3,即-2<a≤4,即a=-1,0,1,2,3,4,分式方程去分母得:5-y+3y-3=a,即y=22a-,由分式方程有整数解,得到a=0,2,共2个,故选:D.【点睛】本题考查了分式方程的解,解一元一次不等式,以及解一元一次不等式组,熟练掌握运算法则是解本题的关键.5.D【解析】【分析】根据正方形的性质可得出AB∥CD,进而可得出△ABF∽△GDF,根据相似三角形的性质可得出AF AB==2,结合FG=2可求出AF、AG的长度,由AD∥BC,DG=CG,可得出AG=GE,即可求出AE=2AG=1.GF GD【详解】解:∵四边形ABCD为正方形,∴AB=CD,AB∥CD,∴∠ABF=∠GDF,∠BAF=∠DGF,∴△ABF∽△GDF,∴AF AB==2,GF GD∴AF=2GF=4,∴AG=2.∵AD∥BC,DG=CG,∴AG DG==1,GE CG∴AG=GE∴AE=2AG=1.故选:D.【点睛】本题考查了相似三角形的判定与性质、正方形的性质,利用相似三角形的性质求出AF的长度是解题的关键.6.C【解析】【分析】根据题意得出x+2y=5,将所求式子前两项提取2变形后,把x+2y=5代入计算即可求出值.【详解】∵x+2y=5,∴2x+4y=10,则2x+4y+1=10+1=1.故选C .【点睛】此题考查了代数式求值,利用了整体代入的思想,是一道基本题型.7.D【解析】∵实数-3,x ,3,y 在数轴上的对应点分别为M 、N 、P 、Q ,∴原点在点M 与N 之间,∴这四个数中绝对值最大的数对应的点是点Q .故选D .8.C【解析】分析:将一般式配方成顶点式,得出对称轴方程2x =,根据抛物线2441y ax ax a =-+-与x 轴交于,A B 两点,得出()()244410a a a =--⨯->,求得0a >,距离对称轴越远,函数的值越大,根据121224x x x x <<+<,,判断出它们与对称轴之间的关系即可判定.详解:∵()2244121y ax ax a a x =-+-=--,∴此抛物线对称轴为2x =,∵抛物线2441y ax ax a =-+-与x 轴交于,A B 两点,∴当24410ax ax a -+-=时,()()244410a a a =--⨯->,得0a >,∵121224x x x x <<+<,,∴1222x x ,->-∴m n >,故选C .点睛:考查二次函数的图象以及性质,开口向上,距离对称轴越远的点,对应的函数值越大,9.A【解析】【分析】分类讨论:当a=5时,原方程变形一元一次方程,有一个实数解;当a≠5时,根据判别式的意义得到a≥1且a≠5时,方程有两个实数根,然后综合两种情况即可得到满足条件的a 的范围.【详解】当a=5时,原方程变形为-4x-1=0,解得x=-14;当a≠5时,△=(-4)2-4(a-5)×(-1)≥0,解得a≥1,即a≥1且a≠5时,方程有两个实数根,所以a的取值范围为a≥1.故选A.【点睛】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2-4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.也考查了一元二次方程的定义.10.C【解析】【分析】根据位似图形的性质,得出①△ABC与△DEF是位似图形进而根据位似图形一定是相似图形得出②△ABC与△DEF是相似图形,再根据周长比等于位似比,以及根据面积比等于相似比的平方,即可得出答案.【详解】解:根据位似性质得出①△ABC与△DEF是位似图形,②△ABC与△DEF是相似图形,∵将△ABC的三边缩小的原来的12,∴△ABC与△DEF的周长比为2:1,故③选项错误,根据面积比等于相似比的平方,∴④△ABC与△DEF的面积比为4:1.故选C.【点睛】此题主要考查了位似图形的性质,中等难度,熟悉位似图形的性质是解决问题的关键.二、填空题(本题包括8个小题)11.132°【解析】解:∵正五边形的内角=180°-360°÷5=108°,正六边形的内角=180°-360°÷6=120°,∴∠BAC=360°-108°-120°=132°.故答案为132°.12.28【解析】设这种电子产品的标价为x元,由题意得:0.9x−21=21×20%,解得:x=28,所以这种电子产品的标价为28元.故答案为28.13.56.9610 .【解析】试题分析:696000=6.96×1,故答案为6.96×1.考点:科学记数法—表示较大的数.14 【解析】【详解】解:∵四边形ABCO 是矩形,AB=1,∴设B (m ,1),∴OA=BC=m ,∵四边形OA′B′D 与四边形OABD 关于直线OD 对称,∴OA′=OA=m ,∠A′OD=∠AOD=30°,∴∠A′OA=60°,过A′作A′E ⊥OA 于E ,∴OE=12m ,,∴A′(12m ,2m ), ∵反比例函数y=k x (k≠0)的图象恰好经过点A′,B ,∴12m•2m=m ,∴m=3,∴.【点睛】本题考查反比例函数图象上点的坐标特征;矩形的性质,利用数形结合思想解题是关键.15.1y x =+【解析】试题分析:解:设y=x+b ,∴3=2+b ,解得:b=1.∴函数解析式为:y=x+1.故答案为y=x+1.考点:一次函数点评:本题要注意利用一次函数的特点,求出未知数的值从而求得其解析式,求直线平移后的解析式时要注意平移时k 的值不变.16.1【解析】试题分析:根据题意可得圆心角的度数为:180π,则S=221802360360n r πππ⨯==1. 考点:扇形的面积计算.17.x=3【解析】去分母得:x ﹣1=2,解得:x=3,经检验x=3是分式方程的解,故答案为3.【点睛】本题主要考查解分式方程,解分式方程的思路是将分式方程化为整式方程,然后求解.去分母后解出的结果须代入最简公分母进行检验,结果为零,则原方程无解;结果不为零,则为原方程的解. 18.3【解析】【分析】点D的坐标.设A(a,a+2),B(b,b+2),则C(-b,-b-2),根据S△OAB=2,得出a-b=2 ①.根据S△OAC=2,得出-a-b=2 ②,①与②联立,求出a、b的值,即可求解.【详解】如图,连接OA.由题意,可得OB=OC,∴S△OAB=S△OAC=12S△ABC=2.设直线y=x+2与y轴交于点D,则D(0,2),设A(a,a+2),B(b,b+2),则C(-b,-b-2),∴S△OAB=12×2×(a-b)=2,∴a-b=2 ①.过A点作AM⊥x轴于点M,过C点作CN⊥x轴于点N,则S△OAM=S△OCN=12 k,∴S△OAC=S△OAM+S梯形AMNC-S△OCN=S梯形AMNC=2,∴12(-b-2+a+2)(-b-a)=2,将①代入,得∴-a-b=2 ②,①+②,得-2b=6,b=-3,①-②,得2a=2,a=1,∴A(1,3),∴k=1×3=3.故答案为3.【点睛】本题考查了反比例函数与一次函数的交点问题,反比例函数的性质,反比例函数图象上点的坐标特征,三角形的面积,待定系数法求函数的解析式等知识,综合性较强,难度适中.根据反比例函数的对称性得出OB=OC是解题的突破口.三、解答题(本题包括8个小题)19.(1)36 ,40,1;(2)12.【解析】【分析】(1)先求出跳绳所占比例,再用比例乘以360°即可,用篮球的人数除以所占比例即可;根据加权平均数的概念计算训练后篮球定时定点投篮人均进球数.(2)画出树状图,根据概率公式求解即可.【详解】(1)扇形图中跳绳部分的扇形圆心角为360°×(1-10%-20%-10%-10%)=36度;该班共有学生(2+1+7+4+1+1)÷10%=40人;训练后篮球定时定点投篮平均每个人的进球数是324557647820⨯+⨯+⨯+⨯++=1,故答案为:36,40,1.(2)三名男生分别用A1,A2,A3表示,一名女生用B表示.根据题意,可画树形图如下:由上图可知,共有12种等可能的结果,选中两名学生恰好是两名男生(记为事件M)的结果有6种,∴P(M)=612=12.20.(1)y=﹣x2+2x+1;(2)P (97,127);(1)当Q的坐标为(0,0)或(9,0)时,以A、C、Q为顶点的三角形与△BCD相似.【解析】【分析】(1)先求得点B和点C的坐标,然后将点B和点C的坐标代入抛物线的解析式得到关于b、c的方程,从而可求得b、c的值;(2)作点O关于BC的对称点O′,则O′(1,1),则OP+AP的最小值为AO′的长,然后求得AO′的解析式,最后可求得点P的坐标;(1)先求得点D的坐标,然后求得CD、BC、BD的长,依据勾股定理的逆定理证明△BCD为直角三角形,然后分为△AQC∽△DCB和△ACQ∽△DCB两种情况求解即可.【详解】(1)把x=0代入y=﹣x+1,得:y=1,∴C(0,1).将C(0,1)、B(1,0)代入y=﹣x2+bx+c得:9303b cc-++=⎧⎨=⎩,解得b=2,c=1.∴抛物线的解析式为y=﹣x2+2x+1.(2)如图所示:作点O关于BC的对称点O′,则O′(1,1).∵O′与O关于BC对称,∴PO=PO′.∴OP+AP=O′P+AP≤AO′.∴OP+AP的最小值=O′A=()()221330--+-=2.O′A的方程为y=3344x+P点满足33443y xy x⎧=+⎪⎨⎪=+⎩﹣解得:97127xy⎧=⎪⎪⎨⎪=⎪⎩所以P (97,127)(1)y=﹣x2+2x+1=﹣(x﹣1)2+4,∴D(1,4).又∵C(0,1,B(1,0),∴2,25∴CD2+CB2=BD2,∴∠DCB=90°.∵A(﹣1,0),C(0,1),∴OA=1,CO=1.∴13AO CDCO BC==.又∵∠AOC=DCB=90°,∴△AOC∽△DCB.∴当Q的坐标为(0,0)时,△AQC∽△DCB.∵△ACQ 为直角三角形,CO ⊥AQ ,∴△ACQ ∽△AOC .又∵△AOC ∽△DCB ,∴△ACQ ∽△DCB . ∴CD AC BD AQ =21025=AQ=3. ∴Q (9,0).综上所述,当Q 的坐标为(0,0)或(9,0)时,以A 、C 、Q 为顶点的三角形与△BCD 相似.【点睛】本题考查了二次函数的综合应用,解题的关键是掌握待定系数法求二次函数的解析式、轴对称图形的性质、相似三角形的性质和判定,分类讨论的思想.21.(1)1111 9112911⨯-⨯,()(2)()()1111 2n 12n+122n 12n+1⨯--⨯-,()(3)100201【解析】【分析】(1)(2)观察知,找等号后面的式子规律是关键:分子不变,为1;分母是两个连续奇数的乘积,它们与式子序号之间的关系为:序号的2倍减1和序号的2倍加1.(3)运用变化规律计算【详解】解:(1)a 5=1111=9112911⨯-⨯(); (2)a n =()()1111=2n 12n+122n 12n+1⨯--⨯-();(3)a 1+a 2+a 3+a 4+…+a 10011111111111=1++++232352572199201⨯-⨯-⨯-⋅⋅⋅⨯-()()()() 11111111111200100=1++++=1==23355719920122012201201⎛⎫⎛⎫⨯---⋅⋅⋅-⨯-⨯ ⎪ ⎪⎝⎭⎝⎭. 22.(1)作图见解析;(2)作图见解析;5π(平方单位).(1)连接AO、BO、CO并延长到2AO、2BO、2CO长度找到各点的对应点,顺次连接即可.(2)△A′B′C′的A′、C′绕点B′顺时针旋转90°得到对应点,顺次连接即可.A′B′在旋转过程中扫过的图形面积是一个扇形,根据扇形的面积公式计算即可.【详解】解:(1)见图中△A′B′C′(2)见图中△A″B′C″扇形的面积()22901242053604Sπππ=+=⋅=(平方单位).【点睛】本题主要考查了位似图形及旋转变换作图的方法及扇形的面积公式.23.x≥35【解析】分析:分别求解两个不等式,然后按照不等式的确定方法求解出不等式组的解集,然后表示在数轴上即可. 详解:()3172323x xxx x⎧--<⎪⎨--≤⎪⎩①②,由①得,x>﹣2;由②得,x≥35,故此不等式组的解集为:x≥35.在数轴上表示为:.点睛:本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.24.(1)详见解析;(2)详见解析;(3)3BC=(1)利用等腰三角形的性质和三角形内角和即可得出结论;(2)先判断出OE=12AC ,即可得出OE=12BD ,即可得出结论; (3)先判断出△ABE 是底角是30°的等腰三角形,即可构造直角三角形即可得出结论.【详解】(1)∵AD=BD ,∴∠B=∠BAD ,∵AD=CD ,∴∠C=∠CAD ,在△ABC 中,∠B+∠C+∠BAC=180°,∴∠B+∠C+∠BAD+∠CAD=∠B+∠C+∠B+∠C=180°∴∠B+∠C=90°,∴∠BAC=90°,(2)如图②,连接AC 与BD ,交点为O ,连接OE四边形ABCD 是矩形1122OA OB OC OD AC BD ∴===== AE CE ⊥90AEC ∴∠=︒12OE AC ∴=12OE BD ∴= 90BED ∴∠=︒BE DE ∴⊥(3)如图3,过点B 做BF AE ⊥于点F四边形ABCD 是矩形AD BC ∴=,90BAD ∠=︒ ADE ∆是等边三角形AE AD BC ∴==,60DAE AED ∠=∠=︒由(2)知,90BED ∠=︒30BAE BEA ∴∠=∠=︒2AE AF ∴=在Rt ABF ∆中,30BAE ∠=︒2AB AF ∴=,3AF BF =3AE ∴=AE BC =3BC AB ∴=【点睛】此题是四边形综合题,主要考查了矩形是性质,直角三角形的性质和判定,含30°角的直角三角形的性质,三角形的内角和公式,解(1)的关键是判断出∠B=∠BAD ,解(2)的关键是判断出OE=12AC ,解(3)的关键是判断出△ABE 是底角为30°的等腰三角形,进而构造直角三角形.25.(1)(20+2x ),(40﹣x );(2)每件童装降价20元或10元,平均每天赢利1200元;(3)不可能做到平均每天盈利2000元.【解析】【分析】(1)、根据销售量=原销售量+因价格下降而增加的数量;每件利润=原售价-进价-降价,列式即可;(2)、根据总利润=单件利润×数量,列出方程即可;(3)、根据(2)中的相关关系方程,判断方程是否有实数根即可.【详解】(1)、设每件童装降价x 元时,每天可销售20+2x 件,每件盈利40-x 元,故答案为(20+2x ),(40-x );解得:121020x x ==,,即每件童装降价10元或20元时,平均每天盈利1200元;(3)、(20+2x)(40-x)=2000, 230x 6000x -+=,∵此方程无解,∴不可能盈利2000元.【点睛】本题主要考查的是一元二次方程的实际应用问题,属于中等难度题型.解决这个问题的关键就是要根据题意列出方程.26.(1)见解析;(2)【解析】分析:(1)如下图,连接OD ,由OA=OD 可得∠DAO=∠ADO ,结合∠CAD=∠DAB ,可得∠CAD=∠ADO ,从而可得OD ∥AC ,由此可得∠C+∠CDO=180°,结合∠C=90°可得∠CDO=90°即可证得CD 是⊙O 的切线;(2)如下图,连接BD ,由AB 是⊙O 的直径可得∠ADB=90°=∠C ,结合∠CAD=∠DAB 可得△ACD ∽△ADB ,由此可得AD AB CD BD =,在Rt △ABD 中由AD=6,AB=9易得BD=,由此即可解得CD 的长了. 详解:(1)如下图,连接OD .∵OA=OD ,∴∠DAB=∠ODA ,∵∠CAD=∠DAB ,∴∠ODA=∠CAD∴AC ∥OD∴∠C+∠ODC=180°∵∠C=90°∴∠ODC=90°∴OD ⊥CD ,∴CD 是⊙O 的切线.(2)如下图,连接BD ,∵AB 是⊙O 的直径,∴∠ADB=90°,∵AB=9,AD=6,∵∠CAD=∠BAD,∠C=∠ADB=90°,∴△ACD∽△ADB,∴AD ABCD BD=,∴635 CD=,∴CD=185=25.点睛:这是一道考查“圆和直线的位置关系与相似三角形的判定和性质”的几何综合题,作出如图所示的辅助线,熟悉“圆的切线的判定方法”和“相似三角形的判定和性质”是正确解答本题的关键.2019-2020学年中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.对于反比例函数y=kx(k≠0),下列所给的四个结论中,正确的是()A.若点(3,6)在其图象上,则(﹣3,6)也在其图象上B.当k>0时,y随x的增大而减小C.过图象上任一点P作x轴、y轴的线,垂足分别A、B,则矩形OAPB的面积为kD.反比例函数的图象关于直线y=﹣x成轴对称2.如图,A,B两点分别位于一个池塘的两端,小聪想用绳子测量A,B间的距离,但绳子不够长,一位同学帮他想了一个主意:先在地上取一个可以直接到达A,B的点C,找到AC,BC的中点D,E,并且测出DE的长为10m,则A,B间的距离为()A.15m B.25m C.30m D.20m3.如图,已知l1∥l2,∠A=40°,∠1=60°,则∠2的度数为()A.40°B.60°C.80°D.100°4.下列几何体是由4个相同的小正方体搭成的,其中左视图与俯视图相同的是()A.B.C.D.5.如图,是由几个大小相同的小立方块所搭几何体的俯视图,其中小正方形中的数字表示在该位置的小立方块的个数,则这个几何体的主视图是()A.B.C.D.6.如图,矩形ABCD 的边AB=1,BE 平分∠ABC,交AD 于点E,若点E 是AD 的中点,以点B 为圆心,BE 长为半径画弧,交BC 于点F,则图中阴影部分的面积是()A .2-4πB .324π-C .2-8πD .324π- 7.如图,半径为3的⊙A 经过原点O 和点C (0,2),B 是y 轴左侧⊙A 优弧上一点,则tan ∠OBC 为( )A .13B .22C .24D .2238.如图是由几个大小相同的小正方体搭成的几何体的俯视图,小正方形中的数字表示该位置上小正方体的个数,则该几何体的左视图是( )A .B .C .D .9.下列计算正确的是( )A .(a+2)(a ﹣2)=a 2﹣2B .(a+1)(a ﹣2)=a 2+a ﹣2C .(a+b )2=a 2+b 2D .(a ﹣b )2=a 2﹣2ab+b 210.平面直角坐标系内一点()2, 3P -关于原点对称点的坐标是( )A .()3,2-B .()2,3C .()2,3--D .()2,3-二、填空题(本题包括8个小题)11.如图,直线a ∥b ,∠BAC 的顶点A 在直线a 上,且∠BAC =100°.若∠1=34°,则∠2=_____°.12.如图,△ABC 中,AB =6,AC =4,AD 、AE 分别是其角平分线和中线,过点C 作CG ⊥AD 于F ,交AB 于G ,连接EF ,则线段EF 的长为_____.13.若分式15x -有意义,则实数x 的取值范围是_______. 14.从﹣1,2,3,﹣6这四个数中任选两数,分别记作m ,n ,那么点(m ,n )在函数图象上的概率是 .15.如图,点A ,B ,C 在⊙O 上,∠OBC=18°,则∠A=_______________________.16.如图,四边形ACDF 是正方形,CEA ∠和ABF ∠都是直角,且点,,E A B 三点共线,4AB =,则阴影部分的面积是__________.17.我们知道:1+3=4,1+3+5=9,1+3+5+7=16,…,观察下面的一列数:-1,2,,-3, 4,-5,6…,将这些数排列成如图的形式,根据其规律猜想,第20行从左到右第3个数是 .18.甲乙两人8次射击的成绩如图所示(单位:环)根据图中的信息判断,这8次射击中成绩比较稳定的是______(填“甲”或“乙”)三、解答题(本题包括8个小题)19.(6分)一天晚上,李明利用灯光下的影子长来测量一路灯D的高度.如图,当在点A处放置标杆时,李明测得直立的标杆高AM与影子长AE正好相等,接着李明沿AC方向继续向前走,走到点B处放置同一个标杆,测得直立标杆高BN的影子恰好是线段AB,并测得AB=1.2m,已知标杆直立时的高为1.8m,求路灯的高CD的长.20.(6分)如图,在Rt△ABC中,∠C=90°,AD平分∠BAC交BC于点D,O为AB上一点,经过点A,D 的⊙O分别交AB,AC于点E,F,连接OF交AD于点G.求证:BC是⊙O的切线;设AB=x,AF=y,试用含x,y的代数式表示线段AD的长;若BE=8,sinB=513,求DG的长,21.(6分)如图,△ABC的顶点坐标分别为A(1,3)、B(4,1)、C(1,1).在图中以点O为位似中心在原点的另一侧画出△ABC放大1倍后得到的△A1B1C1,并写出A1的坐标;请在图中画出△ABC绕点O逆时针旋转90°后得到的△A1B1C1.22.(8分)进入冬季,某商家根据市民健康需要,代理销售一种防尘口罩,进货价为20元/包,经市场销售发现:销售单价为30元/包时,每周可售出200包,每涨价1元,就少售出5包.若供货厂家规定市场价不得低于30元/包.试确定周销售量y(包)与售价x(元/包)之间的函数关系式;试确定商场每周销售这种防尘口罩所获得的利润w(元)与售价x(元/包)之间的函数关系式,并直接写出售价x的范围;当售价x(元/包)定为多少元时,商场每周销售这种防尘口罩所获得的利润w(元)最大?最大利润是多少?23.(8分)计算:18×(2﹣16)﹣6÷3+13.24.(10分)如图,要利用一面墙(墙长为25米)建羊圈,用100米的围栏围成总面积为400平方米的三个大小相同的矩形羊圈,求羊圈的边长AB,BC各为多少米?25.(10分)已知:如图,在平行四边形ABCD中,E、F分别为边AB、CD的中点,BD是对角线,AG∥DB 交CB的延长线于G.求证:△ADE≌△CBF;若四边形BEDF是菱形,则四边形AGBD是什么特殊四边形?并证明你的结论.26.(12分)如图中的小方格都是边长为1的正方形,△ABC的顶点和O点都在正方形的顶点上.以点O为位似中心,在方格图中将△ABC放大为原来的2倍,得到△A′B′C′;△A′B′C′绕点B′顺时针旋转90°,画出旋转后得到的△A″B′C″,并求边A′B′在旋转过程中扫过的图形面积.参考答案一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.D【解析】分析:根据反比例函数的性质一一判断即可;详解:A.若点(3,6)在其图象上,则(﹣3,6)不在其图象上,故本选项不符合题意;B.当k>0时,y随x的增大而减小,错误,应该是当k>0时,在每个象限,y随x的增大而减小;故本选项不符合题意;C.错误,应该是过图象上任一点P作x轴、y轴的线,垂足分别A、B,则矩形OAPB的面积为|k|;故本选项不符合题意;D.正确,本选项符合题意.故选D.点睛:本题考查了反比例函数的性质,解题的关键是熟练掌握反比例函数的性质,灵活运用所学知识解决问题,属于中考常考题型.2.D【解析】【分析】根据三角形的中位线定理即可得到结果.【详解】解:由题意得AB=2DE=20cm,故选D.本题考查的是三角形的中位线,解答本题的关键是熟练掌握三角形的中位线定理:三角形的中位线平行于第三边,并且等于第三边的一半.3.D【解析】【分析】根据两直线平行,内错角相等可得∠3=∠1,再根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.【详解】解:∵l1∥l2,∴∠3=∠1=60°,∴∠2=∠A+∠3=40°+60°=100°.故选D.【点睛】本题考查了平行线的性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记性质并准确识图是解题的关键.4.C【解析】试题分析:从物体的前面向后面投射所得的视图称主视图(正视图)——能反映物体的前面形状;从物体的上面向下面投射所得的视图称俯视图——能反映物体的上面形状;从物体的左面向右面投射所得的视图称左视图——能反映物体的左面形状.选项C左视图与俯视图都是,故选C.5.C【解析】【分析】由俯视图知该几何体共2列,其中第1列前一排1个正方形、后1排2个正方形,第2列只有前排2个正方形,据此可得.由俯视图知该几何体共2列,其中第1列前一排1个正方形、后1排2个正方形,第2列只有前排2个正方形,所以其主视图为:故选C.【点睛】考查了三视图的知识,主视图是从物体的正面看得到的视图.6.B【解析】【分析】利用矩形的性质以及结合角平分线的性质分别求出AE,BE的长以及∠EBF的度数,进而利用图中阴影部分的面积=S ABCD矩形-S ABE-S EBF扇形,求出答案.【详解】∵矩形ABCD的边AB=1,BE平分∠ABC,∴∠ABE=∠EBF=45°,AD∥BC,∴∠AEB=∠CBE=45°,∴AB=AE=1,BE=2,∵点E是AD的中点,∴AE=ED=1,∴图中阴影部分的面积=S ABCD矩形−S ABE−S EBF扇形=1×2−12×1×1−245(2)3=-24π⨯π故选B.【点睛】此题考查矩形的性质,扇形面积的计算,解题关键在于掌握运算公式7.C【解析】试题分析:连结CD,可得CD为直径,在Rt△OCD中,CD=6,OC=2,根据勾股定理求得OD=4所以tan∠CDO=,由圆周角定理得,∠OBC=∠CDO,则tan∠OBC=,故答案选C.。

