傅里叶级数的三角形式和傅里叶级数的指数形式

合集下载

信号与系统第4章 周期信号的频域分析(3学时)

信号与系统第4章 周期信号的频域分析(3学时)


T0 /2
0
x(t )sin(n 0t )dt
四、信号对称性与傅里叶系数的关系
3、半波重迭信号
~ x (t ) ~ x (t T0 / 2)
~ x (t )
A t
T0
T0 / 2 0
T0 / 2
T0
特点: 只含有正弦与余弦的偶次谐波分量,而无奇次谐波分量。
四、信号对称性与傅里叶系数的关系
~ x (t )
2 1 -4 -3 -2 -1 1 2 3 4
~ x (t ) ~ x1 (t ) ~ x2 (t )
nπ nπt t~ x (t ) 1.5 Sa ( ) cos( ) 2 2 n 1

~ x1 (t )
2
x 1(t ) 2
1 2 3 4
-4 -3 -2 -1
三、周期信号的功率谱
一、周期信号频谱的概念
连续时间周期信号可以表示为虚指数信号之和,其 中Cn 为傅里叶系数 。
~ x (t )
n =
Cn e

jn0t
1 Cn T0

T0 t 0
t0
~ x (t )e jn 0t dt
问题1:不同信号的傅里叶级数形式是否相同? 相同 问题2:不同信号的傅里叶级数不同表现在哪里? 系数
例3 课本P129
例4 已知连续周期信号的频谱如图,试写出信号的 Fourier级数表示式。 Cn
3 2 1 1 3 4 3 2
9
6
0
3
6
9
n
解: 由图可知 C0 4
C 1 3
C2 1
C 3 2
~ x (t )

ch3.周期信号的傅里叶级数展开

ch3.周期信号的傅里叶级数展开

周期信号的傅里叶级数展开:1. 三角形式: 周期信号()f t ,周期T ,基波频率12w Tπ=,所构成的完备正交函数集:三角函数集{}11cos ,sin nwt nwt ; ()0111()cos sin n n n f t a a nw t b nw t ∞==++∑其中:2021()TT a f t dt T -=⎰2122()cos TT n a f t nw tdt T -=⎰2122()sin TT n b f t nw tdt T -=⎰ 注意: (1) 展开条件:狄利赫利条件 (2) 另外一种形式:011()cos()nn n f t c cnw t ϕ∞==++∑其中:00c a =n c =nn nb tg a φ=-(3)物理意义: (4)幅度谱和相位谱2. 指数形式: 完备正交函数集 :复指数函数集{}1jnw t e1()jnw tnn f t F e∞=-∞=∑其中1221()Tjnw t T n F f t e dt T --=⎰注意:(1)幅度谱和相位谱nj n n F F e φ= :偶谱和奇谱与三角形式间的关系(2)两种级数间的关系 3. 函数()f t 满足对称性的级数展开: (1) 偶函数:011()cos n n f t a a nw t ∞==+∑0n b =或011()cos()n n n f t c c nw t ϕ∞==++∑,00c a =||n n c a =0,0,0n n n a a ϕπ>⎧=⎨<⎩(2)奇函数:11()sin n n f t b nw t ∞==∑00n a a ==或011()cos()n n n f t c c nw t ϕ∞==++∑,00c =||n n c b =,02,02nn nb b πϕπ⎧->⎪⎪=⎨⎪<⎪⎩(3)奇谐函数:()()2T f t f t =-±其傅里叶级数展开式中仅含奇次谐波分量,即: 0240a a a ====2460b b b ====4. 典型周期矩形脉冲的傅里叶级数信号()f t ,周期为T ,脉宽为τ,脉幅为E(1)三角形式011()cos nn f t a anw t ∞==+∑0n b =其中:2202211()T T E a f t dt Edt T T Tτττ--===⎰⎰211222cos 2n E a E nw tdt Sa nw T T ττττ-⎛⎫== ⎪⎝⎭⎰ 谐波形式:011()cos()n n n f t c c nw t φ∞==++∑其中:00c a =n nc a =, {0,0,0n n n a a ϕπ>=<(2)指数形式:1()jnw t n n f t F e ∞=-∞=∑其中:11222211()T jnw tjnw t T n F f t e dt Ee dt T T ττ---==⎰⎰112E Sa nw T ττ⎛⎫=⎪⎝⎭(3)幅度谱和相位谱的特点 谱线间隔和频谱宽度二.傅里叶变换 ()()jwt F w f t e dt ∞--∞=⎰1()()2jwt f t F w e dw π∞-∞=⎰特点:(1)()()()j w F w F w e ϕ=幅频函数和相频函数(2)变换条件:|()|f t dt ∞-∞<∞⎰ (3)()f t 也是由许多频率分量构成三.常见信号的傅里叶变换对 单边指数衰减信号,0()0,0t e t f t t α-⎧>=⎨<⎩,0α> ↔1()F w jw α=+ 双边指数衰减信号||,0(),0t t te tf t ee t ααα--⎧>==⎨<⎩ ↔222()F w w αα=+矩形脉冲(),2f t E tτ=<↔ ()()2F w E Sa w ττ=符号函数()sgn()f t t = ↔2()F w jw=冲击函数()()f t t δ= ↔ ()1F w = ()()f t t δ'=↔ ()F w jw =()()()n f t t δ=↔ ()()nF w jw = 直流信号()1f t = ↔ ()()2F w w πδ=()f t jt =-↔ ()()2F w w πδ'=()()nf t jt =-↔()()()2n F w w πδ=阶跃信号()()f t u t = ↔()1()F w w jwπδ=+四.傅里叶变换的性质 1.线性性2.奇偶虚实性:()f t 为实函数()()()cos ()sin jwtF w f t edt f t wtdt j f t wtdt ∞∞∞--∞-∞-∞==-⎰⎰⎰(1)()f t 为实偶函数,虚部()()sin 0X w f t wtdt ∞-∞==⎰ (2)()f t 为实奇函数,实部()()cos 0R w f t wtdt ∞-∞==⎰3. 对称性4.时移性5. 尺度变换:时域压缩,频谱扩张 时域扩张,频谱压缩 时域反褶,频谱反褶6.频移性:00()()jw tF f t e F w w ⎡⎤=-⎣⎦[][]001()cos ()()2F f t wt F w w F w w =-++[][]001()sin ()()2F f t wt F w w F w w j=--+ 7.时域微分:[]()()F f t jwF w '=()()()()n nF f t jw F w ⎡⎤=⎣⎦8.频域微分:[]()()F jtf t F w '-=()()()()n n F jt f t F w ⎡⎤-=⎣⎦9.时域卷积:()()()1212()F f t f t F w F w *=⎡⎤⎣⎦ 10.频域卷积:五.周期信号的傅里叶变换:(1) 周期信号的傅里叶级数展开式:1()jnw tnn f t F e ∞=-∞=∑(2) 周期信号的傅里叶变换:1()2()nn F w F w nw πδ∞=-∞=-∑特点:(ⅰ)频谱为冲击谱 (ⅱ)强度为2n F π(ⅲ)谱线位于谐波处(1nw )(ⅳ)()1120211()|Tjnw t jwt T n w nw F f t e dt f t e dt T T∞--=-∞-==⎰⎰()101|w nw F w T==其中:0()f t 为周期信号的第一个脉冲, ()0F w 为0()f t 的傅里叶变换。

