初等数学研究(程晓亮、刘影)版课后习题答案

合集下载

初等数学研究课后习题答案(2020年7月整理).pdf

初等数学研究课后习题答案(2020年7月整理).pdf

初等代数研究课后习题20071115033 数学院 07(1) 杨明1、证明自然数的顺序关系具有对逆性与全序性,即(1)对任何N b a ∈,,当且仅当b a <时,a b >.(2))对任何N b a ∈,,在b a <,b a =,b a >中有且只有一个成立.证明:对任何N b a ∈,,设a A ==,b B ==(1)“⇒” b a <,则B B ⊂∃,,使,~B A ,A B B ~,⊃∴,a b >∴“⇐” a b >,则B B ⊂∃,,使A B ~,,B B A ⊂∴,~,b a <∴综上 对任何N b a ∈,,b a <⇔a b >(2)由(1)b a <⇔a b > b a <∴与b a >不可能同时成立,假设b a <∴与b a =同时成立,则B B ⊂∃,,使,~B A 且B A ~, ,~B B ∴与B 为有限集矛盾,b a <∴与b a =不可能同时成立,综上,对任何N b a ∈,,在b a <,b a =,b a >中有且只有一个成立..2、证明自然数的加法满足交换律.证明:对任何N b a ∈,设M 为使等式a b b a +=+成立的所有b 组成的集合先证 a a +=+11,设满足此式的a 组成集合k ,显然有1+1=1+1成立φ≠∈∴k 1,设k a ∈,a a +=+11,则+++++++=+=+==+a a a a a 1)1()1()(1k a ∈∴+,N k =∴, 取定a ,则1M φ∈≠,设,b M a b b a ∈+=+,则 ()()a b a b b a b a +++++=+=+=+ ,b M M N +∴∈∴= ∴ 对任何N b a ∈,,a b b a +=+3、证明自然数的乘法是唯一存在的证明:唯一性:取定a ,反证:假设至少有两个对应关系,f g ,对b N ∀∈,有 (),()f b g b N ∈,设M 是由使()()f b g b =成立的所有的b 组成的集合,()()1f b g b a ==⋅ 1M φ∴∈≠ 设b N ∈则()()f b g b =()()f b a g b a ∴+=+ ()()f b g b ++∴=,b M +∴∈,M N ∴= 即b N ∀∈,()()f b g b =乘法是唯一的存在性:设乘法存在的所有a 组成集合K 当1a =时,b N ∀∈,111,1111b b b b ++⋅=⋅==+=⋅+ φ≠∈∴k 1,设a K ∈,b N ∀∈,有,a b 与它对应,且1a a ⋅=,ab ab a +=+,对b N ∀∈,令a b ab b +=+ 1111a a a a ++⋅=⋅+=+=1()(1)a b ab b ab a b ab b a a b a ++++++=+=+++=+++=+a K +∴∈ K N ∴= 即乘法存在p24—5、解:满足条件的A 有1{1,2}A =,2{1,2,3}A =,3{1,2,4}A =,4{1,2,5}A = 5{1,2,3,4}A =,6{1,2,3,5}A =,7{1,2,4,5}A =,8{1,2,3,4,5}A =123456782,3,4,5A A A A A A A A ========∴========基数和为23343528+⨯+⨯+= p24—6、证明:,A a B b ==,A 中的x 与B 中的y 对应 A B ab ∴⨯=,B A ba ab ∴⨯==A B ab ⨯= A B A B B A ∴⨯=⋅=⨯p24—8、证明:1)3+4=73134++== 3231(31)45++++=+=+==3332(32)56++++=+=+==3433(33)67++++=+=+==2)3412⋅= 313⋅= 32313136+⋅=⋅=⋅+=33323239+⋅=⋅=⋅+=343333312+⋅=⋅=⋅+=p24—12、证明:1)()m n m n +++++=+()1(1)m n m n m n m n +++++++=++=++=+2)()mn nm m +++=+ ()1(1)mn mn mn m nm m ++++=+=++=+p26—36、已知(,)f m n 对任何,m n N ∈满足(1,)1(1,1)(,2)(1,1)(,(1,))f n n f m f m f m n f m f m n =+⎧⎪+=⎨⎪++=+⎩求证:1)(2,)2f n n =+2)(3,)22f n n =+3)1(4,)22n f n +=−证明:1)当1n =时,(2,1)(11,1)(1,2)2112f f f =+==+=+结论成立,假设n k =时,结论成立,即(2,)2f k k =+,当1n k =+时,(2,1)(11,1)(1,(2,))(1,2)(2)1(1)2f k f k f f k f k k k +=++==+=++=++ 所以对一切自然数结论都成立2)当1n =时,(3,)(21,)(2,2)22212f n f n f =+==+=⋅+结论成立假设n k =时,结论成立,即(3,)22f k k =+当1n k =+时,(3,1)(21,1)(2,(3,))(2,22)2222(1)2f k f k f f k f k k k +=++==+=++=++ 所以对一切自然数结论都成立3)当1n =时,11(4,1)(31,1)(3,2)22222f f f +=+==⨯−=−结论成立 假设n k =时,结论成立,即1(4,)22k f k +=− 当1n k =+时,112(4,1)(3,(4,))(3,22)2(22)222k k k f k f f k f ++++==−=−+=−所以对一切自然数结论都成立p62—1、证明定理2.1证明:[,],[,]a b c d Z ∀∈,[,][,][,]a b c d a c b d +=++因为自然数加法满足交换律[,][,]a c b d c a d b ∴++=++而[,][,][,]c d a b c a d b +=++[,][,][,][,]a b c d c d a b ∴+=+[,],[,],[,]a b c d e f Z ∀∈,[,][,][,][,][,][(),()]a b c d e f a c b d e f a c e b d f ++=+++=++++以为自然数满足加法结合律([,][,])[,][,]([,][,])a b c d e f a b c d e f ∴++=++ 即整数加法满足交换律和结合律p62—2、已知[,],[,]a b c d Z ∈,求证[,][,]a b c d =的充要条件是[,][,][1,1]a b c d −= 证明:“⇒” 已知[,][,]a b c d =则a d b c +=+[,][,][,][1,1]a b c d a d b c ∴−=++=“⇐” 已知[,][,][1,1]a b c d −=则[,][1,1]a d b c ++=,a d b c +=+[,][,]a b c d ∴=p62—4、已知N b a ∈,,求证([,])[,]a b a b −−=证明:[,][,]a b b a −= ([,])[,][,]a b b a a b −−=−=p62—5、已知[,],[,]a b c d Z ∈,求证([,][,])[,][,]a b c d a b c d −−=−+证明:左边([,][,])[,][,]a b c d a d b c b c a d −−=−++=++右边[,][,][,][,][,]a b c d b a c d b c a d −+=+=++所以左边等于右边([,][,])[,][,]a b c d a b c d ∴−−=−+p62—7、已知,,a b c N ∈,求证当且仅当a d b c +<+时[,][,]a b c d <证明:“⇒” 已知a d b c +<+,[,][,][,]a b c d a d b c −=++因为 a d b c +<+ [,]a d b c ∴++是负数,[,][,]a b c d ∴<“⇐” 已知[,][,]a b c d <则[,][,][,]a b c d a d b c −=++因为[,]a d b c ++是负数,a d b c ∴+<+p62—9、已知,Z αβ∈,求证:1)αβαβ+≤+ ,2) αβαβ=证明:设[,],[,]a b c d αβ== 1)[,]a c b d αβ+=++ ()()a c b d αβ∴+=+−+而,a b c d αβ=−=−()()()()a c b d a b c d a b c d +−+=−+−≤−+−αβαβ∴+≤+2)[,]ac bd ad bc αβ=++ ()ac bd ad bc αβ∴=+−+而,a b c d αβ=−=−()()()()()ac bd ad bc a c d b d c a b c d a b c d +−+=−+−=−−=−− αβαβ∴=p63—12、n 名棋手每两个比赛一次,没有平局,若第k 名胜负的次数各为,k k a b ,1,2,........,k n =,求证:2222221212......n n a a a b b b +++=+++ 证明:对于(1,2,...,)k a k n =,必存在一个(1,2,...,)j b j n =使得k j a b =⇒22(,1,2,...,)k j a b k j n == 2222221212......n n a a a b b b ∴+++=+++p63—16、已知10p a b −,10p c d −,求证p ad bc −证明:由已知:,s t Z ∃∈使10a b ps −=,10c d pt −=⇒ 10,10b a ps d c pt =−=−10(10)()ad bc ac apt ac cps p cs at ∴−=−−−=−p ad bc ∴−p63—17、设2不整除a ,求证281a +证明:因为2不整除a ,所以存在唯一一对,q r Z ∈,使2a q r =+,其中02r <<⇒1r =,22441a q q ∴=++⇒214(1)a q q −=+ 281a ∴−p63—20、设a Z ∈,求证(1)(2)(3)1a a a a ++++是奇数的平方证明:22222(1)(2)(3)1[(1)1](1)[(2)(2)1]1[(1)(1)][(2)(2)]1(1)(2)2(1)(2)1[(1)(2)1]a a a a a a a a a a a a a a a a a a ++++=+−+++++=+−+++++=++−+++=++−1,2a a ++肯定一奇一偶(1)(2)a a ∴++肯定为偶数(1)(2)1a a ∴++−肯定为奇数p63—22、证明:前n 个自然数之和的个位数码不能是2、4、7、9证明:前n 个自然数的和为(1)2n n + 因为:n 个自然数的和仍为自然数∴ 1+n 与n 中必定一个为奇数一个为偶数若个位数码为2则1+n 与n 的个位数码只能是1,4或4,1而(1+n )- n=1 ∴个位数码不能为2若个位数码为4则1+n 与n 的个位数码只能是1,8或8,1也不可能成立若个位数码为7则1+n 与n 的个位数码有2种可能,则2,7或1,14也不可能成立,若个位数码为9则1+n 与n 的个位数码有2种可能,即2,9或1,18也不可能成立,综上,前n 个自然数和的个位数码不能是2,4,7,9p63—26、证明2.3定理1(12,,......,n a a a )=(12,,......n a a a )证明:因为:(12,,......,n a a a )是12,,......n a a a 的公因数中的最大数所以R 需考虑非负整数 ∴(12,,......,n a a a )=(12,,......n a a a ) p63—29、证明2.3定理4的推论(,)1a b =的充要条件是有,x y Z ∈使得1ax by += 证明:因为(,)1a b = ,a b ∴不全为0“⇒” 由定理4 ,x y Z ∃∈使(,)1ax by a b +==“⇐” 设(,)a b d =则,d a d b ,d ax by ∴+ 1d ∴ (,)1d a b ∴== p63—30、证明2.3定理6及其推论。