湖北省恩施州2019-2020学年中考第二次质量检测数学试题含解析

湖北省恩施州2019-2020学年中考第二次质量检测数学试题含解析

湖北省恩施州2019-2020学年中考第二次质量检测数学试题一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知一次函数y=﹣2x+3,当0≤x≤5时,函数y 的最大值是( )A .0B .3C .﹣3D .﹣72.下列因式分解正确的是( )A .()2211x x +=+B .()22211x x x +-=- C .()()22x 22x 1x 1=-+- D .()2212x x x x -+=-+ 3.已知两组数据,2、3、4和3、4、5,那么下列说法正确的是( )A .中位数不相等,方差不相等B .平均数相等,方差不相等C .中位数不相等,平均数相等D .平均数不相等,方差相等4.在,90ABC C ∆∠=o 中,2AC BC =,则tan A 的值为( )A .12B .2C .5D .25 5.如图,四边形ABCE 内接于⊙O ,∠DCE=50°,则∠BOE=( )A .100°B .50°C .70°D .130°6.某校九年级“诗歌大会”比赛中,各班代表队得分如下(单位:分):9,7,8,7,9,7,6,则各代表队得分的中位数是( )A .9分B .8分C .7分D .6分7.如图,点P 是∠AOB 外的一点,点M ,N 分别是∠AOB 两边上的点,点P 关于OA 的对称点Q 恰好落在线段MN 上,点P 关于OB 的对称点R 落在MN 的延长线上,若PM =2.5cm ,PN =3cm ,MN =4cm ,则线段QR 的长为( )A.4.5cm B.5.5cm C.6.5cm D.7cm8.如图,AB是⊙O的一条弦,点C是⊙O上一动点,且∠ACB=30°,点E,F分别是AC,BC的中点,直线EF与⊙O交于G,H两点,若⊙O的半径为6,则GE+FH的最大值为()A.6 B.9 C.10 D.129.今年,我省启动了“关爱留守儿童工程”.某村小为了了解各年级留守儿童的数量,对一到六年级留守儿童数量进行了统计,得到每个年级的留守儿童人数分别为10,15,10,17,18,1.对于这组数据,下列说法错误的是()A.平均数是15 B.众数是10 C.中位数是17 D.方差是44 310.一次函数y=2x+1的图像不经过( )A.第一象限B.第二象限C.第三象限D.第四象限11.下列解方程去分母正确的是( )A.由,得2x﹣1=3﹣3xB.由,得2x﹣2﹣x=﹣4C.由,得2y-15=3yD.由,得3(y+1)=2y+612.观察下列图形,其中既是轴对称图形,又是中心对称图形的是()A.B.C.D.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.一个不透明口袋里装有形状、大小都相同的2个红球和4个黑球,从中任意摸出一个球恰好是红球的概率是____.14.一个正多边形的每个内角等于150o ,则它的边数是____.15.现在网购越来越多地成为人们的一种消费方式,天猫和淘宝的支付交易额突破67000000000元,将67000000000元用科学记数法表示为_____.16.如图,在平面直角坐标系xOy 中,△ABC 的顶点A 、C 在坐标轴上,点B 的坐标是(2,2).将△ABC 沿x 轴向左平移得到△A 1B 1C 1,点1B 落在函数y=-6x .如果此时四边形11AAC C 的面积等于552,那么点1C 的坐标是________.17.“复兴号”是我国具有完全自主知识产权、达到世界先进水平的动车组列车.“复兴号”的速度比原来列车的速度每小时快50千米,提速后从北京到上海运行时间缩短了30分钟.已知从北京到上海全程约1320千米,求“复兴号”的速度.设“复兴号”的速度为x 千米/时,依题意,可列方程为__.18.反比例函数k y x=的图象经过点()1,6和(),3m -,则m = ______ . 三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,在平面直角坐标系中,直线y =x+2与x 轴,y 轴分别交于A ,B 两点,点C (2,m )为直线y =x+2上一点,直线y =﹣12x+b 过点C . 求m 和b 的值;直线y =﹣12x+b 与x 轴交于点D ,动点P 从点D 开始以每秒1个单位的速度向x 轴负方向运动.设点P 的运动时间为t 秒.①若点P 在线段DA 上,且△ACP 的面积为10,求t 的值;②是否存在t 的值,使△ACP 为等腰三角形?若存在,直接写出t 的值;若不存在,请说明理由. 20.(6分)如图,在Rt △ABC 中,∠C =90°,AC 5=tanB 12=,半径为2的⊙C 分别交AC ,BC 于点D 、E ,得到DE 弧.求证:AB 为⊙C 的切线.求图中阴影部分的面积.21.(6分)某初级中学对毕业班学生三年来参加市级以上各项活动获奖情况进行统计,七年级时有48人次获奖,之后逐年增加,到九年级毕业时累计共有183人次获奖,求这两年中获奖人次的平均年增长率.22.(8分)已知:如图,抛物线y=ax2+bx+c与坐标轴分别交于点A(0,6),B(6,0),C(﹣2,0),点P是线段AB上方抛物线上的一个动点.(1)求抛物线的解析式;(2)当点P运动到什么位置时,△PAB的面积有最大值?(3)过点P作x轴的垂线,交线段AB于点D,再过点P做PE∥x轴交抛物线于点E,连结DE,请问是否存在点P使△PDE为等腰直角三角形?若存在,求出点P的坐标;若不存在,说明理由.23.(8分)如图所示,AB是⊙O的一条弦,OD⊥AB,垂足为C,交⊙O于点D,点E在⊙O上.若∠AOD=52°,求∠DEB的度数;若OC=3,OA=5,求AB的长.24.(10分)已知,如图,在坡顶A处的同一水平面上有一座古塔BC,数学兴趣小组的同学在斜坡底P 处测得该塔的塔顶B的仰角为45°,然后他们沿着坡度为1:2.4的斜坡AP攀行了26米,在坡顶A处又测得该塔的塔顶B的仰角为76°.求:坡顶A到地面PO的距离;古塔BC的高度(结果精确到1米).25.(10分)请根据图中提供的信息,回答下列问题:(1)一个水瓶与一个水杯分别是多少元?(2)甲、乙两家商场同时出售同样的水瓶和水杯,为了迎接新年,两家商场都在搞促销活动,甲商场规定:这两种商品都打八折;乙商场规定:买一个水瓶赠送两个水杯,另外购买的水杯按原价卖.若某单位想要买5个水瓶和n(n>10,且n为整数)个水杯,请问选择哪家商场购买更合算,并说明理由.(必须在同一家购买)26.(12分)为了解中学生“平均每天体育锻炼时间”的情况,某地区教育部门随机调查了若干名中学生,根据调查结果制作统计图①和图②,请根据相关信息,解答下列问题:本次接受随机抽样调查的中学生人数为_______,图①中m的值是_____;求本次调查获取的样本数据的平均数、众数和中位数;根据统计数据,估计该地区250000名中学生中,每天在校体育锻炼时间大于等于1.5h的人数.27.(12分)定义:对于给定的二次函数y=a(x﹣h)2+k(a≠0),其伴生一次函数为y=a(x﹣h)+k,例如:二次函数y=2(x+1)2﹣3的伴生一次函数为y=2(x+1)﹣3,即y=2x﹣1.(1)已知二次函数y=(x﹣1)2﹣4,则其伴生一次函数的表达式为_____;(2)试说明二次函数y=(x﹣1)2﹣4的顶点在其伴生一次函数的图象上;(3)如图,二次函数y=m(x﹣1)2﹣4m(m≠0)的伴生一次函数的图象与x轴、y轴分别交于点B、A,且两函数图象的交点的横坐标分别为1和2,在∠AOB内部的二次函数y=m(x﹣1)2﹣4m的图象上有一动点P,过点P作x轴的平行线与其伴生一次函数的图象交于点Q,设点P的横坐标为n,直接写出线段PQ的长为32时n的值.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.B【解析】【分析】由于一次函数y=-2x+3中k=-2<0由此可以确定y随x的变化而变化的情况,即确定函数的增减性,然后利用解析式即可求出自变量在0≤x≤5范围内函数值的最大值.【详解】∵一次函数y=﹣2x+3中k=﹣2<0,∴y随x的增大而减小,∴在0≤x≤5范围内,x=0时,函数值最大﹣2×0+3=3,故选B.【点睛】本题考查了一次函数y=kx+b的图象的性质:①k>0,y随x的增大而增大;②k<0,y 随x的增大而减小.2.C【解析】【分析】依据因式分解的定义以及提公因式法和公式法,即可得到正确结论.【详解】解:D选项中,多项式x2-x+2在实数范围内不能因式分解;选项B,A中的等式不成立;选项C中,2x2-2=2(x2-1)=2(x+1)(x-1),正确.故选C.【点睛】本题考查因式分解,解决问题的关键是掌握提公因式法和公式法的方法.3.D【解析】【分析】分别利用平均数以及方差和中位数的定义分析,进而求出答案.【详解】2、3、4的平均数为:13(2+3+4)=3,中位数是3,方差为:13[(2﹣3)2+(3﹣3)2+(3﹣4)2]=23; 3、4、5的平均数为:13(3+4+5)=4,中位数是4,方差为:13 [(3﹣4)2+(4﹣4)2+(5﹣4)2]= 23; 故中位数不相等,方差相等.故选:D .【点睛】本题考查了平均数、中位数、方差的意义,解答本题的关键是熟练掌握这三种数的计算方法.4.A【解析】【分析】本题可以利用锐角三角函数的定义求解即可.【详解】解:tanA=BC AC , ∵AC=2BC ,∴tanA=12. 故选:A .【点睛】本题考查了正切函数的概念,掌握直角三角形中角的对边与邻边的比是关键 .5.A【解析】【分析】根据圆内接四边形的任意一个外角等于它的内对角求出∠A ,根据圆周角定理计算即可.【详解】Q 四边形ABCE 内接于⊙O ,50A DCE ∴∠=∠=︒,由圆周角定理可得,2100BOE A ∠=∠=︒,故选:A .【点睛】本题考查的知识点是圆的内接四边形性质,解题关键是熟记圆内接四边形的任意一个外角等于它的内对角(就是和它相邻的内角的对角).6.C【解析】分析: 根据中位数的定义,首先将这组数据按从小到大的顺序排列起来,由于这组数据共有7个,故处于最中间位置的数就是第四个,从而得出答案.详解: 将这组数据按从小到大排列为:6<7<7<7<8<9<9,故中位数为:7分,故答案为:C.点睛: 本题主要考查中位数,解题的关键是掌握中位数的定义:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.7.A【解析】试题分析:利用轴对称图形的性质得出PM=MQ,PN=NR,进而利用PM=2.5cm,PN=3cm,MN=3cm,得出NQ=MN-MQ=3-2.5=2.5(cm),即可得出QR的长RN+NQ=3+2.5=3.5(cm).故选A.考点:轴对称图形的性质8.B【解析】【分析】首先连接OA、OB,根据圆周角定理,求出∠AOB=2∠ACB=60°,进而判断出△AOB为等边三角形;然后根据⊙O的半径为6,可得AB=OA=OB=6,再根据三角形的中位线定理,求出EF的长度;最后判断出当弦GH是圆的直径时,它的值最大,进而求出GE+FH的最大值是多少即可.【详解】解:如图,连接OA、OB,,∵∠ACB=30°,∴∠AOB=2∠ACB=60°,∵OA=OB,∴△AOB为等边三角形,∵⊙O的半径为6,∴AB=OA=OB=6,∵点E,F分别是AC、BC的中点,∴EF=12AB=3,要求GE+FH的最大值,即求GE+FH+EF(弦GH)的最大值,∵当弦GH是圆的直径时,它的最大值为:6×2=12,∴GE+FH的最大值为:12﹣3=1.故选:B.【点睛】本题结合动点考查了圆周角定理,三角形中位线定理,有一定难度.确定GH的位置是解题的关键. 9.C【解析】【详解】解:中位数应该是15和17的平均数16,故C选项错误,其他选择正确.故选C.【点睛】本题考查求中位数,众数,方差,理解相关概念是本题的解题关键.10.D【解析】【分析】根据一次函数的系数判断出函数图象所经过的象限,由k=2>0,b=1>0可知,一次函数y=2x+1的图象过一、二、三象限.另外此题还可以通过直接画函数图象来解答.【详解】∵k=2>0,b=1>0,∴根据一次函数图象的性质即可判断该函数图象经过一、二、三象限,不经过第四象限.故选D.【点睛】本题考查一次函数图象与系数的关系,解决此类题目的关键是确定k、b的正负.11.D【解析】【分析】根据等式的性质2,A方程的两边都乘以6,B方程的两边都乘以4,C方程的两边都乘以15,D方程的两边都乘以6,去分母后判断即可.【详解】A.由,得:2x﹣6=3﹣3x,此选项错误;B.由,得:2x﹣4﹣x=﹣4,此选项错误;C.由,得:5y﹣15=3y,此选项错误;D.由,得:3(y+1)=2y+6,此选项正确.故选D.【点睛】本题考查了解一元一次方程,注意在去分母时,方程两端同乘各分母的最小公倍数时,不要漏乘没有分母的项,同时要把分子(如果是一个多项式)作为一个整体加上括号.12.C【解析】【分析】根据轴对称图形与中心对称图形的概念求解.【详解】解:A、既不是轴对称图形,也不是中心对称图形.故本选项错误;B、是轴对称图形,不是中心对称图形.故本选项错误;C、是轴对称图形,也是中心对称图形.故本选项正确;D、既不是轴对称图形,也不是中心对称图形.故本选项错误.故选C.【点睛】本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.1 3 .【解析】【分析】根据随机事件概率大小的求法,找准两点:①符合条件的情况数目;②全部情况的总数.二者的比值就是其发生的概率的大小.【详解】∵一个不透明口袋里装有形状、大小都相同的2个红球和4个黑球,∴从中任意摸出一个球恰好是红球的概率为:21 243=+,故答案为13.【点睛】本题考查了概率公式的应用.注意概率=所求情况数与总情况数之比.14.