hamilton原理
哈密顿原理
(二)哈密顿原理
质点系的运动是一个客观存在的事 实,力学的任务是对运动作出正确的描 述。矢量力学的理论是指出一切真实运 动所应服从的规律,并以此为依据,去 论断各个具体运动的特征。可是分析力 学并不这样。分析力学研究约束所允许 的一切可能运动,设法在可能运动所构 成的集合中把真实运动挑选出来。由此 可见,分析力学与矢量力学在思想方法
4. 变分运算的几个法则 A B A B
AB A B B A
A B A A B 2 B B d dA A dx dx
Adx
x1
x2
x2
x1
A dx
A
x
B
z
设质点在某一瞬时速度为v,则滑过ds路程的时间
dt=ds/v
没有摩擦,保守力场机械能守恒
v 2gz
曲线方程
(坐标为z时的质点速度)
z=z(x),
而曲线的元弧长:
2
ds
dz 1 dx dx
ds dt v
1 z dx , 2 gz
'2
T
xB
(一)变分法简介
变分法是研究泛函极值的一 种数学理论,它是由力学中最 速落径问题的诱导而发展起来 的。由伊凡· 贝努力提出来的最 速落径问题是这样一个问题.
1. 最速落径问题
不考虑摩擦力和空气阻力,在连 接不在同一铅直线上的任意两定点A 和B(B低于A)的所有曲线中,无 初速的质 点在重力作用下沿哪一条 曲线轨道从A滑到B所需时间最短? 显然,下滑时间与曲线形状有 关。
欧勒方程
如果 f 不显含自变量 x , 则欧勒方程有初积分 : f f - y' 常数. y '
hamilton 函数
hamilton 函数一、概述Hamilton 函数是指在一个无向图中,每个节点都恰好与其他节点相邻一次的欧拉回路。
它是由爱尔兰数学家 William Rowan Hamilton 在1857 年提出的。
二、算法原理1. 基本思路Hamilton 函数可以使用深度优先搜索或广度优先搜索来求解。
其基本思路如下:- 从任意一个节点开始,遍历所有与该节点相邻的未访问过的节点;- 如果所有相邻节点都已经访问过,则将当前节点标记为已访问,并返回上一个未访问过的节点;- 如果存在未访问过的相邻节点,则选择其中一个作为下一个要访问的节点,并递归进行以上步骤。
2. 算法流程具体实现时,可以按照以下流程进行:- 初始化:从任意一个起始点开始,将该点标记为已访问,并将其入栈;- 循环直到栈为空:取出栈顶元素作为当前节点;- 遍历当前节点所有未被标记的相邻节点,选择其中一个作为下一个要访问的节点,并将其标记为已访问并入栈;- 如果不存在未被标记的相邻节点,则将当前节点出栈。
3. 算法复杂度Hamilton 函数算法时间复杂度为 O(n!),空间复杂度为 O(n)。
三、代码实现下面是一个使用深度优先搜索实现 Hamilton 函数的 Python 代码:```pythondef hamilton(G):n = len(G)visited = [False] * nstack = []def dfs(node):nonlocal visited, stackvisited[node] = Truestack.append(node)if len(stack) == n:return Truefor neighbor in G[node]: if not visited[neighbor]: if dfs(neighbor):return Truevisited[node] = Falsestack.pop()return Falsefor i in range(n):if dfs(i):return stackreturn None```四、应用场景Hamilton 函数在实际生活中有很多应用场景,例如:- 旅行商问题:在给定一组城市和每对城市之间的距离时,求解访问所有城市恰好一次的最短路径;- DNA测序:在给定一组DNA片段及其相互之间的匹配关系时,求解将所有DNA片段拼接起来的顺序;- 电路布线:在给定一组电路元件及其相互之间的连通关系时,求解将所有元件连接起来的方案。
hamilton’s原理
hamilton’s原理Hamilton's Principle(哈密尔顿原理)哈密尔顿原理是固体力学和流体力学中的一种经典原理,它是由物理学家威廉·哈密尔顿于1834年提出的。
这一原理在分析力学和物理学研究中具有重要的地位和应用价值。
哈密尔顿原理描述了一个力学系统的运动轨迹可以通过最小化一个称为“作用量”的量来确定。
作用量是一个描述系统运动的物理量,它由系统的拉格朗日函数和时间间隔构成。
在哈密尔顿原理中,我们通过比较不同可能的运动路径的作用量来确定系统的真实运动轨迹。
哈密尔顿原理的核心思想是,对于一个力学系统,在给定初始和末态的情况下,真实的运动路径是使作用量取极值的路径。