初等数学研究试题答案

初等数学研究试题答案

习题一1、数系扩展的原则是什么?有哪两种扩展方式?( P9——P10) 答:设数系A扩展后得到新数系为B,则数系扩展原则为:( 1) A B(2)A的元素间所定义的一些运算或几本性质,在B中被重新定义。

而且对于A的元素来说,重新定义的运算和关系与A中原来的意义完全一致。

(3)在A中不是总能实施的某种运算,在B中总能施行。

( 4)在同构的意义下, B 应当是 A 的满足上述三原则的最小扩展,而且有A唯一确定。

数系扩展的方式有两种:( 1)添加元素法。

( 2)构造法。

2、对自然数证明乘法单调性:设a,b,c N ,则( 1 )若a b,则ac bc;( 2)若a b,则ac bc; ( 3)若a b,则ac bc;证明:(1)设命题能成立的所有C组成集合MQa b,a a 1,b b 1, ( P13规定) a1 b 11 M假设c M ,即ac bcQ ac a( c 1) ac a,bc b(c 1) bc b又 Q ac bc, a b ac a bc b ac bc c M .由归纳公理知, M N, 所以命题对任意自然数成立。

(2)若a b,则有b a k,k N. (P17定义 9) 由(1)有 bc (a k)c3、对自然数证明乘法消去律: 设a,b,c N,则(1) 若 ac be,则a b; (2) 若 ac be,则 a b;(3) 若 ac be,贝U a bb证明( 1)(用反证法)假设a b,则有a b 或a b. 若a b,有ac bc 和ac be 矛盾。

若a b,有ac be,也和ac be 矛盾。

故假设a b 不真,所以a b.(2)方法同上。

ac bc(P17.定义 9)或: 若a b,则有b a k, k N.bc (a k)c acac ackc (a k)cbcac bc.( 3) 若a b,则有:ab k,k N.ac (b k)cbc kc.kcac kcac bc(3)方法同上。

初等数学研究(程晓亮、刘影)版课后习题答案教程文件

初等数学研究(程晓亮、刘影)版课后习题答案教程文件

初等数学研究(程晓亮、刘影)版课后习题答案 第一章 数1添加元素法和构造法,自然数扩充到整数可以看成是在自然数的基础上添加0到扩大的自然数集,再添加负数到整数集;实数扩充到复数可以看成是在实数的基础上构造虚数单位i 满足12-=i ,和有序实数对),(b a 一起组成一个复数bi a +. 2(略)3从数的起源至今,总共经历了五次扩充:为了保证在自然数集中除法的封闭性,像b ax =的方程有解,这样,正分数就应运而生了,这是数的概念的第一次扩展,数就扩展为正有理数集.公元六世纪,印度数学家开始用符号“0”表示零.这是数的概念的第二次扩充,自然数、零和正分数合在一起组成算术数集.为了表示具有相反意义的量,引入了负数.并且直到17世纪才对负数有一个完整的认识,这是数的概念的第三次扩充,此时,数的概念就扩展为有理数集.直到19世纪下半叶,才由皮亚诺、戴德金、维尔斯特拉斯等数学家的努力下构建了严格的实数理论.这是数的概念的第四次扩充,形成了实数集.虚数作为一种合乎逻辑的假设得以引进,并在进一步的发展中加以运用.这是数学概念的第五次扩充,引进虚数,形成复数集.4证明:设集合D C B A ,,,两两没有公共元素d c b a ,,,分别是非空有限集D C B A ,,,的基数,根据定义,若b a >,则存在非空有限集'A ,使得B A A ~'⊃;若d c ≥从而必存在非空有限集'C ,使得D C C ~'⊃,所以)(C A ⋃)(D B ⋃⊃所以集合C A ⋃的基数c a +大于集合D B ⋃的基数d b +,所以d b c a +>+.5(1)解:按照自然数序数理论加法定义, 1555555155155)25(2535''=++=++⋅=+⋅=+⋅=⋅=⋅ (2)解:按照自然数序数理论乘法定义87)6(])15[()15()25(2535'''''''''===+=+=+=+=+ 6证明:︒1当2=n 时,命题成立.(反证法)()()()()()()()01121,1111111,111101111111,,2,1,0111,,2,1,0)2(212122121212121212122221212122111112111212222121≥++-+⇒≥++-++≥+-+-≥++++∴≥⎪⎪⎭⎫ ⎝⎛-++⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎭⎫ ⎝⎛->-=-++-+-=+++++=>+=≥+++=+++=>≥=︒+++++++++++++++++k k k k k k k k k k k k k k k i k k k k k k i k k i a k a k k a k k a k k a ka a ka a a a a k a a a a a a a a a a a a a a a a a a k i a k n ka a a a a a k i a k k n ,即要证由归纳假设,得,且得,,且时,由当。

初等数学研究答案1

初等数学研究答案1

初等数学研究答案1习题一1答:原那么:〔1〕A ⊂B〔2〕A 的元素间所定义的一些运算或基本关系,在B 中被重新定义。

而且关于A 的元历来说,重新定义的运算和关系与A 中原来的意义完全分歧。

〔3〕在A 中不是总能实施的某种运算,在B 中总能实施。

(4) 在同构的意义下,B 应当是A 满足上述三原那么的最小扩展,而且由A 独一确定。

方式:〔1〕添加元素法;〔2〕结构法2证明:(1)设命题能成立的一切c 组成集合M 。

a=b ,M 11b 1a ∈∴⋅=⋅∴, 假定bc ac M c =∈,即,那么M c c b b bc a ac c a ∈'∴'=+=+=', 由归结公理知M=N ,所以命题对恣意自然数c 成立。

〔2〕假定a <b ,那么bc kc ac bc,k)c (a )1(b k a N k =+=+=+∈∃即,,由,使得 那么ac<bc 。

〔3〕假定a>b ,那么ac m c bc ac,m )c (b )1(a m b N m =+=+=+∈∃即,,由,使得那么ac>bc 。

3证明:(1)用反证法:假定b a b,a b a <>≠或者,则由三分性知。

当a >b 时,由乘法单调性知ac >bc. 当a <b 时,由乘法单调性知ac<bc.这与ac=bc 矛盾。

那么a=b 。

〔2〕用反证法:假定b a b,a b a =>或者,则由三分性知不小于。

当a >b 时,由乘法单调性知ac >bc. 当a=b 时,由乘法单调性知ac=bc.这与ac<bc 矛盾。

那么a <b 。

〔3〕用反证法:假定b a b,a b a =<或者,则由三分性知不大于。

当a<b 时,由乘法单调性知ac<bc. 当a=b 时,由乘法单调性知ac=bc.这与ac>bc 矛盾。

那么a>b 。

初等数学研究参考答案

初等数学研究参考答案

1、 已知21-=i z ,则150100++z z 的值等于( )A 、1B 、1-C 、iD 、i -2、 已知53sin =θ,02sin <θ,则2tan θ的值等于() A 、21B 、21-C 、31D 、3 3、 函数136-+-=x x y 的值域是()A 、⎥⎦⎤ ⎝⎛∞-317,B 、⎥⎦⎤ ⎝⎛∞-1277,C 、(]5,∞-D 、[)+∞,5 4、 若实数y x ,满足()()22214125=-++y x ,则22y x +的最小值为()A 、2B 、1C 、3D 、25、 曲线()x x x f -=4在点P 处的切线平行于直线03=-y x ,则P 点坐标为()A 、()3,1B 、()3,1-C 、()0,1D 、()0,1-6、 设集合{}1>=x x M ,{}12>=x x P ,则下列关系中正确的是() A 、P M =B 、P P M = C 、M P M = D 、P P M =7、 设α是锐角,2234tan +=⎪⎭⎫ ⎝⎛+πα,则αcos 的值等于() A 、22B 、23C 、33D 、36 8、 设()x f 是定义在R 上以2为周期的偶函数,已知()1,0∈x 时,()()x x f -=1log 21,则函数()x f 在()2,1上()A 、是增函数,且()0<x f ;B 、是增函数,且()0>x fC 、是减函数,且()0<x f ;D 、是减函数,且()0>x f9、 已知锐角βα,满足()21sin ,1tan =-=αβα,则βcos 等于() A 、426+B 、426-C 、462-D 、426-- 10、分解因式:y x y x 62922-+-(x-3y)(x+3y+2)分解因式:3542322+++++y x y xy x=(x+y)(x+2y)+3(x+y)+(x+2y)+3 =(x+y)(x+2y+3)+(x+2y+3) =(x+y+1)(x+2y+3) 已知200420052004112004--+-=x x y ,则()2004y x +的值是; x=1/2004,y= -2005/2004,代入得1 已知实数m 满足m m m =-+-20082007,则=-22007m 2008 计算⎥⎦⎤⎢⎣⎡--+÷⎥⎦⎤⎢⎣⎡-++x x x x x x xx 1111=1/2x-1 自然数集的两种主要理论是 基数理论 、 序数理论 。

