高数(上册)归纳公式篇(完整)

合集下载

(完整版)高数1全套公式

(完整版)高数1全套公式

o
x
极限的计算方法 一、初等函数: 1.lim C C(C是常值函数)
2.若 f x M(即 f x 是有界量),lim (0 即 是无穷小量), lim f x
0,
特别 : f x C lim C 0
fx
3.若 f x M(即 f x 是有界量) lim
0,
特别 : f x C C 0
lim C 0
2.特殊角的三角函数值
f( ) cos sin tan cot
0 (0 )
1 0 0 不存在
6
(30 ) 3/ 2 1/ 2
1/ 3 3
4
( 45 ) 2 /2 2 /2
1 1
3
( 60 ) 1/ 2 3/ 2
3 1/ 3
2
( 90 )
0 1 不存在 0
只需记住这两个特殊的直角三角形的边角关系,依照三角函数的定义即可推出上面的三角值
(3)、 d( ax ) a x ln adx ,特别地,当 a e时, d (ex ) exdx ;
(4)、 d(log a x)
1 dx ,特别地,当 a e 时, d (ln x) 1 dx ;
1。
45 2
1
60
2 1
45
30
1 3 诱导公式:
3
函数
角A
sin cos tg ctg
-α 90 °- α 90 °+ α 180 °-α 180 °+α 270 °-α 270 °+α 360 °-α 360 °+α
-sin α cos α -tg α -ctg α cos α sin α ctg α tg α cos α -sin α -ctg α -tg α sin α -cos α -tg α -ctg α -sin α -cos α tg α ctg α -cos α -sin α ctg α tg α -cos α sin α -ctg α -tg α -sin α cos α -tg α -ctg α sin α cos α tg α ctg α

高等数学上册必考公式(3篇)

高等数学上册必考公式(3篇)

高等数学上册必考公式(3篇)高等数学上册必考公式(3篇)高等数学公式是在数学专业中占重要的位置,同时公式也是很重要的,下面就让小编给大家带来高等数学上册必考公式,希望大家喜欢,欢迎大家阅读! 高等数学函数公式篇1·平方关系:sin^2(α)+cos^2(α)=1tan^2(α)+1=sec^2(α)cot^2(α)+1=csc^2(α)·积的关系:sinα=tanα乘cosαcosα=cotα乘sinαtanα=sinα乘secαcotα=cosα乘cscαsecα=tanα乘cscαcscα=secα乘cotα·倒数关系:tanα·cotα=1sinα·cscα=1cosα·secα=1直角三角形ABC中,角A的正弦值就等于角A的对边比斜边,余弦等于角A的邻边比斜边正切等于对边比邻边,·三角函数恒等变形公式:·两角和与差的三角函数:cos(α+β)=cosα·cosβ-sinα·sinβcos(α-β)=cosα·cosβ+sinα·sinβsin(α±β)=sinα·cosβ±cosα·sinβtan(α+β)=(tanα+tanβ)/(1-tanα·tanβ)tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)·三角和的三角函数:sin(α+β+γ)=sinα·cosβ·cosγ+cosα·sinβ·cosγ+cosα·cosβ·s inγ-sinα·sinβ·sinγcos(α+β+γ)=cosα·cosβ·cosγ-cosα·sinβ·sinγ-sinα·cosβ·sinγ-sinα·sinβ·cosγtan(α+β+γ)=(tanα+tanβ+tanγ-tanα·tanβ·tanγ)/(1-tanα·tanβ-tanβ·tanγ-tanγ·tanα)·辅助角公式:Asinα+Bcosα=(A^2+B^2)^(1/2)sin(α+t),其中sint=B/(A^2+B^2)^(1/2)cost=A/(A^2+B^2)^(1/2)tant=B/AAsinα+Bcosα=(A^2+B^2)^(1/2)cos(α-t),tant=A/B·倍角公式:·三倍角公式:sin(2α)=2sinα·cosα=2/(tanα+cotα) sin(3α)=3sinα-4sin^3(α) cos(2α)=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α)cos(3α)=4cos^3(α)-3cosαtan(2α)=2tanα/[1-tan^2(α)]·半角公式:sin(α/2)=±√((1-cosα)/2)cos(α/2)=±√((1+cosα)/2)tan(α/2)=±√((1-cosα)/(1+cosα))=sinα/(1+cosα)=(1-cosα)/sinα ·降幂公式sin^2(α)=(1-cos(2α))/2=versin(2α)/2cos^2(α)=(1+cos(2α))/2=covers(2α)/2tan^2(α)=(1-cos(2α))/(1+cos(2α))·万能公式:sinα=2tan(α/2)/[1+tan^2(α/2)]cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)]tanα=2tan(α/2)/[1-tan^2(α/2)]·积化和差公式:sinα·cosβ=(1/2)[sin(α+β)+sin(α-β)]cosα·sinβ=(1/2)[sin(α+β)-sin(α-β)]cosα·cosβ=(1/2)[cos(α+β)+cos(α-β)]sinα·sinβ=-(1/2)[cos(α+β)-cos(α-β)]·和差化积公式:sinα+sinβ=2sin[(α+β)/2]cos[(α-β)/2]sinα-sinβ=2cos[(α+β)/2]sin[(α-β)/2]cosα+cosβ=2cos[(α+β)/2]cos[(α-β)/2]cosα-cosβ=-2sin[(α+β)/2]sin[(α-β)/2]·推导公式tanα+cotα=2/sin2αtanα-cotα=-2cot2α1+cos2α=2cos^2α1-cos2α=2sin^2α1+sinα=(sinα/2+cosα/2)^2·其他:sinα+sin(α+2π/n)+sin(α+2π乘2/n)+sin(α+2π乘3/n)+……+sin[α+2π乘(n-1)/n]=0cosα+cos(α+2π/n)+cos(α+2π乘2/n)+cos(α+2π乘3/n)+……+cos[α+2π乘(n-1)/n]=0 以及sin^2(α)+sin^2(α-2π/3)+sin^2(α+2π/3)=3/2tanAtanBtan(A+B)+tanA+tanB-tan(A+B)=0三角函数的角度换算:公式一:设α为任意角,终边相同的角的同一三角函数的值相等:sin(2kπ+α)=sinαcos(2kπ+α)=cosαtan(2kπ+α)=tanαcot(2kπ+α)=cotα公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin(π+α)=-sinαcos(π+α)=-cosαtan(π+α)=tanαcot(π+α)=cotα公式三:任意角α与 -α的三角函数值之间的关系:sin(-α)=-sinαcos(-α)=cosαtan(-α)=-tanαcot(-α)=-cotα公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin(π-α)=sinαcos(π-α)=-cosαtan(π-α)=-tanαcot(π-α)=-cotα公式五:利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:sin(2π-α)=-sinαcos(2π-α)=cosαtan(2π-α)=-tanαcot(2π-α)=-cotα公式六:π/2±α及3π/2±α与α的三角函数值之间的`关系:sin(π/2+α)=cosαcos(π/2+α)=-sinαtan(π/2+α)=-cotαcot(π/2+α)=-tanαsin(π/2-α)=cosαcos(π/2-α)=sinαtan(π/2-α)=cotαcot(π/2-α)=tanαsin(3π/2+α)=-cosαcos(3π/2+α)=sinαtan(3π/2+α)=-cotαcot(3π/2+α)=-tanαsin(3π/2-α)=-cosαcos(3π/2-α)=-sinαtan(3π/2-α)=cotαcot(3π/2-α)=tanα(以上k∈Z)部分高等内容·高等代数中三角函数的指数表示(由泰勒级数易得):sinx=[e^(ix)-e^(-ix)]/(2i) cosx=[e^(ix)+e^(-ix)]/2 tanx=[e^(ix)-e^(-ix)]/[ie^(ix)+ie^(-ix)]泰勒展开有无穷级数,e^z=exp(z)=1+z/1!+z^2/2!+z^3/3!+z^4/4!+…+z^n/n!+…此时三角函数定义域已推广至整个复数集。

大学高等数学公式大全

大学高等数学公式大全

大学高等数学公式大全第一部分:微积分基础一、导数1. 导数的定义:导数是一个函数在某一点上的瞬时变化率,表示为f'(x)或dy/dx。

2. 导数的运算法则:常数函数的导数为0。

幂函数的导数为指数乘以底数的指数减1,即d/dx(x^n) =nx^(n1)。

指数函数的导数为指数函数乘以指数,即d/dx(a^x) = a^xln(a)。

对数函数的导数为1除以x乘以底数的对数,即d/dx(ln(x)) =1/x。

三角函数的导数:d/dx(sin(x)) = cos(x),d/dx(cos(x)) =sin(x),d/dx(tan(x)) = sec^2(x)。

3. 高阶导数:函数的导数可以继续求导,得到高阶导数。

例如,f''(x)表示二阶导数。

二、积分1. 定积分的定义:定积分是一个函数在某个区间上的累积和,表示为∫[a,b]f(x)dx。

2. 积分的运算法则:常数函数的积分为其乘以区间长度,即∫[a,b]c dx = c(ba)。

幂函数的积分为其指数加1除以指数加1乘以区间长度,即∫[a,b]x^n dx = (b^(n+1)a^(n+1))/(n+1)。

指数函数的积分为其指数函数除以指数,即∫[a,b]a^x dx = (a^ba^a)/ln(a)。

对数函数的积分为其对数函数乘以区间长度,即∫[a,b]ln(x) dx = (xln(x)x)。

三角函数的积分:∫[a,b]sin(x) dx = cos(x) + C,∫[a,b]cos(x) dx = sin(x) + C,∫[a,b]tan(x) dx = ln|cos(x)| + C。