十二【解析】【分析】首先根据内角度数计算出外角度数,再用外角和360°除以外角度数即可.【详解】∵一个正多边形的每个内角为150°,∴它的外角为30°,360°÷30°=12,故答案为十二.【点睛】此题主要考查了多边形的内角与外角,关键是掌握内角与外角互为邻补角.15.106.710⨯【解析】【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】67000000000的小数点向左移动10位得到6.7,所以67000000000用科学记数法表示为106.710⨯,故答案为:106.710⨯.【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.16. (-5,112) 【解析】 分析:依据点B 的坐标是(2,2),BB 2∥AA 2,可得点B 2的纵坐标为2,再根据点B 2落在函数y=﹣6x 的图象上,即可得到BB 2=AA 2=5=CC 2,依据四边形AA 2C 2C 的面积等于552,可得OC=112,进而得到点C 2的坐标是(﹣5,112). 详解:如图,∵点B 的坐标是(2,2),BB 2∥AA 2,∴点B 2的纵坐标为2.又∵点B 2落在函数y=﹣6x 的图象上,∴当y=2时,x=﹣3,∴BB 2=AA 2=5=CC 2.又∵四边形AA 2C 2C 的面积等于552,∴AA 2×OC=552,∴OC=112,∴点C 2的坐标是(﹣5,112). 故答案为(﹣5,112).点睛:本题主要考查了反比例函数的综合题的知识,解答本题的关键是熟练掌握反比例函数的性质以及平移的性质.在平面直角坐标系内,把一个图形各个点的横坐标都加上(或减去)一个整数a ,相应的新图形就是把原图形向右(或向左)平移a 个单位长度.17.132013201502x x -=- 【解析】【分析】设“复兴号”的速度为x 千米/时,则原来列车的速度为(x-50)千米/时,根据提速后从北京到上海运行时间缩短了30分钟列出方程即可.【详解】设“复兴号”的速度为x 千米/时,则原来列车的速度为(x-50)千米/时,根据题意得132013201502x x -=-. 故答案为132013201502x x -=-. 【点睛】本题主要考查由实际问题抽象出分式方程,解题的关键是理解题意,找到题目蕴含的相等关系. 18.-1【解析】【分析】先把点(1,6)代入反比例函数y=k x ,求出k 的值,进而可得出反比例函数的解析式,再把点(m ,-3)代入即可得出m 的值.【详解】解:∵反比例函数y=k x 的图象经过点(1,6), ∴6=1k ,解得k=6,∴反比例函数的解析式为y=6x. ∵点(m ,-3)在此函数图象上上,∴-3=6m,解得m=-1. 故答案为-1.【点睛】本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)4,5;(2)①7;②4或12-或12+8.【解析】【分析】()1分别令y 0=可得b 和m 的值;()2①根据ACP V 的面积公式列等式可得t 的值;②存在,分三种情况:i)当AC CP =时,如图1,ii)当AC AP =时,如图2,iii)当AP PC =时,如图3,分别求t 的值即可.【详解】()1把点()C 2,m 代入直线y x 2=+中得:m 224=+=,∴点()C 2,4,Q 直线1y x b 2=-+过点C , 142b 2=-⨯+,b 5=; ()2①由题意得:PD t =,y x 2=+中,当y 0=时,x 20+=,x 2=-,()A 2,0∴-,1y x 52=-+中,当y 0=时,1x 502-+=, x 10=,()D 10,0∴,AD 10212∴=+=,ACP QV 的面积为10, ()112t 4102∴-⋅=, t 7=,则t 的值7秒;②存在,分三种情况:i)当AC CP =时,如图1,过C 作CE AD ⊥于E ,PE AE 4∴==,PD 1284∴=-=,即t 4=;ii)当AC AP =时,如图2,2212AC AP AP 4442===+=1DP t 1242∴==-2DP t 1242==+;iii)当AP PC =时,如图3,OA OB 2==Q ,BAO 45∠∴=o ,CAP ACP 45∠∠∴==o ,APC 90∠∴=o ,AP PC 4∴==,PD 1248∴=-=,即t 8=;综上,当t 4=秒或(1242-秒或(1242+秒或8秒时,ACP V 为等腰三角形.【点睛】本题属于一次函数综合题,涉及的知识有:待定系数法求一次函数解析式,坐标与图形性质,勾股定理,等腰三角形的判定,以及一次函数与坐标轴的交点,熟练掌握性质及定理是解本题的关键,并注意运用分类讨论的思想解决问题.20. (1)证明见解析;(2)1-π.【解析】【分析】(1)解直角三角形求出BC ,根据勾股定理求出AB ,根据三角形面积公式求出CF ,根据切线的判定得出即可;(2)分别求出△ACB 的面积和扇形DCE 的面积,即可得出答案.【详解】(1)过C 作CF ⊥AB 于F .∵在Rt △ABC 中,∠C =90°,AC 5=tanB 12AC BC ==,∴BC =5AB 22AC BC =+=1.∵△ACB 的面积S 1122AB CF AC BC =⨯⨯=⨯⨯,∴CF 525⨯==2,∴CF 为⊙C 的半径. ∵CF ⊥AB ,∴AB 为⊙C 的切线;(2)图中阴影部分的面积=S△ACB﹣S扇形DCE219025252360π⨯==1﹣π.【点睛】本题考查了勾股定理,扇形的面积,解直角三角形,切线的性质和判定等知识点,能求出CF的长是解答此题的关键.21.25%【解析】【分析】首先设这两年中获奖人次的平均年增长率为x,则可得八年级的获奖人数为48(1+x),九年级的获奖人数为48(1+x)2;故根据题意可得48(1+x)2=183,即可求得x的值,即可求解本题.【详解】设这两年中获奖人次的平均年增长率为x,根据题意得:48+48(1+x)+48(1+x)2=183,解得:x1=14=25%,x2=﹣134(不符合题意,舍去).答:这两年中获奖人次的年平均年增长率为25%22.(1)抛物线解析式为y=﹣12x2+2x+6;(2)当t=3时,△PAB的面积有最大值;(3)点P(4,6).【解析】【分析】(1)利用待定系数法进行求解即可得;(2)作PM⊥OB与点M,交AB于点N,作AG⊥PM,先求出直线AB解析式为y=﹣x+6,设P(t,﹣12t2+2t+6),则N(t,﹣t+6),由S△PAB=S△PAN+S△PBN=12PN•AG+12PN•BM=12PN•OB列出关于t的函数表达式,利用二次函数的性质求解可得;(3)由PH⊥OB知DH∥AO,据此由OA=OB=6得∠BDH=∠BAO=45°,结合∠DPE=90°知若△PDE为等腰直角三角形,则∠EDP=45°,从而得出点E与点A重合,求出y=6时x的值即可得出答案.【详解】(1)∵抛物线过点B(6,0)、C(﹣2,0),∴设抛物线解析式为y=a(x﹣6)(x+2),将点A(0,6)代入,得:﹣12a=6,解得:a=﹣12, 所以抛物线解析式为y=﹣12(x ﹣6)(x+2)=﹣12x 2+2x+6; (2)如图1,过点P 作PM ⊥OB 与点M ,交AB 于点N ,作AG ⊥PM 于点G ,设直线AB 解析式为y=kx+b ,将点A (0,6)、B (6,0)代入,得:660b k b =⎧⎨+=⎩, 解得:16k b =-⎧⎨=⎩, 则直线AB 解析式为y=﹣x+6,设P (t ,﹣12t 2+2t+6)其中0<t <6, 则N (t ,﹣t+6), ∴PN=PM ﹣MN=﹣12t 2+2t+6﹣(﹣t+6)=﹣12t 2+2t+6+t ﹣6=﹣12t 2+3t , ∴S △PAB =S △PAN +S △PBN=12PN•AG+12PN•BM =12PN•(AG+BM ) =12PN•OB =12×(﹣12t 2+3t )×6 =﹣32t 2+9t =﹣32(t ﹣3)2+272, ∴当t=3时,△PAB 的面积有最大值;(3)△PDE 为等腰直角三角形,则PE=PD ,点P (m ,-12m 2+2m+6), 函数的对称轴为:x=2,则点E 的横坐标为:4-m ,则PE=|2m-4|,即-12m2+2m+6+m-6=|2m-4|,解得:m=4或-2或-2和)故点P的坐标为:(4,6)或(,).【点睛】本题考查了二次函数的综合问题,涉及到待定系数法、二次函数的最值、等腰直角三角形的判定与性质等,熟练掌握和灵活运用待定系数法求函数解析式、二次函数的性质、等腰直角三角形的判定与性质等是解题的关键.23.(1)26°;(2)1.【解析】试题分析:(1)根据垂径定理,得到»»AD DB=,再根据圆周角与圆心角的关系,得知∠E=12∠O,据此即可求出∠DEB的度数;(2)由垂径定理可知,AB=2AC,在Rt△AOC中,OC=3,OA=5,由勾股定理求AC即可得到AB的长.试题解析:(1)∵AB是⊙O的一条弦,OD⊥AB,∴»»AD DB=,∴∠DEB=12∠AOD=12×52°=26°;(2)∵AB是⊙O的一条弦,OD⊥AB,∴AC=BC,即AB=2AC,在Rt△AOC中,,则AB=2AC=1.考点:垂径定理;勾股定理;圆周角定理.24.(1)坡顶A到地面PQ的距离为10米;()2移动信号发射塔BC的高度约为19米.【解析】【分析】延长BC交OP于H.在Rt△APD中解直角三角形求出AD=10.PD=24.由题意BH=PH.设BC=x.则x+10=24+DH.推出AC=DH=x﹣14.在Rt△ABC中.根据tan76°=BCAC,构建方程求出x即可.【详解】延长BC交OP于H.∵斜坡AP的坡度为1:2.4,∴512 ADPD=,设AD=5k,则PD=12k,由勾股定理,得AP=13k, ∴13k=26,解得k=2,∴AD=10,∵BC⊥AC,AC∥PO,∴BH⊥PO,∴四边形ADHC是矩形,CH=AD=10,AC=DH, ∵∠BPD=45°,∴PH=BH,设BC=x,则x+10=24+DH,∴AC=DH=x﹣14,在Rt△ABC中,tan76°=BCAC,即14xx-≈4.1.解得:x≈18.7,经检验x≈18.7是原方程的解.答:古塔BC的高度约为18.7米.【点睛】本题主要考查了解直角三角形,用到的知识点是勾股定理,锐角三角函数,坡角与坡角等,解决本题的关键是作出辅助线,构造直角三角形.25.(1)一个水瓶40元,一个水杯是8元;(2)当10<n<25时,选择乙商场购买更合算.当n>25时,选择甲商场购买更合算.【解析】【分析】(1)设一个水瓶x元,表示出一个水杯为(48﹣x)元,根据题意列出方程,求出方程的解即可得到结果;(2)计算出两商场得费用,比较即可得到结果.【详解】解:(1)设一个水瓶x元,表示出一个水杯为(48﹣x)元,根据题意得:3x+4(48﹣x)=152,解得:x=40,则一个水瓶40元,一个水杯是8元;(2)甲商场所需费用为(40×5+8n)×80%=160+6.4n乙商场所需费用为5×40+(n﹣5×2)×8=120+8n则∵n>10,且n为整数,∴160+6.4n﹣(120+8n)=40﹣1.6n讨论:当10<n<25时,40﹣1.6n>0,160+0.64n>120+8n,∴选择乙商场购买更合算.当n>25时,40﹣1.6n<0,即160+0.64n<120+8n,∴选择甲商场购买更合算.【点睛】此题主要考查不等式的应用,解题的关键是根据题意找到等量关系与不等关系进行列式求解. 26.(1)250、12;(2)平均数:1.38h;众数:1.5h;中位数:1.5h;(3)160000人;【解析】【分析】(1) 根据题意, 本次接受调查的学生总人数为各个金额人数之和, 用总概率减去其他金额的概率即可求得m值.(2) 平均数为一组数据中所有数据之和再除以这组数据的个数; 众数是在一组数据中出现次数最多的数; 中位数是将一组数据按大小顺序排列, 处于最中间位置的一个数据, 或是最中间两个数据的平均数, 据此求解即可.(3) 根据样本估计总体, 用“每天在校体育锻炼时间大于等于1.5h的人数” 的概率乘以全校总人数求解即可.【详解】(1)本次接受随机抽样调查的中学生人数为60÷24%=250人,m=100﹣(24+48+8+8)=12,故答案为250、12;(2)平均数为=1.38(h),众数为1.5h,中位数为=1.5h;(3)估计每天在校体育锻炼时间大于等于1.5h的人数约为250000×=160000人.【点睛】本题主要考查数据的收集、处理以及统计图表.27.y=x﹣5【解析】分析:(1)根据定义,直接变形得到伴生一次函数的解析式;(2)求出顶点,代入伴生函数解析式即可求解;(3)根据题意得到伴生函数解析式,根据P 点的坐标,坐标表示出纵坐标,然后通过PQ 与x 轴的平行关系,求得Q 点的坐标,由PQ 的长列方程求解即可.详解:(1)∵二次函数y=(x ﹣1)2﹣4,∴其伴生一次函数的表达式为y=(x ﹣1)﹣4=x ﹣5,故答案为y=x ﹣5;(2)∵二次函数y=(x ﹣1)2﹣4,∴顶点坐标为(1,﹣4),∵二次函数y=(x ﹣1)2﹣4,∴其伴生一次函数的表达式为y=x ﹣5,∴当x=1时,y=1﹣5=﹣4,∴(1,﹣4)在直线y=x ﹣5上,即:二次函数y=(x ﹣1)2﹣4的顶点在其伴生一次函数的图象上;(3)∵二次函数y=m (x ﹣1)2﹣4m ,∴其伴生一次函数为y=m (x ﹣1)﹣4m=mx ﹣5m ,∵P 点的横坐标为n ,(n >2),∴P 的纵坐标为m (n ﹣1)2﹣4m ,即:P (n ,m (n ﹣1)2﹣4m ),∵PQ ∥x 轴,∴Q ((n ﹣1)2+1,m (n ﹣1)2﹣4m ),∴PQ=(n ﹣1)2+1﹣n ,∵线段PQ 的长为32, ∴(n ﹣1)2+1﹣n=32,∴n=32. 点睛:此题主要考查了新定义下的函数关系式,关键是理解新定义的特点构造伴生函数解析式.。

湖北省恩施州2019-2020学年中考数学第四次调研试卷含解析

湖北省恩施州2019-2020学年中考数学第四次调研试卷含解析

湖北省恩施州2019-2020学年中考数学第四次调研试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.下列运算正确的是()A.(a2)3=a5B.(a-b)2=a2-b2C.355=3 D.3-27=-32.下列各式:①33+3=63;②177=1;③2+6=8=22;④243=22;其中错误的有().A.3个B.2个C.1个D.0个3.为了开展阳光体育活动,某班计划购买毽子和跳绳两种体育用品,共花费35元,毽子单价3元,跳绳单价5元,购买方案有()A.1种B.2种C.3种D.4种4.如图,折叠矩形纸片ABCD的一边AD,使点D落在BC边上的点F处,若AB=8,BC=10,则△CEF的周长为()A.12 B.16 C.18 D.245.如表记录了甲、乙、丙、丁四名跳高运动员最近几次选拔赛成绩的平均数与方差:甲乙丙丁平均数(cm)185 180 185 180方差 3.6 3.6 7.4 8.1根据表数据,从中选择一名成绩好且发挥稳定的参加比赛,应该选择()A.甲B.乙C.丙D.丁6.如图,△ABC是等边三角形,点P是三角形内的任意一点,PD∥AB,PE∥BC,PF∥AC,若△ABC 的周长为12,则PD+PE+PF=()A.12 B.8 C.4 D.37.如图所示的几何体,它的左视图与俯视图都正确的是()A.B.C.D.8.二次函数y=ax2+bx+c(a≠0)的部分图象如图,图象过点(-1,0),对称轴为直线x=2,下列结论:①4a+b=0;②9a+c>3b;③8a+7b+2c>0;④当x>-1时,y的值随x值的增大而增大.其中正确的结论有()A.1个B.2个C.3个D.4个9.估计32﹣16÷2的运算结果在哪两个整数之间()A.0和1 B.1和2 C.2和3 D.3和410.如图,三角形纸片ABC,AB=10cm,BC=7cm,AC=6cm,沿过点B的直线折叠这个三角形,使顶点C落在AB边上的点E处,折痕为BD,则△AED的周长为()A.9cm B.13cm C.16cm D.10cm11.小亮家1月至10月的用电量统计如图所示,这组数据的众数和中位数分别是()A.30和20 B.30和25 C.30和22.5 D.30和17.512.如图,I是∆ABC的内心,AI向延长线和△ABC的外接圆相交于点D,连接BI,BD,DC下列说法中错误的一项是()A .线段DB 绕点D 顺时针旋转一定能与线段DC 重合B .线段DB 绕点D 顺时针旋转一定能与线段DI 熏合C .∠CAD 绕点A 顺时针旋转一定能与∠DAB 重合D .线段ID 绕点I 顺时针旋转一定能与线段IB 重合二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图所示,D 、E 之间要挖建一条直线隧道,为计算隧道长度,工程人员在线段AD 和AE 上选择了测量点B ,C ,已知测得AD =100,AE =200,AB =40,AC =20,BC =30,则通过计算可得DE 长为_____.14.与直线2y x 平行的直线可以是__________(写出一个即可).15.如图,△ABC ∽△ADE ,∠BAC=∠DAE=90°,AB=6,AC=8,F 为DE 中点,若点D 在直线BC 上运动,连接CF ,则在点D 运动过程中,线段CF 的最小值是_____.16.A 、B 两地相距20km ,甲乙两人沿同一条路线从A 地到B 地.甲先出发,匀速行驶,甲出发1小时后乙再出发,乙以2km/h 的速度度匀速行驶1小时后提高速度并继续匀速行驶,结果比甲提前到达.甲、乙两人离开A 地的距离y(km)与时间t(h)的关系如图所示,则甲出发_____小时后和乙相遇.17.已知点P (a ,b )在反比例函数y=2x的图象上,则ab=_____. 18.把球放在长方体纸盒内,球的一部分露出盒外,其截面如图,已知EF=CD=80cm ,则截面圆的半径为 cm .三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,点O为Rt△ABC斜边AB上的一点,以OA为半径的⊙O与BC切于点D,与AC交于点E,连接AD.求证:AD平分∠BAC;若∠BAC=60∘,OA=4,求阴影部分的面积(结果保留π).20.(6分)某翻译团为成为2022年冬奥会志愿者做准备,该翻译团一共有五名翻译,其中一名只会翻译西班牙语,三名只会翻译英语,还有一名两种语言都会翻译.求从这五名翻译中随机挑选一名会翻译英语的概率;若从这五名翻译中随机挑选两名组成一组,请用树状图或列表的方法求该纽能够翻译上述两种语言的概率.21.(6分)如图,在平面直角坐标系中,点O为坐标原点,已知△ABC三个定点坐标分别为A(﹣4,1),B(﹣3,3),C(﹣1,2).画出△ABC关于x轴对称的△A1B1C1,点A,B,C的对称点分别是点A1、B1、C1,直接写出点A1,B1,C1的坐标:A1(,),B1(,),C1(,);画出点C关于y轴的对称点C2,连接C1C2,CC2,C1C,并直接写出△CC1C2的面积是.22.(8分)解方程:3221xx x=+-.23.(8分)先化简,再求值:3a(a1+1a+1)﹣1(a+1)1,其中a=1.24.(10分)如图,在▱ABCD 中,过点A 作AE ⊥BC 于点E ,AF ⊥DC 于点F ,AE=AF .(1)求证:四边形ABCD 是菱形;(2)若∠EAF=60°,CF=2,求AF 的长.25.(10分)如图,在ABC ∆中,AB =AC ,2A α∠=,点D 是BC 的中点,DE ⊥AB 于点E ,DF ⊥AC 于点F.(1)∠EDB =_____︒(用含α的式子表示)(2)作射线DM 与边AB 交于点M ,射线DM 绕点D 顺时针旋转1802α︒-,与AC 边交于点N. ①根据条件补全图形;②写出DM 与DN 的数量关系并证明;③用等式表示线段BM 、CN 与BC 之间的数量关系,(用含α的锐角三角函数表示)并写出解题思路. 26.(12分)某中学九年级甲、乙两班商定举行一次远足活动,A 、B 两地相距10千米,甲班从A 地出发匀速步行到B 地,乙班从B 地出发匀速步行到A 地.两班同时出发,相向而行.设步行时间为x 小时,甲、乙两班离A 地的距离分别为1y 千米、2y 千米,1y 、2y 与x 的函数关系图象如图所示,根据图象解答下列问题:直接写出1y 、2y 与x 的函数关系式;求甲、乙两班学生出发后,几小时相遇?相遇时乙班离A 地多少千米?甲、乙两班相距4千米时所用时间是多少小时?27.(12分)如图,已知抛物线经过原点o 和x 轴上一点A (4,0),抛物线顶点为E ,它的对称轴与x 轴交于点D .直线y=﹣2x ﹣1经过抛物线上一点B (﹣2,m )且与y 轴交于点C ,与抛物线的对称轴交于点F .(1)求m的值及该抛物线对应的解析式;(2)P(x,y)是抛物线上的一点,若S△ADP=S△ADC,求出所有符合条件的点P的坐标;(3)点Q是平面内任意一点,点M从点F出发,沿对称轴向上以每秒1个单位长度的速度匀速运动,设点M的运动时间为t秒,是否能使以Q、A、E、M四点为顶点的四边形是菱形.若能,请直接写出点M的运动时间t的值;若不能,请说明理由.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.D【解析】试题分析:A、原式=a6,错误;B、原式=a2﹣2ab+b2,错误;C、原式不能合并,错误;D、原式=﹣3,正确,故选D考点:完全平方公式;合并同类项;同底数幂的乘法;平方差公式.2.A【解析】33177=12682,错误,不能计算;2432,正确.故选A.3.B【解析】【分析】首先设毽子能买x个,跳绳能买y根,根据题意列方程即可,再根据二元一次方程求解.解:设毽子能买x个,跳绳能买y根,根据题意可得:3x+5y=35,y=7-35 x,∵x、y都是正整数,∴x=5时,y=4;x=10时,y=1;∴购买方案有2种.故选B.【点睛】本题主要考查二元一次方程的应用,关键在于根据题意列方程. 4.A【解析】【详解】解:∵四边形ABCD为矩形,∴AD=BC=10,AB=CD=8,∵矩形ABCD沿直线AE折叠,顶点D恰好落在BC边上的F处,∴AF=AD=10,EF=DE,在Rt△ABF中,∵,∴CF=BC-BF=10-6=4,∴△CEF的周长为:CE+EF+CF=CE+DE+CF=CD+CF=8+4=1.故选A.5.A【解析】【分析】首先比较平均数,平均数相同时选择方差较小的运动员参加.【详解】∵x甲=x丙>x乙=x丁,∴从甲和丙中选择一人参加比赛,∵2S甲=2S乙<2S丙<2S丁,∴选择甲参赛,【点睛】此题主要考查了平均数和方差的应用,解题关键是明确平均数越高,成绩越高,方差越小,成绩越稳定. 6.C【解析】【分析】过点P作平行四边形PGBD,EPHC,进而利用平行四边形的性质及等边三角形的性质即可.【详解】延长EP、FP分别交AB、BC于G、H,则由PD∥AB,PE∥BC,PF∥AC,可得,四边形PGBD,EPHC是平行四边形,∴PG=BD,PE=HC,又△ABC是等边三角形,又有PF∥AC,PD∥AB可得△PFG,△PDH是等边三角形,∴PF=PG=BD,PD=DH,又△ABC的周长为12,∴PD+PE+PF=DH+HC+BD=BC=13×12=4,故选C.【点睛】本题主要考查了平行四边形的判定及性质以及等边三角形的判定及性质,等边三角形的性质:等边三角形的三个内角都相等,且都等于60°.7.D【解析】试题分析:该几何体的左视图是边长分别为圆的半径和直径的矩形,俯视图是边长分别为圆的直径和半径的矩形,故答案选D.考点:D.8.B【解析】【分析】根据抛物线的对称轴即可判定①;观察图象可得,当x=-3时,y<0,由此即可判定②;观察图象可得,当x=1时,y>0,由此即可判定③;观察图象可得,当x>2时,的值随值的增大而增大,即可判定④. 【详解】由抛物线的对称轴为x=2可得=2,即4a+b=0,①正确;观察图象可得,当x=-3时,y<0,即9a-3b+c<0,所以,②错误;观察图象可得,当x=1时,y>0,即a+b+c>0,③正确;观察图象可得,当x>2时,的值随值的增大而增大,④错误.综上,正确的结论有2个.故选B.【点睛】本题考查了二次函数图象与系数的关系:二次函数y=ax2+bx+c(a≠0),二次项系数a决定抛物线的开口方向和大小,当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b和二次项系数a 共同决定对称轴的位置,当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右;常数项c决定抛物线与y轴交点.抛物线与y轴交于(0,c);抛物线与x轴交点个数由△决定,△=b2-4ac>0时,抛物线与x轴有2个交点;△=b2-4ac=0时,抛物线与x轴有1个交点;△=b2-4ac <0时,抛物线与x轴没有交点.9.D【解析】【分析】32162的大小,从而得到问题的答案.【详解】25<32<31,∴5321.原式322÷322,∴33216÷2<2.故选D.【点睛】32键.10.A【解析】试题分析:由折叠的性质知,CD=DE,BC=BE.易求AE及△AED的周长.解:由折叠的性质知,CD=DE,BC=BE=7cm.∵AB=10cm,BC=7cm,∴AE=AB﹣BE=3cm.△AED的周长=AD+DE+AE=AC+AE=6+3=9(cm).故选A.点评:本题利用了折叠的性质:折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.11.C【解析】【分析】将折线统计图中的数据从小到大重新排列后,根据中位数和众数的定义求解可得.【详解】将这10个数据从小到大重新排列为:10、15、15、20、20、25、25、30、30、30,所以该组数据的众数为30、中位数为=22.5,故选:C.【点睛】此题考查了众数与中位数,众数是一组数据中出现次数最多的数;中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.12.D【解析】解:∵I是△ABC的内心,∴AI平分∠BAC,BI平分∠ABC,∴∠BAD=∠CAD,∠ABI=∠CBI,故C 正确,不符合题意;∴¶BD=¶CD,∴BD=CD,故A正确,不符合题意;∵∠DAC=∠DBC,∴∠BAD=∠DBC.∵∠IBD=∠IBC+∠DBC,∠BID=∠ABI+∠BAD,∴∠DBI=∠DIB,∴BD=DI,故B正确,不符合题意.故选D.点睛:本题考查了三角形的内切圆和内心的,以及等腰三角形的判定与性质,同弧所对的圆周角相等.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.1.【解析】【分析】先根据相似三角形的判定得出△ABC ∽△AED ,再利用相似三角形的性质解答即可.【详解】 ∵401201,20051005AB AC AE AD ====, ∴AB AC AE AD =, 又∵∠A=∠A ,∴△ABC ∽△AED , ∴15BC AB DE AE ==, ∵BC=30,∴DE=1,故答案为1.【点睛】考查相似三角形的判定与性质,掌握相似三角形的判定定理是解题的关键.14.y=-2x+5(答案不唯一)【解析】【分析】根据两条直线平行的条件:k 相等,b 不相等解答即可.【详解】解:如y=2x+1(只要k=2,b≠0即可,答案不唯一).故答案为y=2x+1.(提示:满足y 2x b =+的形式,且b 0≠)【点睛】本题考查了两条直线相交或平行问题.直线y=kx+b ,(k≠0,且k ,b 为常数),当k 相同,且b 不相等,图象平行;当k 不同,且b 相等,图象相交;当k ,b 都相同时,两条直线重合.15.1【解析】试题分析:当点A 、点C 和点F 三点共线的时候,线段CF 的长度最小,点F 在AC 的中点,则CF=1. 16.165【解析】【分析】由图象得出解析式后联立方程组解答即可.【详解】由图象可得:y 甲=4t (0≤t≤5);y 乙=()()2112916(24)t t t t <⎧-≤≤⎨-≤⎩;由方程组4916y ty t⎧⎨-⎩==,解得t=165.故答案为165.【点睛】此题考查一次函数的应用,关键是由图象得出解析式解答.17.2【解析】【分析】接把点P(a,b)代入反比例函数y=2x即可得出结论.【详解】∵点P(a,b)在反比例函数y=2x的图象上,∴b=2a,∴ab=2,故答案为:2.【点睛】本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.18.1【解析】【分析】过点O作OM⊥EF于点M,反向延长OM交BC于点N,连接OF,设OF=r,则OM=80-r,MF=40,然后在Rt△MOF中利用勾股定理求得OF的长即可.【详解】过点O作OM⊥EF于点M,反向延长OM交BC于点N,连接OF,设OF=x,则OM=80﹣r,MF=40,在Rt△OMF中,∵OM2+MF2=OF2,即(80﹣r)2+402=r2,解得:r=1cm.故答案为1.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)见解析;(2)83π【解析】试题分析:(1)连接OD,则由已知易证OD∥AC,从而可得∠CAD=∠ODA,结合∠ODA=∠OAD,即可得到∠CAD=∠OAD,从而得到AD平分∠BAC;(2)连接OE、DE,由已知易证△AOE是等边三角形,由此可得∠ADE=12∠AOE=30°,由AD平分∠BAC可得∠OAD=30°,从而可得∠ADE=∠OAD,由此可得DE∥AO,从而可得S阴影=S扇形ODE,这样只需根据已知条件求出扇形ODE的面积即可.试题解析:(1)连接OD.∵BC是⊙O的切线,D为切点,∴OD⊥BC.又∵AC⊥BC,∴OD∥AC,∴∠ADO=∠CAD.又∵OD=OA,∴∠ADO=∠OAD,∴∠CAD=∠OAD,即AD平分∠BAC.(2)连接OE,ED.∵∠BAC=60°,OE=OA,∴△OAE为等边三角形,∴∠AOE=60°,∴∠ADE=30°.又∵1302OAD BAC∠=∠=o,∴∠ADE=∠OAD,∴ED∥AO,∴S△AED=S△OED,∴阴影部分的面积= S扇形ODE = 601683603ππ⨯⨯=.20.(1)45;(2)710.【解析】【分析】(1)直接利用概率公式计算;(2)只会翻译西班牙语用A表示,三名只会翻译英语的用B表示,一名两种语言都会翻译用C表示,画树状图展示所有20种等可能的结果数,找出该组能够翻译上述两种语言的结果数,然后根据概率公式求解.【详解】解:(1)从这五名翻译中随机挑选一名会翻译英语的概率=45;(2)只会翻译西班牙语用A表示,三名只会翻译英语的用B表示,一名两种语言都会翻译用C表示画树状图为:共有20种等可能的结果数,其中该组能够翻译上述两种语言的结果数为14,所以该纽能够翻译上述两种语言的概率=147 2010.【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A 或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.21.(1)﹣1、﹣1,﹣3、﹣3,﹣1、﹣2;(2)见解析,1.【解析】【分析】(1)分别作出点A、B、C关于x轴的对称点,再顺次连接可得;(2)作出点C关于y轴的对称点,然后连接得到三角形,根据面积公式计算可得.【详解】(1)如图所示,△A1B1C1即为所求.A 1(﹣1,﹣1)B 1(﹣3,﹣3),C 1(﹣1,﹣2).故答案为:﹣1、﹣1、﹣3、﹣3、﹣1、﹣2;(2)如图所示,△CC 1C 2的面积是12⨯2×1=1. 故答案为:1.【点睛】本题考查了作图﹣轴对称变换,解题的关键是熟练掌握轴对称变换的定义和性质.22.x=12,x=﹣2 【解析】【分析】方程两边乘最简公分母,可以把分式方程转化为整式方程求解.【详解】3221x x x=+-, 则2x (x+1)=3(1﹣x ),2x 2+5x ﹣3=0,(2x ﹣1)(x+3)=0,解得:x 1=12,x 2=﹣3, 检验:当x=12,x=﹣2时,2(x+1)(1﹣x )均不等于0, 故x=12,x=﹣2都是原方程的解. 【点睛】本题考查解分式方程的能力.(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解;(2)解分式方程一定注意要验根;(3)去分母时要注意符号的变化.23.2【解析】试题分析:首先根据单项式乘以多项式的法则以及完全平方公式将括号去掉,然后再进行合并同类项,最后将a的值代入化简后的式子得出答案.试题解析:解:原式=3a3+6a1+3a﹣1a1﹣4a﹣1=3a3+4a1﹣a﹣1,当a=1时,原式=14+16﹣1﹣1=2.24.(1)见解析;(2)23【解析】【分析】(1) 方法一: 连接AC, 利用角平分线判定定理, 证明DA=DC即可;方法二: 只要证明△AEB≌△AFD. 可得AB=AD即可解决问题;(2) 在Rt△ACF, 根据AF=CF·tan∠ACF计算即可.【详解】(1)证法一:连接AC,如图.∵AE⊥BC,AF⊥DC,AE=AF,∴∠ACF=∠ACE,∵四边形ABCD是平行四边形,∴AD∥BC.∴∠DAC=∠ACB.∴∠DAC=∠DCA,∴DA=DC,∴四边形ABCD是菱形.证法二:如图,∵四边形ABCD是平行四边形,∴∠B=∠D.∵AE⊥BC,AF⊥DC,∴∠AEB=∠AFD=90°,又∵AE=AF,∴△AEB ≌△AFD .∴AB=AD ,∴四边形ABCD 是菱形.(2)连接AC ,如图.∵AE ⊥BC ,AF ⊥DC ,∠EAF=60°,∴∠ECF=120°,∵四边形ABCD 是菱形,∴∠ACF=60°,在Rt △CFA 中,AF=CF•tan ∠3【点睛】本题主要考查三角形的性质及三角函数的相关知识,充分利用已知条件灵活运用各种方法求解可得到答案。

2019年湖北省恩施州中考数学试卷及答案(Word解析版)

2019年湖北省恩施州中考数学试卷及答案(Word解析版)

湖北省恩施州2019年中考数学试卷
一、选择题(本大题共12个小题,每小题3分,共36分。

在每小题给出的四个选项中,恰有一项是符合要求的。


1.(3分)(2019?恩施州)的相反数是()
A.B.
﹣C.3D.﹣3
考点:相反数.
分析:根据只有符号不同的两个数互为相反数求解后选择即可.
解答:
解:﹣的相反数是.
故选A.
点评:本题主要考查了互为相反数的定义,是基础题,熟记概念是解题的关键.
2.(3分)
3.(3分)(2019?恩施州)如图所示,∠1+∠2=180°,∠3=100°,则∠4等于()
A.70°B.80°C.90°D.100°
考点:平行线的判定与性质.
分析:首先证明a∥b,再根据两直线平行同位角相等可得∠3=∠6,再根据对顶角相等可得∠4.
解答:解:∵∠1+∠5=180°,∠1+∠2=180°,
∴∠2=∠5,
∴a∥b,
∴∠3=∠6=100°,
∴∠4=100°.
故选:D.。

2019-2020学年湖北省恩施州中考数学模拟试题(有标准答案)(word版)

2019-2020学年湖北省恩施州中考数学模拟试题(有标准答案)(word版)