初等数学研究课后题

初等数学研究课后题

现代远程教育《初等数学研究》课程学习指导书课程学习方法指导1、为什么要学习初等数学研究?作为一个中学数学教师,仅仅具备中学中所涉及到的知识,是远远不够的。

为了更好地掌握并处理好中学数学教材,必须懂得更多的数学。

好比用一桶水去斟一杯水,才显得胸有成竹,游刃有余。

大学里学习那么多高等数学,目的即在于此。

但是高等数学知识怎样和初等数学相结合?如何指导中学数学教学?也就是说怎样用高等数学的方法去处理中学数学问题?怎样使教师的知识更加现代化?怎样用最新的数学观念去理解中学数学中的有关内容?其次,中学数学的重要任务之一,是培养学生运用数学知识解决问题的能力。

因此,教师本身就应具备这方面的较强的能力。

学习高度数学可以提高数学修养,提高解题能力。

但是怎样结合中学实际,运用中学生可以接受的方法,特别是运用初等的方法来处理初等数学中的问题。

这方面有许多技能与技巧,还必须作专门的训练。

这就是我们要学习初等数学研究的目的。

2、怎样阅读教材?阅读教材时,应边阅读边作笔记。

把重要的、不懂的、难理解的记录下来,以便和录像中的讲解进行对比学习。

每天看书不要太多,以免贪多嚼不烂,要循序渐进。

要结合录像看书学习,对每道例题,要亲自动手再作一作,理解了,会了,再向下学习。

学贵有恒,贵在坚持。

3、怎样观看录像?观看录像时,应先看书,后看录像。

对每个例题、定理的证明,要先思考,后看录像,以验证自己的思维。

要充分理解领会每个例题的解证思路与方法,并运用数学方法论思想去审视每道题目的解证方法。

既要理解数学的概念和原理,更要理解数学的本质、数学的价值;既要理解数学的探究过程,又要了解数学发展的历史和方法。

每次观看录像不宜太多,每次观看一节课为宜。

4、怎样解题?学习数学,必须学会解题。

要以波利亚的“怎样解题表”为指南进行解题训练,要注意解后回顾,要注意提炼、总结数学方法。

附波利亚怎样解题表和解题思考步骤、程序表:怎样解题表第一你必须弄清的问题1、未知数是什么?已知数数据是什么?条件是什么?满足条件是否可能?要确定未知数,条件是否充分?或者它是否不充分?或者是多余的?或者是矛盾的?2、画张图,引入适当的符号。

初等数学研究第一章到第十三章全部答案

初等数学研究第一章到第十三章全部答案

习题一1、数系扩展的原则是什么?有哪两种扩展方式?(P9——P10) 答:设数系A 扩展后得到新数系为B ,则数系扩展原则为:(1)B A ⊂(2)A 的元素间所定义的一些运算或几本性质,在B 中被重新定义。

而且对于A 的元素来说,重新定义的运算和关系与A 中原来的意义完全一致。

(3)在A 中不是总能实施的某种运算,在B 中总能施行。

(4)在同构的意义下,B 应当是A 的满足上述三原则的最小扩展,而且有A 唯一确定。

数系扩展的方式有两种:(1)添加元素法。

(2)构造法。

2、对自然数证明乘法单调性:设,,,a b c N ∈则(1),;a b ac bc ==若则(2),;a b ac bc <<若则(3),a b ac bc >>若则;证明:(1)设命题能成立的所有C 组成集合M 。

a b,a a 1,b b 1,P13(1),(1)a 111,a ac a c ac a bc b c bc b b Mc M c bc==⋅=⋅=+=+=+=+''∴⋅=⋅∴∈∈= (规定)假设即ac ,ac a c .bc a ba bcbc bc M ==∴+=+∴=''∴∈' 又 由归纳公理知,,N M =所以命题对任意自然数成立。

(2),,.a b b a k k N <=+∈若则有 (P17定义9)由(1)有()bc a k c =+a c kc =+ac bc ∴< (P17.定义9)或:,,.a b b a k k N <=+∈若则有 bc ()a k c ac kc =+=+ ()ac ac kc a k c bc ∴<+=+=.ac bc ∴=(3),,.a b a b k k N >=+∈若则有a ().cb kc bc kc =+<+ac bc ∴>3、对自然数证明乘法消去律:,,,a b c N ∈设则(1),;ac bc a b ==若则(2)ac bc a b <<若,则;(3)ac bc a b >>若,则。

数学教学论课后练习答案北京大学出版(主编刘影,程晓亮)课后习题答案

数学教学论课后练习答案北京大学出版(主编刘影,程晓亮)课后习题答案

1、数学教学论的研究对象是什么?中学数学教学论是为实现中学数学教学目标,研究中学数学课程的教与学的活动及其规律性的一门学科。

它要解决的主要问题是:为什么教(学)数学(教学目的),教(学)什么样的数学(课程内容),怎样学数学(学生),怎样教数学(教师),以及如何评价教与学的效果。

为了解决以上五个方面的问题,中学数学教学论的研究对象应当包括以下五个方面:1、中学数学课程目标的研究2中学数学课程内容的研究3中学生数学学习心理的实证研究4中学数学教学的研究5中学数学教学评价的研究。

2、数学教学论学科特点有哪些?1.数学教学论是一门综合性很强的独立科学。

2.数学教学论是一门实践性很强的理论学科。

3.数学教学论是一门真在完善的科学.3、学习数学教学论有什么意义?1.数学教学论有助于缩短师范生转为教师的周期 2.学习数学教学论能提高师范生的数学教育理论水平3. 学习数学教学论能使师范生掌握数学课堂教学的基本技能4. 学习数学教学论有利于师范生形成数学教育教学研究能力 5. 学习数学教学论对普及新一轮基础教育改革有特殊意义4、研究数学教学论的方法有哪些?1.历史研究法2.问卷调查法3.实验研究法4.个案研究法5、简述“新数学”运动与国外中学数学教育改革?答:“新数学”运动的指导思想是;增加现代数学内容,如集合、逻辑、群、环、域、向量和矩阵。

等等;强调公里方法,提倡布尔巴的结构主义,SMGS数学教材中有一个30条公里组成的系统;废弃欧几里得集合;小件基本运算。

用计算器代替基本技能;提倡发现数学方法,要求学生像数学家发现定理那样去学习数学。

6、如何看待我国数学教育改革?答:近半个世纪以来,我国中学数学教育理念随着国家的发展,科学的几部而不断完善;从注重课堂教学质量的提交,到注重学生数学学习的效果,从注重知识的掌握,到注重能力的形成,素质和观念的发展。

理念的发展意味着人们认识上的飞跃。

7、简述《标准一》和《标准二》的基本理念?答:《标准一》的基本理念:突出体现基础性。

初等数学研究答案1

初等数学研究答案1

初等数学研究答案1则ac<bc 。

(3)若a>b,则acmc bc ac,m)c (b )1(a m b N m =+=+=+∈∃即,,由,使得 则ac>bc 。

3证明:(1)用反证法:若ba b,ab a <>≠或者,则由三分性知。

当a >b 时,由乘法单调性知ac >bc. 当a <b 时,由乘法单调性知ac<bc.这与ac=bc 矛盾。

则a=b 。

(2)用反证法:若ba b,ab a =>或者,则由三分性知不小于。

当a >b时,由乘法单调性知ac >bc. 当a=b 时,由乘法单调性知ac=bc.这与ac<bc 矛盾。

则a <b 。

(3)用反证法:若ba b,ab a =<或者,则由三分性知不大于。

当a<b时,由乘法单调性知ac<bc. 当a=b 时,由乘法单调性知ac=bc.这与ac>bc 矛盾。

则a>b 。

4. 解:(1)4313='=+ 541323='='+=+ 652333='='+=+(2)313=⋅ 631323=+⋅=⋅ 93232333=+⋅='⋅=⋅5证明:当n=1时,的倍数。