具体来说,对于一个固定时间间隔的运动问题,哈密尔顿原理可以表述为:物理系统的真实运动轨迹是使作用量取极值的路径。
这个路径可以通过对系统的拉格朗日函数进行变分得到。
在哈密尔顿原理中,拉格朗日函数起着关键的作用。
拉格朗日函数是一个描述系统运动的函数,它由系统的动能和势能构成。
动能描述了系统的运动状态,势能描述了系统的相互作用。
通过对拉格朗日函数进行变分,我们可以得到系统的运动方程,进而确定系统的真实运动轨迹。
哈密尔顿原理的应用范围广泛,涉及力学、物理学和工程学等多个领域。
在力学中,哈密尔顿原理可以用来推导运动方程和确定系统的平衡态。
在物理学中,哈密尔顿原理可以用来研究量子力学和统计力学问题。
在工程学中,哈密尔顿原理可以用来分析和设计复杂的力学系统。
哈密尔顿原理的重要性不仅在于它提供了一种处理力学问题的方法,更在于它揭示了自然界的一种基本原理。
通过最小化作用量,哈密尔顿原理能够描述系统的真实运动轨迹,从而揭示了自然界中的运动规律和物理定律。
哈密尔顿原理是固体力学和流体力学中的一种经典原理,它描述了一个力学系统的运动轨迹可以通过最小化作用量来确定。
哈密尔顿原理在物理学和工程学中具有广泛的应用价值,它不仅为力学问题的求解提供了一种方法,更揭示了自然界中的运动规律和物理定律。
哈密顿方程的推导
哈密顿方程的推导1. 引言哈密顿方程是经典力学中一种非常重要的数学工具,它描述了系统的动力学行为。
它由爱尔兰物理学家威廉·哈密顿(William Hamilton)于19世纪提出,并被广泛应用于多个领域,如天体力学、量子力学和统计力学等。
本文将详细介绍哈密顿方程的推导过程。
2. 哈密顿原理哈密顿原理是推导哈密顿方程的基础。
它是经典力学中的一个重要原理,表述如下:对于一个力学系统,其运动路径是使作用量(action)取极值的路径。
作用量定义为:t2(q,q̇,t)dtS=∫Lt1其中,L是拉格朗日函数,q是广义坐标,q̇是广义速度,t是时间。
哈密顿原理的关键在于要找到作用量取极值的路径。
3. 哈密顿函数的定义为了推导哈密顿方程,首先需要定义哈密顿函数。
哈密顿函数H定义为:nH=∑p iq i−Li=1其中,p i是广义动量。
哈密顿函数是系统能量的一种表达形式,它由广义坐标、广义动量和拉格朗日函数确定。
4. 哈密顿方程的推导为了推导哈密顿方程,我们需要通过求变分的方法来优化作用量。
首先,我们对作用量进行变分:t2δS=∫δL(q,q̇,t)dtt1将拉格朗日函数表示为广义坐标、广义动量和时间的函数,即L(q,q̇,t)=L(q,p,t),其中p是广义动量。
代入上式,得到:δS=∫(∂L∂qδq+∂L∂pδp)t2t1dt根据变分法的基本原理,我们知道δq和δp是相互独立的,因此上式中的积分项等于零。
于是,我们得到以下两个方程:∂L ∂q −ddt(∂L∂q̇)=0∂L ∂p −ddt(∂L∂ṗ)=0根据拉格朗日函数的定义,我们有∂L∂q̇=p和∂L∂ṗ=q̇。
代入上述方程,得到:∂L ∂q −ddtp=0∂L ∂p −ddtq̇=0进一步整理上述方程,可以得到哈密顿方程的形式:q̇=∂H ∂pṗ=−∂H ∂q这就是哈密顿方程的推导过程。
5. 哈密顿方程的物理意义哈密顿方程的推导过程中,我们引入了哈密顿函数H,它是系统的能量表达式。
hamilton原理
hamilton原理《Hamilton原理》是一个既简单又重要的定理,它对某些类型的物理系统有着重要的意义。
它由英国物理学家William Rowan Hamilton在1834年提出,是牛顿力学系统中一个重要的定理。
它通过一种叫做“动量和能量”的统一张量来描述动力学系统中的总体结构。
Hamilton原理是一个精确的理论,它提供了一种解决问题的方法,而不是一种抽象的描述。
Hamilton原理是一种描述系统动力学的假设,指出物体在坐标系中的行为是满足某种动量守恒定律的。
一般来说,这种定律表明:在某一时刻,物体的动量(动量矢量)总是保持不变,自由系统中的力与动量总是成正比。
动量定律表明,物体在坐标系中运动时,它们的全部运动只能由力和动量所决定,并且不应该有任何其它力量的发挥作用。
Hamilton原理还提供了一种从物理系统的能量到力的理解的桥梁。
通过它,我们可以用物理系统的能量来解释系统中的力,而不用去考虑力的来源。
它使我们能够简单地从能量对物体行为和动力学系统的性质做出准确的推断。
Hamilton原理在物理学和数学领域都有着广泛的应用,它已经成为一种重要的定理。
它可以用来描述物理系统的绝对性质,以及描述它们的运动规律。
Hamilton原理进一步定义了力学原理中的概念,如动量和能量。