湖北省恩施州中考数学试卷一、选择题(本大题共12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确选择项前的字母代号填涂在答题卷相应位置上)1.(3分)﹣8的倒数是()A.﹣8 B.8 C.﹣D.2.(3分)下列计算正确的是()A.a4+a5=a9 B.(2a2b3)2=4a4b6C.﹣2a(a+3)=﹣2a2+6a D.(2a﹣b)2=4a2﹣b23.(3分)在下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.4.(3分)已知某新型感冒病毒的直径约为0.000000823米,将0.000000823用科学记数法表示为()A.8.23×10﹣6B.8.23×10﹣7C.8.23×106D.8.23×1075.(3分)已知一组数据1、2、3、x、5,它们的平均数是3,则这一组数据的方差为()A.1 B.2 C.3 D.46.(3分)如图所示,直线a∥b,∠1=35°,∠2=90°,则∠3的度数为()A.125°B.135°C.145°D.155°7.(3分)64的立方根为()A.8 B.﹣8 C.4 D.﹣48.(3分)关于x的不等式的解集为x>3,那么a的取值范围为()A.a>3 B.a<3 C.a≥3 D.a≤39.(3分)由若干个完全相同的小正方体组成一个立体图形,它的左视图和俯视图如图所示,则小正方体的个数不可能是()A.5 B.6 C.7 D.810.(3分)一商店在某一时间以每件120元的价格卖出两件衣服,其中一件盈利20%,另一件亏损20%,在这次买卖中,这家商店()A.不盈不亏B.盈利20元C.亏损10元D.亏损30元11.(3分)如图所示,在正方形ABCD中,G为CD边中点,连接AG并延长交BC边的延长线于E点,对角线BD交AG于F点.已知FG=2,则线段AE的长度为()A.6 B.8 C.10 D.1212.(3分)抛物线y=ax2+bx+c的对称轴为直线x=﹣1,部分图象如图所示,下列判断中:①abc>0;②b2﹣4ac>0;③9a﹣3b+c=0;④若点(﹣0.5,y1),(﹣2,y2)均在抛物线上,则y1>y2;⑤5a﹣2b+c<0.其中正确的个数有()A.2 B.3 C.4 D.5二、填空题(本大题共有4小题,每小题3分,共12分.不要求写出解答过程,请把答案直接填写在答题卷相应位置上)13.(3分)因式分解:8a3﹣2ab2= .14.(3分)函数y=的自变量x的取值范围是.15.(3分)在Rt△ABC中,AB=1,∠A=60°,∠ABC=90°,如图所示将Rt△ABC沿直线l无(结滑动地滚动至Rt△DEF,则点B所经过的路径与直线l所围成的封闭图形的面积为.果不取近似值)16.(3分)我国古代《易经》一书中记载,远古时期,人们通过在绳子上打结来记录数量,即“结绳记数”.如图,一位妇女在从右到左依次排列的绳子上打结,满六进一,用来记录采集到的野果数量,由图可知,她一共采集到的野果数量为个.三、解答题(本大题共有8个小题,共72分.请在答题卷指定区域内作答,解答应写出文字说明、证明过程或演算步骤.)17.(8分)先化简,再求值:•(1+)÷,其中x=2﹣1.18.(8分)如图,点B、F、C、E在一条直线上,FB=CE,AB∥ED,AC∥FD,AD交BE于O.求证:AD与BE互相平分.19.(8分)为了解某校九年级男生1000米跑的水平,从中随机抽取部分男生进行测试,并把测试成绩分为D、C、B、A四个等次绘制成如图所示的不完整的统计图,请你依图解答下列问(1)a= ,b= ,c= ;(2)扇形统计图中表示C等次的扇形所对的圆心角的度数为度;(3)学校决定从A等次的甲、乙、丙、丁四名男生中,随机选取两名男生参加全市中学生1000米跑比赛,请用列表法或画树状图法,求甲、乙两名男生同时被选中的概率.20.(8分)如图所示,为测量旗台A与图书馆C之间的直线距离,小明在A处测得C在北偏东30°方向上,然后向正东方向前进100米至B处,测得此时C在北偏西15°方向上,求旗台与图书馆之间的距离.(结果精确到1米,参考数据≈1.41,≈1.73)21.(8分)如图,直线y=﹣2x+4交x轴于点A,交y轴于点B,与反比例函数y=的图象有唯一的公共点C.(1)求k的值及C点坐标;(2)直线l与直线y=﹣2x+4关于x轴对称,且与y轴交于点B',与双曲线y=交于D、E两点,求△CDE的面积.22.(10分)某学校为改善办学条件,计划采购A、B两种型号的空调,已知采购3台A型空调和2台B型空调,需费用39000元;4台A型空调比5台B型空调的费用多6000元.(1)求A型空调和B型空调每台各需多少元;(2)若学校计划采购A、B两种型号空调共30台,且A型空调的台数不少于B型空调的一半,两种型号空调的采购总费用不超过217000元,该校共有哪几种采购方案?(3)在(2)的条件下,采用哪一种采购方案可使总费用最低,最低费用是多少元?23.(10分)如图,AB为⊙O直径,P点为半径OA上异于O点和A点的一个点,过P点作与直径AB垂直的弦CD,连接AD,作BE⊥AB,OE∥AD交BE于E点,连接AE、DE、AE交CD于F点.(1)求证:DE为⊙O切线;(2)若⊙O的半径为3,sin∠ADP=,求AD;(3)请猜想PF与FD的数量关系,并加以证明.24.(12分)如图,已知抛物线交x轴于A、B两点,交y轴于C点,A点坐标为(﹣1,0),OC=2,OB=3,点D为抛物线的顶点.(1)求抛物线的解析式;(2)P为坐标平面内一点,以B、C、D、P为顶点的四边形是平行四边形,求P点坐标;(3)若抛物线上有且仅有三个点M1、M2、M3使得△M1BC、△M2BC、△M3BC的面积均为定值S,求出定值S及M1、M2、M3这三个点的坐标.湖北省恩施州中考数学试卷参考答案与试题解析一、选择题(本大题共12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确选择项前的字母代号填涂在答题卷相应位置上)1.(3分)﹣8的倒数是()A.﹣8 B.8 C.﹣D.【分析】根据倒数的定义,互为倒数的两数乘积为1,﹣8×(﹣)=1,即可解答.【解答】解:根据倒数的定义得:﹣8×(﹣)=1,因此﹣8的倒数是﹣.故选:C.【点评】此题主要考查倒数的概念及性质,属于基础题,注意掌握倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.2.(3分)下列计算正确的是()A.a4+a5=a9 B.(2a2b3)2=4a4b6C.﹣2a(a+3)=﹣2a2+6a D.(2a﹣b)2=4a2﹣b2【分析】根据合并同类项、幂的乘方与积的乘方、单项式乘多项式法则以及完全平方公式进行计算.【解答】解:A、a4与a5不是同类项,不能合并,故本选项错误;B、(2a2b3)2=4a4b6,故本选项正确;C、﹣2a(a+3)=﹣2a2﹣6a,故本选项错误;D、(2a﹣b)2=4a2﹣4ab+b2,故本选项错误;故选:B.【点评】本题主要考查了合并同类项的法则、幂的乘方与积的乘方、单项式乘多项式法则以及完全平方公式,熟练掌握运算法则是解题的关键.3.(3分)在下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、不是轴对称图形,是中心对称图形,故此选项错误;B、是轴对称图形,不是中心对称图形,故此选项错误;C、不是轴对称图形,也不是中心对称图形,故此选项错误;D、是轴对称图形,也是中心对称图形,故此选项正确.故选:D.【点评】本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.4.(3分)已知某新型感冒病毒的直径约为0.000000823米,将0.000000823用科学记数法表示为()A.8.23×10﹣6B.8.23×10﹣7C.8.23×106D.8.23×107【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.000000823=8.23×10﹣7.故选:B.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.5.(3分)已知一组数据1、2、3、x、5,它们的平均数是3,则这一组数据的方差为()A.1 B.2 C.3 D.4【分析】先由平均数是3可得x的值,再结合方差公式计算.【解答】解:∵数据1、2、3、x、5的平均数是3,∴=3,解得:x=4,则数据为1、2、3、4、5,∴方差为×[(1﹣3)2+(2﹣3)2+(3﹣3)2+(4﹣3)2+(5﹣3)2]=2,故选:B.【点评】本题主要考查算术平均数和方差,解题的关键是熟练掌握平均数和方差的定义.6.(3分)如图所示,直线a∥b,∠1=35°,∠2=90°,则∠3的度数为()A.125°B.135°C.145°D.155°【分析】如图求出∠5即可解决问题.【解答】解:∵a∥b,∴∠1=∠4=35°,∵∠2=90°,∴∠4+∠5=90°,∴∠5=55°,∴∠3=180°﹣∠5=125°,故选:A.【点评】本题考查平行线的性质、三角形内角和定理,邻补角的性质等知识,解题的关键是灵活运用所学知识解决问题.7.(3分)64的立方根为()A.8 B.﹣8 C.4 D.﹣4【分析】利用立方根定义计算即可得到结果.【解答】解:64的立方根是4.故选:C.【点评】此题考查了立方根,熟练掌握立方根的定义是解本题的关键.8.(3分)关于x的不等式的解集为x>3,那么a的取值范围为()A.a>3 B.a<3 C.a≥3 D.a≤3【分析】先解第一个不等式得到x>3,由于不等式组的解集为x>3,则利用同大取大可得到a的范围.【解答】解:解不等式2(x﹣1)>4,得:x>3,解不等式a﹣x<0,得:x>a,∵不等式组的解集为x>3,∴a≤3,故选:D.【点评】本题考查了解一元一次不等式组:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,利用数轴可以直观地表示不等式组的解集.解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.9.(3分)由若干个完全相同的小正方体组成一个立体图形,它的左视图和俯视图如图所示,则小正方体的个数不可能是()A.5 B.6 C.7 D.8【分析】直接利用左视图以及俯视图进而分析得出答案.【解答】解:由左视图可得,第2层上至少一个小立方体,第1层一共有5个小立方体,故小正方体的个数最少为:6个,故小正方体的个数不可能是5个.故选:A.【点评】此题主要考查了由三视图判断几何体,正确想象出最少时几何体的形状是解题关键.10.(3分)一商店在某一时间以每件120元的价格卖出两件衣服,其中一件盈利20%,另一件亏损20%,在这次买卖中,这家商店()A.不盈不亏B.盈利20元C.亏损10元D.亏损30元【分析】设两件衣服的进价分别为x、y元,根据利润=销售收入﹣进价,即可分别得出关于x、y的一元一次方程,解之即可得出x、y的值,再用240﹣两件衣服的进价后即可找出结论.【解答】解:设两件衣服的进价分别为x、y元,根据题意得:120﹣x=20%x,y﹣120=20%y,解得:x=100,y=150,∴120+120﹣100﹣150=﹣10(元).故选:C.【点评】本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.11.(3分)如图所示,在正方形ABCD中,G为CD边中点,连接AG并延长交BC边的延长线于E点,对角线BD交AG于F点.已知FG=2,则线段AE的长度为()A.6 B.8 C.10 D.12【分析】根据正方形的性质可得出AB∥CD,进而可得出△ABF∽△GDF,根据相似三角形的性质可得出==2,结合FG=2可求出AF、AG的长度,由CG∥AB、AB=2CG可得出CG为△EAB 的中位线,再利用三角形中位线的性质可求出AE的长度,此题得解.【解答】解:∵四边形ABCD为正方形,∴AB=CD,AB∥CD,∴∠ABF=∠GDF,∠BAF=∠DGF,∴△ABF∽△GDF,∴==2,∴AF=2GF=4,∴AG=6.∵CG∥AB,AB=2CG,∴CG为△EAB的中位线,∴AE=2AG=12.故选:D.【点评】本题考查了相似三角形的判定与性质、正方形的性质以及三角形的中位线,利用相似三角形的性质求出AF的长度是解题的关键.12.(3分)抛物线y=ax2+bx+c的对称轴为直线x=﹣1,部分图象如图所示,下列判断中:①abc>0;②b2﹣4ac>0;③9a﹣3b+c=0;④若点(﹣0.5,y1),(﹣2,y2)均在抛物线上,则y1>y2;⑤5a﹣2b+c<0.其中正确的个数有()A.2 B.3 C.4 D.5【分析】根据二次函数的性质一一判断即可.【解答】解:∵抛物线对称轴x=﹣1,经过(1,0),∴﹣=﹣1,a+b+c=0,∴b=2a,c=﹣3a,∵a>0,∴b>0,c<0,∴abc<0,故①错误,∵抛物线与x轴有交点,∴b2﹣4ac>0,故②正确,∵抛物线与x轴交于(﹣3,0),∴9a﹣3b+c=0,故③正确,∵点(﹣0.5,y1),(﹣2,y2)均在抛物线上,﹣1.5>﹣2,则y1<y2;故④错误,∵5a﹣2b+c=5a﹣4a﹣3a=﹣2a<0,故⑤正确,故选:B.【点评】本题考查二次函数与系数的关系,二次函数图象上上的点的特征,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.二、填空题(本大题共有4小题,每小题3分,共12分.不要求写出解答过程,请把答案直接填写在答题卷相应位置上)13.(3分)因式分解:8a3﹣2ab2= 2a(2a+b)(2a﹣b).【分析】首先提取公因式2a,再利用平方差公式分解因式得出答案.