是9181n 154n=-+假设当n=k 时的倍数。

是91k 154k-+则当n=k+1时的倍数。

是)()(918k 451k 154411k 154k1k +--+=-+++ 则对∀N n ∈,1n 154n-+是9的倍数.6证明:当1n =时,141-=3-,n21n21-+=3-;则当1n =时成立。

假设当k n =时成立,即(141-)(941-)(2541-)……… (21k 241)(--)=k 21k21-+ 当1k n +=时,(141-)(941-)(2541-)……… (21k 241)(--)(21k 241)(+-) 当1k n +=时成立。

初等数学研究课后答案习题三

初等数学研究课后答案习题三

习题三1解:(1)由.222r x AE AB AE AD =⋅=得则.2)(22rx r AE r CD -=-= 则)20.(2422r x r x x r x AB CD y <<-+=++= (2) .5.5)(124max 22r y r x r r x r r x x r y ==+--=-+=时,当 2证明:(1)令时,0n m ==).0()0()0(f f f =即或者0f(0)=1;f(0)= 当时0f(0)=0)0()()(==f m f m f ,又当时0m ≠f(0).f(m)≠则 1.f(0)= (2)时,,当0n n m >-=即,1)()()(=-=+-n f n f n n f )(1)(n f n f -=则)(1)(x f x f -=;又当,则时1f(x),0x >>1)(1>-x f ,即1)(0<-<x f 由此得;0;1)(001)(0;1)(⎪⎩⎪⎨⎧<<<==>>x x f x x f x x f ; 则对于任意.0f(x)R,x >∈均有3答:(1)是;(2)不是4解:(1)由}45,088|{01||80||054≠≠≤≤-⎪⎪⎩⎪⎪⎨⎧≥-≠≠-x x x x x x x 且得:.(2) 由}132|{112012023≠>⎪⎩⎪⎨⎧≠->->-x x x x x x 且得:(3) 由].1,22()22,1[001log 0)1(log log 222225.0⋃--∈⎪⎩⎪⎨⎧>>+≥+x x x x 得: (4) 由}.8log 25|{0)39lg(0390|2|73≠<≤-⎪⎩⎪⎨⎧≠->-≥--x x x x x x且得:(5) }21|{0)31(112≥≥--x x x 得:由(6) 由.)25,1[00250lg ∈⎪⎩⎪⎨⎧>>-≥x x x x 得:(7) }.121|{1212≤≤-≤-≤-x x x x 得:由 (8) 由]2,51(015111∈⎩⎨⎧>-≤-≤-x x x 得:(9) 由}2,1,0,22|{0sin 101sin ±±=+=⎩⎨⎧≥-≥-k k x x x x ππ得:(10)由得:03cos >x }2,1,0,326326|{ ±±=+<<+-k k x k x ππππ5. (1)解:}.121211|{4112≤≤-≤≤-≤≤x x x x或得:由(2)解:}.40|{22≤≤≤≤-x x x 得:由(3) 解:}.1010|{3lg 213≤≤≤≤x x x 得:由6证明:⇒f(x)的定义域为实数集R ,则0.1-k 1k 4k 4kx -x 22>+++ 即.1,0144)114(41622><---=-++-=∆k k k k k k k 则 ⇒当时1>k ,0144)114(41622<---=-++-k k k k k k 则 即0.1-k 1k 4k 4kx -x 22>+++故f(x)的定义域为实数集R 7解:(1)-=+++=11x x y 22x x-=++11x 12x 43)21(x 12++;而,3443)21(x 102≤++<则).1,31[1x x 22-∈+++=x x y (2)]23,23[3)6sin(23sin cos +-∈++=++x x x π,则].23,23[3sin cos 7+-∈++=x x y(3),则由1076312≤++-≤x x .1)763lg(02≤++-≤x x(4) 133212122-+-=-+-=x x x x x y ,则0)3()3(22=+++-y x y x , ,01522≥--=∆y y 得.35-≤≥y y 或法二:=-+-=1212x x y 1)1(212+-+-x x ;则 =-+-|)1(212|x x 4|)1(|2|12|≥-+-x x 即或4)1(212≥-+-x x 4)1(212-≤-+-x x 则]3,(),5[1212--∞+∞∈-+-=或x x y (5) 令,413t x =-则44)1(21413322≤+--=-+-=t x x y(6)=-++-=344342x x x y 4)12(342-++-x x当).,23[,2343min +∞∈==y y x 则时, (7) ,11ln 21y yx e e e e y xx x x -+=+-=--得由即.11,011<<->-+y y y 则 (8))23lg ,45(lg )211lg(212lg 11122lg 1∈+=+=-++=x x x x x y y 得,由则).54lg 1,32lg 1++∈(y (9) ]3,0[)21arccos(3π∈-=x y ;(10) ∴∈-],3,0[12x]2,6[12ππ∈-=x arcctgy8 解:令t x =+14,则即,112t 11t 5)(2--+=t t f ∆≡--+=112x 11x 5)(2x x f y 则.01111)52(2=--+-y x y yx当0=y 时,有意义;当0≠y 时,.,0R y ∈>∆即9解:(1)2x 2y +--=由得反函数为212x y -=.其定义域和值域为.1,0≤≤y x(2)由1x 5x 2y +=得反函数为x x y 52-=.其定义域和值域为.51,52-≠≠y x 10证明:对使,1,00Mx M =∃>∀M M >+=+=1x 11y 2,则2x 11y +=无上界.但对,0≠∀x 2x 11y +=>1,则任何小于1的数都是2x 11y +=的下界.11 证明: 由于f(x)是有界函数,则.|)(|,,0M x f D x M <∈∀>∃有对而g(x)没有上界,则对.)(,,0N x g D x N >∈∃>∀有则W M N x g x f ∆≡->+)()(对使,,0x W ∃>∀W x g x f >+)()(,则f(x)与g(x)的和在定义域D 上无上界. 12 解:.),0[,2.822y 2上单调递增当,令+∞∈=++-==u y x x u u u在上单调递增当而.)1,2[.822-∈++-=x x x u .]4,1[上单调递减∈x 则8x 2x 22y ++-=在上单调递增当.)1,2[-∈x .]4,1[上单调递减∈x13. (1)奇函数 (2)偶函数 (3)非奇非偶函数 (4)非奇非偶函数 (5)偶函数 (6)偶函数14解: )211a 1g(-x)(f (-x)x-+-=)21a-1a g(-x)(x x +=f (x))211a 1g(x)(x =+-= 则)(x f 是偶函数. 15解: 则-f (x),x 1x 1lgf (-x)=-+=.它是奇函数)1,1(,0x1x 1-∈>-+x 得定义域为而 .)1,1(x 1x 1上单调递减在而-∈-+x 则x1x 1lg y +-=.)1,1(上单调递减在-∈x 16解:(1) =++==)1lg(-x f(-x)y 2x =++)1lg(-x 2x ).()1lg(x -2x f x -=++则f(x)的定义域为R x ∈,它是奇函数.(2)由和)1lg(x y 2++=x ,110110)1lg(-x y -222⎪⎩⎪⎨⎧+-=-++=++=-xx x x x y y 得 则即y y x 1021102⋅-=.102110)(21xx x f ⋅-=- (3) 则由于,11x 2≥++x ),0[)1lg(x f(x)y 2+∞∈++==x(4) 对),()(,2121x f x f x x <<∀.f(x)在其定义域上是增函数则 17解:当0x <时,0x ->即.2x x f(-x)2++=又f(x)是奇函数,则)()(x f x f -=-则.2x x f(x)2---= 18解:则,cosx sinx 1cosx -sinx 1f (-x)+--=++++=+cosx sinx 1cosx -sinx 1f (x)f (-x)cosxsinx 1cosx-sinx 1+--=0则.cosxsinx 1cosx-sinx 1f (x)是奇函数函数+++=19解:(1)a,632z y x ===令 1.a ,R z y,x,>∈+则由于.log ,log ,log 632a z a y a x ===即6log log 6log 66,3log log 3log log 33,log 22226223332aa z a a a y a x ======。

《初等数学研究习题解答》

《初等数学研究习题解答》

《初等数学研究》习题解答第一章 数系1.1 集合论初步·自然数的基数理论习题1.11.证明集合0{|}x x >与实数集对等。

证明:取对应关系为ln y x =,这个函数构成0(,)+∞与(,)-∞+∞的一一对应,所以集合0{|}x x >与实数集对等。

2.证明()()()A B C A B A C = 证明:()x AB C x A ∀∈⇒∈或x B C ∈,x A ⇒∈或(x B ∈且x C ∈),那么有x A ∈或x B ∈同时还有x A ∈或x C ∈,即x A B ∈同时还有x A C ∈,所以()()()()()x A B A C A B C A B A C ∈⇒⊆反过来:()()x AB AC x A B ∀∈⇒∈且x A C ∈,对于前者有x A ∈或者x B ∈;对于后者有x A ∈或者x C ∈,综合起来考虑,x B ∈与x C ∈前后都有,所以应是“x B ∈且x C ∈”即“x B C ∈”,再结合x A ∈的地位“或者x A ∈”以及前后关系有“x A ∈或x BC ∈”即()x A B C ∈,所以()()()()x AB C A B C A B A C ∈⇒⊇所以()()()A B C A B A C =。