它还被用来解释许多物理现象,如电磁场、轨道动力学、量子力学等。
Hamilton原理的最重要的作用是它可以用来描述物体在一维力学系统中的行为,同时也可以用来模拟复杂的多体系统。
比如,它可以用来描述空气动力学中飞机滑翔时的运动,以及电磁学中电磁场的性质和电磁波传播的特性。
它还可以用来模拟弹性力学系统中的结构性与弹性的运动,以及量子力学中的原子的行为。
Hamilton原理的重要性无可置疑,它是物理学、力学和数学研究中的一个重要的定理。
它被广泛应用于许多物理实验中,并且作为连续力学系统研究的基础理论。
它可以提供准确的预测,从而为人类技术的发展提供可靠的基础。
5哈密顿原理范文
5哈密顿原理范文哈密顿原理(Hamilton's principle)是类似于欧拉-拉格朗日方程的一个变分原理,它被广泛应用于经典力学和理论物理的研究中。
哈密顿原理是由威廉·哈密顿在19世纪提出的,他认为物理系统的运动路径可以通过使作用量取极值来描述。
为了理解哈密顿原理,我们首先需要明确什么是作用量(action)。
作用量是描述一个物理系统在一段时间内的整体运动的量,它是路径积分的泛函。
在经典力学中,作用量的形式为:S = ∫L(q, q', t) dt其中,S是作用量,L是拉格朗日量,q是广义坐标,q’是广义坐标的导数,t是时间。
拉格朗日量L是描述系统的动力学性质的函数,它是广义坐标和它们的导数的函数。
根据哈密顿原理,路径使作用量取极值的物理系统的运动路径满足以下条件:∂S/∂q=0和∂S/∂t=0这两个条件分别称为广义力学方程和广义运动方程。
从广义力学方程可以得到欧拉-拉格朗日方程:d/dt(∂L/∂q') - ∂L/∂q = 0这是描述系统运动的方程,通过这个方程可以推导得到系统的运动轨迹。
从广义运动方程可以得到哈密顿正则方程:dq/dt = (∂H/∂p)dp/dt = - (∂H/∂q)其中,q和p分别是广义坐标和它们的共轭动量,H是哈密顿量,它是拉格朗日量L通过勒让德变换得到的。
哈密顿正则方程是描述系统运动的另一种形式,它将系统的动力学性质转化为了广义坐标和动量的方程。
哈密顿原理的意义在于它提供了一种处理动力学问题的方法,通过求解作用量取极值问题,我们可以得到系统的运动轨迹。
而哈密顿原理的导出过程则要借助于变分法和勒让德变换等数学工具。
哈密顿原理的应用非常广泛,不仅可以用于经典力学中的运动方程的推导,还可以用于理论物理的研究中。
例如,在量子力学中,路径积分形式的作用量可以用来计算系统的波函数,从而描述了系统的行为。
总而言之,哈密顿原理是描述物理系统运动的一个重要原理,它通过使作用量取极值来确定系统的运动路径。
哈密顿原理
哈密顿原理哈密顿原理是经典力学中一种非常重要的原理,它由爱尔兰数学家威廉·哈密顿在19世纪提出,被广泛应用于物理学和工程学的各个领域。
哈密顿原理描述了一个系统的运动方程,它可以通过变分原理来推导出系统的运动方程,是经典力学中最重要的原理之一。
在哈密顿原理中,我们首先需要引入拉格朗日函数。
拉格朗日函数是描述系统动力学行为的一个函数,它通常由系统的动能和势能构成。
然后,我们定义哈密顿量,它是系统的总能量函数,可以用拉格朗日函数通过勒让德变换得到。
接下来,我们引入广义坐标和广义动量,它们是描述系统运动状态的变量。
通过对拉格朗日函数进行变分,我们可以得到哈密顿原理的表达式。
哈密顿原理的本质是要使系统的作用量取极值。
作用量是描述系统在一段时间内的积累效应,它是系统运动的一个重要量。
根据变分原理,我们要使系统的作用量对于任意的变分都取极值,从而得到系统的运动方程。
这就是哈密顿原理的核心思想。
哈密顿原理在物理学中有着广泛的应用。
在经典力学中,我们可以用哈密顿原理来推导出系统的运动方程,比如著名的哈密顿正则方程。
在量子力学中,哈密顿原理也有着重要的地位,它可以用来描述量子系统的演化。
此外,在光学、流体力学、电磁学等领域,哈密顿原理也都有着重要的应用。
除了在物理学中的应用,哈密顿原理在工程学中也有着重要的地位。
在控制理论中,我们可以用哈密顿原理来设计系统的最优控制律,从而实现系统的最优控制。
在航天航空领域,哈密顿原理也可以用来分析飞行器的轨迹和姿态控制。
总之,哈密顿原理作为经典力学中的重要原理,不仅在物理学中有着广泛的应用,而且在工程学中也有着重要的地位。
它通过变分原理描述了系统的运动方程,是经典力学中不可或缺的一部分。
通过深入学习和理解哈密顿原理,我们可以更好地理解物理学和工程学中的许多现象,为实际问题的分析和解决提供重要的理论基础。
哈密尔顿原理
哈密尔顿原理哈密尔顿原理,又称为作用量原理,是经典力学中的一个基本原理,它描述了物理系统的运动方程。