3. 积分的性质:积分与导数互为逆运算,即d/dx(∫f(x)dx) = f(x)。

积分区间可以改变顺序,即∫[a,b]f(x)dx = ∫[b,a]f(x)dx。

积分可以分解为多个区间上的积分,即∫[a,c]f(x)dx =∫[a,b]f(x)dx + ∫[b,c]f(x)dx。

(完整版)高数公式大全(费了好大的劲),推荐文档

(完整版)高数公式大全(费了好大的劲),推荐文档

lim[ f ( x) g ( x)]
两个重要极限
lim
sin
x
1, lim
sin
x
0; lim(1
1)x
e
lim(1
1
x) x
x0 x
x x
x
x
x0
常用等价无穷小:
1 cos x ~ 1 x2; x ~ sin x ~ arcsin x ~ arctan x; n 1 x 1 ~ 1 x;
lim n0
n i 1
f(i)1 nn
F (b) F (a) F (x)
b a
,
(F(x) f (x))
连续可积; 有界+有限个间断点可积; 可积有界; 连续原函数存在
(x) x f (t)dt (x) f (x) a
d (x) f (t)dt f [(x)](x) f [ (x)] (x)
1 x
n0
3、
弧微分公式:ds 1 y2 dx x(t) y(t)2 dt 2 2 d
平均曲率:K从点到点.(, 切: 线M斜率的M倾 角变化量;: s
弧长)
s MM
M点的曲率:K lim d s0 s ds
y
(t) (t) (t) (t)
= (1 y2 )3
Байду номын сангаас
3
[2 (t) 2 (t)]2
x2 a2 2a x a
a2 x2 2a a x
dx ln(x x2 a2 ) C;
x2 a2
x2 a2 dx x x2 a2 a2 ln(x x2 a2 ) C;
2
2
a2 x2 dx x a2 x2 a2 arcsin x C

(完整版)高等数学公式大全及常见函数图像

(完整版)高等数学公式大全及常见函数图像

高等数学公式导数公式:基本积分表:三角函数的有理式积分:222212211cos 12sin u dudx x tg u u u x u u x +==+-=+=, , , 一些初等函数: 两个重要极限:ax x aa a ctgx x x tgx x x x ctgx x tgx a x x ln 1)(log ln )(csc )(csc sec )(sec csc )(sec )(22='='⋅-='⋅='-='='222211)(11)(11)(arccos 11)(arcsin x arcctgx x arctgx x x x x +-='+='--='-='⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰+±+=±+=+=+=+-=⋅+=⋅+-==+==Ca x x a x dx C shx chxdx C chx shxdx Ca a dx a Cx ctgxdx x C x dx tgx x Cctgx xdx x dx C tgx xdx x dx xx)ln(ln csc csc sec sec csc sin sec cos 22222222C axx a dx C x a xa a x a dx C a x ax a a x dx C a xarctg a x a dx Cctgx x xdx C tgx x xdx Cx ctgxdx C x tgxdx +=-+-+=-++-=-+=++-=++=+=+-=⎰⎰⎰⎰⎰⎰⎰⎰arcsin ln 21ln 211csc ln csc sec ln sec sin ln cos ln 22222222⎰⎰⎰⎰⎰++-=-+-+--=-+++++=+-===-C ax a x a x dx x a C a x x a a x x dx a x Ca x x a a x x dx a x I nn xdx xdx I n n nn arcsin 22ln 22)ln(221cos sin 2222222222222222222222ππ三角函数公式:·诱导公式:·和差角公式: ·和差化积公式:2sin2sin 2cos cos 2cos2cos 2cos cos 2sin 2cos 2sin sin 2cos2sin 2sin sin βαβαβαβαβαβαβαβαβαβαβαβα-+=--+=+-+=--+=+αββαβαβαβαβαβαβαβαβαβαβαctg ctg ctg ctg ctg tg tg tg tg tg ±⋅=±⋅±=±=±±=±1)(1)(sin sin cos cos )cos(sin cos cos sin )sin( xxarthx x x archx x x arshx e e e e chx shx thx e e chx e e shx x x xx xx xx -+=-+±=++=+-==+=-=----11ln21)1ln(1ln(:2:2:22)双曲正切双曲余弦双曲正弦...590457182818284.2)11(lim 1sin lim0==+=∞→→e xx x x x x·倍角公式:·半角公式:ααααααααααααααααααcos 1sin sin cos 1cos 1cos 12cos 1sin sin cos 1cos 1cos 122cos 12cos 2cos 12sin -=+=-+±=+=-=+-±=+±=-±=ctg tg·正弦定理:R CcB b A a 2sin sin sin === ·余弦定理:C ab b a c cos 2222-+=·反三角函数性质:arcctgx arctgx x x -=-=2arccos 2arcsin ππ高阶导数公式——莱布尼兹(Leibniz )公式:)()()()2()1()(0)()()(!)1()1(!2)1()(n k k n n n n nk k k n k n n uv v u k k n n n v u n n v nu v u v u C uv +++--++''-+'+==---=-∑中值定理与导数应用:拉格朗日中值定理。

(完整版)大学应用数学(高等数学)最全公式知识点总结

(完整版)大学应用数学(高等数学)最全公式知识点总结

高等数学初等函数正弦定理:I (R 为外接關的半径)Mn Λ Mn B Sln C余弦定理:a 2 = h 2 ÷c* -2∕κ cos4 同角三角:Sin Λ esc Λ = I CoSASeC 4 = I tan Aco< A一 ISirMtan 4 = ---- ;CoM cosΛ COM ∙=τ;sin 4两角和差:Sin(A 土 8)= Sin Λco ⅛ B ± cυ⅛ A Sill B ∙ cos(Λ ± Λ) = CoS A COS S z fSin Λ sin B; m m ZjlS <anΛ⅛tangITlanA tan R二倍角:sin2Λ = 2sin ACoS B;co,2A ≡ ex' 4 -sin : Λ ■ 2cos 2 A -12 tan 4积化和畫:»[sin(4 + fl)÷sin(4-Λ)l Cm AMn // = -[MΠ(∕I ÷ Λ)-MΠ(4-Λ)JCOS A CoS λ1:ICoS(Zl ÷ 8) +CoS(A -Mn AMn U = ■一[c<n(4 ÷ B)^Cm(A- 〃)}和差化积^・ n r Λ-Λ SIn Λ ÷ sin Λ = 2 Sln ------ ∙CoS ------------------2 2Sin ? A + cm' A ∙ II ÷ tan * A = see* A1-2M ∩2Λ; tan 2 A ■ ,I-Ian* ADr A^B . A-B sιnΛ -M∏β = ∖∙s∣∣∣2 2nC Λ + β Λ —ΛCoSA ÷cσsW = 2 cos - ∙cos ----- ;2 2 O O・ A^B ・ A-Bcos Λ - cos β = -2 Mn ——∙sm——反三角函数:Mn(afCM∏ r)≡ r;x€ [-1.l];cos(arccosx)≡ x:XG 卜 Ll}ian(arcun X)= x;je I-8.÷∞}co((arccot.v)=x;Xe ∣-∞.*<*}; 等差数列:≡<ιl ÷π2 +・・・*《 求 M√ ∏ 项% ≡α∣ (Λ-1M注:dl ⅛公淮求第n 项和= g等比数列:l÷2÷4÷8÷..→α19^求第n 顶^ S "广 求第n 项和:S Il ■止£)・竺空 I -q I -q算术平均数大于或等于几何平均数值:绝对值不等式:Il-IyI≤∣Λ±3⅛≤∣-t∣>∣)∙∣ 对数运算:Iog -M ≡⅛^;Iog^≡7J-gaIOgAa因式分解,<ι' ±b l =(α±b)((f' ^ab^b') 二项式定理,(4÷∕r)n =C> + C 1IIΛΛ ,Λ + C^Λ∙,4 ∙→Ctf w阶乘与半阶乗5为自然数): 阶乘:Λ!=∏X: =l×2×3×∙∙∙×∕∣ζθ!=li-4(2n)!!=ΓI(2⅛)=2×4×6×∙∙∙×(2Λ) = 24∙Λkυ!!=(λ半阶乘:l ∙l.(2M ÷ l>!= fl (2⅛ ÷ l)≡ I×3×5×-×(2Λ ÷ t)一元二次方程:ax : +bx÷c = O W 为 A = b' 4u< 当XO 时右•个虬当A>0时仃刈个解:当,0时无解:>0l∣∙t JFu 向上: a<0 时 JFl I 向下 方用组的解:,空坐二3Iaarvsin(-x)® -arcMn.r :x€ [-l.∣} arccos(- x) = Λ, -arccos.∏Λ G 卜 LIl arvtan(-j) = -arvtanx;j€ ∣-∞.⅛co); CIrC COt(-x)≡ ΛF-(IrCCOt x;xe [-oo,⅛coj韦达定理:Λl+Λ; =--IΛlΛy ≡-iΛl.Λ,为腐个根a a用韦达定理解三次方程:若F + p.『+g"r・0的三个根分别为x...r;.x, 则X| +X1 +X3= ./>;旺∙Λ2÷ X1∙ X j÷ X1∙ X1 = q;X\∙χ1∙χj≡-Γ 抛物线:抛物线y = αr ⅛ΛΛ÷C性质:对祢轴为:: 顶点为*竺MIa 4a抛物线标准方稈:√=2px⅛1=2p)∙) 焦点:卷.0): 准线方程:XT 楠圆:Iffi I 用标准方IV; ^j∙∙t∙^y — I为“ >b时c∙■ Jo匚b;•焦点F仕cθ);准线方程:x≡±-;C肉心率:r = — < 1a'l^a <b时C = JW ,焦点F(O,±c):准线方程:x = d-:离心那:r • - < Ih参数方程;I X=^oSj.(0<r<2π)(y ≡hsιnr双曲线,双曲线的标准方程:⅛='准线方程:x≡±≤- 渐近线方稈:y = t —x:离心率:e = — > 1 •其中c≈∖∣cι2 ÷fr'aaHx = α tan / '∣ y≡ΛsccJ初等几何公式,设/为、卜径.h 为氐f 为MJK. S 为而积•"为体职。