3.已知集合A 有10个元素,,B C 都是A 的子集,B 有5个元素,C 有4个元素,B C有2个元素,那么()BA C -有几个元素?解:集合()BA C -如图1所示:由于452(),(),()r C r B r B C ===,所以32(),()r B C r C B -=-=, 从而1028(())r B A C -=-=, 即()BA C -有8个元素4.写出集合{,,,}a b c d 的全部非空真子集。

图1CBA5.证明,按基数理论定义的乘法对加法的分配律成立。

证明:设,,A B C 是三个有限集合,并且B C φ=,记(),(),()a r A b r B c r C ===首先:由于BC φ=,所以A B A C φ⨯⨯=,所以其次:对于(,)(){(,)|,}a x A B C a x a A x B C ∀∈⨯=∈∈,由于x B C ∈,那么若x B ∈,于是(,)a x A B ∈⨯; 若x C ∈,于是(,)a x A C ∈⨯,所以总有(,){(,)|,}{(,)|,}a x a x a A x B a x a A x C A B A C ∀∈∈∈∈∈=⨯⨯即()(())()A BC A B A C r A B C r A BA C ⨯⊆⨯⨯⇒⨯≤⨯⨯反过来:(,)a x A B A C ∀∈⨯⨯,那么(,)a x A B ∈⨯或者(,)a x A C ∈⨯于是有,a A ∈x B ∈或者x C ∈,即,a A ∈x B C ∈,所以(,)()a x A B C ∈⨯即()(())()A BC A B A C r A B C r A BA C ⨯⊇⨯⨯⇒⨯≥⨯⨯所以()a b c ab ac +=+6.在基数理论定义的乘法下,证明1a a ⨯=。

初等数学研究习题解答

初等数学研究习题解答

《初等数学研究》习题解答第一章 数系1.1 集合论初步·自然数的基数理论习题1.11.证明集合0{|}x x >与实数集对等。

证明:取对应关系为ln y x =,这个函数构成0(,)+∞与(,)-∞+∞的一一对应,所以集合0{|}x x >与实数集对等。

2.证明()()()A B C A B A C =证明:()x A B C x A ∀∈⇒∈或x B C ∈,x A ⇒∈或(x B ∈且x C ∈),那么有x A ∈或x B ∈同时还有x A ∈或x C ∈,即x A B ∈同时还有x A C ∈,所以()()()()()x A B A C A B C A B A C ∈⇒⊆反过来:()()x A B A C x A B ∀∈⇒∈且x A C ∈,对于前者有x A ∈或者x B ∈;对于后者有x A ∈或者x C ∈,综合起来考虑,x B ∈与x C ∈前后都有,所以应是“x B ∈且x C ∈”即“x B C ∈”,再结合x A ∈的地位“或者x A ∈”以与前后关系有“x A ∈或x B C ∈”即()x A B C ∈,所以()()()()x A B C A B C A B A C ∈⇒⊇ 所以()()()A B C A B A C =。

3.已知集合A 有10个元素,,B C 都是A 的子集,B 有5个元素,C 有4个元素,B C 有2个元素,那么()B A C -有几个元素?解:集合()B A C -如图1所示:由于452(),(),()r C r B r B C ===,所以32(),()r B C r C B -=-=,图1CBA从而1028(())r B A C -=-=, 即()B A C -有8个元素4.写出集合{,,,}a b c d 的全部非空真子集。

{,}{},{},{},{,},{,},{,},{,},{,},{,},{,,},{,,},{,,},{,,}a b c d a b a c a d b c b d c d a b c a b d a c d b c d5.证明,按基数理论定义的乘法对加法的分配律成立。

初等数学研究习题解答

初等数学研究习题解答

《初等数学研究》习题解答第一章 数系1.1 集合论初步·自然数的基数理论习题1.11.证明集合0{|}x x >与实数集对等。

证明:取对应关系为ln y x =,这个函数构成0(,)+∞与(,)-∞+∞的一一对应,所以集合0{|}x x >与实数集对等。

2.证明()()()A B C A B A C = 证明:()x AB C x A ∀∈⇒∈或x B C ∈,x A ⇒∈或(x B ∈且x C ∈),那么有x A ∈或x B ∈同时还有x A ∈或x C ∈,即x A B ∈同时还有x A C ∈,所以()()()()()x A B A C A B C A B A C ∈⇒⊆反过来:()()x AB AC x A B ∀∈⇒∈且x A C ∈,对于前者有x A ∈或者x B ∈;对于后者有x A ∈或者x C ∈,综合起来考虑,x B ∈与x C ∈前后都有,所以应是“x B ∈且x C ∈”即“x B C ∈”,再结合x A ∈的地位“或者x A ∈”以及前后关系有“x A ∈或x BC ∈”即()x A B C ∈,所以()()()()x AB C A B C A B A C ∈⇒⊇所以()()()A B C A B A C =。

3.已知集合A 有10个元素,,B C 都是A 的子集,B 有5个元素,C 有4个元素,B C有2个元素,那么()BA C -有几个元素?解:集合()BA C -如图1所示:由于452(),(),()r C r B r B C ===,所以32(),()r B C r C B -=-=, 从而1028(())r B A C -=-=, 即()BA C -有8个元素4.写出集合{,,,}a b c d 的全部非空真子集。

图1CBA{,}{},{},{},{,},{,},{,},{,},{,},{,},{,,},{,,},{,,},{,,}a b c d a b a c a d b c b d c d a b c a b d a c d b c d5.证明,按基数理论定义的乘法对加法的分配律成立。

初等数学研究课后题

初等数学研究课后题

现代远程教育《初等数学研究》课程学习指导书课程学习方法指导1、为什么要学习初等数学研究?作为一个中学数学教师,仅仅具备中学中所涉及到的知识,是远远不够的。

为了更好地掌握并处理好中学数学教材,必须懂得更多的数学。

好比用一桶水去斟一杯水,才显得胸有成竹,游刃有余。

大学里学习那么多高等数学,目的即在于此。

但是高等数学知识怎样和初等数学相结合?如何指导中学数学教学?也就是说怎样用高等数学的方法去处理中学数学问题?怎样使教师的知识更加现代化?怎样用最新的数学观念去理解中学数学中的有关内容?其次,中学数学的重要任务之一,是培养学生运用数学知识解决问题的能力。

因此,教师本身就应具备这方面的较强的能力。

学习高度数学可以提高数学修养,提高解题能力。

但是怎样结合中学实际,运用中学生可以接受的方法,特别是运用初等的方法来处理初等数学中的问题。

这方面有许多技能与技巧,还必须作专门的训练。

这就是我们要学习初等数学研究的目的。

2、怎样阅读教材?阅读教材时,应边阅读边作笔记。

把重要的、不懂的、难理解的记录下来,以便和录像中的讲解进行对比学习。

每天看书不要太多,以免贪多嚼不烂,要循序渐进。

要结合录像看书学习,对每道例题,要亲自动手再作一作,理解了,会了,再向下学习。

学贵有恒,贵在坚持。

3、怎样观看录像?观看录像时,应先看书,后看录像。

对每个例题、定理的证明,要先思考,后看录像,以验证自己的思维。

要充分理解领会每个例题的解证思路与方法,并运用数学方法论思想去审视每道题目的解证方法。

既要理解数学的概念和原理,更要理解数学的本质、数学的价值;既要理解数学的探究过程,又要了解数学发展的历史和方法。

每次观看录像不宜太多,每次观看一节课为宜。

4、怎样解题?学习数学,必须学会解题。

要以波利亚的“怎样解题表”为指南进行解题训练,要注意解后回顾,要注意提炼、总结数学方法。

附波利亚怎样解题表和解题思考步骤、程序表:怎样解题表第一你必须弄清的问题1、未知数是什么?已知数数据是什么?条件是什么?满足条件是否可能?要确定未知数,条件是否充分?或者它是否不充分?或者是多余的?或者是矛盾的?2、画张图,引入适当的符号。

初等数学研究答案

初等数学研究答案

习题一1答:原则:(1)A ⊂B(2)A 的元素间所定义的一些运算或基本关系,在B 中被重新定义。

而且对于A 的元素来说,重新定义的运算和关系与A 中原来的意义完全一致。

(3)在A 中不是总能施行的某种运算,在B 中总能施行。

(4) 在同构的意义下,B 应当是A 满足上述三原则的最小扩展,而且由A 唯一确定。

方式:(1)添加元素法;(2)构造法2证明:(1)设命题能成立的所有c 组成集合M 。

a=b ,M 11b 1a ∈∴⋅=⋅∴, 假设bc ac M c =∈,即,则M c c b b bc a ac c a ∈'∴'=+=+=',由归纳公理知M=N ,所以命题对任意自然数c 成立。

