自行车里的数学 教案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
[教学目标]:
知识与技能:巩固比例知识,了解普通自行车的速度与其内在结构的关系;变速自行车的能变化出多少种速度。
过程与方法:经历“提出问题—分析问题—建立数学模型—求解—解释与应用”的解决问题的基本过程,获得运用数学解决实际问题的思考方法。
情感态度与价值观:加深学生对所学知识及其相互关系的理解。培养学生学以致用,做事认真,用数学眼光透视周围事物,增强数学意识。引导学生理解变速自行车能变速的原理。
教学重难点
1、引导学生理解自行车能蹬一圈的距离。
2、运用所学知识解决实际问题。
[教学过程]:
一、揭示课题
1、说一说你了解到的有关这两种自行车(普通自行车和变速自行车)的知识。
2、自行车里会有数学问题吗?想一想。
二、研究普通自行车的速度与内在结构的关系
1、提出问题:两种自行车,各蹬一圈。能走多远?引出学生对自行车里的数学的研究。
2、分析问题
(1)学生讨论如何解决问题。
方案一:直接测量,但是误差较大。
方案二:根据车轮的周长乘以后车轮转的圈数,来计算蹬一圈车子走的距离。
(2)讨论:前齿轮转一圈,后齿轮转几圈?
前齿轮转的圈数×前齿轮的齿数=后齿轮转的圈数×后齿轮的齿数
建立数学模型,收集数据并求解。
(1)蹬一圈车子走的距离=车轮的周长×(前齿轮的齿数:后齿轮的齿数)
(2)分组收集所需要的数据,带入上述模式,求出答案。
4、汇报结果。各小组展示并解释本组的研究过程和结果,在比较结果。
三、研究变速自行车能组合出多少种速度?
1、提出问题:变速自行车能组合出多少种速度?
(1)了解变速自行车的结构。(有2个前齿轮,6个后齿轮。)(2)根据这个结构,可以组合出多少种速度?
2、分析问题,求解,汇报。
3、蹬同样的圈数,哪种组合使自行车走得最远?
四、学以致用
1、一辆自行车的车轮直径是0.7米,前齿轮有48个齿,后齿
轮有16个齿,蹬一圈自行车前进多少米?
2、一辆变速自行车有2个前齿轮,分别有46和38个齿,有
4个后齿轮,分别有20、16、14、12个齿,车轮直径66cm。小明从家到学校有一段平路和不是很陡的上坡路。平路1000米,上坡800米,小明如何使用变速车比较合理?小明骑车走这段平路至少蹬多少圈?
五、课堂小结
自行车里的学问可真大,你还能提出一些数学问题并解决吗?
[自行车里的数学]
1、踏板蹬一圈,是不是车轮也走一圈?
2、踏板蹬一圈,所走的路程与什么有关?
最佳答案
踏板蹬一圈,是不是车轮也走一圈?
不是,因为踏板所带动的大轮与自行车后轮上的飞轮大小是不同的,所以当踏板转一圈时,后轮要轮上5-6圈.
踏板蹬一圈,所走的路程与什么有关?
与自行车的轮胎直径有关,就是我们说的20、24、26、28寸
课后反思:
数学源于生活,寓于生活,用于生活。在小学数学教学中,根据小学生的认知特点,将数学知识与学生的生活实际紧密结合,那么,在他们的眼里,数学将是一门看得见、摸得着、用得上的学科,不再是枯燥乏味的数字游戏。这样,学生学起来自然感到亲切、真实,这也有利于培养学生用数学眼光来观察周围事物的兴趣、态度和意识。对于学生更好地认识数学,学好数学,培养能力,发展智力,促进综合素质的发展,具有重要的意义。
本课时以“骑自行车和步行比较,骑自行车为什么快些?”这个问题作为切入点,学生从讨论中非常顺利、非常迅速地进入本课时重点内容的研究。为了突破难点,师生围绕“蹬一圈前齿轮,后齿轮转几圈?”这一关键问题展开研究与讨论,同时,我又变化后齿轮的齿数,让学生计算思辨,学生较好掌握了这一重点内容,突破了难点。我并不满足这些,于是又提出挑战性的问题:“同一链条带动下齿数和转数有怎样的关系?”让学生判断它们的比例关系,从而使学生对自行车的认识从感性上升到理性。
《自行车里的数学》说课稿
一、说教材
综合应用“自行车里的数学”是在第三单元“比例”之后安排的。旨在让学生运用所学的圆、排列组合、比例等知识解决生活中的实际问题。根据教材特点和学生的年龄、知识特点,我确定了本节课的教学目标:
1、运用所学的圆、比例等知识解决问题;了解普通自行车和变速自行车的速度与其内在结构的关系,知道变速自行车能变化出多少种速度。
2、通过解决生活中常见的有关自行车的问题,培养学生解决实际问题的能力
3、经历解决问题的基本过程,了解数学与生活的密切关系。
二、说教法
通过解决生活中常见的有关自行车里的问题,了解数学与生活的广泛联系,经历“提出问题—分析问题—建立数学模型—求解—解释与应用”的解决问题的基本过程,获得运用数学解决实际问题的思考方法,并加深对所学知识及其相互关系的理解。
三、说学法
根据本节课的内容特点,我将让学生通过以下学习方法进行探讨学习:
小组合作、讨论研究、提出问题、分析问题、建立数学模型并求解、汇报交流等。
四、说教学过程
本节课是一节数学活动课,主要研究两个问题:
①普通自行车的速度与其内在结构的关系;
②变速自行车能变化出多少种速度。
(一)研究普通自行车的速度与内在结构的关系
这一部分由以下4个环节组成。
1.提出问题。教材通过呈现学生的熟悉两种不同型号自行车的图片,直接提问“蹬一圈,能走多远”,引出学生对自行车里的数学问题的研究。
2.分析问题。教材分两步呈现。首先,呈现了学生探讨如何解决问题的场面,提出了两种方案。一、通过直接测量来解决问题,但误差较大。二、通过车轮的周长乘上后齿轮转的圈数来计算蹬一圈车子走的距离。接下来,呈现了学生探讨如何解决第二个方案中的关键问题“前齿轮转一圈,后齿轮转几圈”的过程。学生想到如果只凭观察是数不清的,要通过更精确的方法找出答案。学生根据“链条间的孔与前后两个齿轮的每个齿对应,前齿轮转过一个齿,后齿轮也一定转过一个齿”,判断出:前齿轮转的圈数×前齿轮的齿数=后齿轮转的圈数×后齿轮的齿数,解决了这个关键问题,从而理清了解决问题的思路。
3.建立数学模型、收集数据并求解。首先,学生根据分析问题得到解题思路,建立数学模型: