1 傅里叶级数解析

合集下载

傅里叶级数通俗解析

傅里叶级数通俗解析

=
=
=0 (n,m=1,2,3,…,n ) 当 n=m 时
=
= 最后证明两个是不同名的三角函数的情况


,把

代入(1)得
=
=
=0
(n,m 为任意整数)
因为两个三角函数相乘只有以上三种情况:两个皆为余弦函数相乘;两个
皆为正弦函数相乘;一个为正弦函数,另一个为余弦函数相乘;三种情况皆满
足正交函数集的定义,所以三角函数集为正交函数集。至于三角函数集的完备
息就喷涌而出。根据所叠加的不同三角函数的 不同,我们可以以 为 x 轴,作
频率谱线,研究一个信号所叠加的不同频率。根据所叠加的不同三角函数的 不
同,我们还可以以 为 x 轴,作相位谱线,研究一个信号中的不同相位角。
7
本人才疏学浅,在学习和理解的时候借助了网络的一些图片以及文集,得 到了启发。我摘抄了网上的一张图片,希望能形象的阐明傅里叶级数在物理中 的意义。
傅里叶级数通俗解析
-CAL-FENGHAI.-(YICAI)-Company One1
傅里叶级数
本文意在阐述傅里叶级数是什么,如何通过数学推导得出,以及傅里叶级 数代表的物理含义。
1.完备正交函数集
要讨论傅里叶级数首先得讨论正交函数集。如果 n 个函数
,… 构成一个函数集,若这些函数在区间
上满足
如果是复数集,那么正交条件是
杨煜基 2016 年 3 月
8

化简合并得到
(8) 对于(8)式。其中的参数有


(8)式可化成
(9) 6
(9)式就是傅里叶级数的复指数形式。 现在求 ,将上式两边同乘 ,并在一个周期内求积分得:
当 m=n 时

积分变换第1讲傅里叶(Fourier)级数展开

积分变换第1讲傅里叶(Fourier)级数展开
sax可将以竖线标在频率图上再将以竖线标在频率图上如果再将周期增加一倍令t16可计算出再将以竖线标在频率图上一般地对于周期ttjtjsa当周期t越来越大时各个频率的正弦波的频率间隔越来越小而它们的强度在各个频率的轮廓则总是sinc函数的形状因此如果将方波函数ft看作是周期无穷大的周期函数则它也可以看作是由无穷多个无穷小的正弦波构成将那个频率上的轮廓即sa函数的形状看作是ft在各个频率成份上的分称作ft的傅里叶变换
-
fT (t )e
j nw t
dt
因此可以合写成一个式子 cn
T
1
T 2 T 2
-
fT (t )e
- jwn t
dt ( n 0, 1, 2,)
fT (t )
ce
n n -

jwn t
2 jwnt - jwn d e -T fT ( )e T n - 2 1
前面计算出
cn 1 2 Sa (wn ) ( n 0, 1, 2,) 2p T np 2 , 可将cn以竖线标在频率图上
wn nw n
w
现在将周期扩大一倍, 令T=8, 以f(t)为基础构 造一周期为8的周期函数f8(t)
f 8 (t )
f (t 8n),
n -

如令wn=nw (n=0,1,2,...)
且令c0 cn c- n a0 2 , n 1,2,3, , n 1,2,3, ,
an - jbn 2 an jbn 2
f T (t ) c0 cn e
n 1


jw n t
c- n e
- jw n t
积分变换
第1讲

傅里叶级数原理

傅里叶级数原理

傅里叶级数原理1. 简介傅里叶级数原理是分析不规则周期信号最重要的工具之一。

在数学、物理、工程等领域中广泛应用。

它的核心思想是:任何周期信号都可以表示为一系列基频为整数倍的正弦和余弦函数叠加而成。

这些正弦和余弦函数在傅里叶级数中被称为谐波分量。

2. 傅里叶级数的定义设周期为T的函数f(t)在一个周期内满足可积且连续,则它可以表示为以下形式的级数:f(t)=a0/2+ Σ [an*cos(nωt)+bn*sin(nωt)]其中,ω=2π/T,an和bn是傅里叶系数,a0/2是等于f(t)在一个周期内的平均值。

可以看出,f(t)的傅里叶级数展开式是一组带有不同频率的正弦和余弦函数的和。

3. 傅里叶级数的意义通过傅里叶级数展开式,我们可以得到一个正弦和余弦函数的频域图像。

从这个频域图像中,我们可以得到一些信息,比如信号中哪些频率成分占比较高,哪些成分占比较低。

甚至可以根据这些信息对原始信号进行重建或修正。

具体地说,如果从一个连续不依赖于时间的物理现象中获得一段周期数据,那么可以通过法力级数的计算来确定信号包含的基本频率,并且据此对信号进行频谱分析。

频谱分析可以帮助我们更好地理解和利用信号,比如音频和视频信号的处理。

4. 傅里叶级数的应用在数学中,可以用傅里叶级数来解决微分方程的边界条件问题、傅里叶级数的离散化应用——快速傅里叶变换在信号处理中大量应用,还可以用于数值匹配。

在物理学中,傅里叶级数主要应用于波的传播和放大中,可以确定波的频率,方法是通过光谱来确定。

在光学领域中,傅里叶级数被广泛应用于计算机成像,用于抵消扰动、组合图像等。

在工程实践中,傅里叶级数也具有重要的应用价值。

特别是对于电子和通信工程师来说,傅里叶级数和傅里叶变换是必不可少的工具。

它们可用于信号处理、控制、数据分析和通信等领域。

傅里叶级数的应用不仅局限于上述领域,在音乐节拍分析、图像处理、机器学习等领域中都得到广泛应用。

5. 总结无论是在理论研究还是在工程实践中,傅里叶级数都是一个非常重要的工具。

傅里叶级数展开

傅里叶级数展开

傅里叶级数展开傅里叶级数展开是一种将周期函数表示为无穷级数的方法,由法国数学家傅里叶在19世纪初提出。

傅里叶级数展开在信号处理、图像处理、物理学等领域中有广泛应用,并且被认为是研究周期现象的基础工具之一。

1. 傅里叶级数展开的基本原理傅里叶级数展开的基本思想是将一个周期函数分解为正弦函数和余弦函数的叠加。

根据傅里叶级数的表达式,一个周期函数可以表示为无限多个正弦和余弦函数的和,即:f(x) = a0 + Σ(An * cos(nωx) + Bn * sin(nωx))其中,a0表示直流分量,An和Bn表示函数f(x)中的谐波系数,ω为频率,n为谐波阶数。

由此可知,通过傅里叶级数展开,一个周期函数可以分解为不同频率的谐波信号的叠加。

2. 傅里叶级数的计算公式根据给定周期函数的表达式,我们可以通过一系列复杂的积分计算,求得傅里叶级数展开的各个系数。

对于奇函数和偶函数,傅里叶级数的计算公式有所不同。

- 对于奇函数f(x),即满足 f(-x) = -f(x) 的函数,傅里叶级数展开的计算公式为:fn = (1/π) * ∫[0, π] f(x) * sin(nωx) d x- 对于偶函数f(x),即满足 f(-x) = f(x) 的函数,傅里叶级数展开的计算公式为:fn = (2/π) * ∫[0, π] f(x) * cos(nωx) dx在实际计算中,为了减小计算量,通常只考虑有限个谐波分量,而不是无限个。