这一原理由爱尔兰数学家威廉·哈密尔顿于1834年提出,是经典力学的重要基础之一。
在经典力学中,物体的运动可以用拉格朗日函数来描述。
而哈密尔顿原理则是基于这一拉格朗日函数而建立的。
它的核心思想是,一个物理系统的运动轨迹,可以通过使作用量(action)取极值来确定。
作用量是一个在时间上积分的量,它是拉格朗日函数在某一时间段内的积分,描述了系统在这段时间内的整体运动情况。
具体来说,假设一个物体在时间t1时刻位于点A,在时间t2时刻位于点B。
根据哈密尔顿原理,物体的真实轨迹是使作用量取极值的轨迹。
也就是说,这个物体在这段时间内所经历的真实轨迹,是使作用量在所有可能的轨迹中取极值的那条轨迹。
哈密尔顿原理的提出,为经典力学提供了一种全新的描述物体运动的方法。
它不仅可以用来推导出牛顿力学中的运动方程,还可以推广到更为复杂的系统中,如相对论力学和量子力学中。
因此,哈密尔顿原理对于理解物理世界的运动规律具有重要意义。
在实际应用中,哈密尔顿原理也被广泛应用于各种物理问题的求解中。
例如,在天体力学中,可以利用哈密尔顿原理来研究行星的运动轨迹;在固体物理学中,可以利用哈密尔顿原理来研究晶格振动的性质;在量子力学中,哈密尔顿原理也被用来描述微观粒子的运动状态。
总之,哈密尔顿原理是经典力学中的重要原理,它描述了物理系统的运动轨迹是使作用量取极值的轨迹。
通过这一原理,我们可以更深入地理解物体的运动规律,推导出系统的运动方程,并在实际应用中得到广泛的应用。
第18章_哈密顿原理
第18章_哈密顿原理哈密顿原理是力学中的一个重要原理,它是由物理学家威廉·哈密顿(William Hamilton)于19世纪提出的。
这一原理在动力学、量子力学和泛函分析等领域中都有广泛的应用。
哈密顿原理是一种优美而重要的方法,用于描述力学系统的运动。
它是以最小作用量原理为基础的,即物理系统在可行的轨迹中,其作用量的变分为零。
作用量是指系统在一段时间内受到的力的总和。
因此,哈密顿原理可以用数学的形式表示为:在给定初态和末态下,作用量的变分为零。
具体而言,哈密顿原理可以分为两个步骤:第二步是利用变分法来求解哈密顿原理。
通过对作用量进行变分,我们可以得到运动方程以及相应的边界条件。
具体而言,我们对作用量进行变分,得到一组关于位置和动量的偏导数等于零的方程。
这些方程被称为哈密顿方程,它们描述了系统随时间演化的规律。
哈密顿原理的优势在于,它可以将系统的动力学问题转化为一个几何问题,可以简化动力学问题的求解过程。
此外,哈密顿原理还可以解决具有多个约束条件的力学系统。
在这种情况下,我们可以使用拉格朗日乘子来处理约束条件,从而得到正确的运动方程。
除了力学系统,哈密顿原理还可以应用于其他物理学领域。
例如,在量子力学中,哈密顿原理可以用于导出薛定谔方程,这是描述量子力学系统演化的方程。
在泛函分析中,哈密顿原理还可以用于最优控制问题的求解。
总之,哈密顿原理是力学中的一个重要原理,它提供了一种简洁而优雅的方法来描述和求解力学系统的运动。
它不仅可以应用于力学系统,还可以应用于量子力学和泛函分析等领域。
通过哈密顿原理,可以将系统的动力学问题转化为一个几何问题,简化动力学问题的求解过程。
哈密顿原理
Ldt
t1
——主函数或作用函数或作用量。
L T V
——拉格朗日函数。
表明:对一个受理想、完整约束的力学体系,在保守 力的作用下从一个位形移动到另一个位形,对于在相 同时间内发生的一切可能运动中,只有沿 t1 到 t 2 的 轨道运动的作用函数 S 具有极值。即对真实运动来说, 作用函数的变分为零。
为等时变分。如: (
dx dt
)
d dt
。 ( x )
2
二、哈密顿原理: 1、几个概念: 设由 n 个质点组成的力学体系,受 k 个 约束,有 s 个自由度, s 个广义坐标 q 1 、 、… q ,它的运动规律为: q2 s
q1 q1 ( t ) ,
q 2 q 2 (t ) ,......, q s q s (t )
q
B (t 2 )
A(t1 )
q
真实轨道:力学体系真正运动的位形 轨道(实线AB)。
比较轨道:约束许可的位形轨道(虚 线AB)。
4
2、哈密顿原理: 对真实的的位形轨道,作用函数S有极值,即:
S
S 式中:
t2
Ldt 0 ........( 6 . 83 )
t2
t1
——哈密顿原理
q
B
A
q
.......( 1)
s
(1)、位形空间:以广义坐标 q 为坐标轴的 位形点:位形空间内的一个点。 位形轨道:位形点在位形空间内随时间 变化所描绘的一条曲线。
维空间。
相空间:以广义坐标 q 、广义动量 空间。
p
为坐标轴的 2 s维
3
(2)真实运动,可能运动:
真实运动:力学体系在所受约束及主 动力作用下真实实现的运动。 可能运动:约束许可的运动(不遵从 运动规律)。
