有理数的乘方练习题(供参考)

合集下载

有理数的乘方练习题

有理数的乘方练习题

有理数的乘方练习题有理数的乘方是数学中的一个重要概念,它在实际生活中有着广泛的应用。

本文将通过一些习题来帮助读者更好地理解和掌握有理数的乘方。

1. 计算以下乘方:a) 2^3 = 2 × 2 × 2 = 8b) (-3)^2 = (-3) × (-3) = 9c) 0.5^4 = 0.5 × 0.5 × 0.5 × 0.5 = 0.06252. 化简以下乘方:a) (2^3)^2 = 2^(3 × 2) = 2^6 = 64b) (-3)^3 × (-3)^2 = (-3)^(3 + 2) = (-3)^5 = -243c) (0.5^2)^3 = 0.5^(2 × 3) = 0.5^6 = 0.0156253. 计算带有负指数的乘方:a) 2^(-3) = 1/(2^3) = 1/8 = 0.125b) (-3)^(-2) = 1/((-3)^2) = 1/9 ≈ -0.111c) 0.5^(-4) = 1/(0.5^4) = 1/0.0625 = 164. 计算带有分数指数的乘方:a) 2^(1/2) = √2 ≈ 1.414b) (-3)^(2/3) = ∛((-3)^2) = ∛9 = -1.442c) 0.5^(3/4) = ∜(0.5^3) = ∜0.125 = 0.5通过以上习题的练习,我们可以发现有理数的乘方有一些规律和性质。

首先,正数的正指数乘方结果仍为正数,负指数乘方结果为其倒数。

这是因为正数的乘方表示连乘,而负指数表示倒数。

例如,2^3 = 2 × 2 × 2 = 8,而2^(-3) = 1/(2^3) = 1/8 = 0.125。

其次,负数的偶数次幂结果为正数,奇数次幂结果为负数。

这是因为负数的偶数次幂可以看作正数的偶数次幂乘以-1,而奇数次幂则多乘以一个-1。

例如,(-3)^2 = (-3) × (-3) = 9,而(-3)^3 = (-3) × (-3) × (-3) = -27。

七年级数学有理数的乘方练习题(附答案)

七年级数学有理数的乘方练习题(附答案)

七年级数学有理数的乘方练习题一、单选题1.()20201-等于( )A. 2020-B.2020C.-1D.1 2.已知()2230a b -++=,则下列式子值最小是( )A. a b +B. a b -C. a bD. ab3.下列各对数中,数值相等的数是( )A. 23与32B. 23-与()23-C. ()332⨯与332⨯D. 32-与()32- 4.有理数232(1),(1),1,1,(1)------中,其中等于1的个数是( )A.2个B.3个C.4个D.5个 5.下列计算①21124⎛⎫-= ⎪⎝⎭;②239-=;③22455⎛⎫= ⎪⎝⎭;④21139⎛⎫--= ⎪⎝⎭;⑤()224-=,其中正确的有( )A.1B.2C.3D.46.下列各组数中,不是互为相反数的是( )A.(3)--与(3)+-B.23-与2(3)-C.3--与3+D.3(3)--与337.下列各组数中,结果一定相等的是( )A. 2a -与()2a -B. 2a 与()2a -- C. 2a -与()2a -- D. ()2a -与()2a -- 8.下列各组的两个数中,运算后结果相等的是( )A.34和43B.()53-和53-C.()42-和42-D.323⎛⎫ ⎪⎝⎭和323 9.下列各组数中,数值相等的是( )A.32-和3(2)-B.22-和2(2)-C.32-和23-D.101-和10(1)- 10.32-等于( )A.6-B.6C.8-D.8 11.化简()20201-的值是( ) A.1B.2020-C.2020D.1-二、填空题12.在有理数2223,3.5,(3),2,, 3.14159263⎛⎫------ ⎪⎝⎭中,负数有______个,分数有_____个. 13.若2a =,则2a =_________,3a =__________.14.计算()()2018201911---的结果为_________.15.若5a =,则a = ________;平方得36的数是_________.参考答案1.答案:D解析:2.答案:D解析:3.答案:D解析:4.答案:B解析:5.答案:B解析:6.答案:D解析:7.答案:C解析:8.答案:B解析:9.答案:A解析:10.答案:C解析:11.答案:A解析:12.答案:2;3解析:13.答案:4;±8解析:14.答案:2解析:15.答案:5±,6±解析:。

有理数的乘方练习题(含参考答案)

有理数的乘方练习题(含参考答案)