(完整版)高等数学(上)重要知识点归纳

(完整版)高等数学(上)重要知识点归纳

高等数学(上)重要知识点归纳第一章 函数、极限与连续一、极限的定义与性质 1、定义(以数列为例),,0lim N a x n n ∃>∀⇔=∞→ε当N n >时,ε<-||a x n2、性质(1) )()()(lim 0x A x f A x f xx α+=⇔=→,其中)(x α为某一个无穷小。

(2)(保号性)若0)(lim 0>=→A x f xx ,则,0>∃δ当),(0δx U x o∈时,0)(>x f 。

(3)*无穷小乘以有界函数仍为无穷小。

二、求极限的主要方法与工具 1、*两个重要极限公式 (1)1sin lim=∆∆→∆ (2)e =◊+◊∞→◊)11(lim 2、两个准则 (1) *夹逼准则 (2)单调有界准则 3、*等价无穷小替换法常用替换:当0→∆时(1)∆∆~sin (2)∆∆~tan(3)∆∆~arcsin (4)∆∆~arctan(5)∆∆+~)1ln( (6)∆-∆~1e (7)221~cos 1∆∆- (8)nn ∆-∆+~114、分子或分母有理化法5、分解因式法 6用定积分定义 三、无穷小阶的比较* 高阶、同阶、等价1、连续的定义*)(x f 在a 点连续)()()()()(lim 0lim 0a f a f a f a f x f y ax x ==⇔=⇔=∆⇔-+→→∆2、间断点的分类⎪⎪⎪⎩⎪⎪⎪⎨⎧⎪⎩⎪⎨⎧⎩⎨⎧其他震荡型(来回波动))无穷型(极限为无穷大第二类但不相等)跳跃型(左右极限存在可去型(极限存在)第一类 3、曲线的渐近线*ax x f A y A x f ax x =∞===→∞→则存在渐近线:铅直渐近线:若则存在渐近线:水平渐近线:若,)(lim )2(,)(lim )1(五、闭区间连续函数性质 1、最大值与最小值定理 2、介值定理和零点定理第二章 导数与微分一、导数的概念 1、导数的定义*a f x f a f x a f y dy a f y ax x x a x a x -=-∆+=∆=='='→→∆→∆==)()(lim )()(lim lim |)(|002、左右导数 左导数ax a f x f x y a f a x x --=∆∆='--→→∆-)()(limlim)(0 右导数ax a f x f x y a f a x x --=∆∆='++→→∆+)()(limlim)(03、导数的几何意义*k a f a x f y a x 处的切线斜率在点(曲线))(,)(|='=4、导数的物理意义加速度)速度)则若运动方程:()()()(,)(()()(t a t v t s t v t s t s s ='=''='= 5、可导与连续的关系: 连续,反之不然。

高数公式大全(全)

高数公式大全(全)

高数公式大全1。

基本积分表:三角函数的有理式积分:222212211cos 12sin u dudx x tg u u u x u u x +==+-=+=, , , 一些初等函数: 两个重要极限:⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰+±+=±+=+=+=+-=⋅+=⋅+-==+==Ca x x a x dx C shx chxdx C chx shxdx Ca a dx a Cx ctgxdx x C x dx tgx x Cctgx xdx x dx C tgx xdx x dx xx)ln(ln csc csc sec sec csc sin sec cos 22222222C axx a dx C x a xa a x a dx C a x ax a a x dx C a xarctg a x a dx Cctgx x xdx C tgx x xdx Cx ctgxdx C x tgxdx +=-+-+=-++-=-+=++-=++=+=+-=⎰⎰⎰⎰⎰⎰⎰⎰arcsin ln 21ln 211csc ln csc sec ln sec sin ln cos ln 22222222⎰⎰⎰⎰⎰++-=-+-+--=-+++++=+-===-Cax a x a x dx x a Ca x x a a x x dx a x Ca x x a a x x dx a x I nn xdx xdx I n n nn arcsin 22ln 22)ln(221cos sin 2222222222222222222222ππe e e e chx shx thx e e chx e e shx x xxx xx xx +-==+=-=----:2:2:双曲正切双曲余弦双曲正弦...590457182818284.2)11(lim 1sin lim 0==+=∞→→e xxx x x x三角函数公式: ·诱导公式:·和差角公式: ·和差化积公式:2sin2sin 2cos cos 2cos2cos 2cos cos 2sin2cos 2sin sin 2cos2sin2sin sin βαβαβαβαβαβαβαβαβαβαβαβα-+=--+=+-+=--+=+αββαβαβαβαβαβαβαβαβαβαβαctg ctg ctg ctg ctg tg tg tg tg tg ±⋅=±⋅±=±=±±=±1)(1)(sin sin cos cos )cos(sin cos cos sin )sin(·倍角公式:·半角公式:ααααααααααααααααααcos 1sin sin cos 1cos 1cos 12cos 1sin sin cos 1cos 1cos 122cos 12cos 2cos 12sin -=+=-+±=+=-=+-±=+±=-±=ctg tg·正弦定理:R CcB b A a 2sin sin sin === ·余弦定理:C ab b a c cos 2222-+=·反三角函数性质:arcctgx arctgx x x -=-=2arccos 2arcsin ππ高阶导数公式-—莱布尼兹(Leibniz )公式:)()()()2()1()(0)()()(!)1()1(!2)1()(n k k n n n n nk k k n k n n uv v u k k n n n v u n n v nu v u v u C uv +++--++''-+'+==---=-∑中值定理与导数应用:拉格朗日中值定理。