通过计算傅里叶级数展开的前几个系数,就可以对周期函数进行较好的逼近。

3. 傅里叶级数的应用傅里叶级数展开在信号处理中有重要的应用。

通过傅里叶级数展开,可以将任意信号分解为基本频率的叠加,从而分析信号的频谱特性。

这对于音频信号的处理、图像处理、振动分析等方面非常重要。

此外,傅里叶级数展开还广泛应用于物理学领域,特别是波动现象的研究中。

通过将波动的形态分解为不同频率的谐波信号的叠加,可以更好地理解和描述波动现象。

傅里叶级数

傅里叶级数

傅里叶级数(Fourier Series )引言正弦函数是一种常见而简单的周期函数,例如描述简谐振动的函数 就是一个以ωπ2为周期的函数。

其中y 表示动点的位置,t 表示时间,A 为振幅,ω为角频率,ϕ为初相。

但在实际问题中,除了正弦函数外,还会遇到非正弦的周期函数,它们反映了较复杂的周期运动,我们也想将这些周期函数展开成由简单的周期函数例如三角函数组成的级数。

具体地说,将周期为)2(ωπ=T 的周期函数用一系列以T 为周期的正弦函数)sin(n n t n A ϕω+组成的级数来表示,记为其中),3,2,1(,,0 =n A A n n ϕ都是常数。

将周期函数按上述方式展开,它的物理意义就是把一个比较复杂的周期运动看成是许多不同频率的简谐振动的叠加。

在电工学上,这种展开称为谐波分析。

其中常数项0A 称为)(t f 的直流分量;)sin(11ϕω+t A 称为一次谐波(又叫做基波);而)2sin(22ϕω+t A , )3sin(33ϕω+t A 依次称为二次谐波,三次谐波,等等。

为了下面讨论方便起见,我们将正弦函数)sin(n n t n A ϕω+按三角公式变形,得 t n A t n A t n A n n n n n n ωϕωϕϕωsin cos cos sin )sin(+=+, 令x t A b A a A a n n n n n n ====ωϕϕ,cos ,sin ,200,则上式等号右端的级数就可以改写成这个式子就称为周期函数的傅里叶级数。

1.函数能展开成傅里叶级数的条件(1) 函数)(x f 须为周期函数;(2) 在一个周期内连续或只有有限个第一类间断点;(如果0x 是函数)(x f 的间断点,但左极限)0(0-x f 及右极限)0(0+x f 都存在,那么0x 称为函数)(x f 的第一类间断点)(3) 在一个周期内至多只有有限个极值点。

若满足以上条件则)(x f 能展开成傅里叶级数,且其傅里叶级数是收敛的,当x 是)(x f 的连续点时,级数收敛于)(x f ,当x 是)(x f 的间断点时,级数收敛于)]0()0([21++-x f x f 。

傅里叶级数课程及习题讲解

傅里叶级数课程及习题讲解

第15章傅里叶级数§15.1傅里叶级数一 基本内容一、傅里叶级数 在幂级数讨论中1()nn n f x a x ∞==∑,可视为()f x 经函数系线性表出而得.不妨称2{1,,,,,}nx x x 为基,则不同的基就有不同的级数.今用三角函数系作为基,就得到傅里叶级数.1三角函数系函数列{}1, cos , sin , cos 2, sin 2, , cos , sin , x x x x nx nx 称为三角函数系.其有下面两个重要性质.(1)周期性每一个函数都是以2π为周期的周期函数; (2)正交性任意两个不同函数的积在[,]ππ-上的积分等于 零,任意一个函数的平方在上的积分不等于零.对于一个在[,]ππ-可积的函数系{}() [, ], 1,2, n u x x a b n ∈=:,定义两个函数的内积为(),()()()d bn m n m a u x u x u x u x x=⋅⎰,如果0 (),() 0 n m l m nu x u x m n ≠=⎧=⎨≠⎩,则称函数系{}() [, ], 1,2, n u x x a b n ∈=:为正交系.由于1, sin 1sin d 1cos d 0nx nx x nx x ππππ--=⋅=⋅=⎰⎰;sin , sin sin sin d 0 m nmx nx mx nx x m n πππ-=⎧=⋅=⎨≠⎩⎰;cos , cos cos cos d 0 m n mx nx mx nx x m n πππ-=⎧=⋅=⎨≠⎩⎰;sin , cos sin cos d 0mx nx mx nx x ππ-=⋅=⎰;2 1, 11d 2x πππ-==⎰,所以三角函数系在[],ππ-上具有正交性,故称为正交系.利用三角函数系构成的级数 称为三角级数,其中011,,,,,,n n a a b a b 为常数2以2π为周期的傅里叶级数定义1设函数()f x 在[],ππ-上可积,11(),cos ()cos d k a f x kx f x kx xππππ-==⎰0,1,2,k =;11(),sin ()sin d k b f x kx f x kx xππππ-==⎰1,2,k =,称为函数()f x 的傅里叶系数,而三角级数称为()f x 的傅里叶级数,记作()f x ~()01cos sin 2n n n a a nx b nx ∞=++∑.这里之所以不用等号,是因为函数()f x 按定义1所得系数而获得的傅里叶级数并不知其是否收敛于()f x .二、傅里叶级数收敛定理定理1若以2π为周期的函数()f x 在[,]ππ-上按段光滑,则()01(0)(0)cos sin 22n n n a f x f x a nx b nx ∞=++-++=∑,其中,n n a b 为()f x 的傅里叶系数.定义2如果()[, ]f x C a b '∈,则称()f x 在[,]a b 上光滑.若[,),(0),(0)x a b f x f x '∀∈++存在;(,],(0)x a b f x ∀∈-,(0)f x '-存在,且至多存在有限个点的左、右极限不相等,则称()f x 在[,]a b 上按段光滑.几何解释如图.按段光滑函数图象是由有限条光滑曲线段组成,它至多有有限个第一类间断点与角点.推论如果()f x 是以2π,]ππ-上按 段光滑,则x R ∀∈,有()01()cos sin 2n n n a f x a nx b nx ∞==++∑.定义3设()f x 在(,]ππ-上有定义,函数称()f x 为的周期延拓.二 习题解答1在指定区间内把下列函数展开为傅里叶级数(1)(),(i) , (ii) 02f x x x x πππ=-<<<<;解:(i)、()f x =x ,(,)x ππ∈-作周期延拓的图象如下. 其按段光滑,故可展开为傅里叶级数. 由系数公式得011()d d 0a f x x x x ππππππ--===⎰⎰.当1n ≥时,11cos d d(sin )n a x nx x x nx n ππππππ--==⎰⎰11sin sin d 0|x nx nx x n n ππππππ--=-=⎰,1112cos cos d (1)|n x nx nx x n n n ππππππ+---=+=-⎰,所以11sin ()2(1)n n nxf x n ∞+==-∑,(,)x ππ∈-为所求.(ii)、()f x =x ,(0,2)x π∈作周期延拓的图象如下.其按段光滑,故可展开为傅里叶级数. 由系数公式得220011()d d 2a f x x x x πππππ===⎰⎰.当1n ≥时,220011sin sin d 0|x nx nx x n n ππππ=-=⎰,2200112cos cos d |x nx nx x n n n ππππ--=+=⎰,所以1sin ()2n nxf x n π∞==-∑,(0,2)x π∈为所求. (2)2()(i) (ii) 02f x =x , -π<x <π,<x <π;解:(i)、()2f x =x ,(,)x ππ∈-作周期延拓的图象如下.其按段光滑,故可展开为傅里叶级数. 由系数公式得220112()d d 3a f x x x x πππππππ--===⎰⎰.当1n ≥时,222224cos cos d (1)|n x nx nx x n n n ππππππ--=-=-⎰,2222sin sin d 0|x nx nx x n n ππππππ--=-=⎰,所以221sin ()4(1)3nn nxf x n π∞==+-∑,(,)x ππ∈-为所求.()2f x =x0a =当1n ≥时,222220224cos cos d |x nx nx x n n n ππππ=-=⎰,2222004224sin sin d |x nx nx x n n n n ππππππ=-+-=-⎰,所以22214cos sin ()43n nx nx f x n n ππ∞=⎛⎫=+- ⎪⎝⎭∑,(0,2)x π∈为所求.(3)0()(,0,0)0ax x f x a b a b bx x ππ-<≤⎧=≠≠≠⎨<<⎩.解:函数()f x ,(,)x ππ∈-作周期延拓的图象如下.其按段光滑,故可展开为傅里叶级数. 由系数公式得000111()()d d d 2b a a f x x ax x bx x ππππππππ---==+=⎰⎰⎰.当1n ≥时,所以21()2()1()cos(21)4(21)n b a b a f x n x n ππ∞=--=+--∑11sin ()(1)n n nxa b n ∞+=++-∑,(,)x ππ∈-为所求.2设f 是以2π为周期的可积函数,证明对任何实数c ,有2 11()cos d ()cos d ,0,1,2,c n c a f x nx x f x nx x n πππππ+-===⎰⎰, 2 11()sin d ()sin d ,1,2,c n cb f x nx x f x nx x n πππππ+-===⎰⎰.证:因为()f x ,sin nx ,cos nx 都是以2π为周期的可积函数,所以令2t x π=+有c+2 c+211()cos d ()cos d f t nt t f x nx xππππππ==-⎰⎰.从而2 1()cos d c n ca f x nx xππ+=⎰1()cos d f x nx xπππ-=⎰.同理可得2 11()sin d ()sin d c n cb f x nx x f x nx xπππππ+-==⎰⎰.3把函数04()04x f x x ππππ⎧--<≤⎪⎪=⎨⎪≤<⎪⎩展开成傅里叶级数,并由它推出(1)11114357π=-+-+;(2)111111357111317π=+--+-+;11111157111317=-+-+-+.解:函数()f x ,(,)x ππ∈-作周期延拓的图象如下.其按段光滑,故可展开为傅里叶级数. 由系数公式得00111()d d d 044a f x x x x πππππππππ---==+=⎰⎰⎰.当1n ≥时,0011cos d cos d 044n a nx x nx x ππππππ--=+=⎰⎰.11211[1(1)]202n n k nn n k+⎧=+⎪=--=⎨⎪=⎩,故11()sin(21),(,0)(0,)21n f x n x x n ππ∞==-∈--∑为所求.(1)取2x π=,则11114357π=-+-+;(2)由11114357π=-+-+得111112391521π=-+-+,于是111111341257111317πππ=+=+--+-+;(3)取3x π=,则111111457111317π⎫=-+-+-+⎪⎝⎭,11111157111317=-+-+-+.4设函数()f x 满足条件()()f x f x π+=-,问此函数在(),ππ-内的傅里叶级数具有什么特性.解:因为()f x 满足条件()()f x f x π+=-,所以(2)()()f x f x f x ππ+=-+=,即()f x 是以2π为周期的函数. 于是由系数公式得11()d ()d 0f t t f x x πππππ=++=⎰⎰.当1n ≥时,02()cos d 2102f x nx x n k n k ππ⎧=-⎪=⎨⎪=⎩⎰.02()sin d 2102f x nx x n k n kππ⎧=-⎪=⎨⎪=⎩⎰,故当()()f x f x π+=-时,函数()f x 在(),ππ-内的傅里叶级数的特性是20k a =,20k b =. 5设函数()f x 满足条件:()()f x f x π+=,问此函数在(),ππ-内的傅里叶级数具有什么特性.解:因为()f x 满足条件()()f x f x π+=,所以(2)()()f x f x f x ππ+=+=,即()f x 是以2π为周期的函数.于是由系数公式得112()d ()d ()d f t t f x x f x xπππππππ=++=⎰⎰⎰.当1n ≥时,02()cos d 2021f x nx x n k n k ππ⎧=⎪=⎨⎪=-⎩⎰. 02()sin d 2021f x nx x n k n k ππ⎧=⎪=⎨⎪=-⎩⎰,故当()()f x f x π+=时,函数()f x 在(),ππ-内的傅里叶级数的特性是210k a -=,210k b -=. 6试证函数系cos , 0,1,2,nx n =和sin , 1,2,nx n =都是[0, ]π上的正交函数系,但他们合起来的却不是[0, ]π上的正交函数系.证:就函数系{1,cos ,cos2,,cos ,}x x nx ,因为n ∀,1,1d x ππ==⎰,2001cos ,cos cos d (cos21)d 22nx nx nx x nx x πππ==+=⎰⎰,又1,cos cos d 0nx nx x π==⎰;,m n ∀,m n ≠时,0011cos()d cos()d 022m n x x m n x x ππ=++-=⎰⎰.所以{1,cos ,cos2,,cos ,}x x nx 在[0, ]π上是正交系.就函数系{sin ,sin 2,,sin ,}x x nx ,因为n ∀,2001sin ,sin sin d (1cos2)d 22nx nx nx x nx x πππ==-=⎰⎰,又,m n ∀,m n ≠时,0011cos()d cos()d 022m n x x m n x x ππ=-++-=⎰⎰.所以{sin ,sin 2,,sin ,}x x nx 在[0, ]π上是正交系. 但{1,sin ,cos ,sin 2,cos2,,sin ,cos ,}x x x x nx nx 不是[0, ]π上的正交系.实因:1,sin sin d 10x x x π==≠⎰.7求下列函数的傅里叶级数展开式(1)(),022x f x x ππ-=<<;(),02x f x x ππ-=<< 0a 当1n ≥时,22001sin sin d 022|x nx nx x n n πππππ-=+=⎰,220011cos cos d 22|x nx nx x n n n πππππ-=--=⎰,所以1sin ()n nxf x n ∞==∑,(0,2)x π∈为所求.(2)()f x x ππ=-≤≤;解:()f x x ππ=-≤≤作周期延拓的图象如下.其按段光滑,故可展开为傅里叶级数.因为02()02x x f x x x ππ-≤<==⎨⎪≤≤⎪⎩,所以由系数公式得0sin d sin d 22x x x x ππ-=+=.当1n ≥时,sin cos d 2x nx x π==.0sin sin d sin sin d 022n x x b nx x nx x ππππ-=+=⎰.所以211()cos 41n f x nxnππ∞==--,(,)x ππ∈-.而x π=±时,(0)(0)()2f f f πππ±-+±+==±,故211()cos 41n f x nxnππ∞==--,[,]x ππ∈-为所求.(3)2(), (i) 02, (ii) f x ax bx c x x πππ=++<<-<<;解:(i)由系数公式得22218()d 223aax bx c x b cππππ=++=++⎰.当1n ≥时,24an =, 42a n n ππ=--, 故224()3a f x ax bx c b cππ=++=++21442cos sin ,(0,2)n a a bnx nx x n n ππ∞=++-∈∑为所求.(ii)由系数公式得01()d a f x x πππ-=⎰2212()d 23aax bx c x c ππππ-=++=+⎰.当1n ≥时,24(1)nan =-, 12(1)n bn -=-, 故222()3af x ax bx c cπ=++=+2142(1)cos (1)sin ,(,)nn n a b nx nx x n n ππ∞=+---∈-∑为所求.(4)()ch , f x x x ππ=-<<;解:由系数公式得01()d a f x x πππ-=⎰12ch d sh x x πππππ-==⎰.当1n ≥时,222sh 1(1)nna n n ππ=--,所以22sh (1)(1)n n a n ππ=-+. 2211sh sin ch sin d |x nx x nx x n n ππππππ--=-+⎰21nb n =,所以0n b =,故21211()ch sh (1)cos 21n n f x x nx n ππ∞=⎡⎤==+-⎢⎥+⎣⎦∑, (,)x ππ∈-为所求.(5)()sh ,f x x x ππ=-<<.解:由系数公式得01()d a f x x πππ-=⎰1sh d 0x x πππ-==⎰. 当1n ≥时,1sh cos d 0n a x nx x πππ-==⎰.1221(1)sh n n b n n ππ+=--,所以122sh (1)(1)n n n xb n π+=-+, 故1212sh ()sh (1)sin (1)n n n f x x nxn ππ∞+===-+∑,(,)x ππ∈-为所求.8求函数221()(362)12f x x x ππ=-+的傅里叶级数展开式并应用它推出22116n n π∞==∑. 解:由224()3af x ax bx c b cππ=++=++21442cos sin ,(0,2)n a a bnx nx x n n ππ∞=++-∈∑得211cos n nx n ∞==∑,(0,2)x π∈.而2(00)(20)6f f ππ+=-=,故由收敛定理得22211(00)(20)11cos062n n f f n n ππ∞∞==++-===∑∑.9设()f x 为[],ππ-上光滑函数,()()f f ππ-=.且,n n a b 为()f x 的傅里叶系数,,n n a b ''为()f x 的导函数()f x '的傅里叶系数.证明00,,(1,2,)n n n n a a nb b na n '''===-= .证:因为()f x 为[],ππ-上光滑函数,所以()f x '为[],ππ-上的连续函数,故可积.由系数公式得1()d a f x x πππ-''=⎰()1()()0f f πππ=--=.当1n ≥时,1()cos d na f x nx x πππ-''=⎰1()cos ()sin d |nnf x nx f x nx x nb ππππππ--'=+=⎰.故结论成立.10证明:若三角级数01(cos sin )2n n n a a nx b nx ∞=++∑中的系数,n n a b 满足关系{}33sup ,n n nn a n b M≤,M 为常数,则上述三角级数收敛,且其和函数具有连续的导函数.证:设0()2a u x =,()cos sin n n n u x a nx b nx =+,1,2,n =.则0n ∀≥,()n u x 在R 上连续,且0()0u x '=,()sin cos nn n u x na nx nb nx '=-+亦在R 上连续. 又x R ∀∈,()sin cos nn n u x n a nx n b nx '≤+ 22Mn ≤.而22Mn∑收敛,所以()()cos sin n n n u x nb nx na nx '=-∑∑在R 上一致收敛.故设01()(cos sin )2n n n a s x a nx b nx ∞==++∑,则且1()(cos sin )n n n s x na nx nb nx ∞='=-+∑在R 上连续.§15.2以2l 为周期的函数的展开一 基本内容一、以2l 为周期的函数的傅里叶级数 设()f x 是以2l 为周期的函数,作替换ltx π=,则()lt F t f π⎛⎫= ⎪⎝⎭是以2π为周期的函数,且()f x 在(, )l l -上可积()F t ⇔在(,)ππ-上可积.于是()01()cos sin 2n n n a F t a nt b nt ∞=++∑,其中 1()cos d ,n a F t nt t πππ-=⎰1()sin d n b F t nt tπππ-=⎰.令xt l π=得()()lt F t f f x π⎛⎫== ⎪⎝⎭,sin sin ,cos cos n x n xnt nt l l ππ==, 从而01()cos sin 2n n n a n x n x f x a b l l ππ∞=⎛⎫++ ⎪⎝⎭∑.其中1()cos ,l n l n x a f x dx l l π-=⎰ 1()sin l n l n xb f x dx l l π-=⎰.上式就是以2l 为周期的函数()f x 的傅里叶系数.在按段光滑的条件下,亦有01(0)(0)cos sin 22n n n a f x f x n x n x a b l l ππ∞=++-⎛⎫=++ ⎪⎝⎭∑. 其只含余弦项,故称为余弦级数. 同理,设()f x 是以2l 为周期的奇函数,则()cos f x nx 奇,()sin f x nx 偶.于是1()cos d 0l n l n xa f x x l l π-==⎰,012()sin d ()sin d l l n l n x n xb f x x f x x l l l l ππ-==⎰⎰. 从而01()2n n a f x a ∞=+∑由此可知,函数偶延拓() (0,()() (,0)f x x l f x f x x l ∈⎧=⎨-∈-⎩函数(),(0,)f x x l ∈要展 开为正弦级数必须作奇延拓. 奇延拓() (0,) ()() (,0)f x x l f x f x x l ∈⎧=⎨--∈-⎩.二 习题解答1求下列周期函数的傅里叶级数展开式 (1)()cos f x x =(周期π);解:()cos f x x =,22x ππ⎡⎤∈-⎢⎥由于(f ()f x 是偶函数,故其展开式为余弦级数.因2l π=,所以由系数公式得22002244cos d cos d a x x x x ππππππ-===⎰⎰.当1n ≥时,1(1)2(1)2(21)(21)n n n n ππ+-⋅-⋅=++-124(1)(41)n n π+=--. 222cos sin d 0n b x nx x πππ-==⎰.故121241()cos (1)cos241n n f x x nxn ππ∞+===+--∑,(,)x ∈-∞+∞为所求.(2)()[]f x x x =-(周期1);解:函数()[]f x x x =-,11,22x ⎡⎤∈-⎢⎥⎣⎦延拓后的函数如下图. 由于()f x 按段光滑,所以可展开为傅里叶级数.因12l =,所以由系数公式得()()111210022[]d 2[]d 2d 1a x x x x x x x x -=-=-==⎰⎰⎰.