有理数的乘方练习题(含参考答案)一.选择题 1、118表示( )A 、11个8连乘B 、11乘以8C 、8个11连乘D 、8个别1相加2、-32的值是( )A 、-9B 、9C 、-6D 、63、下列各对数中,数值相等的是( )A 、 -32与 -23B 、-23与 (-2)3C 、-32与(-3)2D 、(-3×2)2与-3×224、下列说法中正确的是( )A 、23表示2×3的积 B 、任何一个有理数的偶次幂是正数 C 、-32与 (-3)2互为相反数 D 、一个数的平方是94,这个数一定是325、下列各式运算结果为正数的是( )A 、-24×5 B 、(1-2)×5 C 、(1-24)×5D 、1-(3×5)66、如果一个有理数的平方等于(-2)2,那么这个有理数等于( ) A 、-2 B 、2 C 、4D 、2或-27、一个数的立方是它本身,那么这个数是( ) A 、 0 B 、0或1 C 、-1或1D 、0或1或-1 8、如果一个有理数的正偶次幂是非负数,那么这个数是( )A 、正数B 、负数C 、 非负数D 、任何有理数9、-24×(-22)×(-2) 3=( )A 、 29B 、-29C 、-224D 、22410、两个有理数互为相反数,那么它们的n 次幂的值( ) A 、相等 B 、不相等 C 、绝对值相等D 、没有任何关系11、一个有理数的平方是正数,则这个数的立方是( ) A 、正数 B 、负数 C 、正数或负数 D 、奇数 12、(-1)2001+(-1)2002÷1-+(-1)2003的值等于( )A 、0B 、 1C 、-1D 、2二、填空题1、(-2)6中指数为 ,底数为 ;4的底数是 ,指数是 ;523⎪⎭⎫⎝⎛-的底数是 ,指数是 ,结果是 ;2、根据幂的意义,(-3)4表示 ,-43表示 ; 3、平方等于641的数是 ,立方等于641的数是 ; 4、一个数的15次幂是负数,那么这个数的2003次幂是 ; 5、平方等于它本身的数是 ,立方等于它本身的数是 ;6、=⎪⎭⎫ ⎝⎛-343 ,=⎪⎭⎫⎝⎛-343 ,=-433 ; 7、()372⋅-,()472⋅-,()572⋅-的大小关系用“<”号连接可表示为 ;8、如果44a a-=,那么a 是 ;9、()()()()=----20022001433221 ;10、如果一个数的平方是它的相反数,那么这个数是 ;如果一个数的平方是它的倒数,那么这个数是 ;11、若032>b a -,则b 0计算题1、()42-- 2、3211⎪⎭⎫⎝⎛3、()20031- 4、()33131-⨯--5、()2332-+- 6、()2233-÷-7、()()3322222+-+-- 8、()34255414-÷-⎪⎭⎫ ⎝⎛-÷9、()⎪⎭⎫ ⎝⎛-÷----721322246 10、()()()33220132-⨯+-÷---三、解答题1、有一张厚度是0.2毫米的纸,如果将它连续对折10次,那么它会有多厚?2、某种细菌在培养过程中,每半小时分裂一次(由一个分裂成两个),若这种细菌由1个分裂为16个,则这个过程要经过多长时间?3、你吃过“手拉面”吗?如果把一个面团拉开,然后对折,再拉开,再对折,……如此往复下去,对折10次,会拉出多少根面条?探究创新乐园 1、你能求出1021018125.0⨯的结果吗?2、若a 是最大的负整数,求2003200220012000a a a a +++的值。