高等数学上册(微积分)必背公式总结

高等数学上册(微积分)必背公式总结

高等数学上册(微积分)必背公式总结以下仅是个人总结仅供参考(不包含微分方程模块)常用三角函数公式积化和差公式\begin{aligned} \sin \alpha \cos\beta&=\frac{1}{2}[\sin (\alpha+\beta)+\sin(\alpha-\beta)] \\ \cos \alpha \sin \beta&=\frac{1}{2}[\sin (\alpha+\beta)-\sin(\alpha-\beta)] \\ \cos \alpha \cos \beta&=\frac{1}{2}[\cos (\alpha+\beta)+\cos(\alpha-\beta)] \\ \sin \alpha \sin \beta&=-\frac{1}{2}[\cos (\alpha+\beta)-\cos(\alpha-\beta)]\end{aligned}和差化积公式\begin{aligned}\sin\alpha+\sin\beta&=2\sin\frac{\alpha+\beta}{2}\cos\ frac{\alpha-\beta}{2} \\ \sin\alpha-\sin\beta&=2\cos\frac{\alpha+\beta}{2}\sin\frac{\alpha -\beta}{2} \\\cos\alpha+\cos\beta&=2\cos\frac{\alpha+\beta}{2}\cos\ frac{\alpha-\beta}{2} \\ \cos\alpha-\cos\beta&=-2\sin\frac{\alpha+\beta}{2}\sin\frac{\alpha-\beta}{2}\\ \tan\alpha+\tan\beta&=\frac{\sin(\alpha+\beta)}{\cos\alpha\cdot\cos \beta}\end{aligned}归一化公式\begin{aligned} \label{gyhgs} \sin^2 x+\cos^2x&=1\\\sec^2 x-\tan^2x&=1\\\cosh^2x-\sinh^2x&=1\end{aligned}倍(半)角公式降(升)幂公式\begin{aligned} \sin^2x&=\frac{1}{2}(1-\cos 2x)\\\cos^2x&=\frac{1}{2}(1+\cos 2x) \\ \tan^2x&=\frac{1-\cos 2x}{1+\cos 2x} \\ \sinx&=2\sin\frac{x}{2}\cos\frac{x}{2} \\ \cosx&=2\cos^2\frac{x}{2}-1=1-2\sin^2\frac{x}{2}=\cos^2\frac{x}{2}-\sin^2\frac{x}{2} \\ \tan x&=\frac{2\tan(x/2)}{1-\tan^2(x/2)}\end{aligned}万能公式令 u=\tan\dfrac{x}{2} 则\begin{aligned} \sin x=\frac{2u}{1+u^2}\\ \cosx=\frac{1-u^2}{1+u^2}\end{aligned}常用的佩亚诺型余项泰勒公式有泰勒公式 \begin{aligned}f(x)&=f(x_0)+f'(x_0)(x-x_0)+\frac{f''(x_0)}{2!}(x-x_0)^2+\cdots+\frac{f^{(n)}(x_0)}{n!}(x-x_0)^n+o[(x-x_0)^n]\notag\\f(x)&=f(x_0)+f'(x_0)(x-x_0)+\frac{f''(x_0)}{2!}(x-x_0)^2+\cdots+\frac{f^{(n)}(x_0)}{n!}(x-x_0)^n+\frac{f^{(n+1)}(\xi)}{(n+1)!}(x-x_0)^{n+1}\small{ (\xi \mbox{在}x_0 \mbox{与}x\mbox{之间})} \notag\end{aligned}\begin{aligned}\mathrm{e}^{x}&=1+x+\frac{1}{2}x^{2}+\frac{1}{6}x^{3}+ \cdots+\frac{1}{n!}x^{n}+o(x^{n})\\ \ln(x+1)&=x-\frac{1}{2}x^2+\frac{1}{3}x^3-\cdots+(-1)^{n-1}\frac{1}{n}x^{n}+o(x^{n})\end{aligned}令 n=2m 有,\begin{aligned} \sin x&=x-\frac{1}{6}x^{3}+\frac{1}{120}x^{5}+\cdots+(-1)^{m-1}\frac{1}{(2m-1)!}x^{2m-1}+o(x^{2m}) \\ \cos x&=1-\frac{1}{2}x^2+\frac{1}{24}x^4-\cdots+(-1)^m\frac{1}{(2m)!}x^{2m}+o(x^{2m+1}) \\ \tanx&=x+\frac{1}{3}x^3+\frac{2}{15}x^5+\frac{17}{315}x^7+ \cdots+o(x^{2m-1})\end{aligned} \begin{aligned}\arcsinx&=x+\frac{1}{6}x^3+\frac{3}{40}x^{5}+\cdots+o(x^{2m}) \end{aligned}常用于近似计算的泰勒公式\begin{aligned} \frac{1}{1-x}&=1+x+x^2+x^3+\cdots+x^n+o(x^n) \\(1+x)^{\alpha}&=\sum_{i=0}^{n}\frac{\prod_{j=0}^{i-1}{(\alpha-j})}{i!}x^n+o(x^n)\notag \\ &=1+\alphax+\frac{\alpha(\alpha-1)}{2}x^2+\cdots+o(x^n) \\\alpha^x&=\sum_{i=0}^{n}\frac{\ln^n\alpha}{n!}x^n+o(x^n)\notag \\ &=1+x\ln\alpha+\frac{\ln^2 \alpha}{2}x^2+\cdots+\frac{\ln^n \alpha}{n!}x^n+o(x^n)\end{aligned}基本求导公式\begin{equation} \left( C\right)'=0 \\\left( x^{\mu}\right)'=\mu x^{\mu-1} \\ \left( \sinx\right)'=\cos x \\ \left( \cos x\right)'=-\sin x \\ \left( \tan x\right)'=\sec^2 x\\ \left( \cotx\right)'=-\csc^2 x \\ \left( \sec x\right)'=\secx\cdot\tan x \\ \left( \csc x\right)'=-\csc x\cdot\cot x \\ \left( a^x\right)'=a^x\ln a\ (a>0,a\neq1)\\\left( \log_{a}x\right)'=\frac{1}{x\cdot\ln a}\(a>0,a\neq1) \\ \left( \arcsinx\right)'=\frac{1}{\sqrt{1-x^2}} \\ \left( \arccosx\right)'=-\frac{1}{\sqrt{1-x^2}} \\ \left( \arctanx\right)'=\frac{1}{1+x^2} \\ \left( \mathrm{arccot}\, x\right)'=-\frac{1}{1+x^2} \\ \end{equation}函数图形描述中涉及到的重要公式常用曲率计算公式曲率的定义式K=\displaystyle\left|\frac{\mathrm{d}\alpha}{\mathrm{d}s}\right|由定义式我们可以推得1.直角坐标系中的曲线 y=y(x) 有曲率表达式K=\frac{\left|y''\right|}{\left( 1+y^{'2}\right)^{3/2}}\mbox{;}2.参数方程表示的曲线 x=\varphi(t),y=\psi(t) 有曲率表达式 K=\frac{\left|\varphi'(t)\psi''(t)-\varphi''(t)\psi'(t)\right|}{\left[ \varphi^{'2}(t) +\psi^{'2}(t) \right]^{3/2}}\mbox{;}3.极坐标表示的的曲线 y=y(x) 有曲率表达式K=\frac{\left|r^2+2r^{'2}-r\cdotr''\right|}{\left(r^2+r^{'2}\right)^{3/2}}\mbox{;}曲线在对应点 M(x,y) 的曲率中心 D(\alpha,\beta) 的坐标为\begin{cases} \alpha=x-\displaystyle\frac{y'(1+y^{'2})}{y^{''2}} \\\beta=y+\displaystyle\frac{1+y^{'2}}{y''} \end{cases} 曲线的渐近线1.若 \lim\limits_{ x\rightarrow \infty }f(x)=b ,则称 y=b 为曲线 f(x) 的水平渐近线;2.若 \lim\limits_{ x\rightarrow x_0 }f(x)=\infty ,则称 x=x_0 为曲线 f(x) 的垂直渐近线;3.若 \lim\limits_{ x\rightarrow \infty }[f(x)-(ax+b)]=0 ,其中 \begin{cases} a=\displaystyle\lim\limits_{x\to \infty}\frac{f(x)}{x} \\b=\displaystyle \lim\limits_{x\to \infty}[f(x)-ax] \end{cases} 则称 y=ax+b 为曲线 f(x) 的斜渐近线.基本积分公式\begin{aligned} &\int k \,\mathrm{d}x=kx+C \ \mbox{(其中}k\mbox{为常数)} \\ &\intx^\mu\,\mathrm{d}x=\frac{x^{\mu+1}}{\mu+1}+C\(\mu\neq-1) \\ &\int \frac{1}{x}\,\mathrm{d}x=\ln|x|+C \\ &\int\frac{\mathrm{d}x}{1+x^2}=\arctan x+C \\&\int\frac{\mathrm{d}x}{\sqrt{1-x^2}}=\arcsin x+C_1=-\arccos x+C_2 \\ &\int \sin x\,\mathrm{d}x=-\cos x+C\\ &\int\cos x \,\mathrm{d}x=\sin x +C \\ &\int\tanx\,\mathrm{d}x=-\ln |\cos x|+C \\ &\int\cotx\,\mathrm{d}x=\ln |\sin x|+C \\ &\int\cscx\,\mathrm{d}x=\int\frac{1}{\sin{x}}\,\mathrm{d}x=\fra c{1}{2} \ln{\left|\frac{1-\cos{x}}{1+\cos{x}}\right|}+C=\ln{\left|\tan{\frac{x}{ 2}}\right|}+C=\ln{\left|\csc{x}-\cot{x}\right|}+C \\ &\int\secx\,\mathrm{d}x=\int\frac{1}{\cos{x}}\,\mathrm{d}x=\fra c{1}{2} \ln{\left|\frac{1+\sin{x}}{1-\sin{x}}\right|}+C=\ln{\left|\sec{x}+\tan{x}\right|}+C \\ &\int\sec^2 x\,\mathrm{d}x=\tan x +C \\ &\int\csc^2 x\,\mathrm{d}x=-\cot x +C \\ &\int \secx\cdot\tan x \,\mathrm{d}x=\sec x+C \\ &\int\csc x\cdot\cot x \,\mathrm{d}x=-\csc x+C \\ &\int\mathrm{e}^x \,\mathrm{d}x=\mathrm{e}^x+C \\ &\inta^x\,\mathrm{d}x=\frac{a^x}{\ln a}+C \\ &\int \sinhx\,\mathrm{d}x=\cosh x+C \\ &\int \coshx\,\mathrm{d}x=\sinh x+C \\ &\int\frac{1}{a^2+x^2}\,\mathrm{d}x=\frac{1}{a}\arctan\frac {x}{a}+C \\ &\int \frac{1}{a^2-x^2}\,\mathrm{d}x=\frac{1}{2a}\ln \left|\frac{a+x}{a-x}\right|+C \\ &\int \frac{1}{\sqrt{a^2-x^2}}\,\mathrm{d}x=\arcsin\frac{x}{a}+C \\ &\int\frac{1}{\sqrt{x^2\pm a^2}}\,\mathrm{d}x=\ln\left|x+\sqrt{x^2\pm a^2}\right|+C \end{aligned}基本积分方法第一类换元法1.一般地,对于 \sin^{2k+1}x\cos^n x 或 \sin^n x\cos^{2k+1}x (其中 k\in\mathbb{N} )型函数的积分,总可依次作变换 u=\cos x 或 u=\sin x ,从而求得结果;2.一般地,对于 \sin^{2k}x\cos^{2l}x 或 (其中 k,l\in\mathbb{N} )型函数的积分,总是利用降幂公式\sin^2=\dfrac{1}{2}(1-\cos 2x),\cos^2=\dfrac{1}{2}(1+\cos 2x) 化成 \cos 2x 的多项式,从而求得结果;3.一般地,对于 \tan^{n}x\sec^{2k} x 或 \tan^{2k-1} x\sec^{n}x (其中 n,k\in\mathbb{N}_{+} )型函数的积分,总可依次作变换 u=\tan x 或 u=\sec x ,从而求得结果;\begin{aligned} &\int {f( ax + b){\rm{d}}x= }\frac{1}{a}\int {f(ax+b){\mathrm{d}}(ax + b)\;(a\neq 0)} \\ &\int {f(a{x^{m + 1}} + b){x^m}{\rm{d}}x} = \frac{1}{{a(m + 1)}}\int {f(a{x^{m + 1}} +b){\rm{d}}(a{x^{m + 1}} + b)} \\ &\int{f\left( \frac{1}{x}\right)\frac{{{\rm{d}}x}}{{{x^2}}}\;} = - \int{f\left( \frac{1}{x}\right){\rm{d}}\left( \frac{{\rm{1}}}{x}\right) \;} \\ &\int {f(\ln x)\frac{1}{x}} {\rm{d}}x = \int {f(\lnx){\rm{d(}}\ln x)} \\ &\int {f({\mathrm{e}^x})}{\mathrm{e}^x}{\rm{d}}x = \int{f({\mathrm{e}^x}} ){\rm{d(}}{\mathrm{e}^x}) \\ &\int {f(\sqrt x } )\frac{{{\rm{d}}x}}{{\sqrt x }} = 2\int {f(\sqrt x } ){\rm{d}}(\sqrt x ) \\ &\int {f(\sinx)\cos x{\rm{d}}x = } \int {f(\sin x){\rm{d}}\sin x} \\ &\int {f(\cos x)\sin x{\rm{d}}x = } - \int {f(\cos x){\rm{d}}\cos x} \\ &\int {f(\tan x){{\sec }^2}}x{\rm{d}}x = \int {f(\tan x){\rm{d}}\tan x} \\ &\int{f(\cot x){{\csc }^2}} x{\rm{d}}x = - \int {f(\cotx){\rm{d}}\cot x} \\ &\int {f(\arcsinx)\frac{1}{{\sqrt {1 - {x^2}} }}} {\rm{d}}x = \int{f(\arcsin x){\rm{d}}\arcsin x} \\ &\int {f(\arctanx)\frac{1}{{1 + {x^2}}}} {\rm{d}}x = \int {f(\arctan x){\rm{d}}\arctan x} \\ &\int {\frac{{f'(x)}}{{f(x)}}} {\rm{d}}x = \int {\frac{{{\rm{d}}f(x)}}{{f(x)}}} = \ln \left| f(x)\right| + C\end{aligned}部分分式\begin{aligned} \frac{{P(x)}}{{Q(x)}} =&\frac{{{A_1}}}{{{{(x - a)}^\alpha }}} +\frac{{{A_2}}}{{{{(x - a)}^{\alpha - 1}}}} + \cdots + \frac{{{A_\alpha }}}{{x - a}} + \notag\\\&\frac{{{B_1}}}{{{{(x - b)}^\beta }}} +\frac{{{B_2}}}{{{{(x - b)}^{\beta - 1}}}} + \cdots +\frac{{{B_\beta }}}{{x - b}} + \notag\\\&\frac{{{M_1}x + {N_1}}}{{{{({x^2} + px +q)}^\lambda }}} + \frac{{{M_2}x + {N_2}}}{{{{({x^2} + px + q)}^{\lambda - 1}}}} + \cdots +\frac{{{M_\lambda }x + {N_\lambda }}}{{{x^2} + px + q}} + \notag\ \\&\cdots \end{aligned}三角函数的特殊定积分\begin{aligned}I_n&=\int_0^{\frac{\pi}{2}}\sin^nx\,\mathrm{d}x=\int_0 ^{\frac{\pi}{2}}\cos^nx\,\mathrm{d}x\notag \I_n&\\&=\frac{n-1}{n}I_{n-2}\notag\ \\&=\begin{cases} \ \dfrac{{n - 1}}{n} \cdot \dfrac{{n - 3}}{{n - 2}}\cdots \dfrac{4}{5} \cdot \dfrac{2}{3}\quad (n\mbox{为大于}1\mbox{的正奇数}),I_1=1\\ \ \dfrac{{n - 1}}{n} \cdot \dfrac{{n - 3}}{{n - 2}} \cdots \dfrac{3}{4}\cdot \dfrac{1}{2} \cdot \dfrac{\pi }{2}\quad(n\mbox{为正偶数}),I_0=\dfrac{\pi}{2}\end{cases}\end{aligned}。