【解答】解:8a3﹣2ab2=2a(4a2﹣b2)=2a(2a+b)(2a﹣b).故答案为:2a(2a+b)(2a﹣b).【点评】此题主要考查了提取公因式法分解因式以及公式法分解因式,正确应用公式是解题关键.14.(3分)函数y=的自变量x的取值范围是x≥﹣且x≠3 .【分析】根据被开方数大于等于0,分母不等于0列式求解即可.【解答】解:根据题意得2x+1≥0,x﹣3≠0,解得x≥﹣且x≠3.故答案为:x≥﹣且x≠3.【点评】本题主要考查了函数自变量的取值范围的确定,根据分母不等于0,被开方数大于等于0列式计算即可,是基础题,比较简单.15.(3分)在Rt△ABC中,AB=1,∠A=60°,∠ABC=90°,如图所示将Rt△ABC沿直线l无滑动地滚动至Rt△DEF,则点B所经过的路径与直线l所围成的封闭图形的面积为π.(结果不取近似值)【分析】先得到∠ACB=30°,BC=,利用旋转的性质可得到点B路径分部分:第一部分为以直角三角形30°的直角顶点为圆心,为半径,圆心角为150°的弧长;第二部分为以直角三角形60°的直角顶点为圆心,1为半径,圆心角为120°的弧长,然后根据扇形的面积公式计算点B所经过的路径与直线l所围成的封闭图形的面积.【解答】解:∵Rt△ABC中,∠A=60°,∠ABC=90°,∴∠ACB=30°,BC=,将Rt△ABC沿直线l无滑动地滚动至Rt△DEF,点B路径分部分:第一部分为以直角三角形30°的直角顶点为圆心,为半径,圆心角为150°的弧长;第二部分为以直角三角形60°的直角顶点为圆心,1为半径,圆心角为120°的弧长;∴点B所经过的路径与直线l所围成的封闭图形的面积=+=.故答案为π.【点评】本题考查了轨迹:利用特殊几何图形描述点运动的轨迹,然后利用几何性质计算相应的几何量.16.(3分)我国古代《易经》一书中记载,远古时期,人们通过在绳子上打结来记录数量,即“结绳记数”.如图,一位妇女在从右到左依次排列的绳子上打结,满六进一,用来记录采集到的野果数量,由图可知,她一共采集到的野果数量为1946 个.【分析】由于从右到左依次排列的绳子上打结,满六进一,所以从右到左的数分别为2、0×6、3×6×6、2×6×6×6、1×6×6×6×6,然后把它们相加即可.【解答】解:2+0×6+3×6×6+2×6×6×6+1×6×6×6×6=1946,故答案为:1946.【点评】本题是以古代“结绳计数”为背景,按满六进一计数,运用了类比的方法,根据图中的数学列式计算;本题题型新颖,一方面让学生了解了古代的数学知识,另一方面也考查了学生的思维能力.三、解答题(本大题共有8个小题,共72分.请在答题卷指定区域内作答,解答应写出文字说明、证明过程或演算步骤.)17.(8分)先化简,再求值:•(1+)÷,其中x=2﹣1.【分析】直接分解因式,再利用分式的混合运算法则计算得出答案.【解答】解:•(1+)÷=••=,把x=2﹣1代入得,原式===.【点评】此题主要考查了分式的化简求值,正确进行分式的混合运算是解题关键.18.(8分)如图,点B、F、C、E在一条直线上,FB=CE,AB∥ED,AC∥FD,AD交BE于O.求证:AD与BE互相平分.【分析】连接BD,AE,判定△ABC≌△DEF(ASA),可得AB=DE,依据AB∥DE,即可得出四边形ABDE是平行四边形,进而得到AD与BE互相平分.【解答】证明:如图,连接BD,AE,∵FB=CE,∴BC=EF,又∵AB∥ED,AC∥FD,∴∠ABC=∠DEF,∠ACB=∠DFE,在△ABC和△DEF中,,∴△ABC≌△DEF(ASA),∴AB=DE,又∵AB∥DE,∴四边形ABDE是平行四边形,∴AD与BE互相平分.【点评】本题主要考查了平行四边形的判定与性质,解决问题的关键是依据全等三角形的对应边相等得出结论.19.(8分)为了解某校九年级男生1000米跑的水平,从中随机抽取部分男生进行测试,并把测试成绩分为D、C、B、A四个等次绘制成如图所示的不完整的统计图,请你依图解答下列问题:(1)a= 2 ,b= 45 ,c= 20 ;(2)扇形统计图中表示C等次的扇形所对的圆心角的度数为72 度;(3)学校决定从A等次的甲、乙、丙、丁四名男生中,随机选取两名男生参加全市中学生1000米跑比赛,请用列表法或画树状图法,求甲、乙两名男生同时被选中的概率.【分析】(1)根据A等次人数及其百分比求得总人数,总人数乘以D等次百分比可得a的值,再用B、C等次人数除以总人数可得b、c的值;(2)用360°乘以C等次百分比可得;(3)画出树状图,由概率公式即可得出答案.【解答】解:(1)本次调查的总人数为12÷30%=40人,∴a=40×5%=2,b=×100=45,c=×100=20,故答案为:2、45、20;(2)扇形统计图中表示C等次的扇形所对的圆心角的度数为360°×20%=72°,故答案为:72;(3)画树状图,如图所示:共有12个可能的结果,选中的两名同学恰好是甲、乙的结果有2个,故P(选中的两名同学恰好是甲、乙)==.【点评】此题主要考查了列表法与树状图法,以及扇形统计图、条形统计图的应用,要熟练掌握.20.(8分)如图所示,为测量旗台A与图书馆C之间的直线距离,小明在A处测得C在北偏东30°方向上,然后向正东方向前进100米至B处,测得此时C在北偏西15°方向上,求旗台与图书馆之间的距离.(结果精确到1米,参考数据≈1.41,≈1.73)【分析】先根据题目给出的方向角.求出三角形各个内角的度数,过点B作BE⊥AC构造直角三角形.利用三角函数求出AE、BE,再求和即可.【解答】解:由题意知:∠WAC=30°,∠NBC=15°,∴∠BAC=60°,∠ABC=75°,∴∠C=45°过点B作BE⊥AC,垂足为E.在Rt△AEB中,∵∠BAC=60°,AB=100米∴AE=cos∠BAC×AB=×100=50(米)BE=sin∠BAC×AB=×100=50(米)在Rt△CEB中,∵∠C=45°,BE=50(米)∴CE=BE=50=86.5(米)∴AC=AE+CE=50+86.5=136.5(米)≈137米答:旗台与图书馆之间的距离约为137米.【点评】本题考查了方向角和解直角三角形.题目难度不大,过点B作AC的垂线构造直角三角形是解决本题的关键.21.(8分)如图,直线y=﹣2x+4交x轴于点A,交y轴于点B,与反比例函数y=的图象有唯一的公共点C.(1)求k的值及C点坐标;(2)直线l与直线y=﹣2x+4关于x轴对称,且与y轴交于点B',与双曲线y=交于D、E两点,求△CDE的面积.【分析】(1)令﹣2x+4=,则2x2﹣4x+k=0,依据直线y=﹣2x+4与反比例函数y=的图象有唯一的公共点C,即可得到k的值,进而得出点C的坐标;(2)依据D(3,2),可得CD=2,依据直线l与直线y=﹣2x+4关于x轴对称,即可得到直线l为y=2x﹣4,再根据=2x﹣4,即可得到E(﹣1,﹣6),进而得出△CDE的面积=×2×(6+2)=8.【解答】解:(1)令﹣2x+4=,则2x2﹣4x+k=0,∵直线y=﹣2x+4与反比例函数y=的图象有唯一的公共点C,∴△=16﹣8k=0,解得k=2,∴2x2﹣4x+2=0,解得x=1,∴y=2,即C(1,2);(2)当y=2时,2=,即x=3,∴D(3,2),∴CD=3﹣1=2,∵直线l与直线y=﹣2x+4关于x轴对称,∴A(2,0),B'(0,﹣4),∴直线l为y=2x﹣4,令=2x﹣4,则x2﹣2x﹣3=0,解得x1=3,x2=﹣1,∴E(﹣1,﹣6),∴△CDE的面积=×2×(6+2)=8.【点评】此题属于反比例函数与一次函数的交点问题,主要考查了解一元二次方程,坐标与图形性质以及三角形面积公式的运用,求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解,若方程组有解则两者有交点,方程组无解,则两者无交点.22.(10分)某学校为改善办学条件,计划采购A、B两种型号的空调,已知采购3台A型空调和2台B型空调,需费用39000元;4台A型空调比5台B型空调的费用多6000元.(1)求A型空调和B型空调每台各需多少元;(2)若学校计划采购A、B两种型号空调共30台,且A型空调的台数不少于B型空调的一半,两种型号空调的采购总费用不超过217000元,该校共有哪几种采购方案?(3)在(2)的条件下,采用哪一种采购方案可使总费用最低,最低费用是多少元?【分析】(1)根据题意可以列出相应的方程组,从而可以解答本题;(2)根据题意可以列出相应的不等式组,从而可以求得有几种采购方案;(3)根据题意和(2)中的结果,可以解答本题.【解答】解:(1)设A型空调和B型空调每台各需x元、y元,,解得,,答:A型空调和B型空调每台各需9000元、6000元;(2)设购买A型空调a台,则购买B型空调(30﹣a)台,,解得,10≤a≤12,∴a=10、11、12,共有三种采购方案,方案一:采购A型空调10台,B型空调20台,方案二:采购A型空调11台,B型空调19台,方案三:采购A型空调12台,B型空调18台;(3)设总费用为w元,w=9000a+6000(30﹣a)=3000a+180000,∴当a=10时,w取得最小值,此时w=210000,即采购A型空调10台,B型空调20台可使总费用最低,最低费用是210000元.【点评】本题考查一次函数的应用、一元一次不等式组的应用、二元一次方程组的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用函数和不等式的思想解答.23.(10分)如图,AB为⊙O直径,P点为半径OA上异于O点和A点的一个点,过P点作与直径AB垂直的弦CD,连接AD,作BE⊥AB,OE∥AD交BE于E点,连接AE、DE、AE交CD于F点.(1)求证:DE为⊙O切线;(2)若⊙O的半径为3,sin∠ADP=,求AD;(3)请猜想PF与FD的数量关系,并加以证明.【分析】(1)如图1,连接OD、BD,根据圆周角定理得:∠ADB=90°,则AD⊥BD,OE⊥BD,由垂径定理得:BM=DM,证明△BOE≌△DOE,则∠ODE=∠OBE=90°,可得结论;(2)设AP=a,根据三角函数得:AD=3a,由勾股定理得:PD=2a,在直角△OPD中,根据勾股定理列方程可得:32=(3﹣a)2+(2a)2,解出a的值可得AD的值;(3)先证明△APF∽△ABE,得,由△ADP∽△OEB,得,可得PD=2PF,可得结论.【解答】证明:(1)如图1,连接OD、BD,BD交OE于M,∵AB是⊙O的直径,∴∠ADB=90°,AD⊥BD,∵OE∥AD,∴OE⊥BD,∴BM=DM,∵OB=OD,∴∠BOM=∠DOM,∵OE=OE,∴△BOE≌△DOE(SAS),∴∠ODE=∠OBE=90°,∴DE为⊙O切线;(2)设AP=a,∵sin∠ADP==,∴AD=3a,∴PD===2a,∵OP=3﹣a,∴OD2=OP2+PD2,∴32=(3﹣a)2+(2a)2,9=9﹣6a+a2+8a2,a 1=,a2=0(舍),当a=时,AD=3a=2,∴AD=2;(3)PF=FD,理由是:∵∠APD=∠ABE=90°,∠PAD=∠BAE,∴△APF∽△ABE,∴,∴PF=,∵OE∥AD,∴∠BOE=∠PAD,∵∠OBE=∠APD=90°,∴△ADP∽△OEB,∴,∴PD=,∵AB=2OB,∴PD=2PF,∴PF=FD.【点评】本题考查了圆的综合问题,熟练掌握切线的判定,锐角三角函数,圆周角定理,垂径定理等知识点的应用,难度适中,连接BD构造直角三角形是解题的关键.24.(12分)如图,已知抛物线交x轴于A、B两点,交y轴于C点,A点坐标为(﹣1,0),OC=2,OB=3,点D为抛物线的顶点.(1)求抛物线的解析式;(2)P为坐标平面内一点,以B、C、D、P为顶点的四边形是平行四边形,求P点坐标;(3)若抛物线上有且仅有三个点M1、M2、M3使得△M1BC、△M2BC、△M3BC的面积均为定值S,求出定值S及M1、M2、M3这三个点的坐标.【分析】(1)由OC与OB的长,确定出B与C的坐标,再由A坐标,利用待定系数法确定出抛物线解析式即可;(2)分三种情况讨论:当四边形CBPD是平行四边形;当四边形BCPD是平行四边形;四边形BDCP是平行四边形时,利用平移规律确定出P坐标即可;(3)由B与C坐标确定出直线BC解析式,求出与直线BC平行且与抛物线只有一个交点时交点坐标,确定出交点与直线BC解析式,进而确定出另一条与直线BC平行且与BC距离相等的直线解析式,确定出所求M坐标,且求出定值S的值即可.【解答】解:(1)由OC=2,OB=3,得到B(3,0),C(0,2),设抛物线解析式为y=a(x+1)(x﹣3),把C(0,2)代入得:2=﹣3a,即a=﹣,则抛物线解析式为y=﹣(x+1)(x﹣3)=﹣x2+x+2;(2)抛物线y=﹣(x+1)(x﹣3)=﹣x2+x+2=﹣(x﹣1)2+,∴D(1,),当四边形CBPD是平行四边形时,由B(3,0),C(0,2),得到P(4,);当四边形CDBP是平行四边形时,由B(3,0),C(0,2),得到P(2,﹣);当四边形BCPD是平行四边形时,由B(3,0),C(0,2),得到P(﹣2,);(3)设直线BC解析式为y=kx+b,把B(3,0),C(0,2)代入得:,解得:,∴y=﹣x+2,设与直线BC平行的解析式为y=﹣x+b,联立得:,消去y得:2x2﹣6x+3b﹣6=0,当直线与抛物线只有一个公共点时,△=36﹣8(3b﹣6)=0,解得:b=,即y=﹣x+,此时交点M坐标为(,);1可得出两平行线间的距离为,同理可得另一条与BC平行且平行线间的距离为的直线方程为y=﹣x+,联立解得:M2(,﹣),M3(,﹣﹣),此时S=1.【点评】此题属于二次函数综合题,涉及的知识有:待定系数法求函数解析式,一次函数的性质,利用了分类讨论的思想,熟练掌握待定系数法是解本题的关键.。