七年级数学上册有理数的乘方练习题

七年级数学上册有理数的乘方练习题

七年级数学上册有理数的乘方练习题(含答案解析)学校:___________姓名:___________班级:___________考号:___________一、填空题1.根据有理数乘方的意义,算式3333355555⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫-⨯-⨯-⨯-⨯- ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭可表示为__________.2.已知a ,b (b +3)2=0,则(a +b )2022的值为 _____.3.()()()333-⋅-⋅-用幂的形式可表示为____.4.现定义一种新运算(),a b ,若c a b =,则(),a b c =,例如:∵4381=,∵()3,814=.依据上述运算规则,计算()115,125,416⎛⎫+ ⎪⎝⎭的结果是______. 5.在2,﹣3,4,﹣5这四个数中,任取两个数相乘,所得的积最大是______.6.按一定规律排列的单项式:2a -,34a ,49a -,516a ,625a -,…,第n 个单项式是__________.二、单选题7.等号左右两边一定相等的一组是( )A .()a b a b -+=-+B .3a a a a =++C .()222a b a b -+=--D .()a b a b --=-- 8.如图,点A 、B 表示的实数互为相反数,则点B 表示的实数是( )A .2B .-2C .12 D .12- 9.与3的乘积等于﹣1的数是( )A .﹣3B .3C .13D .13- 10.对于(﹣4)3和﹣43,下列说法正确的是( )A .底数相同,指数相同B .底数不同,指数不同C .底数相同,运算结果不同D .底数不同,运算结果相同11.观察式子:12345677749734372401716807==7117649====、、、、、、…,请你判断20197的结果的个位数是( ) A .1 B .3 C .7 D .9三、解答题12.计算(1)(﹣12)﹣(﹣20)+(﹣8)﹣15(2)(﹣1)4 + 16 ÷(﹣2)3﹣| 1﹣3 |13.()23-与23-有什么不同?结果相等吗?14.观察以下等式:第1个等式:()()()22221122122⨯+=⨯+-⨯,第2个等式:()()()22222134134⨯+=⨯+-⨯,第3个等式:()()()22223146146⨯+=⨯+-⨯,第4个等式:()()()22224158158⨯+=⨯+-⨯,……按照以上规律.解决下列问题:(1)写出第5个等式:________;(2)写出你猜想的第n 个等式(用含n 的式子表示),并证明.参考答案:1.53()5- 【分析】根据有理数乘方的意义进行化简即可; 【详解】解:3333355555⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫-⨯-⨯-⨯-⨯- ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭=53()5-, 故答案为:53()5- 【点睛】本题考查了有理数乘方,明确乘方的意义是解题的关键,本题是基础题.2.1【分析】根据非负数的性质列式求出a 、b 的值,然后代入代数式进行计算即可得解.【详解】解:(b +3)2=00,(b +3)2≥0,∵a ﹣2=0,b +3=0,解得a =2,b =﹣3,所以,(a +b )2022=(2﹣3)2022=1.故答案为:1.【点睛】本题考查了非负数的性质.解题的关键是掌握非负数的性质:几个非负数的和为0时,这几个非负数都为0.3.3(3)-【分析】根据乘方的定义即可解答.【详解】算式()()()333-⋅-⋅-用幂的形式可表示为3(3)-.故答案为3(3)-.【点睛】本题考查乘方的定义:求n 个相同因数积的运算叫做乘方,解题的关键是熟练掌握幂的形式. 4.5【分析】根据新运算定义求出(5,125)=3,11,416⎛⎫ ⎪⎝⎭=2,代入计算即可. 【详解】解:∵35125=,∵(5,125)=3, ∵211416⎛⎫= ⎪⎝⎭, ∵11,416⎛⎫ ⎪⎝⎭=2,∵()115,125,416⎛⎫+ ⎪⎝⎭=3+2=5, 故答案为:5.【点睛】此题考查了新定义运算,正确掌握有理数的乘方运算是解题的关键.5.15【分析】两个数相乘,同号得正,异号得负,且正数大于一切负数,所以找积最大的应从同号的两个数中寻找即可.【详解】解:2×4=8,(﹣3)×(﹣5)=15,15>8.