信号与系统§4.2 傅里叶级数

信号与系统§4.2  傅里叶级数

m≠n
■ 第 2页
2.级数形式
设周期信号f(t),其周期为 ,角频率Ω π , 设周期信号 ,其周期为T,角频率Ω=2π/T,当满足 狄里赫利(Dirichlet)条件时,它可分解为如下三角级 条件时 狄里赫利 条件 数—— 称为f(t)的傅里叶级数 称为 的
∞ a0 ∞ f (t) = + ∑an cos(nΩt) + ∑bn sin( nΩt) 2 n=1 n=1
▲ ■ 第 9页
▲ ■ 第 6页
三、傅里叶级数的指数形式
三角形式的傅里叶级数,含义比较明确, 三角形式的傅里叶级数,含义比较明确,但运算常感 的傅里叶级数 不便,因而经常采用指数形式的傅里叶级数。 指数形式的傅里叶级数 不便,因而经常采用指数形式的傅里叶级数。 虚指数函数集{e 虚指数函数集 jn t,n=0,±1,±2,…} , , ,
上式表明,周期信号可分解为直流和许多余弦分量。 上式表明,周期信号可分解为直流和许多余弦分量。 • A0/2为直流分量 为 • A1cos(Ωt+ϕ1)称为基波或一次谐波,其角频率与原周 称为基波或一次谐波 Ω 称为基波或一次谐波, 期信号相同 • A2cos(2Ωt+ϕ2)称为二次谐波,其频率是基波的 倍 称为二次谐波 Ω ϕ 称为二次谐波,其频率是基波的2倍 Ω 称为n次谐波。 一般而言,Ancos(nΩt+ϕn)称为 次谐与谐波特性
T 2 2 2 an = ∫ f (t) cos(nΩt) dt bn = ∫ T f (t) sin( nΩt) d t T T −2
T 2 T − 2
1 .f(t)为偶函数 为偶函数——对称纵坐标 为偶函数 对称纵坐标
f (t) = f (−t)
bn =0,展开为余弦级数。 =0,展开为余弦级数 余弦级数。

信号与系统教案第4章FT的性质

信号与系统教案第4章FT的性质

可见An是n的偶函数, n是n的奇函数。 an = Ancosn, bn = –Ansin n,n=1,2,… 上式表明,周期信号可分解为直流和许多余弦分量。 其中, A0/2为直流分量;
A1cos(t+1)称为基波或一次谐波,它的角频率与原周期信号相同;
A2cos(2t+2)称为二次谐波,它的频率是基波的2倍; 一般而言,Ancos(nt+n)称为n次谐波。
信号与系统 电子教案
第四章 连续系统的频域分析
4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8
点击目录
第4-1页
信号分解为正交函数 傅里叶级数 周期信号的频谱 非周期信号的频谱——傅里叶变换 傅里叶变换的性质 周期信号的傅里叶变换 LTI系统的频域分析 取样定理
,进入相关章节

©西安电子科技大学电路与系统教研中心
a0 f (t ) a n cos(nt ) bn sin(nt ) 2 n1 n 1
系数an , bn称为傅里叶系数
2 an T
第4-10页
可见, an 是n的偶函数, bn是n的奇函数。

T 2 T 2
f (t ) cos(nt ) d t
2 bn T
信号与系统 电子教案
4.2
傅里叶级数
3 .f(t)为奇谐函数——f(t) = –f(t±T/2) 此时 其傅里叶级数中只含奇次谐波 分量,而不含偶次谐波分量即 a0=a2=…=b2=b4=…=0
0 f(t)
T/2
T
t
三、傅里叶级数的指数形式
三角形式的傅里叶级数,含义比较明确,但运算不便,因
而经常采用指数形式的傅里叶级数。可从三角形式推出:利用 欧拉公式:cosx=(ejx + e–jx)/2