(完整版)大学高数公式大全

(完整版)大学高数公式大全

a b c cos , 为锐角时,
4 / 12
高等数学公式
平面的方程:
1、点法式: A( x x0 ) B( y y0 ) C ( z z0 ) 0,其中 n { A, B, C}, M 0 (x0, y0 , z0 ) 2、一般方程: Ax By Cz D 0
3、截距世方程: x
y
z 1
abc
平面外任意一点到该平 面的距离: d
x ( x, y)d
D
, y M y
( x, y) d
M
D
y ( x, y)d
D
( x, y)d
D
平面薄片的转动惯量: 对于 x轴 I x
y2 ( x, y)d , 对于 y轴 I y
x 2 ( x, y)d
D
D
平面薄片(位于 xoy平面)对 z轴上质点 M (0,0, a), (a 0)的引力: F { Fx , Fy , Fz},其中:
隐函数 F ( x, y) 0, dy dx
F F
x y
d2 ,
dx
y
2
( x
隐函数 F ( x, y, z) 0, z Fx , z Fy
x Fz
y Fz
Fx )+ (
Fy
y
Fx ) dy Fy dx
5 / 12
高等数学公式
F (x, y,u, v) 0
隐函数方程组:
J
( F ,G)
·半角公式:
sin 2
1 cos cos
2
2
1 cos 2
1 cos 1 cos
sin
1 cos 1 cos
sin
tg
ctg
2

高等数学公式定理(全)

高等数学公式定理(全)