(2)若a <b ,则bc kc ac bc,k)c (a )1(b k a N k =+=+=+∈∃即,,由,使得 则ac<bc 。

(3)若a>b ,则ac m c bc ac,m )c (b )1(a m b N m =+=+=+∈∃即,,由,使得 则ac>bc 。

3证明:(1)用反证法:若b a b,a b a <>≠或者,则由三分性知。

当a >b 时,由乘法单调性知ac >bc. 当a <b 时,由乘法单调性知ac<bc.这与ac=bc 矛盾。

则a=b 。

(2)用反证法:若b a b,a b a =>或者,则由三分性知不小于。

当a >b 时,由乘法单调性知ac >bc. 当a=b 时,由乘法单调性知ac=bc.这与ac<bc 矛盾。

则a <b 。

(3)用反证法:若b a b,a b a =<或者,则由三分性知不大于。

当a<b 时,由乘法单调性知ac<bc. 当a=b 时,由乘法单调性知ac=bc.这与ac>bc 矛盾。

则a>b 。

4. 解:(1)4313='=+ 541323='='+=+ 652333='='+=+763343='='+=+ 874353='='+=+(2)313=⋅ 631323=+⋅=⋅ 93232333=+⋅='⋅=⋅123333343=+⋅='⋅=⋅ 153434353=+⋅='⋅=⋅5证明:当n=1时,的倍数。

(完整版)初等数学研究(程晓亮、刘影)版课后习题答案第4章习题答案

(完整版)初等数学研究(程晓亮、刘影)版课后习题答案第4章习题答案

第四章1。

简述函数概念的三种定义,并加以比较说明.2。

结合高等数学的学习,论述基本初等函数的性质。

3.证明满足性质:(1))()()(2121x f x f x x f =+; (2)单调递简 的函数)(x f 是一个以a )1)1(0(<=<f a 为底的指数函数。

4。

求函数)2arcsin()4(log 1)(22x x x x f x -+-=+23-x x 的定义域。

5。

证明函数xx y +=1是无界函数. 例7(奇偶性的应用)已知y x b a ,,,都是实数,且0>x ,求参数b a ,的一切取值,使方程组⎪⎪⎩⎪⎪⎨⎧=+-=+b x x a y x y y 11,22有唯一解。

解 因为0>x ,所以2y a x -=.这个函数显然是关于自变量y 的偶函数,由此可知,如果),(00y x 是方程组的解,那么),(00y x -也是方程组的解。

因为方程组有唯一解,所以00y y -=,即00=y 。

于是有0,0=>b a ,且方程组的解为⎩⎨⎧==0y a x 。

反之,当0,0=>b a 时,方程组化为⎩⎨⎧==+1,22y x a y x )2()1( 如果0≠y ,那么由方程(2)可知1=x ,代入方程(1),可得1-±=a y .如果1>a ,则方程组有两组解:⎩⎨⎧-==11a y x 与⎩⎨⎧--==11a y x .如果1<a ,则方程组无解。

如果1=a ,则0=y ,这与条件0≠y 矛盾。

因此,当0,0=>b a 时,当且仅当0=y ,方程组有唯一解⎩⎨⎧==0y a x 。

5。

证明2sin x y =不是周期函数.6。

函数x y cos =不满足任何代数方程。

7。

x y cos =的解析式不可能是关于变数x 的代数式.8。

(图像的应用)根据参数a ,求方程132+=-a x 的解的个数。

9。

(单调性的应用)求数列3,2,1,3)223(96924222=+--+-=n n n n a n 的最小项。

(完整版)初等数学研究答案

(完整版)初等数学研究答案

2.对自然数证明乘法单调性:设a,b,c∈N则(1)若a=b,则ac=bc(2)若a<b,则ac<bc(3)若a>b,则ac>bc证明:(1)设命题能成立的所有c组成的集合M.∵a·1=b·1∴1∈M假设c∈M即则(ac) ′= (bc) ′﹤=﹥ac + 1 = bc + 1 重复以上过程a次,可得到ac + a = bc + a = bc + b即a(c+1) = b(c+1)∴c∈M由归纳公理知M = N.所以命题对任意自然数c成立(2)若a < b,则有k∈N,使得a + k = b,由(1) (a + k)c = bcac + kc = bc﹤=﹥ac < bc(3)依据(2)由对逆性可得。

7.设α=(3+13) / 2 , β=( 3-13) / 2 , An= (αn-βn)/ 13(n=1,2,…..).(1) 以α,β为根作一元二次方程;(2) 证明A n+2=3A n+1+A n;(3) 用数学归纳法证明A3n 是10的倍数;解:(1) α+ β=3, α β=-1,∴由韦达定理得以α,β为根作一元二次方程为:X2-3X-1=0(2) 证:3A n+1+A n=3(αn+1-βn+1)/13+(αn-βn)/13=( α+ β) (αn+1-βn+1) /13+(αn-βn)/13= (αn+2 -βn+2 - α βn+1 + β αn+1 + αn- βn)/13= (αn+2 -βn+2)/13=A n+2(3) 证:①当n=1时,有A3 =10,则10| A3。

②假设当n=k时,有10| A3k则当n=k+1时,A3k+3 = 3A 3k+2+A3k+1=3(3A 3k+1+A3k) +A3k+1=10 A 3k+1 +3 A3k10|10 A 3k+1 , 10| 3A3。