应用高等数学-6.1 傅里叶变换

应用高等数学-6.1  傅里叶变换

例8
试证单位阶跃函数
F () F[(t)] (t)e jt d t e jt 1
t0
显然, (t)与常数1构成了一傅氏变换对,按
逆变换公式有
(t)
F
1[F ()]
1 2π
e
jt
d
由上式可得 e jt d 2π (t)
(6-9)
这是一个关于δ函数的重要公式.
例5 证明:1和 2π ()构成傅氏变换对.
f
(t)
1, 1,
π t 0 0 t π
如何将函数展开为傅里叶级数的三角形式.
解: 由定理6.1可得 0 1,a0 0,an 0 (n 1, 2,L )
bn
1
π
f (t)sin ntdt
π
π2
π
sin ntdt
0
nπ 2 (cos
nt
π
) 0
nπ 2 (1 cos nπ)
nπ 2 [1 (1)n ]
2π ( 0 )
例7 求正弦函数 f (t) sin 0t 的傅氏变换.
解:
F() F[ f (t)]
e
jt
sin
0t
d
t
1 (e j0t e j0t )e jt d t
2 j
1 (e j(0 )t e j(0 )t ) d t
2 j
jπ[ ( 0 ) ( 0 )]
式中当t=0可得重要积分公式
sin
x
d
x
π
0x
2
例4
求单边指数衰减函数
f
(t)
0, et ,
t0 t0
( 0)
的频谱函数、振幅谱、相位谱.

第三章 傅里叶变换

第三章  傅里叶变换

P=a
2 0
1 2
n 1
an2 bn2
c02
1 2
cn2
n 1
n
Fn
2

3、一个特别的性质: e jn e jn
3.1.3 函数的对称性与傅里叶系数的关系
1、波形对称分类:(1)、整周期对称,例如偶函数和奇函数,其可决定级数中只可能含有余弦项或正弦项;(2)半 周期对称,例如奇谐函数,其可决定级数中只可能含有偶次项或奇次项。 2、对称条件: (1)、偶函数:若信号波形相对于纵轴是对称的,即满足 f(t)=f(-t),此时 f(t)是偶函数,偶函数的 Fn 为实数。在偶函 数的傅里叶级数中不会含有正弦项,只可能含有直流项和余弦项。 (2)奇函数:若波形相对于纵坐标是反对称的,即满足 f(t)=-f(-t),此时 f(t)是奇函数,奇函数的 Fn 为虚数。在奇函数 的傅里叶级数中不会含有余弦项,只可能含有正弦项。虽然在奇函数上加以直流成分,它不再是奇函数,但在它的 级数中仍然不会含有余弦项。 (3)寄谐函数:若波形沿时间轴平移半个周期并相对于该轴上下翻转,此时波形并不发生变化,即满足:
n2 1 2
) cos n1t
基波和偶次谐波频率分量。谐波幅度以 1 规律收敛。 n2
其中1
=
2 T1
;其频谱只包含直流、
3.2.5 周期全波余弦信号
1、周期全波余弦信号的傅里叶级数为:
f
(t)
2E
4E 3
cos(1t)
4E 15
cos(21t)
4E 35
cos(31t)
2E
4E
1n 1
第三章 傅里叶变换
傅里叶变换是在傅里叶级数正交函数展开的基础上发展而产生的;

周期信号的傅里叶级数(1)

周期信号的傅里叶级数(1)

sin 3t
1
3
sin
3
xˆ3
a3e j30t
a e j30t 3
2
3
cos3t
k k
5 : a5e j50t
1
5
5 : a5e j50t
cos5t j 1 5
1 cos5t j 5
sin
1
5
5t
sin 5t
xˆ5
a5e j50t
a5e j50t
2
5
cos5t
k k
2 : a2e j20t 0 2 : a2e j20t
为:
3
x(t) ak e jk 2t
k 3
其中, a0 1, a1 a1 1 4, a2 a2 1 2, a3 a3 1 3 求其三角函数傅里叶级数
注:大多数情况下,复指数和三角函数傅里叶 级数间的互换可以通过欧拉公式来完成
cos x e jx e jx , sin x e jx e jx
6
3、系统的特征函数(Eigenfunction)
若系统对一个输入信号的输出响应仅是一个幅度因子 常数(可能是复数)乘以该输入信号,则称该信号为 系统的特征函数,而该幅度因子常数称为系统的特征 值(eigenvalue )。
est 是连续LTI系统的特征函数
zn 是离散LTI系统的特征函数
对一个特定 sk 或 zk , H (sk )或 H就(zk是) 对应的特征值。
T
本证明供学有余力同学参考
x(t)
ak e jk0t x(t)e jn0t
a e e jk0t jn0t k
k
k
两边都从0 ~ T对t求积分:
T x(t)e jn0tdt T