【中考真题】2019年湖北省恩施市中考数学真题试卷(附答案)

【中考真题】2019年湖北省恩施市中考数学真题试卷(附答案)
16.观察下列一组数的排列规律:

那么,这一组数的第2019个数是_____.
三、解答题
17.先化简,再求值: ,其中 .
18.如图,在四边形ABCD中,AD∥BC,点O是对角线AC的中点,过点O作AC的垂线,分别交AD、BC于点E、F,连接AF、CE.试判断四边形AECF的形状,并证明.
19.为了解某县建档立卡贫困户对精准扶贫政策落实的满意度,现从全县建档立卡贫困户中随机抽取了部分贫困户进行了调查(把调查结果分为四个等级:A级:非常满意;B级:满意;C级:基本满意;D级:不满意),并将调查结果绘制成如下两幅不完整的统计图.请根据统计图中的信息解决下列问题:
参考答案
1.A
【解析】
【分析】
根据只有符号不同的两个数互为相反数,可得一个数的相反数.
【详解】
﹣2的相反数是: 故选A.
【点睛】
本题考查了相反数,关键是在一个数的前面加上负号就是这个数的相反数.
2.D
【解析】
【分析】
科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.
B.是轴对称图形,故本选项符合题意,
C.不是轴对称图形,故本选项不符合题意,
D.是不轴对称图形,故本选项不符合题意.
故选B.
【点睛】
本题考查了轴对称的知识,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.
4.C
【解析】
【分析】
根据幂的乘方、单项式乘以单项式、合并同类项的运算法则及完全平方公式对各选项逐一计算即可得答案.