哈密顿原理的推导
(7)
i r ri d q j dt q j
(8)
ri r d d ri i i i mi ai mi r mi r q j dt q dt q j j
(5)
将(7)式和(8)式代入(5)式中得:
ri ri q j j 1 q j
k
(i 1,2,, n)
已知动力学普遍方程为:
将其展开后得:
n n i 1 i i i 1
( F m a ) r 0
i 1 i i i i
n
F r m a
i
i
ri 0
(2)
(2)式中第一项表示主动力系在质点系虚位移中的 元功的和,可以写为广义坐标的形式为:
V (11b) 0 q j
将(11b)式乘以dt,并从t1到t2作定积分,有: t 2 k d L L q j q j dt 0 t1 j 1 dt q j q j
dq d ( ) (q) dt dt
(b) 在积分的上、下限不变的条件下,函数对
自变量的积分的变分,等于该函数的变分对该自
变量的积分。 即:
qdt qdt
t1 t1
t2
t2
(2) Hamilton原理:
a)作用:提出了质点系的真实运动与在质点系真实 运动邻近,且为约束所能允许的可能运动 的区分准则。
中任一质点Mi的位置,
显然,如果约束是非 定常的,则矢径ri是 广义坐标和时间的矢
量函数:
ri ri (q1 , q2 ,, qk , t )
(i 1,2,n)
(1)
广义hamilton原理
广义hamilton原理广义Hamilton原理是力学中的一个重要原理,它是经典力学的基础之一。
广义Hamilton原理是指,在所有可能的路径中,系统的真实运动路径是使作用量取极小值的路径。
这个原理是由法国数学家Jacques Louis Lagrange和爱尔兰物理学家William Rowan Hamilton分别提出的。
广义Hamilton原理的主要内容包括以下几个方面:1. 作用量的定义广义Hamilton原理的核心是作用量的概念。
作用量是一个物理系统在一段时间内的运动路径所对应的数值,它是由拉格朗日量和时间的积分得到的。
作用量的定义为:S = ∫L(q, q', t)dt其中,L(q, q', t)是拉格朗日量,q是广义坐标,q'是广义速度,t是时间。
2. 广义Hamilton原理的表述广义Hamilton原理的表述是:在所有可能的路径中,系统的真实运动路径是使作用量取极小值的路径。
这个原理是由Hamilton提出的,它是对Lagrange原理的一种推广。
3. 广义Hamilton原理的推导广义Hamilton原理的推导是基于变分法的。
变分法是一种数学方法,用于求解函数的极值。
在广义Hamilton原理的推导中,我们需要对作用量进行变分,使其取得极小值。
这个过程中,我们需要使用欧拉-拉格朗日方程和Hamilton-Jacobi方程等工具。
4. 广义Hamilton原理的应用广义Hamilton原理在力学中有广泛的应用。
它可以用于求解各种物理系统的运动方程,包括经典力学、相对论力学、量子力学等。
此外,广义Hamilton原理还可以用于研究物理系统的稳定性、对称性等问题。
总之,广义Hamilton原理是力学中的一个重要原理,它是经典力学的基础之一。
它的主要内容包括作用量的定义、广义Hamilton原理的表述、广义Hamilton原理的推导和应用等方面。
通过深入理解广义Hamilton原理,我们可以更好地理解物理系统的运动规律,从而更好地研究和应用力学知识。
第18章_哈密顿原理
第18章_哈密顿原理第⼋章哈密顿原理(Hamilton’s Principle )⼀、泛函和变分的概念1.最速落径问题如图1,A 、B 是同⼀铅垂⾯上的两点,A ⾼于B ,不考虑阻⼒,试确定连接A 、B 的⼀条曲线,使初速为零的质点m 从A ⾄B ⾃由下滑所需时间最短。
设路径曲线为 y = y (x ),并设22)()(dy dx ds +=为曲线微段的弧长,则 dx dty dt dy dx dtds v 222)(1)()('+=+==另⼀⽅⾯,由动能定理可得gy v 2=,所以dx gyy dx v y dt 2)(1)(122'+='+=上式积分,得时间T 为'+=adx gyy x y T 022)(1)]([ (1)选取不同的y (x )必有不同的T 值,T 随函数y (x )的变化⽽变化。
这些可变化的函数称为⾃变函数,⽽随⾃变函数⽽变的量称为该⾃变函数的泛函。
最速落径问题可归结为如下数学命题:在0 [ x [ a 的区间内找⼀个函数y (x ),它满⾜边界条件====b y a x y x 时,当时,当00 并使(1)式所给泛函T [y (x )]取极⼩值。