信号分析与处理-傅里叶变换

信号分析与处理-傅里叶变换

第三章傅里叶变换本章提要:◆傅里叶级数(Fourier Series)◆非周期信号的傅里叶变换◆傅里叶变换的性质◆周期信号的傅里叶变换◆采样信号和采样定理J.B.J. 傅里叶(Fourier)◆1768年生于法国◆1807年提出“任何周期信号都可用正弦函数级数表示”,但其数学证明不很完善。

◆拉普拉斯赞成,但拉格朗日反对发表◆1822年首次发表在《热的分析理论》◆1829年狄里赫利第一个给出收敛条件周期信号都可表示为谐波关系的正弦信号的加权和非周期信号都可用正弦信号的加权积分表示傅里叶分析方法的应用:(1)泊松(Possion)、高斯(Gauss)等将其应用于电学中;(2)在电力系统中,三角函数、指数函数及傅里叶分析等数学工具得到广泛的应用。

(3)20世纪以后,在通信与控制系统的理论研究与实际应用中开辟了广阔的前景。

(4)力学、光学、量子物理和各种线性系统分析等得到广泛而普遍的应用。

§ 3.1 周期信号的傅立叶级数◆三角函数形式的傅里叶级数◆复指数形式的傅里叶级数◆几种典型周期信号的频谱◆吉伯斯现象一、三角函数形式的傅里叶级数∞Tianjin University Tianjin University二、复指数形式的傅里叶级数周期信号的复数频谱图三、几种典型周期信号的频谱+-1T t tjn ωTianjin UniversityTianjin University∞n A τωτ思考题:KHz T f T 100101011 26=⨯===-,πω2. 奇函数:f (t )= -f (-t)1tω只含正弦项n F =3.奇谐函数T四、吉伯斯现象)(t f有限项的N越大,误差越小例如: N=11§ 3.2 非周期信号的傅立叶变换∞从物理意义来讨论傅立叶变换(FT)Tianjin University Tianjin UniversityTianjin UniversityTianjin University )0>arctg -=)(t f时域中信号变化愈尖锐,其频域所包含的高频分量就愈丰富;反之,信号在时域中变化愈缓慢,其频域所包含的低频分量就愈多。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

周期信号的傅里叶级数分析 连续时间LTI 系统的时域分析: 以冲激函数为基本信号
系统零状态响应为输入信号与系统冲激响应之卷积 傅立叶分析
以正弦函数或复指数函数作为基本信号
系统零状态响应可表示为一组不同频率的正弦函数或复指数函数信号响应的加权和或积分; 周期信号: 定义在区间
(,)-∞∞ ,每隔一定时间 T ,按相同
规律重复变化的信号,如图所示 。

它可表示为 f (t )=f ( t +m T )
其中 m 为正整数, T 称为信号的周期,周期的倒数称为频率。

t
()t f 1
1
-T
2
/T 0
周期信号的特点:
(1) 它是一个无穷无尽变化的信号,从理论上也是无始无终的,时
间范围为(,)-∞∞
(2) 如果将周期信号第一个周期内的函数写成
,则周期信

()f t 可以写成
0()()
n f t f t nT ∞
=-∞
=
-∑
(3)周期信号在任意一个周期内的积分保持不变,即有
()()()a T
b T
T
a
b
f t dt f t dt f t dt
++=
=⎰