∵积最大是15.故答案为:15.【点睛】本题主要考查的知识点是有理数的乘法及有理数大小比较,关键要明确不为零的有理数相乘的法则:两数相乘,同号得正,异号得负,并把绝对值相乘.6.21(1)n n n a +-【分析】根据单项式的正负号、系数、次数与排列位置的关系列代数式即可;【详解】解:∵2a -=1211(1)1a +-,34a =2221(1)2a +-,49a -=3231(1)3a +-,516a =4241(1)4a +-,…,21(1)n n n a +-,故答案为:21(1)n n n a +-;【点睛】本题考查了单项式的变化规律,掌握乘方的性质和运算法则是解题关键.7.C【分析】利用去括号法则与正整数幂的概念判断即可.【详解】解:对于A ,()a b a b -+=--,A 错误,不符合题意;对于B ,3a a a a =⋅⋅,B 错误,不符合题意;对于C ,2()22a b a b -+=--,C 正确,符合题意;对于D ,()a b a b --=-+,D 错误,不符合题意.故选:C .【点睛】本题考查了去括号法则,以及正整数幂的概念,熟练掌握相关定义与运算法则是解题的关键. 8.A【分析】根据互为相反数的两个数的和为0即可求解.【详解】解:因为数轴上两点A,B表示的数互为相反数,点A表示的数是-2,所以点B表示的数是2,故选:A.【点睛】此题考查了相反数的性质,数轴上两点间的距离,解题的关键是利用数形结合思想解答.9.D【分析】根据有理数的乘法即可求得.【详解】解:13=13-⨯-,∴与3的乘积等于﹣1的数是13 -,故选:D.【点睛】本题考查了有理数的乘法,熟练掌握和运用有理数的乘法法则是解决本题的关键.10.D【分析】根据幂的性质判断即可;【详解】由(﹣4)3和﹣43可知:指数相同,底数不同,()3464-=-,3446-=-,运算结果相同;故选D.【点睛】本题主要考查了幂的认识和运算,准确分析判断是解题的关键.11.B【分析】通过观察可知个位数字是7,9,3,1四个数字一循环,根据这一规律用2019除以4,根据余数即可得出答案.【详解】解:∵12345677749734372401716807==7117649====、、、、、、…,∵个位数字以7、9、3、1这4个数字一循环,∵2019÷4=504…3,∵20197的个位数字与73的个位数字相同是3.故选:B.【点睛】此题主要考查了数字类规律,正确得出尾数变化规律是解题关键.12.(1)-15(2)-3【分析】(1)根据有理数的加减计算法则求解即可;(2)根据含乘方的有理数混合计算法则求解即可.(1)解:原式1220815=-+--15=-;(2)解:原式()11682=+÷--122=--3=-.【点睛】本题主要考查了有理数的加减计算,含乘方的有理数混合计算,熟知相关计算法则是解题的关键. 13.()23-表示2个-3相乘,而23-表示2个3的乘积的相反数;它们的结果不相等.【分析】根据乘方的意义,即可求解.【详解】解:()23-表示2个-3相乘,而23-表示2个3的乘积的相反数;它们的结果不相等,理由如下:∵()239-=,239-=-,∵()2233-≠-.【点睛】本题主要考查了乘方的运算及其意义,熟练掌握乘方的运算法则及其意义是解题的关键. 14.(1)()()()2222516101610⨯+=⨯+-⨯(2)()[][]22221(1)21(1)2n n n n n +=+⋅+-+⋅,证明见解析【分析】(1)观察第1至第4个等式中相同位置的数的变化规律即可解答;(2)观察相同位置的数变化规律可以得出第n 个等式为()[][]22221(1)21(1)2n n n n n +=+⋅+-+⋅,利用完全平方公式和平方差公式对等式左右两边变形即可证明.(1)解:观察第1至第4个等式中相同位置数的变化规律,可知第5个等式为:()()()2222516101610⨯+=⨯+-⨯, 故答案为:()()()2222516101610⨯+=⨯+-⨯;(2)解:第n 个等式为()[][]22221(1)21(1)2n n n n n +=+⋅+-+⋅,证明如下:等式左边:()2221441n n n +=++,等式右边:[][]22(1)21(1)2n n n n +⋅+-+⋅ [][](1)21(1)2(1)21(1)2n n n n n n n n =+⋅+++⋅⋅+⋅+-+⋅[](1)411n n =+⋅+⨯2441n n =++,故等式()[][]22221(1)21(1)2n n n n n +=+⋅+-+⋅成立.【点睛】本题考查整式规律探索,发现所给数据的规律并熟练运用完全平方公式和平方差公式是解题的关键.。