·平方关系:sin^2(α)+cos^2(α)=1 tan^2(α)+1=sec^2(α)cot^2(α)+1=csc^2(α)·积的关系:sinα=tanα*cosαcosα=cotα*sinαtanα=sinα*secαcotα=cosα*cscαsecα=tanα*cscαcscα=secα*cotα·倒数关系:tanα·cotα=1sinα·cscα=1cosα·secα=1直角三角形ABC中,角A的正弦值就等于角A的对边比斜边, 余弦等于角A的邻边比斜边正切等于对边比邻边, ·三角函数恒等变形公式·两角和与差的三角函数:cos(α+β)=cosα·cosβ-sinα·sinβcos(α-β)=cosα·cosβ+sinα·sinβsin(α±β)=sinα·cosβ±cosα·sinβtan(α+β)=(tanα+tanβ)/(1-tanα·tanβ) tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)·三角和的三角函数:sin(α+β+γ)=sinα·cosβ·cosγ+cosα·sin β·cosγ+cosα·cosβ·sinγ-sinα·sinβ·sinγcos(α+β+γ)=cosα·cosβ·cosγ-cosα·sin β·sinγ-sinα·cosβ·sinγ-sinα·sinβ·cosγtan(α+β+γ)=(tanα+tanβ+tanγ-tan α·tanβ·tanγ)/(1-tanα·tanβ-tanβ·tanγ-tanγ·tanα)·辅助角公式:Asinα+Bcosα=(A^2+B^2)^(1/2)sin(α+t),其中sint=B/(A^2+B^2)^(1/2)cost=A/(A^2+B^2)^(1/2)tant=B/AAsinα+Bcosα=(A^2+B^2)^(1/2)cos(α-t),tant=A/B·倍角公式:sin(2α)=2sinα·cosα=2/(tanα+cotα) cos(2α)=cos^2(α)-sin^2(α)=2cos^2(α)-1 =1-2sin^2(α)tan(2α)=2tanα/[1-tan^2(α)]·三倍角公式:sin(3α)=3sinα-4sin^3(α)cos(3α)=4cos^3(α)-3cosα·半角公式:sin(α/2)=±√((1-cosα)/2) cos(α/2)=±√((1+cosα)/2)tan(α/2)=±√((1-cosα)/(1+cosα))=sin α/(1+cosα)=(1-cosα)/sinα·降幂公式sin^2(α)=(1-cos(2α))/2=versin(2α)/2 cos^2(α)=(1+cos(2α))/2=covers(2α)/2tan^2(α)=(1-cos(2α))/(1+cos(2α))·万能公式:sinα=2tan(α/2)/[1+tan^2(α/2)]cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)] tanα=2tan(α/2)/[1-tan^2(α/2)]·积化和差公式:sinα·cosβ=(1/2)[sin(α+β)+sin(α-β)] cosα·sinβ=(1/2)[sin(α+β)-sin(α-β)] cosα·cosβ=(1/2)[cos(α+β)+cos(α-β)] sinα·sinβ=-(1/2)[cos(α+β)-cos(α-β)]·和差化积公式:sinα+sinβ=2sin[(α+β)/2]cos[(α-β)/2] sinα-sinβ=2cos[(α+β)/2]sin[(α-β)/2] cosα+cosβ=2cos[(α+β)/2]cos[(α-β)/2]cosα-cosβ=-2sin[(α+β)/2]sin[(α-β)/2]·推导公式tanα+cotα=2/sin2αtanα-cotα=-2cot2α1+cos2α=2cos^2α1-cos2α=2sin^2α1+sinα=(sinα/2+cosα/2)^2·其他:sinα+sin(α+2π/n)+sin(α+2π*2/n)+sin(α+2π*3/n)+……+sin[α+2π*(n-1)/n]=0cosα+cos(α+2π/n)+cos(α+2π*2/n)+cos(α+2π*3/n)+……+cos[α+2π*(n-1)/n]=0 以及sin^2(α)+sin^2(α-2π/3)+sin^2(α+2π/3)=3/2tanAtanBtan(A+B)+tanA+tanB-tan(A +B)=0三角函数的角度换算[编辑本段]公式一:设α为任意角,终边相同的角的同一三角函数的值相等:sin〔2kπ+α〕=sinαcos〔2kπ+α〕=cosαtan〔2kπ+α〕=tanαcot〔2kπ+α〕=cotα公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin〔π+α〕=-sinαcos〔π+α〕=-cosαtan〔π+α〕=tanαcot〔π+α〕=cotα公式三:任意角α与-α的三角函数值之间的关系:sin〔-α〕=-sinαcos〔-α〕=cosαtan〔-α〕=-tanαcot〔-α〕=-cotα公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin〔π-α〕=sinαcos〔π-α〕=-cosαtan〔π-α〕=-tanαcot〔π-α〕=-cotα公式五:利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:sin〔2π-α〕=-sinαcos〔2π-α〕=cosαtan〔2π-α〕=-tanαcot〔2π-α〕=-cotα公式六:π/2±α及3π/2±α与α的三角函数值之间的关系:sin〔π/2+α〕=cosαcos〔π/2+α〕=-sinαtan〔π/2+α〕=-cotαcot〔π/2+α〕=-tanαsin〔π/2-α〕=cosαcos〔π/2-α〕=sinαtan〔π/2-α〕=cotαcot〔π/2-α〕=tanαsin〔3π/2+α〕=-cosαcos〔3π/2+α〕=sinαtan〔3π/2+α〕=-cotαcot〔3π/2+α〕=-tanαsin〔3π/2-α〕=-cosαcos〔3π/2-α〕=-sinαtan〔3π/2-α〕=cotαcot〔3π/2-α〕=tanα(以上k∈Z)部分高等内容[编辑本段]勒级数易得):·高等代数中三角函数的指数表示(由泰sinx=[e^(ix)-e^(-ix)]/(2i) cosx=[e^(ix)+e^(-ix)]/2tanx=[e^(ix)-e^(-ix)]/[ie^(ix)+ie^(-ix)]泰勒展开有无穷级数,e^z=exp(z)=1+z/1!+z^2/2!+z^3/3!+z^4/4!+…+z^n/n!+…此时三角函数定义域已推广至整个复数集。

高数上册归纳公式篇(完整)

高数上册归纳公式篇(完整)

精心整理公式篇目录一、函数与极限1.常用双曲函数2.常用等价无穷小3.两个重要极限二、导数与微分1.常用三角函数与反三角函数的导数公式2.n阶导数公式3.4.参数方程求导公式5.微分近似计算三、微分中值定理与导数的应用1.一阶中值定理2.高阶中值定理3.部分函数使用麦克劳林公式展开4.曲率四、定积分1.部分三角函数的不定积分2.几个简单分式的不定积分五、不定积分1.利用定积分计算极限2.积分上限函数的导数3.牛顿-4.三角相关定积分5.6.1.2.3.七、微分方程1.可降阶方程2.变系数线性微分方程3.常系数齐次线性方程的通解4.二阶常系数非齐次线性方程(特定形式)的特解形式5.特殊形式方程(选)一、函数与极限1.常用双曲函数(sh(x).ch(x).th(x))2.常用等价无穷小(x→0时)3.两个重要极限二、导数与微分1.常用三角函数与反三角函数的导数公式(凡是“余”求导都带负号)2.n 阶导数公式特别地,若n =λ3.高阶导数的莱布尼茨公式与牛顿二项式定理的比较函数的0阶导数可视为函数本身4.参数方程求导公式5.微分近似计算(x ∆很小时)(注意与拉格朗日中值定理比较)常用:(三、微分中值定理与导数的应用1.一阶中值定理()(x f 在],[b a 连续,),(b a 可导)罗尔定理(端点值相等()(f a f =拉格朗日中值定理柯西中值定理(0)('≠x g ≠0)2.)n R 为余项(ξ在x 和0x 之间)令00=x ,得到麦克劳林公式3.部分函数使用麦克劳林公式展开(皮亚诺型余项)4.曲率四、不定积分1.部分三角函数的不定积分2.几个简单分式的不定积分五、定积分1.利用定积分计算极限2.积分上限函数的导数推广得3.牛顿-莱布尼茨公式和积分中值定理(1)牛顿-莱布尼茨公式(微积分基本公式)(2)积分中值定理函数)a上可积[bf在],(x,a上的平均值f在][b(xf称为))(ξ4.三角相关定积分三角函数系的正交性5.典型反常积分的敛散性(1)无穷限的反常积分推论1(2)瑕积分(无界函数的反常积分)推论2Convergence:收敛,Divergence:发散6.Γ函数(选)(1)递推公式:推论:(2)欧拉反射公式(余元公式)六、定积分的应用1.平面图形面积(1)直角坐标:由曲线0ax==,y及x)(≥=xf(2)极坐标:ρ=有曲线(φ2.体积(1)绕x(2)平行截面(与x轴垂直)面积为)(xA3.弧微分公式(1)直角坐标:(2)极坐标:七、微分方程1.可降阶方程(1))()(x f y n =型n 次积分得(2))',("y x f y =型作换元'y p =得),('p x f p =得通解),(1C x p ϕ=则21),(C dx C x y +=⎰ϕ(3))',("y y f y =型作换元'y p =,),(,"p y f dxdp p dx dp p dx dp y ===得通解dx dy C y p ==),(1ϕ 则21),(C x C y dy +=⎰ϕ 2.变系数线性微分方程(1)一阶线性微分方程:)()('x Q y x P y =+对应齐次方程:0)('=+y x P y 原方程)()('x Q y x P y =+的通解为(2)0)(')(1=+++-y x P y x P n n若(),(21x y x y n 个线性无关解)()()(22x y C x y C x n n +++若)(*x y 为非齐次方程的一个特解则非齐次方程的通解为)(*)(x y x Y y +=3.常系数齐次线性方程的通解(1)二阶方程0"=++q py y特征方程为02=++q pr r①0>∆,两个不等实根a b r a b r 2,221∆+-=∆--=通解为x r x r e C e C y 2121+=②0=∆,两个相等实根221p r r -== 通解为x r e x C C y 1)(21+=③0<∆,一对共轭复根2,2,,21∆-=-=-=+=βαβαβαp i r i r通解为)sin cos (21x C x C e y x ββα+=(2)高阶方程0'1)1(1)(=++++--y p y p y p y n n n n 特征方程为0111=++++--n n n n p r p r p r 对于其中的根r 的对应项①实根r一个单实根:rx Ce一个k 重实根:rx k k C x C C (121-+++②复根i r βα±=2,1一对单复根:cos (21C x C e x βα+一对k 重复根]sin )(cos )1211x x D x D D x x C k k k k ββ--+++++ 4.)的特解形式 '"qy py y =++02=++q pr r (1))()(x P e x f m x λ=)(x P m 为x 的m 次多项式 特解形式为x m k e x Q x y λ)(*=)(x Q m 是x 的m 次多项式(2)]sin )(cos )([)()2()1(x x P x x P e x f n l x ωωλ+=)(),()2()1(x P x P n l 分别为x 的n l ,次多项式 特解形式为x m m k e x x R x x Q x y λωω]sin )(cos )([*+= },max{n l m =,)(),(x R x Q m m 为x 的m 次多项式记i z ωλ+=5.特殊形式方程(选)(1)伯努利方程n y x Q y x P dxdy )()(=+(1,0≠n ) 令n y z -=1,dxdy y n dx dz n--=)1( 得通解),(C x z ϕ=(2)欧拉方程作变换t e x =或x t ln =,记dtd D = 将上各式代入原方程得到此为常系数线性微分方程 可得通解),,,,(21n C C C t y ϕ= 即可得原方程通解),,,,(21n C C C x y Φ=。