当1n ≥时,110011sin 2sin 2d 0|x n x n x x n n ππππ=-=⎰.110011cos2cos2d |x n x n x x n n ππππ-=+⎰1n π-=. 故1111()[]sin 22n f x x x n xn ππ∞==-=-∑,(,)x ∈-∞+∞为所求. (3)4()sin f x x =(周期π);2222解:函数4()sin f x x =,,22x ππ⎡⎤∈-⎢⎥⎣⎦延拓后的函数如下图. 由于()f x 按段光滑,所以可展开为傅里叶级数,又()f x 是偶函数,故其展开式为余弦级数.因2l π=,所以由系数公式得 204311cos 2cos 4d 828x x x ππ⎛⎫=-+ ⎪⎝⎭⎰34=.当1n ≥时,11201,2128n n n n ⎧-=⎪⎪=≠≠⎨⎪⎪=⎩. 222cos sin d 0n b x nx x πππ-==⎰.故4311()sin cos2cos4828f x x x x==-+,(,)x ∈-∞+∞为所求.(4)()sgn(cos )f x x =(周期2π).解:函数()sgn(cos )f x x =,(,)x ππ∈-延拓后的函数如下图.由于()f x 按段光滑,所以可展开为傅里叶级数,又()f x 是偶函数,故其展开式为余弦级数.因l π=,所以由系数公式得0012sgn(cos )d sgn(cos )d 0a x x x x πππππ-===⎰⎰.当1n ≥时,02sgn(cos )cos d n a x nx xππ=⎰4sin 2n n ππ=024(1)21(21)kn k n k k π=⎧⎪=⎨-=-⎪+⎩.2sgn(cos )sin d 0n b x nx x πππ-==⎰.故14cos(21)()sgn(cos )(1)21nn n xf x x n π∞=+==-+∑,(,)x ∈-∞+∞.2求函数 01() 1 123 23x x f x x x x ≤≤⎧⎪=<<⎨⎪-≤≤⎩的傅里叶级数并讨论其收敛性.解:函数()f x ,(0,3)x ∈延拓后的函数如下图.由于()f x 按段光滑,所以可展开为傅里叶级数,又()f x 是偶函数,故其展开式为余弦级数.因32l =,所以由系数公式得31230001222224()d d d (3)d 33333a f x x x x x x x ==++-=⎰⎰⎰⎰. 当1n ≥时, 2222323cos 3n n n πππ=-.2()sin d 0n b f x nx x πππ-==⎰.故2221231122()cos cos333n n n xf x n n πππ∞=-⎡⎤=++⎢⎥⎣⎦∑,(,)x ∈-∞+∞为所求. 3将函数()2f x xπ=-在[0,]π上展开成余弦级数.解:函数()2f x xπ=-,[0,]x π∈作偶延拓后的函数如下图.由于()f x 按段光滑,所以可展开为傅里叶级数,又()f x 是偶函数,故其展开式为余弦级数.由系数公式得20021d 0222a x x x x πππππ⎛⎫⎛⎫=-=-= ⎪ ⎪⎝⎭⎝⎭⎰.当1n ≥时,242102n k n n kπ⎧=-⎪=⎨⎪=⎩.0n b =.故2141()cos(21),[0,]2(21)n f x x n x x n πππ∞==-=-∈-∑.4将函数()cos2xf x =在[0,]π上展开成正弦级数.解:函数()cos2xf x =,[0,]x π∈作偶延拓后的函数如下图. 由于()f x 按段光滑,所以可展开为傅里叶级数,又()f x 是奇函数,故其展开式为正弦级数.由系数公式得0,0,1,2,n a n ==.28(41)nn π=-.故在[0, ]π上218()cos sin 241n x nf x nxn π∞===-∑为所求.5把函数102()324x x f x x x -<≤⎧=⎨-<<⎩ 在(0, 4)上展开成余弦级数.解:函数()f x ,(0,4)x ∈延拓后的函数如下图.由于()f x 按段光滑,所以可展开为傅里叶级数,又()f x 是偶函数,故其展开式为余弦级数.因4l =,所以由系数公式得4240002211()d (1)d (3)d 0422a f x x x x x x ==-+-=⎰⎰⎰.当1n ≥时,402()cos d 44n n xa f x x π=⎰所以102()324x x f x x x -<≤⎧=⎨-<<⎩22181(21)cos(21)2n n xn ππ∞=-=-∑为所求.6把函数()2()1f x x =-在(0, 1)上展开成余弦级数,并推出222116123π⎛⎫=+++⎪⎝⎭.解:函数()f x ,(0,1)x ∈延拓为以2为周期的函数如下图.由于()f x 按段光滑,所以可展开为傅里叶级数,又()f x 是偶函数,故其展开式为余弦级数.因l=0.5,所以由系数公式得11200022()d 2(1)d 3a f x x x x ==-=⎰⎰.当1n ≥时,1202(1)cos d n a x n x xπ=-⎰224n π=.0n b =.所以2221141(1)cos ,[0,1]3n x nx x n π∞=-=+∈∑.令0x =得22114113n n π∞==+∑,即22116n n π∞==∑. 7求下列函数的傅里叶级数展开式 (1)()arcsin(sin )f x x =;解:函数()arcsin(sin )f x x =是以2π为周期的函数如下图.由于()f x 按段光滑,所以可展开为傅里叶级数,又()f x 是奇函数,故其展开式为正弦级数.由系数公式得0,0,1,2,n a n ==.所以214(1)()arcsin(sin )sin(21)(21)nn f x x n x n π∞=-==--∑,x R ∈.(2)()arcsin(cos )f x x =.解:函数()arcsin(cos )f x x =是以2π为周期的函数如下图.由于()f x 是偶函数,故其展开式为余弦级数.002arcsin(cos )d 0a x x ππ==⎰,当1n ≥时,202421n k n k n π=⎧⎪=⎨=-⎪⎩.0,1,2,n b n ==.所以2141()arcsin(cos )cos(21)(21)n f x x n x n π∞===--∑,x R ∈. 8试问如何把定义在0,2π⎡⎤⎢⎥⎣⎦上的可积函数()f x 延拓到区间(),ππ-内,使他们的傅里叶级数为如下的形式(1)211cos(21)n n an x∞-=-∑;(2)211sin(21)n n bn x∞-=-∑.解:(1)先把()f x 延拓到[0,]π上,方法如下:()02()()2f x x f x f x x ππππ⎧≤≤⎪⎪=⎨⎪--<≤⎪⎩;再把()f x 延拓到[0,2]π上,方法如下:()0ˆ()(2)2f x x f x f x x ππππ⎧≤≤=⎨-<≤⎩.其图象如下.由于()f x 按段光滑,所以可展开为傅里叶级数,又()f x 是偶函数,故其展开式为余弦级数.由系数公式得002()d 0a f x x ππ==⎰,当1n ≥时,201()sin d 0n b f x nx x ππ==⎰.204()cos d 2102f x nx x n k n kππ⎧=-⎪=⎨⎪=⎩⎰. 所以211()cos(21)0,2n n f x a n x x π∞-=⎛⎫=-∈ ⎪⎝⎭∑. (2)先把()f x 延拓到[0,]π上,方法如下.()02()()2f x x f x f x x ππππ⎧≤≤⎪⎪=⎨⎪-<≤⎪⎩;再把()f x 延拓到[0,2]π上,方法如下.()0ˆ()(2)2f x x f x f x x ππππ⎧≤≤=⎨--<≤⎩.()f x 是偶函数,故其展开式为余弦级数.002()d 0a f x x ππ==⎰,当1n ≥时,201()cos d 0n a f x nx x ππ==⎰204()sin d 2102f x nx x n k n kππ⎧=-⎪=⎨⎪=⎩⎰. 所以211()sin(21)0,2n n f x b n x x π∞-=⎛⎫=-∈ ⎪⎝⎭∑. §15.3收敛定理的证明一 基本内容一、贝塞尔(Bessel)不等式定理1 设()f x 在[,]ππ-上可积,则()2222011()d 2n n n a a b f x x πππ∞-=++≤∑⎰,其中,n n a b 为()f x 的傅里叶系数.推论1设()f x 在[,]ππ-上可积,则lim ()cos d 0n f x nx x ππ-→∞=⎰, lim ()sin d 0n f x nx x ππ-→∞=⎰.推论2设()f x 在[,]ππ-上可积,则01lim ()sin d 02n f x n x x π→∞⎛⎫+= ⎪⎝⎭⎰,1lim ()sin d 02n f x n x x π-→∞⎛⎫+= ⎪⎝⎭⎰.定理2设以2π为周期的函数()f x 在[,]ππ-上可积,则1sin 12()d 2sin2n tf x t tt πππ-⎛⎫+ ⎪⎝⎭=+⎰,此称为()f x 的傅里叶级数的部分和的积分表达式.二、收敛性定理的证明定理3(收敛性定理) 设以2π为周期的函数()f x 在[,]ππ-上按段光滑,则(0)(0)lim ()022n n f x f x S x →∞-+⎡⎤+-=⎢⎥⎣⎦,定理4如果()f x 在[,]ππ-上有有限导数,或有有限的两个单侧导数,则()01(0)(0)cos sin 22n n n a f x f x a nx b nx ∞=++-=++∑.定理5如果()f x 在[,]ππ-按段单调,则()01(0)(0)cos sin 22n n n a f x f x a nx b nx ∞=++-=++∑.二 习题解答1设()f x 以2π为周期且具有二阶连续的导函数,证明()f x 的傅里叶级数在(,)-∞+∞上一致收敛于()f x .证:由题目设知()f x 与()f x '是以2π为周期的函数,且光滑,故 01()(cos sin )2n n n a f x a nx b nx ∞==++∑, 01()(cos sin )2nn n a f x a nx b nx ∞=''''=++∑,且1()d a f x x πππ-''=⎰()1()()0f f πππ=--=.当1n ≥时,1()cos d na f x nx x πππ-''=⎰1()cos ()sin d |nnf x nx f x nx x nb ππππππ--'=+=⎰.