傅里叶级数分析解析

合集下载

第三章――傅里叶变换周期信号的傅里叶级数分析

第三章――傅里叶变换周期信号的傅里叶级数分析

第三章 傅里叶变换3.1周期信号的傅里叶级数分析(一) 三角函数形式的傅里叶级数满足狄利赫里条件的周期函数()f t 可由三角函数的线性组合来表示,若()f t 的周期为1T ,角频率112T πω=,频率111f T =,傅里叶级数展开表达式为()()()0111cos sin n n n f t a a n t b n t ωω∞==++⎡⎤⎣⎦∑各谐波成分的幅度值按下式计算()0101t T t a f t dt T +=⎰()()0112cos t T n t a f t n t dt T ω+=⎰()()01012sin t T n t b f t n t dt T ω+=⎰其中1,2,n =⋅⋅⋅狄利赫里条件:(1) 在一个周期内,如果有间断点存在,则间断点的数目应是有限个;(2) 在一个周期内,极大值和极小值的数目应是有限个; (3) 在一个周期内,信号是绝对可积的,即()00t T t f t dt +⎰等于有限值。

(二) 指数形式的傅里叶级数周期信号的傅里叶级数展开也可以表示为指数形式,即()()11jn tnn f t F n eωω∞=-∞=∑其中()011011t T jn tn t F f t e dt T ω+-=⎰ 其中n 为从-∞到+∞的整数。

(三) 函数的对称性与傅里叶系数的关系(1) 偶函数由于()f t 为偶函数,所以()()1sin f t n t ω为奇函数,则()()01112sin 0t T n t b f t n t dt T ω+==⎰所以,在偶函数的傅里叶级数中不会含有正弦项,只可能含有直流项和余弦项。

(2) 奇函数由于()f t 为奇函数,所以()()1cos f t n t ω为奇函数,则()0100110t T t a f t dt T +==⎰()()010112cos 0t T n t a f t n t dt T ω+==⎰ 所以,在奇函数的傅里叶级数中不会含有直流项和余弦项,只可能包含正弦项(3) 奇谐函数(()12T f t f t ⎛⎫=-+ ⎪⎝⎭)半波对称周期函数的傅里叶级数中,只会含有基波和奇次谐波的正、余弦项,而不会含有偶次谐波项,这也是奇谐函数名称的由来。

傅里叶级数通俗解析

傅里叶级数通俗解析

=
=
=0 (n,m=1,2,3,…,n ) 当 n=m 时
=
= 最后证明两个是不同名的三角函数的情况


,把

代入(1)得
=
=
=0
(n,m 为任意整数)
因为两个三角函数相乘只有以上三种情况:两个皆为余弦函数相乘;两个
皆为正弦函数相乘;一个为正弦函数,另一个为余弦函数相乘;三种情况皆满
足正交函数集的定义,所以三角函数集为正交函数集。至于三角函数集的完备
息就喷涌而出。根据所叠加的不同三角函数的 不同,我们可以以 为 x 轴,作
频率谱线,研究一个信号所叠加的不同频率。根据所叠加的不同三角函数的 不
同,我们还可以以 为 x 轴,作相位谱线,研究一个信号中的不同相位角。
7
本人才疏学浅,在学习和理解的时候借助了网络的一些图片以及文集,得 到了启发。我摘抄了网上的一张图片,希望能形象的阐明傅里叶级数在物理中 的意义。
傅里叶级数通俗解析
-CAL-FENGHAI.-(YICAI)-Company One1
傅里叶级数
本文意在阐述傅里叶级数是什么,如何通过数学推导得出,以及傅里叶级 数代表的物理含义。
1.完备正交函数集
要讨论傅里叶级数首先得讨论正交函数集。如果 n 个函数
,… 构成一个函数集,若这些函数在区间
上满足
如果是复数集,那么正交条件是
杨煜基 2016 年 3 月
8