高数(一)全公式

高数(一)全公式

初等数学基础知识一、三角函数1.公式同角三角函数间的基本关系式:·平方关系:sin^2(α)+cos^2(α)=1; tan^2(α)+1=sec^2(α);cot^2(α)+1=csc^2(α)·商的关系:tanα=sinα/cosαcotα=cosα/sinα·倒数关系:tanα·cotα=1; sinα·cscα=1; cosα·secα=1三角函数恒等变形公式:·两角和与差的三角函数:cos(α+β)=cosα·cosβ-sinα·sinβcos(α-β)=cosα·cosβ+sinα·sinβsin(α±β)=sinα·cosβ±cosα·sinβtan(α+β)=(tanα+tanβ)/(1-tanα·tanβ)tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)倍角公式:sin(2α)=2sinα·cosαcos(2α)=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α)tan(2α)=2tanα/[1-tan^2(α)]·半角公式:sin^2(α/2)=(1-cosα)/2cos^2(α/2)=(1+cosα)/2tan^2(α/2)=(1-cosα)/(1+cosα)tan(α/2)=sinα/(1+cosα)=(1-cosα)/sinα·万能公式:sinα=2tan(α/2)/[1+tan^2(α/2)]cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)]tanα=2tan(α/2)/[1-tan^2(α/2)]·积化和差公式:sinα·cosβ=(1/2)[sin(α+β)+sin(α-β)]co sα·sinβ=(1/2)[sin(α+β)-sin(α-β)]cosα·cosβ=(1/2)[cos(α+β)+cos(α-β)] sinα·sinβ=-(1/2)[cos(α+β)-cos(α-β)] ·和差化积公式:sinα+sinβ=2sin[(α+β)/2]cos[(α-β)/2] sinα-sinβ=2cos[(α+β)/2]sin[(α-β)/2] cosα+cosβ=2cos[(α+β)/2]cos[(α-β)/2] cosα-cosβ=-2sin[(α+β)/2]sin[(α-β)/2]2.特殊角的三角函数值θ)(θf0 )0(6π )30( 4π )45( 3π )60( 2π)90(θcos 1 2/32/2 2/10 θsin 0 2/12/22/3 1 θtan 0 3/1 1 3不存在 θcot不存在313/1只需记住这两个特殊的直角三角形的边角关系,依照三角函数的定义即可推出上面的三角值。

(完整版)高数1全套公式

(完整版)高数1全套公式
0(>式等不次二元一a
02>cbxax 2121)(xxxxxx>或<< abx2 Rx 02<cbxax 21xxx x x
因式分解与乘法公式
2
22
22
322
322
2233
2233
22(1)()()(2)2()(3)2()(4)()()(5)()()(6)33()(7)33()
222(abababaabbabaabbabababaabbababaabbaababbabaababbababcabbcca 2
竖变横不变(奇变偶不变),符号看象限(一全,二正弦割,三切,四余弦割
b42 0 0 0
0(2>一元二次函数acbxaxy
.1x
2cbxax一元二次方程
acbbx2422,1有二互异实根
abx2)(2,1有一根有二相等实根 无实根 1 45 2 1 45 1 2 30 60 3 2x 1x
、1()dxxdx(为任意常数);
、()lnxxdaaadx,特别地,当ea时,()xxdeedx;
、1(log)
adxdxxa,特别地,当ea时,1(ln)dxdxx;
、(sin)cosdxxdx;

)sindxxdx;
、2(tan)secdxxdx;
、2(cot)cscdxxdx;


数 10logaaxya R y=logax
xa>10<a<1O(1,0)xy
过点1,0. 1a单增. 10a单减.
log1,log10,,0logloglog,logloglog,loglog,loglog0,1,loglog(0)
0)
aaaaaaaapaacacxaxaMNMNMNMMNNMPMbbcaaxxaxx

同济高数上册公式大全

同济高数上册公式大全

第一章 函数与极限一. 函数的概念1.两个无穷小的比拟设0)(lim ,0)(lim ==x g x f 且l x g x f =)()(lim〔1〕l = 0,称f (x)是比g(x)高阶的无穷小,记以f (x) = 0[)(x g ],称g(x)是比f(x)低阶的无穷小。

〔2〕l ≠ 0,称f (x)与g(x)是同阶无穷小。

〔3〕l = 1,称f (x)与g(x)是等价无穷小,记以f (x) ~ g(x)2.常见的等价无穷小 当x →0时sin x ~ x ,tan x ~ x ,x arcsin ~ x ,x arccos ~ x ,1− cos x ~ 2/2^x , x e −1 ~ x ,)1ln(x + ~ x ,1)1(-+αx ~ x α二.求极限的方法1.两个准那么准那么 1. 单调有界数列极限一定存在 准那么 2.〔夹逼定理〕设g (x ) ≤ f (x ) ≤ h (x )假设A x h A x g ==)(lim ,)(lim ,那么A x f =)(lim2.两个重要公式 公式11sin lim0=→xxx公式2e x x x =+→/10)1(lim3.用无穷小重要性质和等价无穷小代换 4.用泰勒公式当x 0→时,有以下公式,可当做等价无穷小更深层次)()!12()1(...!5!3sin )(!...!3!2112125332++++-+++-=++++++=n n n n nxx o n x x x x x x o n x x x x e )(!2)1(...!4!21cos 2242n n n x o n x x x x +-+++-= )()1(...32)1ln(132n nn x o nx x x x x +-++-=++ )(!))1()...(1(...!2)1(1)1(2n n x o x n n x x x +---++-++=+ααααααα)(12)1(...53arctan 1212153+++++-+-+-=n n n x o n x x x x x 5.洛必达法那么定理1 设函数)(x f 、)(x F 满足以下条件:〔1〕0)(lim 0=→x f x x ,0)(lim 0=→x F x x ;〔2〕)(x f 与)(x F 在0x 的某一去心邻域内可导,且0)(≠'x F ;〔3〕)()(lim 0x F x f x x ''→存在〔或为无穷大〕,那么 这个定理说明:当)()(lim 0x F x f x x ''→存在时,)()(lim 0x F x f x x →也存在且等于)()(lim 0x F x f x x ''→;当)()(lim0x F x f x x ''→为无穷大时,)()(lim 0x F x f x x →也是无穷大. 这种在一定条件下通过分子分母分别求导再求极限来确定未定式的极限值的方法称为洛必达〔H L 'ospital 〕法那么.∞∞型未定式 定理2 设函数)(x f 、)(x F 满足以下条件:〔1〕∞=→)(lim 0x f x x ,∞=→)(lim 0x F x x ;〔2〕)(x f 与)(x F 在0x 的某一去心邻域内可导,且0)(≠'x F ;)()(lim)()(lim 00x F x f x F x f x x x x ''=→→)(lim )(lim x f x f '=〔3〕)()(limx F x f x x ''→存在〔或为无穷大〕,那么 注:上述关于0x x →时未定式∞∞型的洛必达法那么,对于∞→x 时未定式∞∞型同样适用.使用洛必达法那么时必须注意以下几点:〔1〕洛必达法那么只能适用于“00〞和“∞∞〞型的未定式,其它的未定式须先化简变形成“00〞或“∞∞〞型才能运用该法那么; 〔2〕只要条件具备,可以连续应用洛必达法那么;〔3〕洛必达法那么的条件是充分的,但不必要.因此,在该法那么失效时并不能断定原极限不存在. 6.利用导数定义求极限根本公式)()()(lim0'000x f xx f x x f x =∆-∆+→∆(如果存在〕7.利用定积分定义求极限根本格式⎰∑==∞→101)()(1lim dx x f n kf n n k n 〔如果存在〕三.函数的连续点的分类函数的连续点分为两类: (1)第一类连续点设0x 是函数y = f (x )的连续点。

大学高等数学公式汇总大全(珍藏版)

大学高等数学公式汇总大全(珍藏版)