于是2222111122n nn n nn a b a b a b nn n n ''⎛⎫⎛⎫''+=+≤+++ ⎪ ⎪⎝⎭⎝⎭22211()2n n a b n ''=++.由贝塞尔不等式得221()nn n a b ∞=''+∑收敛,又211n n ∞=∑收敛,从而()012n n n a a b ∞=++∑收敛, 故01(cos sin )2n n n a a nx b nx ∞=++∑在(,)-∞+∞上一致收敛.2设f 为[],ππ-上可积函数,证明:若f 的傅里叶级数在[,]ππ-上一致收敛于f ,则成立贝塞尔(Parseval)等式()2 2220 11()d 2n n n a f x x a b πππ∞-==++∑⎰, 这里,n n a b 为f 的傅里叶系数.证:设()01cos sin 2mm n n n a S a nx b nx ==++∑,因为()f x 的傅里叶级数在[,]ππ-上一致收敛于()f x ,所以0,0N ε∀>∃>,,[,]()m m N x f x S ππε∍>∀∈-⇒-<“”.于是2(),()m m f x S f x S ε--<.而()2 2221()d 2mn n n a f x x a b ππππ-==--+∑⎰.所以m N >时,()222221()d 2mn n n a f x x a b ππππε-=--+<∑⎰,故()2222011()d 2n n n a a b f x x πππ∞-=++=∑⎰.3由于贝塞尔等式对于在[,]ππ-上满足收敛定理条件的函数也成立.请应用这个结果证明下列各式. (1)22118(21)n n π∞==-∑;(2)22116n n π∞==∑;(3)44190n π=∑. 解:(1) 取04()04x f x x ππππ⎧--<<⎪⎪=⎨⎪≤<⎪⎩,由§1习题3得1sin(21)(),(,0)(0,)21n n xf x x n ππ∞=-=∈--∑.由贝塞尔等式得22111d 16(21)n x n ππππ∞-==-∑⎰,即22118(21)n n π∞==-∑.(2) 取(),(,)f x x x ππ=∈-,由§1习题1(1)得11sin ()2(1),(,)n n nxf x x n ππ∞+==-∈-∑.由贝塞尔等式得21211(1)2d n n x x n πππ+∞-=⎛⎫-= ⎪⎝⎭∑⎰,故22116n n π∞==∑.(3) 取2(),[,]f x x x ππ=∈-,由§1习题1(2)得 2221cos 4(1),(,)3nn xx x n πππ∞==+-∈-∑.由贝塞尔等式得22242111(1)4d 23n n x x n ππππ∞-=⎛⎫⎛⎫-=+ ⎪ ⎪⎝⎭⎝⎭∑⎰, 故44190n π=∑. 4证明:若,f g 均为[,]ππ-上可积函数,且他们的傅里叶级数在[,]ππ-上分别一致收敛于f 和g ,则00 11()()d ()2n n n n n a f x g x x a b ππααβπ∞-==++∑⎰.其中,n n a b 为f 的傅里叶系数,,n n αβ为g 的傅里叶系数.证:由题设知01()(cos sin )2n n n a f x a nx b nx ∞==++∑,1()(cos sin )2n n n g x nx nx ααβ∞==++∑.于是 1()()d (),()f xg x x f x g x πππ-=⎰而001(),cos sin ,222n n n a f x a nx b nx αα∞==++∑ cos ,cos n n n n a nx nx a αα==, cos ,cos n n n n b nx nx b ββ==,所以 00 11()()d ()2n n n n n a f x g x x a b ππααβπ∞-==++∑⎰.5证明若f 及其导函数f '均在[,]ππ-上可积,()d 0f x x ππ-=⎰,()()f f ππ-=,且成立贝塞尔等式,则22()d ()d f x x f x xππππ--'≥⎰⎰.证:因为()f x 、()f x '在[],ππ-上可积,()d 0f x x ππ-=⎰,()()f f ππ-=,设01()(cos sin )2n n n a f x a nx b nx ∞==++∑, 01()(cos sin )2nn n a f x a nx b nx ∞=''''=++∑,由系数公式得1()d a f x x πππ-''=⎰()1()()0f f πππ=--=.当1n ≥时,1()cos d na f x nx x πππ-''=⎰1()cos ()sin d |nnf x nx f x nx x nb ππππππ--'=+=⎰.于是由贝塞尔等式得2()d f x xππ-=⎰.总练习题151试求三角多项式的傅里叶级数展开式.解:因为01()(cos sin )2nn k k k A T x A kx B kx ==++∑是以2π为周期的光滑函数,所以可展为傅里叶级数,由系数公式得001(),1(cos sin ),12nn k k k A a T x A kx B kx A ===++=∑,当1k ≥时,1(cos sin ),cos 02nkk k k A k n A A kx B kx kx k n =≤⎧=++=⎨>⎩∑,1(cos sin ),sin 02nkk k k B k n A A kx B kx kx k n =≤⎧=++=⎨>⎩∑,故在(,)-∞+∞,01()(cos sin )2nn k k k A T x A kx B kx ==++∑的傅里叶级数就是其本身.2设f 为[,]ππ-上可积函数,0,,(1,2,,)k k a a b k n =为f 的 傅里叶系数,试证明,当00,,(1,2,,)k k k k A a A a B b k n ====时, 积分[]2()()d n f x T x xππ--⎰取最小值,且最小值为[]22220 1()d ()2nk k k a f x x a b πππ-=⎡⎤-++⎢⎥⎣⎦∑⎰. 上述()n T x 是第1题中的三角多项式,0,,k k A A B 为它的傅里叶系数.证:设()01()cos sin 2n n n a f x a nx b nx ∞==++∑, 01()(cos sin )2nn k k k A T x A kx B kx ==++∑,且00,,(1,2,,)k k k k A a A a B b k n ====, 因为[]2()()d n f x T x xππ--⎰22 ()d 2()()d ()d n n f x x f x T x x T x xππππππ---=-+⎰⎰⎰,而()001()()d 2nn k k k k k A a f x T x x A a B b ππππ-==++∑⎰, () 22201()d 2nnk k k A T x x A B πππ-==++∑⎰,所以[]2()()d n f x T x xππ--⎰故当00,,(1,2,,)k k k k A a A a B b k n ====时, 积分[]2()()d n f x T x xππ--⎰取最小值,且最小值为[]22220 1()d ()2nk k k a f x x a b πππ-=⎡⎤-++⎢⎥⎣⎦∑⎰. 3设f 为以2π周期,且具有二阶连续可微的函数,11()sin d , ()sin d n nb f x nx x b f x nx xππππππ--''''==⎰⎰,若级数n b ''∑绝对收敛,则11122n n n b ∞∞==⎛⎫''+ ⎪⎝⎭∑.证:因为()f x 为以2π周期,且具有二阶连续可微的函数, 所以1()sin d n b f x nx x πππ-''''=⎰2 2 ()cos ()sin d nn n f x nxf x nx x n b ππππππ--=-+=⎰. 即211,n n n b b n ''∀≥=⋅,从而2111,2n n b n ⎛⎫''∀≥+ ⎪⎝⎭又n b ''∑绝对收敛,21n ∑收敛,所以n ∞=1122n n b ∞=⎛⎫''<+ ⎪⎝⎭∑.故结论成立.4设周期为2π的可积函数()x ϕ与()x ψ满足以下关系式(1)()()x x ϕψ-=;(2)()()x x ϕψ-=-.试问ϕ的傅里叶系数,n n a b 与ψ的傅里叶系数,n n αβ有什么关系?解:设()01()cos sin 2n n n a x a nx b nx ϕ∞==++∑,()1()cos sin 2n n n x nx nx αψαβ∞==++∑,(1)则当()()x x ϕψ-=时,0n ∀≥,n α=.1n ∀≥,n β=-.(2)当()()x x ϕψ-=-时,0n ∀≥,n α=-.1n ∀≥,n β=.5设定义在[,]a b 上的连续函数列{}()n x ϕ满足关系0 ()()d 1 bn m a n mx x x n m ϕϕ≠⎧=⎨=⎩⎰,对于在[,]a b 上的可积函数f ,定义()()d , 1,2,b n n a a f x x x n ϕ==⎰,证明21n n a ∞=∑收敛,且有不等式 22 1[()]d b n a n a f x x ∞=≤∑⎰.证:在[,]a b 上的所有可积函数构成的集合中定义内积为(),()()()d b a f x g x f x g x x =⎰,则函数列{}()n x ϕ为标准正交系.令1()(),1,2,m m n n n S x a x m ϕ===∑,则,(),()n n n a f x x ϕ∀=, 又 2 [()()]d bm a f x S x x -⎰22 ()d 2()()d ()d n n f x x f x S x x S x x ππππππ---=-+⎰⎰⎰,而11(),()(),()(),()m m n n n n n n n f x S x f x a x a f x x ϕϕ====∑∑ 21m nn a ==∑. 211(),()m mk k k k k k k a a x x a ϕϕ====∑∑,于是 222 1()d [()()]d 0m b n m an f x x a f x S x x ππ-=-=-≥∑⎰⎰, 所以22 11,[()]d m b n a n m a f x x =∀≥≤∑⎰,即{}()m S x 有上界. 故 21n n a∞=∑收敛,且 22 1[()]d b n a n a f x x∞=≤∑⎰.。