变分法就是研究在各种不同的边界和约束下,各种泛函取极值的必要充分条件。
2.⾃变函数的变分如图2,将⾃变函数曲线 y = y (x ) 作微⼩变更,得到另⼀曲线y * = y * (x ),⽽ y * = y * (x ) = y (x ) + δ y (x )其中δ y 称为⾃变函数的变分。
下⾯推导d 、δ交换法则。
由图2,有dyy y dy y y yy y yy '+=+=+==321δ若从点3向上算,有)()(334dy y dy y dy y dy y y y y δδδδ+++=+++=+= 若从点2向上算,有)()(224y d dy y y y y d y y dy y y δδδδ+++=+++=+= ⽐较以上两式,得)()(dy y d δδ= (2)因此,⾃变函数变分、微分的运算顺序可交换。
哈密顿原理的应用方面
哈密顿原理的应用方面哈密顿原理是经典力学中一种重要的动力学原理,它可以用来描述一般的广义力学体系,如质点系、弹性体系、连续介质力学等。
除了力学,哈密顿原理还在电动力学、光学和量子力学等领域有广泛的应用。
以下是哈密顿原理在不同领域中的应用方面:1.力学:在经典力学中,哈密顿原理可以用来推导出运动方程。
通过将系统的拉格朗日函数表示为广义坐标和广义速度的函数,然后应用哈密顿原理,可以得到系统的哈密顿函数,并且根据哈密顿函数可以得到运动方程。
这种方法比拉格朗日方程更加简便和直观,特别适合于处理含有约束的力学系统。
2.泛函分析:泛函是函数的函数,即函数空间中的点,而泛函分析是研究泛函空间和其上定义的连续线性泛函的理论。
哈密顿原理是泛函极值问题的基础。
通过对泛函的变分,即对其自变量做微小变化,然后应用哈密顿原理,可以得到泛函的最小值条件,从而得到泛函的极值问题。
3.统计力学:在统计力学中,哈密顿原理用于推导统计物理量的期望值。
通过将系统的哈密顿函数写为广义坐标和广义动量的函数,然后应用带有拉格朗日乘子的哈密顿原理,可以得到统计物理量的平均值和涨落,从而用统计的方法描述宏观的热力学性质。
4.电动力学:在电动力学中,哈密顿原理可以用来描述电磁场的运动。
通过将电磁场的拉格朗日函数写为电场和磁场的函数,然后应用哈密顿原理,可以得到电场和磁场的运动方程,并且得到电磁场的能量和动量。
5.光学:在光学中,哈密顿原理用于求解光的传播问题。
通过将光的传播路径表示为波前面的波动函数的形式,然后应用哈密顿原理,可以得到光传播路径的最小作用量以及光的折射和反射定律。
6.量子力学:在量子力学中,哈密顿原理可以用来推导量子力学体系的运动方程,即薛定谔方程。
通过将粒子的哈密顿函数写为广义坐标和广义动量的函数,并将广义坐标和广义动量换成算符形式,然后应用哈密顿原理,可以得到系统的薛定谔方程。
总结起来,哈密顿原理是一种十分重要的动力学原理,在力学、泛函分析、统计力学、电动力学、光学和量子力学等领域都有广泛的应用。
哈密尔顿原理
哈密尔顿原理哈密尔顿原理(Hamilton's principle)是一种非常重要的物理学原理,它是发展动力学的重要基础。
哈密尔顿原理是由物理学家William Rowan Hamilton在19世纪中期提出的。
哈密尔顿原理可以用来推导物理系统的运动方程,它的推导方法非常简单,只需要将系统的Lagrangian(拉格朗日量)代入到哈密尔顿原理中就可以得到系统的运动方程。
哈密尔顿原理的表述为:对于一个运动的系统,它的运动路径(或轨迹)是那条能够使系统在规定的时间间隔内得到最小的作用量(Action)的路径。
所谓的作用量,可以简单理解为整个系统在运动过程中所需要完成的活动量。
哈密尔顿原理告诉我们,整个系统的运动路径实际上是一个具有最小作用量的路径。
这个最小作用量,实际上就是系统的Lagrangian乘以运动时间的积分。
我们可以用拉格朗日函数的形式表示系统的运动情况:L(x,v) = K - V = 1/2 * m * v^2 - U(x)其中,K是动能,V是势能。
根据哈密尔顿原理,我们可以得出系统的最小作用量如下:S = ∫ L(x,v) dt因此,我们只需要计算L(x,v)在整个运动周期内的积分,就可以得到系统的最小作用量,从而得到系统的运动路径(或轨迹)。
在具体的计算过程中,我们需要用到哈密尔顿原理的另外一个重要工具——变分(Variation)。
变分运算表示对于一个函数f(x),它的变分是指对这个函数在无穷小的变化下的导数。
我们可以将变分形式变换为微分形式,从而得到:δS = ∫ [∂L/∂x * δx + ∂L/∂v * δv] dt其中,δx和δv表示系统的微小偏移。