-ctgα tgα -tgα -ctgα ctgα tgα -tgα -ctgα ctgα
·和差角公式:
sin(α ± β ) = sinα cos β ± cosα sin β
cos(α ± β ) = cosα cos β ∓ sinα sin β
tg(α
±
β
)
=
tgα ± 1∓ tgα
tgβ ⋅ tgβ
∂x ∂y
∂x ∂y ∂z
全微分的近似计算:∆z ≈ dz = f x (x, y)∆x + f y (x, y)∆y
多元复合函数的求导法:
z = f [u(t),v(t)] dz = ∂z ⋅ ∂u + ∂z ⋅ ∂v dt ∂u ∂t ∂v ∂t
z = f [u(x, y),v(x, y)] ∂z = ∂z ⋅ ∂u + ∂z ⋅ ∂v ∂x ∂u ∂x ∂v ∂x
π
π
∫ ∫ In
=
2 0
sin n
xdx
2
=
0
cosn
xdx
=
n −1 n
In−2
∫ x2 + a2 dx = x x2 + a2 + a2 ln(x + x2 + a2 ) + C
2
2
∫ x2 − a2 dx = x x2 − a2 − a2 ln x + x2 − a2 + C
2
2
∫ a2 − x2 dx = x a2 − x2 + a2 arcsin x + C
平均曲率:K = ∆α .∆α : 从M点到M′点,切线斜率的倾角变化量;∆s:MM ′弧长。 ∆s

(完整版)高等数学公式汇总(大全)

(完整版)高等数学公式汇总(大全)

高等数学公式汇总(大全)一 导数公式:二 基本积分表:三 三角函数的有理式积分:222212211cos 12sin ududx x tg u u u x u u x +==+-=+=, , , 四 一些初等函数:ax x a a a ctgx x x tgx x x x ctgx x tgx a x x ln 1)(log ln )(csc )(csc sec )(sec csc )(sec )(22='='⋅-='⋅='-='='222211)(11)(11)(arccos 11)(arcsin x arcctgx x arctgx x x x x +-='+='--='-='⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰+±+=±+=+=+=+-=⋅+=⋅+-==+==Ca x x a x dx C shx chxdx C chx shxdx Ca a dx a Cx ctgxdx x Cx dx tgx x Cctgx xdx x dx C tgx xdx x dx xx)ln(ln csc csc sec sec csc sin sec cos 22222222C axx a dx C x a xa a x a dx C a x ax a a x dx C a xarctg a x a dx Cctgx x xdx C tgx x xdx Cx ctgxdx C x tgxdx +=-+-+=-++-=-+=++-=++=+=+-=⎰⎰⎰⎰⎰⎰⎰⎰arcsin ln 21ln 211csc ln csc sec ln sec sin ln cos ln 22222222⎰⎰⎰⎰⎰++-=-+-+--=-+++++=+-===-Cax a x a x dx x a Ca x x a a x x dx a x Ca x x a a x x dx a x I nn xdx xdx I n n nn arcsin 22ln 22)ln(221cos sin 2222222222222222222222ππ五 两个重要极限:六 三角函数公式: ·诱导公式:·和差角公式: ·和差化积公式:2sin2sin 2cos cos 2cos2cos 2cos cos 2sin2cos 2sin sin 2cos2sin2sin sin βαβαβαβαβαβαβαβαβαβαβαβα-+=--+=+-+=--+=+αββαβαβαβαβαβαβαβαβαβαβαctg ctg ctg ctg ctg tg tg tg tg tg ±⋅=±⋅±=±=±±=±1)(1)(sin sin cos cos )cos(sin cos cos sin )sin( xxarthx x x archx x x arshx e e e e chx shx thx e e chx e e shx x x xx xx xx -+=-+±=++=+-==+=-=----11ln21)1ln(1ln(:2:2:22)双曲正切双曲余弦双曲正弦...590457182818284.2)11(lim 1sin lim 0==+=∞→→e xxx x x x·倍角公式:·半角公式:ααααααααααααααααααcos 1sin sin cos 1cos 1cos 12cos 1sin sin cos 1cos 1cos 122cos 12cos 2cos 12sin -=+=-+±=+=-=+-±=+±=-±=ctg tg·正弦定理:R CcB b A a 2sin sin sin === ·余弦定理:C ab b a c cos 2222-+=·反三角函数性质:arcctgx arctgx x x -=-=2arccos 2arcsin ππ七 高阶导数公式——莱布尼兹(Leibniz )公式:)()()()2()1()(0)()()(!)1()1(!2)1()(n k k n n n n nk k k n k n n uv v u k k n n n v u n n v nu v u v u C uv +++--++''-+'+==---=-∑八 中值定理与导数应用:拉格朗日中值定理。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
拉格朗日中值定理
柯西中值定理 ( ≠0 )
2.高阶中值定理 ( 在 上有直到 阶导数 )
泰勒中值定理
为余项
(ξ在 和 之间)
令 ,得到麦克劳林公式
3.部分函数使用麦克劳林公式展开(皮亚诺型余项)
4.曲率
四、不定积分
1.部分三角函数的不定积分
2.几个简单分式的不定积分
五、定积分
1.利用定积分计算极限
2.积分上限函数的导数
七、微分方程
1.可降阶方程
(1) 型
次积分得
(2) 型
作换元 得
得通解

(3) 型
作换元 ,
得通解

2.变系数线性微分方程
(1)一阶线性微分方程:
对应齐次方程: 的通解为
原方程 的通解为
一阶线性非齐次方程的通解等于相应齐次方程的通解和非齐次方程一个特解的和
(2)高阶线性微分方程
对应齐次方程为
若 为齐次方程 个线性无关解
2.变系数线性微分方程
3.常系数齐次线性方程的通解
4.二阶常系数非齐次线性方程(特定形式)的特解形式
5.特殊形式方程(选)
一、函数与极限
1.常用双曲函数(sh(x).ch(x).th(x) )
2.常用等价无穷小( →0时)
3.两个重要极限
二、导数与微分
1.常用三角函数与反三角函数的导数公式
(凡是“余”求导都带负号)
6.Γ函数(选)
(1)递推公式:
推论:
(2)欧拉反射公式(余元公式)
六、定积分的应用
1.平面图形面积
(1)直角坐标:
由曲线 及 与 轴围成图形
(2)极坐标:
有曲线 及 围成图形
2.体积
(1)绕 轴旋转体体积
(2)平行截面面积已知的立体的体积
平行截面(与 轴垂直)面积为
3.弧微分公式
(1)直角坐标:
(2)极坐标:
公式篇
一、函数与极限
1.常用双曲函数
2.常用等价无穷小
3.两个重要极限
二、导数与微分
1.常用三角函数与反三角函数的导数公式
2. 阶导数公式
3.高阶导数的莱布尼茨公式与牛顿二项式定理的比较
4.参数方程求导公式
5.微分近似计算
三、微分中值定理与导数的应用
1.一阶中值定理
2.高阶中值定理
3.部分函数使用麦克劳林公式展开
4.二阶常系数非齐次线性方程(特定形式)的特解形式
,对应的特征方程为
(1) 为 的 次多项式
特解形式为
是 的 次多项式
(2) 分别为 的 次多项式
特解形式为
, 为 的 次多项式

5.特殊形式方程(选)
(1)伯努利方程
( )
令 ,
得通解
(2)欧拉方程
作变换 或 ,记
将上各式代入解
即可得原方程通解
则齐次方程的通解为
若 为非齐次方程的一个特解
则非齐次方程的通解为
3.常系数齐次线性方程的通解
(1)二阶方程
特征方程为
① ,两个不等实根
通解为
② ,两个相等实根
通解为
③ ,一对共轭复根
通解为
(2)高阶方程
特征方程为
对于其中的根 的对应项
①实根
一个单实根:
一个 重实根:
②复根
一对单复根:
一对 重复根:
通解为对应项之和
2. 阶导数公式
特别地,若
3.高阶导数的莱布尼茨公式与牛顿二项式定理的比较
函数的0阶导数可视为函数本身
4.参数方程求导公式
5.微分近似计算( 很小时)
(注意与拉格朗日中值定理比较)
常用:
(与等价无穷小相联记忆)
三、微分中值定理与导数的应用
1.一阶中值定理 ( 在 连续, 可导 )
罗尔定理 ( 端点值相等 )
4.曲率
四、定积分
1.部分三角函数的不定积分
2.几个简单分式的不定积分
五、不定积分
1.利用定积分计算极限
2.积分上限函数的导数
3.牛顿-莱布尼茨公式和积分中值定理
4.三角相关定积分
5.典型反常积分的敛散性
6.Γ函数(选)
六、定积分的应用
1.平面图形面积
2.体积
3.弧微分公式
七、微分方程
1.可降阶方程
推广得
3.牛顿-莱布尼茨公式和积分中值定理
(1)牛顿-莱布尼茨公式(微积分基本公式)
(2)积分中值定理
函数 在 上可积
称为 在 上的平均值
4.三角相关定积分
三角函数系的正交性
5.典型反常积分的敛散性
(1)无穷限的反常积分
推论1
(2)瑕积分(无界函数的反常积分)
推论2
Convergence:收敛,Divergence:发散
相关文档
最新文档