2019年湖北省恩施州中考数学试卷

2019年湖北省恩施州中考数学试卷

2019 年湖北省恩施州中考数学试卷一、选择题(本大题共有12 个小题,每题 3 分,共 36 分.在每题给出的四个选项中,只有一项为哪一项切合题目要求的,请将选择项前的字母代号填涂在答题卷相应地点上)1.( 3 分) 2 的相反数是()A.2B.﹣ 2C.D.±2 2.( 3 分)天文单位是天文学上当量天体之间距离的一种单位,其数值取地球与太阳之间的均匀距离,即m,约为0km.将数0用科学记数法表示为()7 7 8 8A.× 10 B.× 10 C.× 10 D.× 10 3.( 3 分)在以下图形中是轴对称图形的是()A.B.C.D.4.( 3 分)以下计算正确的选项是()A.(a4b)3=a7b3 B.﹣ 2b( 4a﹣b2)=﹣ 8ab﹣ 2b33 2 24 2 2C.aa +a a=2a D.(a﹣ 5)=a﹣ 25 5.(3 分)某中学规定学生的学期体育成绩满分为100 分,此中早锻炼及体育课外活动占20%,期中考试成绩占30%,期末考试成绩占 50%.小桐的三项成绩(百分制)挨次为95,90,85.则小桐这学期的体育成绩是()A.B.C. 90D.6.( 3 分)如图,在△ABC中,点 D、 E、 F 分别是 AB、 AC、 BC的中点,已知∠ADE=65°,则∠ CFE的度数为()A. 60°B. 65°C. 70°D.75°7.( 3 分)函数y=﹣中,自变量x 的取值范围是()A.x≤B.x≥C.x<且x≠﹣1D.x≤且x≠﹣1 8.( 3 分)桌上摆放着一个由同样正方体构成的组合体,其俯视图以下图,图中数字为该地点小正方体的个数,则这个组合体的左视图为()A.B.C.D.9.( 3 分)某商铺销售富硒农产品,今年 1 月开始盈余, 2 月份盈余240000 元, 4 月份盈余290400 元,且从 2 月份到 4 月份,每个月盈余的均匀增加率同样,则每个月盈余的均匀增加率是()A. 8%B. 9%C. 10%D.11%10.( 3 分)已知对于x 的不等式组恰有3个整数解,则 a 的取值范围为()A. 1<a≤ 2B. 1<a< 2C. 1≤a< 2D.1≤a≤ 2 11.( 3 分)如图,对折矩形纸片ABCD,使 AD与 BC重合,获得折痕EF.把纸片展平,再一次折叠纸片,使点 A 落在 EF上的点 A′处,并使折痕经过点B,获得折痕BM.若矩形纸片的宽 AB=4,则折痕 BM的长为()A.B.C. 8D.812.(3 分)抛物线y= ax2+bx+c 的对称轴是直线x=﹣1,且过点(1,0).极点位于第二象限,其部分图象如图 4 所示,给出以下判断:① ab>0且 c<0;② 4a﹣2b+c> 0;③ 8a+c> 0;④ c=3a﹣3b;⑤直线 y=2x+2与抛物线 y= ax2+bx+c 两个交点的横坐标分别为x1,x2,则 x1+x2+x1x2=5.此中正确的个数有()A.5个B.4个C.3 个D.2 个二、填空题(本大题共有小题,每题分,共分.不要求写出解答过程,请把答案直接填写在答题卷相应地点上)13.( 3 分)的平方根是.14.( 3 分)因式分解: 4a3b3﹣ab=.15.( 3 分)如图,在△ ABC中, AB=4,若将△ ABC绕点 B 顺时针旋转60°,点 A 的对应点为点 A′,点 C的对应点为点C′,点 D为 A′ B 的中点,连结AD.则点 A的运动路径与线段 AD、 A′ D围成的暗影部分面积是.16.( 3 分)察看以下一组数的摆列规律:,,,,,,,,,,,,,,,那么,这一组数的第2019 个数是.三、解答题(本大题共有个小题,共分.请在答题卷指定地区内作答,解答时应写出文字说明 . 证明过程或演算步骤)17.( 8 分)先化简,再求值:÷﹣x+1,此中x=﹣1.18.( 8 分)如图,在四边形ABCD中, AD∥ BC,点 O是对角线AC的中点,过点O作 AC的垂线,分别交AD、BC于点 E、 F,连结 AF、 CE.试判断四边形AECF的形状,并证明.19.( 8 分)为认识某县建档立卡贫穷户对精确扶贫政策落实的满意度,现从全县建档立卡贫穷户中随机抽取了部分贫穷户进行了检查(把检查结果分为四个等级: A 级:特别满意;B 级:满意; C级:基本满意; D级:不满意),并将检查结果绘制成以下两幅不完好的统计图.请依据统计图中的信息解决以下问题:( 1)本次抽样检查测试的建档立卡贫穷户的总户数是.( 2)图 1 中,∠α 的度数是,并把图 2 条形统计图增补完好.( 3)某县建档立卡贫穷户有 10000 户,假如所有参加此次满意度检查,请预计特别满意的人数约为多少户( 4)检查人员想从 5 户建档立卡贫穷户(分别记为 a , b , c , d , e )中随机选用两户,检查他们对精确扶贫政策落实的满意度,请用列表或画树状图的方法求出选中贫穷户e的概率.20.( 8 分)如图,某地有甲、乙两栋建筑物,小明于乙楼楼顶 A 点处看甲楼楼底 D 点处的俯角为 45°,走到乙楼B 点处看甲楼楼顶 E 点处的俯角为 60°,已知 = 6 , = 10 .求AB m DE m乙楼的高度 AC 的长.(参照数据:≈,≈,精确到.)21.( 8 分)如图,已知∠ AOB = 90°,∠ OAB = 30°,反比率函数 y =﹣ ( x < 0)的图象过点 B (﹣ 3, a ),反比率函数 y =( x > 0)的图象过点 A .(1)求a和k的值;(2)过点B作BC∥x轴,与双曲线y=交于点C.求△OAC的面积.22.( 10 分)某县有A、B 两个大型蔬菜基地,共有蔬菜700 吨.若将 A 基地的蔬菜所有运往甲市所需花费与 B 基地的蔬菜所有运往甲市所需花费同样.从A、B 两基地运往甲、乙两市的运费单价以下表:甲市(元 / 吨)乙市(元 / 吨)A 基地20 25B 基地15 24( 1)求A、B两个蔬菜基地各有蔬菜多少吨( 2)现甲市需要蔬菜260 吨,乙市需要蔬菜440 吨.设从 A 基地运送 m吨蔬菜到甲市,请问如何调运可使总运费最少23.( 10 分)如图,在⊙O中, AB是直径, BC是弦, BC= BD,连结 CD交⊙ O于点 E,∠ BCD =∠ DBE.( 1)求证:BD是⊙O的切线.( 2)过点E作EF⊥AB于F,交BC于G,已知DE= 2,EG=3,求BG的长.24.( 12 分)如图,抛物线y = ax 2﹣ 2ax +c 的图象经过点 C ( 0,﹣ 2),极点 D 的坐标为( 1,﹣ ),与 x 轴交于 A 、B 两点.( 1)求抛物线的分析式.( 2)连结 AC , E 为直线 AC 上一点,当△ AOC ∽△ AEB 时,求点E 的坐标和 的值.( 3)点 F ( 0,y )是 y 轴上一动点,当y 为什么值时,FC +BF 的值最小.并求出这个最小值.( 4)点 C 对于x 轴的对称点为 ,当 + 取最小值时, 在抛物线的对称轴上能否存H FC BF在点 Q ,使△ QHF 是直角三角形若存在,恳求出点Q 的坐标;若不存在,请说明原因.2019 年湖北省恩施州中考数学试卷参照答案一、选择题(本大题共有12 个小题,每题 3 分,共 36 分.在每题给出的四个选项中,只有一项为哪一项切合题目要求的,请将选择项前的字母代号填涂在答题卷相应地点上)1.B; 2 .D; 3 .B; 4 .C; 5 .A; 6 .B; 7 .D; 8 .D; 9 .C; 10 .A; 11 .A; 12 .D;二、填空题(本大题共有小题,每题分,共分.不要求写出解答过程,请把答案直接填写在答题卷相应地点上)13.±; 14 . ab( 2ab+1)(2ab﹣ 1); 15 .﹣2;16.;三、解答题(本大题共有个小题,共分.请在答题卷指定地区内作答,解答时应写出文字说明 . 证明过程或演算步骤)17.;18.; 19 .60(户);54°; 20 .;21 .;22.;23.;24.;。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019年湖北省恩施州中考数学试卷
一、选择题(本大题共有12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将选择项前的字母代号填涂在答题卷相应位置上)
1.(3分)2的相反数是()
A.2 B.﹣2 C.D.±2
2.(3分)天文单位是天文学中计量天体之间距离的一种单位,其数值取地球与太阳之间的平均距离,即m,约为0km.将数0用科学记数法表示为()
A.×107B.×107C.×108D.×108
3.(3分)在下列图形中是轴对称图形的是()
A.B.
C.D.
4.(3分)下列计算正确的是()
A.(a4b)3=a7b3B.﹣2b(4a﹣b2)=﹣8ab﹣2b3
C.aa3+a2a2=2a4D.(a﹣5)2=a2﹣25
5.(3分)某中学规定学生的学期体育成绩满分为100分,其中早锻炼及体育课外活动占20%,期中考试成绩占30%,期末考试成绩占50%.小桐的三项成绩(百分制)依次为95,90,85.则小桐这学期的体育成绩是()
A.B.C.90 D.
6.(3分)如图,在△ABC中,点D、E、F分别是AB、AC、BC的中点,已知∠ADE=65°,则∠CFE的度数为()
A.60°B.65°C.70°D.75°
7.(3分)函数y=﹣中,自变量x的取值范围是()
A.x≤B.x≥C.x<且x≠﹣1 D.x≤且x≠﹣1 8.(3分)桌上摆放着一个由相同正方体组成的组合体,其俯视图如图所示,图中数字为该位置小正方体的个数,则这个组合体的左视图为()
A.B.
C.D.
9.(3分)某商店销售富硒农产品,今年1月开始盈利,2月份盈利240000元,4月份盈利290400元,且从2月份到4月份,每月盈利的平均增长率相同,则每月盈利的平均增长率是()
A.8% B.9% C.10% D.11%
10.(3分)已知关于x的不等式组恰有3个整数解,则a的取值范围为()
A.1<a≤2 B.1<a<2 C.1≤a<2 D.1≤a≤2
11.(3分)如图,对折矩形纸片ABCD,使AD与BC重合,得到折痕EF.把纸片展平,再一次折叠纸片,使点A落在EF上的点A′处,并使折痕经过点B,得到折痕BM.若矩形纸片的宽AB=4,则折痕BM的长为()
A.B.C.8 D.8
12.(3分)抛物线y=ax2+bx+c的对称轴是直线x=﹣1,且过点(1,0).顶点位于第二象限,其部分图象如图4所示,给出以下判断:
①ab>0且c<0;
②4a﹣2b+c>0;
③8a+c>0;
④c=3a﹣3b;
⑤直线y=2x+2与抛物线y=ax2+bx+c两个交点的横坐标分别为x1,x2,则x1+x2+x1x2=5.
其中正确的个数有()
A.5个B.4个C.3个D.2个
二、填空题(本大题共有小题,每小题分,共分.不要求写出解答过程,请把答案直接填写在答题卷相应位置上)
13.(3分)的平方根是.
14.(3分)因式分解:4a3b3﹣ab=.
15.(3分)如图,在△ABC中,AB=4,若将△ABC绕点B顺时针旋转60°,点A的对应点为点A′,点C的对应点为点C′,点D为A′B的中点,连接AD.则点A的运动路径与线段AD、A′D围成的阴影部分面积是.
16.(3分)观察下列一组数的排列规律:
,,,,,,,,,,,,,,,…
那么,这一组数的第2019个数是.
三、解答题(本大题共有个小题,共分.请在答题卷指定区域内作答,解答时应写出文字说明.证明过程或演算步骤)
17.(8分)先化简,再求值:÷﹣x+1,其中x=﹣1.
18.(8分)如图,在四边形ABCD中,AD∥BC,点O是对角线AC的中点,过点O作AC的垂线,分别交AD、BC于点E、F,连接AF、CE.试判断四边形AECF的形状,并证明.
19.(8分)为了解某县建档立卡贫困户对精准扶贫政策落实的满意度,现从全县建档立卡贫困户中随机抽取了部分贫困户进行了调查(把调查结果分为四个等级:A级:非常满意;
B级:满意;C级:基本满意;D级:不满意),并将调查结果绘制成如下两幅不完整的统计图.请根据统计图中的信息解决下列问题:
(1)本次抽样调查测试的建档立卡贫困户的总户数是.
(2)图1中,∠α的度数是,并把图2条形统计图补充完整.
(3)某县建档立卡贫困户有10000户,如果全部参加这次满意度调查,请估计非常满意的人数约为多少户
(4)调查人员想从5户建档立卡贫困户(分别记为a,b,c,d,e)中随机选取两户,调查他们对精准扶贫政策落实的满意度,请用列表或画树状图的方法求出选中贫困户e 的概率.
20.(8分)如图,某地有甲、乙两栋建筑物,小明于乙楼楼顶A点处看甲楼楼底D点处的俯角为45°,走到乙楼B点处看甲楼楼顶E点处的俯角为60°,已知AB=6m,DE=10m.求乙楼的高度AC的长.(参考数据:≈,≈,精确到.)
21.(8分)如图,已知∠AOB=90°,∠OAB=30°,反比例函数y=﹣(x<0)的图象过点B(﹣3,a),反比例函数y=(x>0)的图象过点A.
(1)求a和k的值;
(2)过点B作BC∥x轴,与双曲线y=交于点C.求△OAC的面积.
22.(10分)某县有A、B两个大型蔬菜基地,共有蔬菜700吨.若将A基地的蔬菜全部运往甲市所需费用与B基地的蔬菜全部运往甲市所需费用相同.从A、B两基地运往甲、乙两市的运费单价如下表:
甲市(元/吨)乙市(元/吨)
A基地2025
B基地1524
(1)求A、B两个蔬菜基地各有蔬菜多少吨
(2)现甲市需要蔬菜260吨,乙市需要蔬菜440吨.设从A基地运送m吨蔬菜到甲市,请问怎样调运可使总运费最少
23.(10分)如图,在⊙O中,AB是直径,BC是弦,BC=BD,连接CD交⊙O于点E,∠BCD =∠DBE.
(1)求证:BD是⊙O的切线.
(2)过点E作EF⊥AB于F,交BC于G,已知DE=2,EG=3,求BG的长.
24.(12分)如图,抛物线y=ax2﹣2ax+c的图象经过点C(0,﹣2),顶点D的坐标为(1,﹣),与x轴交于A、B两点.
(1)求抛物线的解析式.
(2)连接AC,E为直线AC上一点,当△AOC∽△AEB时,求点E的坐标和的值.(3)点F(0,y)是y轴上一动点,当y为何值时,FC+BF的值最小.并求出这个最小值.
(4)点C关于x轴的对称点为H,当FC+BF取最小值时,在抛物线的对称轴上是否存在点Q,使△QHF是直角三角形若存在,请求出点Q的坐标;若不存在,请说明理由.
2019年湖北省恩施州中考数学试卷
参考答案
一、选择题(本大题共有12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将选择项前的字母代号填涂在答题卷相应位置上)
1.B; 2.D; 3.B; 4.C; 5.A; 6.B; 7.D; 8.D; 9.C; 10.A; 11.A; 12.D;
二、填空题(本大题共有小题,每小题分,共分.不要求写出解答过程,请把答案直接填写在答题卷相应位置上)
13.±; 14.ab(2ab+1)(2ab﹣1); 15.﹣2; 16.;
三、解答题(本大题共有个小题,共分.请在答题卷指定区域内作答,解答时应写出文字说明.证明过程或演算步骤)
17.; 18.; 19.60(户);54°; 20.; 21.; 22.;23.; 24.;。

相关文档
最新文档