∴ 10|10 A 3k+3由①②得,对∀n∈N*,有10| A3n。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初等数学研究(程晓亮、刘影)版课后习题答案第一章数1添加元素法和构造法,自然数扩充到整数可以看成是在自然数的基础上添加0到扩大的自然数集,再添加负数到整数集;实数扩充到复数可以看成是在实数的基础上构造虚数单位i满足r - _1,和有序实数对(a,b)—起组成一个复数a bi .2 (略)3从数的起源至今,总共经历了五次扩充:为了保证在自然数集中除法的封闭性,像ax=b的方程有解,这样,正分数就应运而生了,这是数的概念的第一次扩展,数就扩展为正有理数集.公元六世纪,印度数学家开始用符号“0”表示零.这是数的概念的第二次扩充,自然数、零和正分数合在一起组成算术数集•为了表示具有相反意义的量,引入了负数•并且直到17世纪才对负数有一个完整的认识,这是数的概念的第三次扩充,此时,数的概念就扩展为有理数集.直到19世纪下半叶,才由皮亚诺、戴德金、维尔斯特拉斯等数学家的努力下构建了严格的实数理论.这是数的概念的第四次扩充,形成了实数集.虚数作为一种合乎逻辑的假设得以引进,并在进一步的发展中加以运用•这是数学概念的第五次扩充,引进虚数,形成复数集•4证明:设集合A,B,C,D两两没有公共元素a,b,c,d分别是非空有限集A,B,C,D的基数,根据定义,若a b,则存在非空有限集A',使得A-〜B ;若c_d从而必存在非空有限集C',使得C二C'〜D,所以(A _• C)二(B D)所以集合A 一C的基数a c大于集合B . D的基数b d,所以a c b d .5(1)解:按照自然数序数理论加法定义,5 3 =5 2'= (5 2) 5= 515=5155=5 5 5 =15(2)解:按照自然数序数理论乘法定义5 ^5 2' = (5 2)'-(5 1')'二[(5 1)']'=(6 ) =7 =86证明:1当n =2时,命题成立.(反证法)当 n = k • 1时,由 a i . 0,i =1,2,…,k 1,且 a i - a 2 得,亠 空L ",且 41—a k 半 1 —a k 书 1— a k+1_a kH1、2 _ 22口 )+a k J 启,即 (k +111 —a^ )2 + k(k +1 alkk 1二 k 1 ?a k 「-2 k 1 a k 11 - 07证明:1当n = 8时,命题成立.(8 = 3 • 5 )2设n 二k (k ・7,k ・N )时命题成立.k 角邮资可能是:(1)完全用3角的邮票来支付;(2)至少用一张5角的邮票来支付•在(1)下,3角的邮票至少有3张.把它们换成两张5角的邮票便可支付k 1 角的邮票•在(2)下,把一张5角的邮票换成两张3角的邮票便可以支付k 1角的邮 票•综合1、2,命题对于不小于8的所有自然数成立. 8 证明:(1) f2=1, f3 =3=12, f4 =6 = 123」 」 1」(2) f n =12n -1 n n -121当n =2,3,4时,命题成立.12假设n 二k (k 7,^ N )时命题成立,即f k =-k k -1 .那么n 二k 1时,原k21条直线有-k (k -1)个交点.由条件知,第k 1条直线与原k 条直线各有一个交点,2且互不相同•故新增k 个交点,所以f k ・1二f k 」k ,1〔k ,1 -1.2综合1、2,命题对于不小于2的所有自然数成立.2 假设 n =k 时(k _2)成立,即 a i ■ 0,i =1,2,…,k ,2 2 a1a 221 ■ akka 1 a 2 J - a k 卅丿22 2221 —a k 12a 1 七 2 +…+a k +a “ >-__+a “由归纳假设,得a 1J —a k 卑 ja kJ一 akd4 j要证-k,9举例:正整数集N上定义的整除关系“|”满足半序关系.证明:(1)(自反性)任意的正整数x,总有x|x ;(2)(反对称性)如果x|y, y |x,那么x = y ;(3)(传递性)如果x|y, y|z,那么x|z.通常意义的小于等于也构成半序关系,同理可证.10证明:设M 5 N,且① 1 M②若a M,则a M .若M = N .令A是所有不属于M的自然数组成的集合,则A是N的非空子集,按照最小数原理,A中有最小数,设为b.由①知b=1,于是存在自然数c,使c二b,这样就有c ::: b,所以c M,但根据②有c M,这与b ■' M矛盾.所以M = N .11证明:(1)根据自然数减法定义有,a=b・(a_b),d ・(c_d) = c,两式相加得:a d (c-d) = b (a-b) c,于是(a d) (c -d) = (b c) (a - b),若a-b=c-d,贝U a d = b c若 a d = b c,贝U a-b=c-d(2)(a-b) (c-d) (b d) = b (a-b) d (c-d)=a c(3)先证(a-b)c 二ac-bc事实上,由be (a -b)c 二[b (a -b)]c 二ac可知要证明的自然数乘法对减法的分配律成立.由此,为了证明(3),只要证明a(c-d)-b(c— d) = (ac+bd)—(ad+bc),根据(1) 上式就是a(c _d) (ad be)二b(c - d) (ac bd)于是只要证明ac • be二be - ac显然,这个等式是成立的,所以(3)成立.12证明:(1 )根据自然数除法定义有^b a,d £ = c,两式相乘,得b dad — = bc 旦,所以有:若ad 二be,贝U -=—;若-=—,贝q ad 二bed b b d b d(2)bd(a ' c)二d(b 旦厂b(d —) =ad,bc,根据除法定义,(2)成立.b d b d(3)bd(a c^ (b a)(d c^ac,根据除法定义,(3)成立.b d b d13 证明:(m n ')'= (n m)' = n' m' = m' n'.14证明:设-a,b・N,下,下面证明a二b,a . b,a ::: b三种关系有且仅有一个成立.(1)先证明三个关系中至多有一个成立.假若它们中至少有两个成立,若令a=b, a . b同时成立,则存在k^N*,使得:a=bk=ak于是a a a,与a=a矛盾.同理可证,任意两种关系均不能同时成立.(2)再证明三中关系中至少有一个成立.取定a,设M是使三个关系中至少有一个成立的所有b的集合,当b=1时, 若a = 1,则a = b成立;若a = 1,则存在k N *,使得a = k时a >b成立.因此1€ M .假若b M,即三个关系中至少有一个成立.当 a ::: b时,存在m • N *,使得 b = a • m,则b^ (a m)=a m,即卩a ::: b 成立.当a b时,存在k • N*,使得a二b k,若k = 1,就有若k =1,就有| • N,且k =丨,使得a=b,l二b,IT二b l,即a b成立.综上,b M,从而M = N .15证明:n = n(ax by) = nax nby,a | n, ab|b n, ab|b ny ,b|n, ab | a n, ab |a nx.ab|nax nby = n16 证明:因为ab ■ cd - (ad ■ be) = (b -d)(a -c),且 a - e | ab cd , a - e | (b _ d)(a _ c),所以 a _ e | ab cd _ (b _ d )(a _ c),即a -c | ad bc17证明:因为pP -1 = (p -1)(p p4 • p p‘• p • 1),而有限个奇数的乘积仍是奇数,奇数个奇数的和也是奇数,因而p p^ p p^ p 1是奇数,于是p p T =(p -1)(2s 1),s Z,同理有q q 1 = (q 1)(2t 1),t Z,两式相加:p p q q=2(p -1)(s t 1) ^(p q)(s t 1),所以p q |(p p q q).18解:因为3p • 5q =31,所以3p 和5q 必为一奇一偶.若3p 为偶数,可验证质数p=2,q=5,则0g 2- Og 2- Og 2~ = -323q 13 5 1 8 若5q 为偶数,可验证质数P = 7, q = 2,则log 2 P log 2— 03q+13x2 + 1所以 log 2 P3或 0 .3q +119证明:根据减法是加法的逆运算知,设 a,b 是有理数,a —b 是这样一个数, 它与b 的和等于a •即(a —b) • b = a •但是,我们有[a (_b)] b =a [( -b) b](加法结合律)=a ■ 0 = a因此,a ^b)这个确定的有理数,它与b 的和等于a ,.a - b = a (-b)又如果差为x ,则有x • b =a ,于是,两边同加(-b)有:x b (一 b) = a (-b)x [b (—b)]二 a (—b) x = a (_b)即差只能是a • (-b),定理得证. 3_b=2^J .03321证明:首先证明x 兰y 当且仅当- y 兰x 兰y .事实上,若x^y ,当xK0时,x=xWy 且x Z —y ,即一y 兰x 兰y ;当xc0时,一x = x^y, 有- y 兰 x ,且 x<0 兰 y ,故一yEx 兰 y .反之,若一yExEy ,当 下面来证明:a —b 兰a+b 兰a+|b.事实上,对于a,b 显然有:20证明:做差,x - 0时, =x _ y;当 x :: 0 时,y _ -x-a <a <\a-b <b<\b故有—(a b)乞a b乞a b .由上面的讨论知,a +b w|a + b .另一方面,a =|a + b— b 兰a+b + — b = a+b +|b .故 a — b 勻a +b 勻a +|b .22证明:(反证法)设其中p,q是正整数,不妨假定p,q互素,q取自然数n .q,用n!乘下列级数表达式两边:丄丄……1! 2! 3! 得:1 1n!e =n! n! n(n 一1) 3 亠亠1n+1 (n +1)( n+2)1 1令a n二n! n! n(n -1) 3 -1, b n:n 1 (n 1)(n 2)于是n!e=a n也,则n!e应为正整数,n!e-a n应为整数.但是1 1 10 < b n - (1 - - )n+1 n+2 (n +2)( n+3)1 1 1 n2 2(1 2…) 2n 1 n 2 (n 2) (n 1) n 1因为n 1,故0 :::b n门,即b n不可能是整数,产生矛盾,所以e是无理数.23证明:假设n a = P,(p,q) =1,q =1q两边n次方得a =芈,q但是(P,q)=1,所以(p n,q n) =1,q n",所以a不是整数,这与已知条件矛盾,所以n a是无理数.24证明:假设log a b = —,P Z,q N,q所以a p=b q,因为(a,b) =1,所以(a p, b q) =1但是当pM时,上式明显不成立;当p 0时,上式与(a p,b q) =1矛盾.所以,log a b不是有理数,又可以证明log a b是实数,所以log a b是无理数.25证明:假设方程有有理数根x二卫,(P,q) =1,q 1,将x =-其代入方程,可得:q qp n = -q®卩心• a2p2q • a n q n'),由此可知q的任何素数因子r必可整除p n,因此r必可整除p,从而知r为p与q的公因子,但是(p,q) =1,所以r =1,所以q =1,这与q・1矛盾•所以整系数代数方程x n - a1X nJ- ■ a^ 0的任何非整实根均为无理数•26按照字典排序法,先比较实部,再比较虚部.27证明:将三次本原单位根x = •或• ‘2分别代入f (x):f (•,)».3m 1,3n 2 . 1 2 . 1 丸f ( .2)=( .2)3m 1( .2)3n 2 1 »2亠心亠1 丸因此,f (x)含有因式(x -,),(x -「),而(x 八)・(x -「)=x x ^0所以(x2 x 1) | f (x)8证明(反证法):若二与3.8的和是有理数a,即二• 3.8二a,则a - 3.8 =加. 因为全体有理数称为一个域,对减法运算封闭,所以差a-3.8仍是有理数,与二是无理数矛盾,所以二与3.8的和是无理数.29两个无理数的商可能是有理数.