排列组合二项式知识点及例题

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

排列组合

分类计数原理:完成一件事,有n 种不同的方法,在1类办法中有m 1种不同的办法,在第2类办法中有m 2种不同的方法······在第n 种办法中有m n 种不同的方法。那么完成这件事共有N= m 1 +m 2+······ m n 种不同的方法 分步计数原理:完成一件事,需要分成n 个步骤,做第1步有m 1种不同的方法,做第2步有m 2种不同的打方法·····做第n 步有m n 种不同的方法,那么完成这件事共有N= m 1 ×m 2×······×m n 种不同的方法

1.排列的概念:从n 个不同元素中,任取m (m n ≤)个元素(这里的被取元素各不相同)按照一定的顺序.....排成一列,叫做从n 个不同元素中取出m 个元素的一个排列....

2.排列数的定义:从n 个不同元素中,任取m (m n ≤)个元素的所有排列的个数叫做从n 个元素中取出m 元素的排列数,用符号m

n A 表示 3.排列数公式:(1)(2)(1)m n A n n n n m =---+L (,,m n N m n *∈≤)

4 阶乘:!n 表示正整数1到n 的连乘积,叫做n 的阶乘规定0!1=.

5.排列数的另一个计算公式:m n A =!()!n n m - 6 组合概念:从n 个不同元素中取出m ()m n ≤个元素并成一组,叫做从n 个不同元素中取出m 个元素的一个组合

7.组合数的概念:从n 个不同元素中取出m ()m n ≤个元素的所有组合的个数,叫做从n 个不同元素中取出m 个元素的组合数....用符号m

n C 表示. 8.组合数公式:(1)(2)(1)!m m

n n

m m A n n n n m C A m ---+==L 或)!(!!m n m n C m n -=,,(n m N m n ≤∈*且 9.组合数的性质1:m n n m n C C -=.规定:10=n C ;

10.组合数的性质2:m n C 1+=m n C +1-m n C C n 0+C n 1+…+C n n =2n 排列组合问题的解题策略

一、相临问题——捆绑法

一般地: 个人站成一排,其中某 个人相邻,可用“捆绑”法解决

例1.7名学生站成一排,甲、乙必须站在一起有多少不同排法?

二、不相临问题——选空插入法

若 个人站成一排,其中 个人不相邻,可用“插空”法解决

例2. 7名学生站成一排,甲乙互不相邻有多少不同排法?

三、复杂问题——总体排除法

在直接法考虑比较难,或分类不清或多种时,可考虑用“排除法”,解决几何问题必须注意几何图形本身对其构成元素的限制。

例3.正六边形的中心和顶点共7个点,以其中3个点为顶点的三角形共有多少个.

四、特殊元素——优先考虑法

对于含有限定条件的排列组合应用题,可以考虑优先安排特殊位置,然后再考虑其他位置的安排。

例4.1名老师和4名获奖学生排成一排照像留念,若老师不排在两端,则共有不同的排法有多少种.

例5.乒乓球队的10名队员中有3名主力队员,派5名队员参加比赛,3名主力队员要安排在第一、三、五位置,其余7名队员选2名安排在第二、四位置,那么不同的出场安排共有多少种.

五、多元问题——分类讨论法

对于元素多,选取情况多,可按要求进行分类讨论,最后总计。

例6.某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目.如果将这两个节目插入原节目单中,那么不同插法的种数为()

A.42 B.30 C.20 D.12

六、混合问题——先选后排法

对于排列组合的混合应用题,可采取先选取元素,后进行排列的策略.

例7.12名同学分别到三个不同的路口进行车流量的调查,若每个路口4人,则不同的分配方案共有()

例8.从黄瓜、白菜、油菜、扁豆4种蔬菜品种中选出3种,分别种在不同土质的三块土地上,其中黄瓜必须种植,不同的种植方法共有()

A.24种B.18种C.12种D.6种

七.相同元素分配——档板分隔法

例9.把10本相同的书发给编号为1、2、3的三个学生阅览室,每个阅览室分得的书的本数不小于其编号数,试求不同分法的种数。

解:先让2、3号阅览室依次分得1本书、2本书;再对余下的7本书进行分配,保证每个阅览室至少得一本书,这相当于在7本相同书之间的6个“空档”内插入两个相同“I”(一般可视为“隔板”)共有种插法,即有15种分法。八.特殊元素(位置)的“优先安排法”:

对于特殊元素(位置)的排列组合问题,一般先考虑特殊,再考虑其他。

例10、用0,2,3,4,5,五个数字,组成没有重复数字的三位数,其中偶数共有()。

A.24个B.30个 C.40个 D.60个

九.总体淘汰法:对于含否定的问题,还可以从总体中把不合要求的除去。如例10中,也可用此法解答:五个数字组成三位数的全排列有A53个,排好后发现0不能排首位,而且数字3,5也不能排末位,这两种排法要排除,故有A53--3A42+ C21A31=30个偶数。

六.顺序固定用“除法”:对于某几个元素按一定的顺序排列问题,可先把这几个元素与其他元素一同进行全排列,然后用总的排列数除于这几个元素的全排列数。

例11、6个人排队,甲、乙、丙三人按“甲---乙---丙”顺序排的排队方法有多少种?

分析:不考虑附加条件,排队方法有A66种,而其中甲、乙、丙的A33种排法中只有一种符合条件。故符合条件的排法有A66 ÷A33 =120种。(或A63种)

例12、4个男生和3个女生,高矮不相等,现在将他们排成一行,要求从左到右女生从矮到高排列,有多少种排法。

解:先在7个位置中任取4个给男生,有A74 种排法,余下的3个位置给女生,只有一种排法,故有A74 种排法。(也可以是A77 ÷A33种)

练习题:

相关文档
最新文档