数学分析课件 傅里叶级数

数学分析课件  傅里叶级数
前页 后页 返回
证 由定理条件, 函数 f 在 [ , ] 上连续且可积. 对 (9)式逐项积分得

π
π
f ( x )dx
π π a0 π dx (an cos nxdx bn sin nxdx ). π π 2 π n 1
由关系式(6)知, 上式右边括号内的积分都等于零. 所以
f ( x t ) f ( x 0) lim f ( x 0), t 0 t f ( x t ) f ( x 0) lim f ( x 0), t 0 t
(13)
前页 后页 返回
(iii) 在补充定义 f 在[a , b]上那些至多有限个不存在 导数的点上的值后 ( 仍记为 f ), f 在[a, b]上可积.
n 1

从第十三章§1 习题4知道, 由级数(9)一致收敛,可 得级数(11)也一致收敛. 于是对级数(11)逐项求积, 有
前页 后页 返回

π
π
f ( x )cos kxdx π a0 π cos kxdx (an cos nx cos kxdx π 2 π n 1 bn sin nx cos kxdx ).
π
π
cos nxdx sin nxdx 0,
π
π
(6)
cos mx cos nx d x 0 ( m n ), ππ (7) ππ sin mx sin nxdx 0 (m n), π cos mx sin nxdx 0 . 而(5)中任何一个函数的平方在 [-π, π] 上的积分都
所以
A0 An sin( nx n )
n 1
A0 ( An sin n cos nx An cos n sin nx ).