例如:2是无理数,易证2.2也是无理数,2— 2 Z、230不能,因为无理数对四则运算不封闭.例如2 一2 = 0 . 31 解:由于 z ° =(x yi)° =(x 3 4 _y 2 2xyi)2 =(x 2 一 y 2)2 _4x 2y 2 4(x 2 一 y 2)xyi所以 z 5是纯虚数的条件是(x 2 一 y 2)2 -4x 2y 2 二 0, 4(x 2 -y 2)xy = 0 即 x =(一仁 一2)y,y =032证明:设G 是C 的任一子域,G 二R ,且在G 中方程z 2 有解z = j . 按照题意,要证明C^C .因为G c ,所以只需要证明G 二c .由j • G ,G c ,知j • c ,依C 的四则运算律,有 (i —j)(i j) =i 2 ji -ij - j 2 =0于是,i = j 或 i - - j .任取•…C ,由』:=x yi,(x, y R), 知 =x yj 或 二 x _ yj又由于x, y, j G ,而G 是域,于是•…G ,因此G 二C .第二章习题及答案x1 .设 x 0,证明ln(1 x) :: x.1 +x1证明 取f(x)=ln(1 x).在(0, x)上有导数 厂(x)—.利用微分中值定理 1 +xx11x即 ln(1 x).又因 In(1 x)1,因此有 ln(1 x) :: x.1+ r1+x 11 + x22 23 2 21 22.若x, y,z 均为实数,且x y a(a 0), x y ' z a .求证:2f ( ) _f(x)-f(0)x —0ln(1 x) -1 n(10) x - 0,0O I X L a,0 乞y 二a,0 I Z L a.3 3 31 1证明由x2• y2• (a -x -y)2a2有x2• ( y-a)x •(y2- ay a2) = 0.其判别2 41 o 式.:-(y - a) -4(y -ay a ) _ 0(因x R).从而,3y -2ay _ 0即0 _ y a.4 32 2同理可证0 _ x " a,0 _ z " a.3 33.设a, b, c表示一个三角形三边的长,求证:2 2 2a (bc 一a) b (c a - b) c (a b - c)乞3abc.证明不失一般性,设a X b^c,令a=c + m, b = c + n,则m^n > 0.有3abc _a2(b c _a) _b2(c a _ b) _c2(a b _c)=a(a _b)(a _c) b(b _c)(b _a) c(c _a)(c _ b)2 2二(c m)(m _n)m (c n)n(n _ m) cmn = (m _ n)[c(m _n) (m _ n )] cmn _ 0.2 2 2a (bc _ a) b (c a _b) c (a b _ c)乞3abc.4.设x, y E R,且x2+ y2兰1.求证:x2+2xy — y2<V2.证明设x2+ y2=k2,则由题设可知,|九| ",并可设x =人cos6 x = h sin日.于是x2 +2xy —y2=扎2 (cos2日+2cos日sin日一sin2日)-■ 2(cos2二sin 2二)-■ \ 2 sin( ).4x2 +2xy _y2|MT2.I a +b |5.已知a <1, b <1,求证 -------- <1.|1 + ab|证明欲证—~E <1成立,只需(一)2£1,即证(a +b)2c (1 + ab)2.|1 +ab| 1 +ab贝帜需(1 ab)2 - (a b)2 0,也就是1 a2b2 - a2 -b2 0,即证(1-a2)(1-b2)>0.而a <1, b <1,所以(1 —a2)(1 —b2) > 0 成立.命题得证.1 1n 门6.若' a i =1® 0),求丨丨(a i 一)-(n —)n.i =1 i a i n11 1 1a 1 22... 2 - a 1n 印 n a t n a t------ -------------- Y ----------------------n 2项1以上诸式,当且仅当a = —(i=1,2,…,n)是等号成立.诸式两端相乘得n+丄)心2 +丄)…(a . +丄)兰(『+1甘隹 V VI石.a 1 a 2 a n ; n 心念…耳)由已知 a a i -1 可得 n a 1a 2...a^1,(-)n J - n n :i =1na ? ・・.a n)(a2 )•••(% )-(n ?〔八2『—n 』3,即 I 丨(ai)-(n)1V等号当且仅当 印=a 2二…=a n时成立.n7.证明:函数 f (X )= X 8 - X 5 ■ X 2 -X ■ 1 • 0. 证明(1)当x • (-::,0)时,显然f (x)・0; (2) 当 x (0,1)时,f (x) = x 8 x 2(1「x 3) (1「x) 0; (3) X [1,::)时,f(x) =x 5(x 3-1) x(x-1) 1 0.综合(1), (2),⑶可知,可知f (X)恒正.&证明 若a 王1(i=1,2,...,n),则丫亠心念…可十1)色(1 +厲)(1 + &2)...(1 +可). 证明用数学归纳法证明如下: 当n =1时,命题显然成立;假设命题对n 成立,我们来证明它对n 1也成立,注意到a i -1(i =1,2,..., n).n 1 nn 1nVI(1 a)乞(1a n1) 2n %【a i "Vil a iqa^ 1)i =1i =1i =1i =1证明 a i1a2a 21 n a “n 2项(印 (冃2-(n - 1)n 2n 2项1 — —n a nn a n-(n 21)n 21_(n 2 1)n 2a1 a2 a n ,n n v a i n= (2z 2 2xy)7.就是所要证的不等式.11.已知a,b 为小于1的正数,求证:■ a 2 b 2,..(1 — a)2 b 2,、a 2 (1 -b)2(1 — a)2 (1 — b)2 一2逅7332 2 2 310.设 x y z =0,求证:6(x y z )乞(x y z ).证明 显然x = y = z =0是平凡情形•假定x, y, z 不全为零,不妨设x 0, y ::: 0.由 z = -(x y),得 x 3 y 3 z 3 =3xy 乙记n 卑n 1n 1 =2 -[口 a +1+(n a i +a n(] =2 —[(口 a : +1)+0 ai 丄n <1n An -1nT • I 丨a i -1| ] a , a n.1)]i4in 1= 2n([【3ii 4n 1n 1n 1•1)—2 ([[ q ・1・ | 丨 a^an 1)i =1 i 4n1)—2n 」[i 【a2n.1 —1) — (a n.1 -1)]i 4=2七【a i 1)-2n 」(a n-1)[H a -1)i Ain 1乞 2n (|〕3i1).故命题对n • 1成立. 9.设 a i _1( =1,2,..., n), 求证丨丨(1 aj_ 二(1 y a ? ... a .).v n 1证明ni 【(1 ai)i 1n= 2n i 【 i 吕 a _1(1 1 ) _2n (1 '、2y 2(吨冷=2n丄 n +1 n2门n[(nT ;/ 切百⑴:/).I =6 (x 3y 3 z 3) 25x4y 2z 2 =22■z2<216再注意到 x 2 • y 2 =(x • y)2「2xy 二 z 2 2 xy ,因而 2z 2 2 x^ x 2 y 2 z 2,这证明 设 z = a bi,z 2 = (1 — a) bi,z 3 = a (仁 b)i,乙=(仁a)(仁 b)i,则Z i =Ja 2 +b 2 , Z 2 = J(1 —a)2 +b 2 , Z 3 =*(1 — a) +b ,引=J a 2 +(1—b)2 +J (1—a)2+(1—b)2 .乙 + Z2 + z 3 + Z 4 Z Z | + z 2 + z 3 + Z 4 = 2 + 2i = 2/2..、.a b .(1—a) b a (1 — b) 、.(1—a) (1—b) - ^2.12. 设 abc R ,+ 求证:a "+b “+c “ Aa p b q c r +a q b r c p +a r b p c q ,其中 n N , p, q, r ,且 p q r 二 n.n 丄 -n 丄 npa qb rc nnnnnn n乞qa rb pc, aHc q 乞 ra pb qc三式相加,即得 a n +b n +c n =a p b q c r +a q b r c p +a r b p c q .33322213. 设 a,b,c R ,求证:a b c - a b b c c a.证明 该不等式关于a,b,c 对称,不妨设a K b H e,则由左式-右式2 2 2 2 2 2=a (a _b) b (b _c) c (c _a) = a (a -b) b (b _c) c (c_b b _ a) -(a 2 -c 2)(a -b) (b 2 -c 2)(b -c) _0.故 a 3 b 3 c 3 _ a 2b b 2c c 2a.14. 已知a b 0,求证 3 a -3、b :: 3 a -b.证欲证3a - 36 ::: 3匸E,由于a b 0,所以3 a - 3b 0, 3匸b 0,只要证 a -33 a 2b 33ab 2—b :a — b, 即要证 $ab 2 <*a 2b,由于 ^ab 0,只要证 3b :: 3 a, 由于a b 0,此不等式显然成立.215. 若 p E R 且 p C2,不等式(log2^ + plog 2 x+1 A2log 2 x + p 恒成立,求实数 x 的取值范围.同理a q b r c p证明a p b q c rn nc ...c 二r解令log2x=a,将不等式转化为:(a T)p • a2-2a • 1 • 0,令x -xd 1二 / * x 1 JL x0, a.I : 一 0.2「f(P )>0,f(p) =(a -1)p • a -2a 1,则 f(p) ■ 0恒成立,等价于:.f (一2) . 0.22(a -1) a -2a 10, =' 2-2(a -1) a -2a 10. —— 1 解不等式组得:a .3或a ::: -1= x - 8或0 ::: x .216.设e 是自然对数的底,-是圆周率,求证e 二■二e .证明因为匸一圧=lnxnex二1 一 l n x r ,19.已知a - 0且a=1,解关于x 的不等式log a (1-」)4x 1解 原不等式:二log a (1 ) log a a.x(1)当a • 1时,原不等式1 -ln x 小2 0, x “1 —l n x所以.e 丁di 0.因此, ln e ln 二—> ------- e 二 17 •当X 为何值时,不等式4x 2(1- J 2x)2:::2x 9 成立? 解先将不等式分母有理化,有 4x 2 2x(1 +J 1 +2x) =.1 ----- : -------------- — (1 - J 2x)2|L (1 - 1 2x)(1 、1 2x) 因此原不等式同解于不等式组 二(1、,1 2x)2 = 2 2x 2 1 2x. 1 2x _0 二 x -1 2 解得 2 +2x +2丁1 +2x c2x + 9u 45 x :8即原不等式的解集为Jx-1 2兰 x <0>LH x 0w J I45 x . 820.某厂拟生产甲、乙两种适销产品,每件销售收入分别为 3千元、2千元.甲、乙产品都需要在A ,B 两种设备上加工,在每台 A ,B 上加工一件甲所需工时分别为 1时、2时, 加工一件乙所需工时分别为 2时、1时,A ,B 两种设备每月有效使用台时数分别为 400和 500.如何安排生产可使收入最大?解这个问题的数学模型是二元线性规划.'x+2y 兰 400, 2x 十 v 兰 500, 一设甲、乙两种产品的产量分别为x, y 件,约束条件是,目标函数是xZO, y _o.f = 3x 2y .要求出适当的x, y ,使f = 3x ■ 2y 取得最大值.佩:*图 (该图来至高中数学课程标准,需重做)3a先要画出可行域,如图。

相关文档
最新文档