1. 三角形式的傅立叶级数
周期信号
f t () ,周期为1T ,角频率
11122T f π
πω=
=
该信号可以展开为下式三角形式的傅立叶级数。

[]∑∞
=++
=++++++++=1
1
1
011121211110)sin()cos(...)sin()cos(...
)2sin()2cos()sin()cos()(n
n n n n t n b t n a a t n b t n a t b t a t b t a a t f ωωωωωωωω
式中各正、余弦函数的系数
n n b a , 称为傅立叶系数,函数通过它可以完全表示。

傅立叶系数公式如下
⎪⎪⎪⎪⎩

⎪⎪⎪⎨⎧=====⎰⎰⎰+++Λ
Λ,2,1d sin )(2,2,1d cos )(2d )(100
00
110n t t n t f T b n t t n t f T a t t f T a T
t t n T
t t n T
t t ωω
式中积分可以取任意一个周期,一般情况下,取
) ,0(T 或
)
2 ,2(T
T
-
三角形式的傅立叶级数还可以写成下面形式
∑∞
=++
=1
1
0)
cos()(n
n n t n c c t f ϕω或
∑∞
=++
=1
1
0)
sin()(n
n n t n d d t f θω
两种形式之间系数有如下关系:
n
n n n n n n n n n b a
arctg a b arctg
b a d
c
d a c =-=+=
===θϕ,2
2000⎭⎬

=-====n n n n n n d c b n d c a θϕθϕcos sin ,2 ,1 sin cos n n n n Λ
2.指数函数形式的傅里叶级数
)sin()cos()sin()cos(2
)sin(2)cos(:
利用欧拉公式111111111111t n j t n e t n t n e e e j
t n e e t n t jn t jn t
jn t jn t jn t jn ωωωωωωωωωωωω-=+=-=+=---
[]∑∞
=++
=1
1
1
0)sin()cos()(n
n n t n b t n a a t f ωω
∑∞
=---+++
=1
0]
2
2
[1
1
1
1
n
t
jn t jn n
t
jn t jn n e e jb e e a a ωωωω
∑∞
=-++-+=10]
)(21)(21[11n t jn n n t jn n n e jb a e jb a a ωω
令:()
n n b a n F j 21
)(1-=ω
()()⎰

-=
T
T
t
t n t f T
t t n t f T
10
1d sin )(1
j
d cos )(1
ωω
由欧拉公式

-=T
t
n t
t f T
j d e )(1
1
ω
()
n n b a n F j 2
1
)(1+=-ω
()()⎰

+=T
T
t
t n t f T
t t n t f T
10
1d sin )(1
j
d cos )(1
ωω⎰
=
T
t
n t
t f T
j d e
)(1

令:
0)0(a F = 前面的级数可展成指数形式系数
e )()(1
j 1
t
n n n F t f ωω∑∞
-∞
==
d e )(1
)(1
1
j 1⎰
-=
=T t
n n t t f T
n F F ωω
与三角形式不同。

),,(的区间为这里:注意∞-∞n ()惟一确定。

则,)(出给如合。

组性线的e 号信数可分解成号周期信1j 1t f n F t
n ωω
有模和辐角,是一个复数)(注意:1ωn F
n
n
n n a b
arctg b a jb a n F μμ辐角等于2
其模等于
),(21)(由于221+=±ω
n
n
n n n n a b arctg
b a
c -=+=
ϕ;:在傅立叶三角表示式中2
2
()n
n
n c n F F ϕω±=
相角辐角等于三角表示的初;2
的模可知系数1)
(一地表示了他唯
,变化而变化的复数)(是一个随着频率)(11t f n n F ωω在傅立叶级数中,无论三角函数表示还是指数函数表示,都是通过三个量完整地表示一个函数:
n
n n c n F n n ϕωωωω下基底的相位值在)3(或)(下基底的幅度值在)2(频率)1(1111
)cos(三角表示的基底为指数表示的基底为11t n e
t
jn ωω。

相关文档
最新文档