化简合并得到
(8) 对于(8)式。其中的参数有


(8)式可化成
(9) 6
(9)式就是傅里叶级数的复指数形式。 现在求 ,将上式两边同乘 ,并在一个周期内求积分得:
当 m=n 时

14讲 傅里叶级数解析

14讲 傅里叶级数解析

2、引入圆频率 令w02/T为圆频率,则函数f(t)的傅里叶级数可写成:
f (t ) a0 (ak cos kw0t bk sin kw0t ).
k 1
这说明,任何一个周期信号f(t)必定可以分解为直流成分a0和基波 成分(w0)以及高次谐波成分(kw0)之和。
3、空间坐标的傅里叶级数
a
函数f(x)的模定义为
f ( f , f ).
若(f,g)=0,则称两函数关于权重函数在[a,b]上正交。 若定义在[a,b]上的实函数系{fn}(n=0,1…)满足:
1 (m n), 0 (m n).

b
a
r ( x)fm ( x)fn ( x)dx fn mn , 其中克罗内克符号 mn
(3)(收敛准则)狄里希利定理:设f(t)是以T为周期的函数,在区
间[-T/2,T/2]上有有限个第一类间断点,且分段单调,则函数的傅 里叶级数在(-∞,+∞)上收敛。其和函数S(t)在f(t)的连续区域上与
之相等,而在f(t)的间断点c处有S(c)=[f(c-0)+f(c+0)]/2。
一致收敛定理:设f(t)是以T为周期的函数,在[-T/2,T/2]的一个 子区间[a,b]上连续且分段单调(无间断),则函数的傅里叶级数在 区间[a,b]上一致收敛于f(t)。
T 2
1 f (t )dt a0 dt 0, 即a0 T 2 T
T 2

T 2
T 2
f (t )dt .
dt . ak cos dt 0, 即ak T 2 f (t ) cos T T T T 2 T2 2k t 同理,可得 bk f (t ) sin dt . 2cos2x=1+cos(2x) T T 2 T

通信原理 确定信号分析 傅里叶级数与变换讲解

通信原理  确定信号分析  傅里叶级数与变换讲解
第二章 确定信号分析
确定信号: 信号仅是一个随时间变化,且其它参数都 是确知的,则这类信号称之为确定信号。
随机信号: 信号的全部或部分参量是不确定的或者 是随机的,则这类信号称之为随机信号。
分析方法: 对于确定信号常采用傅立叶变换分析信号的时域和频域表示; 对于随机信号常采用概率论和随机过程理论。 本章研究确定信号及其通过系统传输的特性。
⑷ 根据滤波器的截至频率不同,可以得到不同频率的信号。
如:
cos2
0t
1
cos 2
20t
若LPF(低通)的截至频率小于20,经LPF后,我们仅得到直流
分量, 若BPF(带通)的中心频率在 20 ,带宽 0,我们仅得
到2次谐波分量。
例:确定周期性矩形脉冲的傅立叶级数
1
Cn T1
T1 / 2 T1 / 2
f (t ) F (ω)
它们分别描述了信号在时间域和频率域的分布情况
傅立叶理论告诉我们:
(1) 一个信号不可能在时域和频域同时受限,一个时域受限的信 号,其频谱一定时无限的,同样,一个频域受限的信号,其时 域也将是无限的。
(2) 一个在时域锐截止的信号,其频域是无限且能量发散,即频 谱在第一个零点以外衰减相对较慢。一个在时域缓慢过渡的 信号,其频谱是无限的,但能量相对集中。
PT (t )e jn1tdt
1
T1
/ 2 e jn1t dt
/ 2
| 1
T1
e jn1t
jn1
2
2
T1
Sa( n1 )
2
第一个零点: 2
频谱间隔: 1
因此定义信号的零点带宽 B 2 (或 B 1 ) 也称主瓣带宽
这是因为信号的能量主要集中在第一个零点以内。

傅里叶级数原理

傅里叶级数原理

傅里叶级数原理1. 简介傅里叶级数原理是分析不规则周期信号最重要的工具之一。

在数学、物理、工程等领域中广泛应用。

它的核心思想是:任何周期信号都可以表示为一系列基频为整数倍的正弦和余弦函数叠加而成。

这些正弦和余弦函数在傅里叶级数中被称为谐波分量。

2. 傅里叶级数的定义设周期为T的函数f(t)在一个周期内满足可积且连续,则它可以表示为以下形式的级数:f(t)=a0/2+ Σ [an*cos(nωt)+bn*sin(nωt)]其中,ω=2π/T,an和bn是傅里叶系数,a0/2是等于f(t)在一个周期内的平均值。