在利用哈密尔顿原理进行系统运动方程的计算过程中,我们需要将变量x和v代入到L(x,v)中,并且对变化量δx和δv进行求导。
最后我们可以利用欧拉-拉格朗日方程通过对哈密尔顿原理的求导来推导出系统的运动方程:d/dt (∂L/∂v) - (∂L/∂x) = 0这个方程叫做运动方程,它描述了系统在动力学过程中所受到的物理作用和动力响应的关系。
hamilton 原理
hamilton 原理Hamilton原理,也称作Hamilton-Jacobi原理,是经典力学中非常重要的一个原理。
它描述了物理系统的运动方式,可以用于解决很多经典力学问题,如质点、刚体等的运动问题。
Hamilton原理的基本思想是:在一个物理系统中,某个物理量的变化率是由其他物理量的变化率导致的。
这个物理量可以是能量、动量、角动量等。
在Hamilton原理中,物理系统的运动被描述为一条曲线,叫做Hamilton特征函数。
这个曲线的斜率告诉我们物理系统的速度。
如果我们知道Hamilton特征函数,就可以通过求导来计算物理系统的速度和位置。
Hamilton特征函数的形式取决于物理系统的特性,例如质量、力等。
Hamilton原理还有一个重要的应用,即Hamilton-Jacobi方程。
这个方程描述了物理系统在一定条件下的运动方式。
通过求解这个方程,我们可以得到物理系统的Hamilton特征函数和运动方式。
这个方法在解决复杂的力学问题时非常有用,尤其是在量子力学和相对论中。
除了在经典力学中应用广泛,Hamilton原理还可以用于描述其他自然现象。
例如,在光学中,Hamilton原理被用于描述光线的传播方式。
在电动力学中,Hamilton原理被用于描述电磁波的传播方式。
因此,Hamilton原理不仅有助于我们理解物理学中的运动方式,还可以用于解决其他自然现象的问题。
Hamilton原理是经典力学中非常重要的一个原理,它可以用于描述物理系统的运动方式,解决很多经典力学问题。
同时,它也可以应用于其他自然现象的描述和解决。
掌握Hamilton原理的应用,对于理解物理学中的各种现象和问题都有很大的帮助。
哈密顿原理
哈密顿原理哈密顿原理,又称“哈密顿总动量定理”,是物理学的重要定理之一,由英国物理学家威廉哈密顿(William Hamilton)发现,它提供了一种有效而可靠的方式来描述许多现象,并且在现代物理学中仍然被广泛使用。
本文将以详细的介绍介绍哈密顿原理,并讨论它在现代物理学中的作用。
哈密顿原理(Hamilton Principle),也称为哈密顿总动量定理(Hamilton Principal of the Conservation of Momentum),是物理学中的重要理论,它提供了一种有效的方法来描述物质受给力作用时的运动行为。
它的主要思想是,在某些确定的物理系统中,物体在接受给力的过程中所承受的瞬态动量必须是系统整体的总动量的最小值。
因此,哈密顿原理可以用来求解某些物理系统的运动行为,但它仅适用于确定的物理系统。
哈密顿原理表明,当受力物体在系统中发生变形时,它的总动量变化(即动量矢量)越小越好。
因此,受力物体的运动行为满足哈密顿原理的条件,即最优化其总动量矢量的条件。
哈密顿原理也可以用来推导某些重力场的运动规律。
例如,对于受力物体在引力场中发生运动,哈密顿原理可以用来推导出物体受到引力时在无惯性参考系下的运动方程式,即质量*加速度=引力,从而解释山岳问题、月球问题等。
另外,哈密顿原理还可以应用于一些重要的物理现象,如超声波传播、灰尘环形等。
例如,对于超声波传播,哈密顿原理指出,超声波在介质中可以存在,且其传播的速度和传播的方向都是介质的性质决定的。
此外,哈密顿原理还可以用来求解受力物体在各种复杂运动体系中的运动行为,如基本动力学、现代力学等。
在基本动力学中,它可以用来推导受力物体的位移、速度、加速度等关系,从而求解受力物体的运动问题。
在现代的力学中,哈密顿原理也可以用来求解某些复杂的动力学问题,如振动动力学、热传导等问题。
总之,哈密顿原理是物理学的重要定理,它提供了一种有效而可靠的方式来描述许多物理现象,并且在现代物理学中仍然被广泛使用。
哈密顿原理的推导
b)哈密顿原理的推导:
非定常约束的概念:
即约束可随 t 变化,是 t 的函数 一、拉格朗日方程
——以广义坐标表示的动力学普遍方程
设有一理想、完整约束的非自由质点系,具
有k个自由度,用k个广义坐标q1,q2,…,qk表示
质点系的位置,作一直角坐标系oxyz,用矢径 ri(xi,yi,zi) 表示质点系 中任一质点Mi的位置, 显然,如果约束是非
k j 1
n i 1
mi ai
ri q j
q j
为简化(4)式括号中的式子,可将其改写为:
miai
ri q j
d dt
mi
ri