傅里叶级数的性质及其在信号处理中的应用

傅里叶级数的性质及其在信号处理中的应用

傅里叶级数的性质及其在信号处理中的应用1. 傅里叶级数的概念和基本性质傅里叶级数是指任意周期函数可以表示为一组正弦和余弦函数的无穷级数。

其基本性质包括:(1) 周期性:傅里叶级数适用于周期函数,具有相同周期的函数可以进行傅里叶级数分解。

(2) 奇偶对称性:若函数f(t)是周期为T的偶函数,那么其傅里叶级数中只包含余弦项;若函数f(t)是周期为T的奇函数,则其傅里叶级数中只包含正弦项。

(3) 线性叠加性:两个函数的傅里叶级数之和等于它们分别的傅里叶级数之和。

(4) 傅里叶级数解析式:傅里叶级数的解析式可以通过计算求得,其中包含一系列系数,称为傅里叶系数。

2. 傅里叶级数的应用(1) 信号分析:傅里叶级数可以将一个周期信号分解为一系列正弦和余弦函数的叠加,从而揭示了信号的频谱特性。

通过傅里叶级数的分析,我们可以得到信号的幅度谱、相位谱等信息,进而进行频域滤波、频率分析、谱估计等处理。

(2) 信号合成:傅里叶级数可以将一组频域上的若干分量信号合成为一个周期性信号。

这对于合成音频信号、图像信号、视频信号等具有重要意义,可以实现信号的压缩和还原。

(3) 信号滤波:傅里叶级数允许我们将信号在频域上进行滤波处理,通过消除或削弱特定频率成分,实现降噪、去除干扰和信号增强等目的。

傅里叶滤波器在音频处理、图像处理、通信系统等领域得到广泛应用。

(4) 信号压缩:通过傅里叶级数的分析,我们可以得到信号的频域表示,进而根据频域系数的大小选择保留重要的频率成分,舍弃次要的频率成分,从而实现信号的压缩。

傅里叶级数压缩在图像和音频压缩领域有广泛的应用。

(5) 信号重构:傅里叶级数的逆变换可以将信号从频域重构到时域,从而实现信号的还原。

通过选择适当的傅里叶系数,可以恢复出原始信号,实现信号的解压缩或恢复。

(6) 信号处理算法:傅里叶级数为很多信号处理算法提供了基础。

例如,快速傅里叶变换(FFT)是一种高效计算傅里叶级数的方法,广泛应用于信号处理、图像处理、语音识别等领域。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

级数,

f ( x) a0 2
(ak cos kx bk sin kx),
k 1
问题1: 系数 ak , bk为多少?
(1) 求a0 .
f
( x)dx
a0 2
dx
[
(ak
k 1
cos kx
bk
sin kx)]dx
a0 dx 2
ak cos kxdx k 1
bk sin kxdx k 1
a0 2, 2
a0
1
f ( x)dx
(2) 求an .
f
( x)cos nxdx
a0 2
cos nxdx
[ak
cos
kx
cos
nxdx
bk
sin
kx
cos
nxdx
]
k 1
an cos2 nxdx
an,
an
1
f ( x)cos nxdx
(n 1,2,3,)
(3) 求bn .
f ( x)sin nxdx a0
现实世界中的周期现象 是多种多样的和复杂的 . 例如,在电子技术中常用
到的周期为 2 的矩形波,就是这样一个周期现象 .
早在18世纪中叶,丹尼尔.伯努利在解决弦振动 问题时就提出了这样的见解 : 任何复杂的振动 都可以分解成一系列谐振动之和 .
非正弦周期函数:矩形波
u( t )
1,
1,
当 t 0 当0 t
在区间[ , ]上正交,
三角函数系的正交性 所谓三角函数系
1,cos x,sin x,cos 2x,sin 2x,,cos nx,sin nx, (2)
在区间[ , ]上正交, 是指(2)中任何两个不同函数
的乘积在该区间上的积分等于零, 即
(1)
cos nxdx 0,
(n 1,2,3,)
(2)
t x,

f
(t)
a0 2
n1
(an
cos
nx
bn
sin
三角函数
nx)
十九世纪初,法国数学家傅里叶曾大胆地断言 : “任意”函数都可以展成三角级数.虽然他没有 给出明确的条件和严格的证明,但是毕竟由此 开创了“傅里叶分析”这一重要的数学分支,拓 广了传统的函数概念 . 傅里叶的工作被认为是 十九世纪科学迈出的极为重要的第一个大步, 它对数学的发展产生的影响是他本人及同时代 的其他人都难以预料的 . 而且,这种影响至今 还在发展之中 . 这里所介绍的知识主要是由
任何周期为T( 2 ) 的函数 f (t ), 都可用一系列
以 T 为周期的正弦函数所组成的级数来表示,
f (t) A0 An sin(nt n ) 谐波分析
n1
A0 ( An sin n cos nt An cos n sin nt)
n1

a0 2
A0 ,
an An sin n , bn An cos n ,
但是在三角函数系中两个相同的函数的乘积在 上的积分不等于 0 . 且有
1 1dx 2
cos2 n x dx
sin2 nx dx
cos2 nx 1 cos 2nx , sin2 nx 1 cos 2nx
2
2
二、函数展开成傅里叶级数
1.傅里叶系数
设 f ( x) 是周期为 2 的周期函数, 且能展开成三角
sin nxdx
2
[ak
cos
kx
sin
nxdx
bk
sin
kx
sin
nxdx]
k 1
bn
sin2 nxdx
bn,
bn
1
f ( x) sin nxdx
(n 1,2,3,)
函数 f(x) 的傅里叶系数
an
1
f ( x)cosnxdx,
(n 0,1,2,)
bn
1
f ( x)sin nxdx,
这里所介绍的知识主要是由傅里叶以及与他 同时代的德国数学家狄利克雷等人的研究成 果.
一、三角级数与三角函数系
a0
2
(an
n1
cos nx
bn
sin nx)
(1)
称上述形式的函数项级数为三角级数.
组成三角级数的三角函数系
1,cos x,sin x,cos2x,sin2x, ,cosnx,sin nx,
u
1
o
t
1
不同频率正弦波逐个叠加
4 sin t, 4 1 sin 3t, 4 1 sin 5t, 4 1 sin 7t,
3
5
7
u 4 sin t
u 4 (sin t 1 sin 3t)
3
u 4 (sin t 1 sin 3t 1 sin 5t)
3
5
u 4 (sin t 1 sin 3t 1 sin 5t 1 sin 7t)
sin nxdx 0,
(n 1,2,3,)
(3) sin mx sin nxdx 0, m n,
(m,n 1,2,3,)
(4)
cos mx cos nxdx 0,
m n,
(m,n 1,2,3,)
(5)
sin mx cos nxdx 0,
(m,n 1,2,3,)
以上等式2 为周期的函数
展开成傅里叶级数.
u(t)
1,
1,
t 0 0t
u

a
n
1
u(t)cos ntdt
o
1
t
1
0
(1)cos
ntdt
1
1 cos ntdt
0
0 (n 0, 1, 2, ),
bn
1
u(t)sin ntdt
3
5
7
u 4 (sin t 1 sin 3t 1 sin 5t 1 sin 7t 1 sin 9t)
3
5
7
9
u(t) 4 (sin t 1 sin 3t 1 sin 5t 1 sin 7t )
3
5
( 7 t , t 0 )
这一事实用数学语言来描述即为 : 在一定的条件下,
(n 1,2,)
函数 f(x) 的傅里叶级数
a0 2
(an
n1
cos nx
bn
sin
nx)
问题2:
f
(x)
条件?
a0 2
(an
n1
cos nx
bn
sin nx)
2.狄利克雷(Dirichlet)充分条件(收敛定理)
设 f ( x)是以2为周期的周期函数.如果它满足条件: 在一个周期内连续或只有有限个第一类间断点,并且 至多只有有限个极值点,则 f ( x) 的傅里叶级数收敛, 并且
(1) 当x 是 f ( x)的连续点时,级数收敛于 f ( x) ;
(2)当x 是 f ( x)的间断点时,收敛于 f ( x 0) f ( x 0) ; 2
(3) 当x 为端点x 时,收敛于 f ( 0) f ( 0) .
2
注意: 函数展开成傅里叶级数的条件比展开成 幂级数的条件低的多.
相关文档
最新文档