可以看出,f(t)的傅里叶级数展开式是一组带有不同频率的正弦和余弦函数的和。

3. 傅里叶级数的意义通过傅里叶级数展开式,我们可以得到一个正弦和余弦函数的频域图像。

从这个频域图像中,我们可以得到一些信息,比如信号中哪些频率成分占比较高,哪些成分占比较低。

甚至可以根据这些信息对原始信号进行重建或修正。

具体地说,如果从一个连续不依赖于时间的物理现象中获得一段周期数据,那么可以通过法力级数的计算来确定信号包含的基本频率,并且据此对信号进行频谱分析。

频谱分析可以帮助我们更好地理解和利用信号,比如音频和视频信号的处理。

4. 傅里叶级数的应用在数学中,可以用傅里叶级数来解决微分方程的边界条件问题、傅里叶级数的离散化应用——快速傅里叶变换在信号处理中大量应用,还可以用于数值匹配。

在物理学中,傅里叶级数主要应用于波的传播和放大中,可以确定波的频率,方法是通过光谱来确定。

在光学领域中,傅里叶级数被广泛应用于计算机成像,用于抵消扰动、组合图像等。

在工程实践中,傅里叶级数也具有重要的应用价值。

特别是对于电子和通信工程师来说,傅里叶级数和傅里叶变换是必不可少的工具。

它们可用于信号处理、控制、数据分析和通信等领域。

傅里叶级数的应用不仅局限于上述领域,在音乐节拍分析、图像处理、机器学习等领域中都得到广泛应用。

5. 总结无论是在理论研究还是在工程实践中,傅里叶级数都是一个非常重要的工具。

傅里叶级数分析

傅里叶级数分析

c2
c2 1
2 0.25 π
20
1
O
1
2 1
1
O
2 1
0.15π
X
化为指数形式
1 j 1t f (t ) 1 e e j 1t 2j


π π 2 j t 2 j n t 1 1 2 j 1t 1 j 1 t 4 4 e e e e 2 整理 2 π j 1 j 1t 1 j 1t 1 jπ 1 4 j 2 1 t 4 j 2 1 t f (t ) 1 1 e 1 e e e e e 2 j 2 j 2 2
1.复指数正交函数集 e j n 1 t 2.级数形式 3.系数 利用复变函数的正交特性
f (t )
n


n 0 , 1, 2
j n 1 t F ( n ) e 1
4
F ( n )
1
T1
0 T1 0
f ( t ) e j n 1 t d t e j n 1 t e j n 1 t d t
1 T1 f (t )e j n1t d t T1 0
5
16
说明
f (t )
n
F ( n

1
)e
j n 1 t
4
5
1
1 T1 F n1 f (t ) e j n1t d t T1 0
周期信号可分解为 的线性组合。
, 区间上的指数信号e jn t
• 指数信号与正弦信号具有相同的特性
• 由系统的组成来说:当输入为指数信号时, 系统的输出一定也是一个指数信号,只不 过指数信号幅值发生变化。

数学分析2部分习题解析(傅里叶级数部分)

数学分析2部分习题解析(傅里叶级数部分)

数学分析2部分习题解析傅里叶级数部分第3节部分习题1、设f 以2π为周期且具有二阶连续的导数,证明f 的傅里叶级数在(),-∞+∞上一致收敛于f 。

证明由条件知,f 一定是以2π为周期的连续函数且在一个周期区间[],ππ-上按段光滑,所以由收敛定理得,在(),-∞+∞上有()011cos sin ()2n n n a a nx b nx f x ∞=++=∑,其中0a ,n a ,n b (1n ≥)为()f x 的傅里叶系数。

由三角级数一致收敛的判别法,下证()0112n n n a a b ∞=++∑收敛即可。

事实上,记0a ',n a ',nb '为导函数()f x '的傅里叶系数,由()f x 与()f x '的傅里叶系数的关系得0a '=,n n a nb '=,n n b na '=-。

所以,()()22211112n n n n n n a b b a a b n n n ⎛⎫''''+=+≤++ ⎪⎝⎭。

又由傅里叶系数满足的贝塞尔不等式得,()()()221nn n a b ∞=''+∑收敛,再注意到211n n∞=∑收敛,所以()0112n n n a a b ∞=++∑收敛,故结论成立。

2、设f 为[],ππ-上的可积函数,证明:若f 的傅里叶级数在[],ππ-上一致收敛于f ,则成立帕塞瓦尔等式:()22220111()d 2n n n f x x a a b πππ∞-==++∑⎰,其中0a ,n a ,n b (1n ≥)为()f x 的傅里叶系数。

证明由f 在[],ππ-上可积得,f 在[],ππ-上有界,从而由题设可得()2011()()cos ()sin ()2n n n a f x a f x nx b f x nx f x ∞=++=∑,在[],ππ-上一致成立。

数学分析课件 傅里叶级数

数学分析课件  傅里叶级数

03
工程学
在工程学中,傅里叶级数可以用于分析和设计各种周期性结构,例如在
机械工程和土木工程等领域中,可以通过傅里叶级数来描述和分析周期
性振动和波动等问题。
02
傅里叶级数的基本性质
三角函数的正交性
三角函数的正交性是指在一周期内,任何两个不同的三角函 数都不相交,即它们的乘积在全周期内的积分值为零。这一 性质在傅里叶级数的展开和重构中起到关键作用,确保了频 谱的纯净性和分离性。
三角函数的周期性使得我们能够将无限长的信号转化为有限长的频谱,从而方便 了信号的分析和处理。
傅里叶级数的收敛性
傅里叶级数的收敛性是指一个信号的傅里叶级数展开在一 定条件下能够无限接近原信号。这一性质保证了傅里叶级 数展开的精度和可靠性,使得我们能够通过有限项的级数 展开来近似表示复杂的信号。
收敛性的判定是数学分析中的重要问题,涉及到级数的收 敛半径、收敛域等概念。在实际应用中,我们需要根据信 号的特性和精度要求来选择合适的收敛域和级数项数,以 保证傅里叶级数展开的准确性。
首先,确定函数的周期和定义域;其次,计算正弦和余弦函数的系数;最后,将得到的系数代入正弦和余弦函数的线 性组合中,得到函数的傅里叶级数表示。
傅里叶级数的表示方法的优缺点
傅里叶级数具有简洁、易计算等优点,能够将复杂的周期函数分解为简单的正弦和余弦函数。然而,傅 里叶级数也存在着一些缺点,例如在非周期函数的情况下,傅里叶级数可能无法得到正确的结果。
图像增强
利用傅里叶级数,可以对图像进行增 强处理,如锐化、降噪等,提高图像 的视觉效果。
数值分析中的傅里叶级数
数值逼近
傅里叶级数可以用于求解某些函数的 数值逼近问题,如求解函数的零点、 极值等。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

cn ~ 关系曲线称为幅度频谱图; n ~ 关系曲线称为相位频谱图。
可画出频谱图。
周期信号频谱具有离散性、谐波性、收敛性 。
14
频谱图
幅度频谱
cn ~
cn c1

Fn ~ 曲线 c0
c3
离散谱,谱线
相位频谱
O 1 31
n ~ 曲线
n
O 1 31
15
二.指数函数形式的傅里叶级数
1.复指数正交函数集 e jn1t n 0,1,2
n
arctan
bn an
正弦形式 f (t ) d 0 d n sinn 1t n n1
d0 a0
an dn sin n
dn
an2 bn2
n
arctan
an bn
bn dn cos n
13
幅度频率特性和相位频率特性









流,




1





(n1 : 基波角频率的整数倍)的线性组合。
dt
11
求周期锯齿波的三角函数形式的傅里叶级数展开式。
f (t)
A t
T1 t T1
f t
T1 2
1 A T1
a0 T1
2 T1
2
T1
t
d
t
0
2
T1 2
A/2 T1 2
t
an
2 T1
2
bn T1
T1
2 T1
2
A T1
t cos
n1t
T1
2 T1
2
A T1
t sin
1、由这类基本信号能构成相当广泛的一类信号 2、LTI系统对每一个基本信号的响应,在结构上因该 十分简单,以便使系统对任意输入的响应有一个方便的表 达式。
δ(t),冲激响应,卷积 1
正弦信号通过LTI系统
电阻
iR t
1 R
vt
电感 v L diL t
dt
电容
d v t iLt
1 L
t v
1 T
T 0
f
(t)cosn1t d t
j1 T
T 0
f (t)sinn1t d t
1 2
an
jbn
F
(n1
)
1 T
T 0
f
(t)cosn1t d t
j1 T
T 0
f
(t)sinn1t d t
1 2
an
j bn
F (n1 ), F (n1 )是复数
由积分可知
t在一个周期内,n=0,1,...
T
2 T
cosn1t
sinm1 t
0
2 T
2 T
2
cosn1t
cosm1t
T 2
,
0,
mn mn
T 2 T 2
sinn1t
sinm1t
T 2
,
0,
mn mn
10
2.级数形式
周期信号 f t ,周期为T1 , 基波角频率为1
在满足狄氏条件时,可展成
d
i t C d t C

iL (t) Asin(t 时
vC (t) Asin(t
电阻
iR
t
1 R
vt
A R
sin(
t
)
电容
iC
t
C
d vt
dt
C
d
(
Asin( t
dt
))
AC
cos(t
)
电感v
L
diL t
dt
L
d
(
Asin( t
dt
))
LA
cos(t
) 2
• 指数信号与正弦信号具有相同的特性
2.级数形式 f (t ) F (n1 ) ejn1t
4
n
3.系数
利用复变函数的正交特性
F (n1 )
T1 f (t ) e jn1t d t
0
e e d t T1 jn1t jn1t
0
1 T1 f (t)e jn1t d t T1 0
5 16
说明
f (t ) F (n1 ) ejn1t
5
二.正弦信号激励下系统的稳态响应
设激励信号为sin0t ,系统的频率响应为H ( ) H ( ) ej ( ),
则系统的稳态响应为
r(t) H (0 ) sin 0t (0 )
正弦信号sin0t 作为激励的稳态响应为与激励同 频率的信号,幅度由H j0 加权,相移 0 。 H j 代表了系统对信号的处理效果。
2
T1
f (t ) a0 an cosn1t bn sinn1t
1
n1
称为三角形式的傅里叶级数,其系数
直流分量
1
a0 T
t0T f (t)d t
t0
余弦分量的幅度
2 an T
t0 T
t0
f (t)cos
n1t
dt
正弦分量的幅度
bn
2 T
t0 T
t0
f (t)sin n1t
• 由系统的组成来说:当输入为指数信号时, 系统的输出一定也是一个指数信号,只不 过指数信号幅值发生变化。
3
指数信号通过LTI系统的输出
利用卷积法:输入为 e jt
r e
jt
(t)
e j h(t )d
e j(t )h( )d
e jte j h( )d e jt e j h( )d
n 1t
dt dt
0 A
1
2π T1
(1)n1

n 1,2,3
周期锯齿波的傅里叶级数展开式为
f
t
0
A π
sin1t
A 2π
sin 21t
12
直流
基波
谐波
其他形式
余弦形式 f (t ) c0 cn cosn 1t n
2
n1
c0 a0
cn
a
2 n
bn2
an cn cos n bn cn sin n
线性时不变(LTI)系统分析方法
• 基本思路:已知一些基本信号,将任意一个信号e(t)
(或者我们需要研究的信号)用一个基本信号的线性组合 来表示(信号分解),如果已知基本信号通过LTI系统的 响应r(t),那么任意信号通过系统的响应就可以用r(t)的线 性组合来表示。 • 这些基本信号应该具备下列性质:
6
7
§3.2 周期信号傅里叶 级数分析
8
主要内容
•三角函数形式的傅氏级数 • 指数函数形式的傅氏级数 •两种傅氏级数的关系 • 频谱图 •函数的对称性与傅里叶级数的关系 •周期信号的功率 •傅里叶有限级数与最小方均误差
9
一.三角函数形式的傅里叶级数
1.三角函数集
cosn1t ,sinn1t 是一个完备的正交函数集
4
n
F
n1
1 T1
T1 f (t)
0
e jn1t d t
5
• 周期信号可分解为 , 区间上的指数信号ejn1t
的线性组合。
• 如给出F (n1 ),则f t 惟一确定,(4)、(5)式是一对
变换对。
17
三.两种系数之间的关系及频谱图
F
(n1
)
1 T
T f (t拉公式

H ( j)
e jh( )d

r e
jt
(t
)
e
jt
H
(
j)
输入为正弦信号?
4
δ(t)
h(t)
et
e
t
d
r
t
e
ht
d
e(t)
r(t)
ejωt
H(t)
r e
jt
(t)
e
jt
H
(
j)
Sin(ωt)
r(t) H (0 ) sin 0t (0 )
H(t)
f(t)
r(t)
f (t) a0 an cosn1t bn sin n1t n 1
相关文档
最新文档