ri q j
mi
ri
d dt
ri q j
(5)
为推导拉氏方程,先证明 ri 与 d ri 之间
ri
ri t
k j 1
ri q j
q j
(ri ri (q1, q2 ,, t)
(6)
q 将(6)式对广义速度 j 求偏导数,可得
关系式:
ri ri
q j
q j
(7)
ri
ri t
k j 1
ri q j
q j
(ri ri (q1, q2 ,, t)
由于它的形式的微小改变而得到的改变量,称
为该函数的变分。
从图中可看出,q 实际上代表了虚位移。
(2) 变分与微分的区别
变分:自变量不变,仅由于函数本身形式
的微小改变而得到的函数的改变;
微分:由于自变量的 q 微增量而引起 的函数的微增 量。
哈密顿原理的推导
i 1
k d j1 dt
T q j
T q j
q j
(9)
n
n
n
k
Fi ri miai ri 0 (2)
Fi ri Q jq j (3)
i 1
i 1
i 1
j 1
将此成果代入(2)式中得:
k d
j1 dt
T q j
T q j
Q j q j
0
(10a)
当主动力有势力时: 式中得:
0
(11a)
V 广义力:Q j q j 代入(11a)式中,而拉格朗日
函数L=T-V(质点系旳动能与势能之差又称为动势)
(11a)式又能够写为:
k
j 1
d dt
L q j
q j
L q j
q
j
0
V q j
0 (11b)
将(11b)式乘以dt,并从t1到t2作定积分,有:
t2 t1
mi ri 2 2
n
miai ri
i 1
n
miai
i1
k j 1
ri q j
q
j
k j 1
n i 1
miai
ri q j
q j
ma ri q j
d dt
q j
mi ri 2 2
q
j
mi ri 22(来自)将此成果代回式(4),并引入质点系动能
得:
T n mi ri2
i1 2
n
q j
ri
q
2ri q t
k 2ri j1 q q j
q j
另一方面,直接由矢径 ri 对某一广义坐
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
hamilton原理
Hamilton原理是经典力学中的一个重要原理,它提供了一种全
新的描述物理系统演化的方法。
这个原理的提出者是爱尔兰数学家
威廉·哈密顿(William Rowan Hamilton),他在19世纪提出了这
个原理,并在此基础上建立了哈密顿力学。
Hamilton原理在物理学、工程学和其他领域都有着广泛的应用,对于理解和描述系统的运动
和演化具有重要意义。
在经典力学中,物理系统的演化可以由拉格朗日方程或哈密顿
方程来描述。
而Hamilton原理则提供了一种更加抽象和普遍的描述
方式。
它的核心思想是系统的演化路径是使作用量(action)取极
值的路径。
作用量是描述系统在一段时间内的整体行为的量,它是
拉格朗日量与时间的积分。
根据Hamilton原理,系统的演化路径是
使作用量取极值的路径,这就是著名的“最小作用量原理”。
Hamilton原理的表述可以通过数学形式来描述。
假设系统的演
化路径可以用广义坐标$q_i(t)$来描述,其中$i=1,2,...,n$,
$t$表示时间。
系统的作用量$S$可以表示为:
$$S = \int L(q_i, \dot{q}_i, t) dt$$。
其中$L$是系统的拉格末朗日量,$\dot{q}_i$表示$q_i$对时间的导数。
Hamilton原理可以表述为,系统的演化路径使得作用量
$S$取极值。
这个原理可以通过变分法来证明,即对于系统的演化路
径做微小的变分,使得作用量的一阶变分为零。
Hamilton原理的重要性在于它提供了一种全新的描述系统演化
的方法。
通过最小作用量原理,我们可以得到系统的运动方程,从
而描述系统的演化。
在经典力学中,这个原理有着重要的应用,可
以用来描述各种物理系统的运动,包括刚体运动、弹性体系、引力
系统等等。
除了在经典力学中的应用,Hamilton原理也在其他领域有着重
要的作用。
在量子力学中,哈密顿力学是描述微观粒子运动的重要
工具,而Hamilton原理则为哈密顿力学提供了基础。
在工程学中,Hamilton原理也可以用来描述控制系统的演化,对于控制理论有着
重要的意义。
总之,Hamilton原理作为经典力学中的重要原理,提供了一种
全新的描述系统演化的方法。
通过最小作用量原理,我们可以得到
系统的运动方程,从而描述系统的演化。
这个原理不仅在经典力学
中有着重要的应用,也在量子力学、工程学等领域有着重要的作用。
它对于理解和描述系统的运动和演化具有重要意义,是物理学和工程学中的基础理论之一。