七年级数学有理数的乘方练习题(含答案)

七年级数学有理数的乘方练习题(含答案)

有理数的乘方一.选择题1、118表示〔〕A、11个8连乘B、11乘以8C、8个11连乘D、8个别1相加2、-32的值是〔〕A、-9B、9C、-6D、63、以下各对数中,数值相等的是〔〕A、-32与-23B、-23与 (-2)3C、-32与(-3)2D、(-3×2)2与-3×224、以下说法中正确的选项是〔〕A、23表示2×3的积B、任何一个有理数的偶次幂是正数4,这个C、-32 与 (-3)2互为相反数D、一个数的平方是92数一定是35、以下各式运算结果为正数的是〔〕A、-24×5B、(1-2)×5C、(1-24)×5D、1-(3×5)66、假如一个有理数的平方等于(-2)2,那么这个有理数等于〔〕A、-2B、2C、4D、2或-27、一个数的立方是它本身,那么这个数是〔〕A、 0B、0或1C、-1或1D、0或1或-18、假如一个有理数的正偶次幂是非负数,那么这个数是〔〕A 、正数B 、负数C 、 非负数D 、任何有理数 9、-24×(-22)×(-2) 3=〔 〕A 、 29B 、-29C 、-224D 、22410、两个有理数互为相反数,那么它们的n 次幂的值〔 〕 A 、相等 B 、不相等 C 、绝对值相等D 、没有任何关系11、一个有理数的平方是正数,那么这个数的立方是〔 〕 A 、正数 B 、负数 C 、正数或负数D 、奇数 12、(-1)2001+(-1)2002÷1-+(-1)2003的值等于〔 〕A 、0B 、 1C 、-1D 、2 二、填空题1、(-2)6中指数为 ,底数为 ;4的底数是 ,指数是 ;523⎪⎭⎫⎝⎛-的底数是 ,指数是 ,结果是 ;2、根据幂的意义,(-3)4表示 ,-43表示 ;3、平方等于641的数是 ,立方等于641的数是 ;4、一个数的15次幂是负数,那么这个数的2003次幂是 ;5、平方等于它本身的数是 ,立方等于它本身的数是 ;6、=⎪⎭⎫ ⎝⎛-343 ,=⎪⎭⎫⎝⎛-343 ,=-433 ;7、()372⋅-,()472⋅-,()572⋅-的大小关系用“<〞号连接可表示为 ;8、假如44a a -=,那么a 是 ;9、()()()()=----20022001433221 ;10、假如一个数的平方是它的相反数,那么这个数是 ;假如一个数的平方是它的倒数,那么这个数是 ;11、假设032>b a -,那么b 0 计算题1、()42-- 2、3211⎪⎭⎫ ⎝⎛3、()20031-4、()33131-⨯--5、()2332-+-6、()2233-÷-7、()()3322222+-+-- 8、()34255414-÷-⎪⎭⎫ ⎝⎛-÷9、()⎪⎭⎫ ⎝⎛-÷----721322246 10、()()()33220132-⨯+-÷---解答题1、按提示填写:2、有一张厚度是0.2毫米的纸,假如将它连续对折10次,那么它会有多厚?3、某种细菌在培养过程中,每半小时分裂一次〔由一个分裂成两个〕,假设这种细菌由1个分裂为16个,那么这个过程要经过多长时间?4、你吃过“手拉面〞吗?假如把一个面团拉开,然后对折,再拉开,再对折,……如此往复下去,对折10次,会拉出多少根面条?探究创新乐园1、你能求出1021018.0⨯的结果吗?1252、假设a是最大的负整数,求20032000a20022001++的值。

有理数的乘方练习题(可用)

有理数的乘方练习题(可用)

有理数的乘方(1)之杨若古兰创作一.选择题1、118暗示()A、11个8连乘B、11乘以8C、8个11连乘D、8个别1相加2、-32的值是()A、-9B、9C、-6D、63、以下各对数中,数值相等的是()A、-32与-23B、-23与 (-2)3C、-32与(-3)2D、(-3×2)2与-3×224、以下说法中准确的是()A、23暗示2×3的积B、任何一个有理数的偶次幂是负数C、-32 与 (-3)2互为相反数 D5、以下各式运算结果为负数的是()A、-24×5B、(1-2)×5C、(1-24)×5D、1-(3×5)6二、填空题1、(-2)6中指数为,底数为;4果是;2、根据幂的意义,(-3)4暗示,-43暗示;34、一个数的15次幂是负数,那么这个数的2003次幂是;5、平方等于它本人的数是,立方等于它本人的数是;计算题135有理数的乘方(2)一.选择题1、如果一个有理数的平方等于(-2)2,那么这个有理数等于()A、-2B、2C、4D、2或-22、一个数的立方是它本人,那么这个数是()A、 0B、0或1C、-1或1D、0或1或-13、如果一个有理数的正偶次幂是非负数,那么这个数是()A、负数B、负数C、非负数D、任何有理数4、-24×(-22)×(-2) 3=()A、 29B、-29C、-224D、2245A、相等B、不相等C、绝对值相等D、没有任何关系6、一个有理数的平方是负数,则这个数的立方是()A、负数B、负数C、负数或负数D、奇数7、(-1)2001+(-1)2002(-1)2003的值等于()A、0B、 1C、-1D、2二、填空题12345、如果一个数的平方是它的相反数,那么这个数是;如果一个数的平方是它的倒数,那么这个数是;6计算题13解答题1、按提示填写:2、有一张厚度是0.2毫米的纸,如果将它连续对折10次,那么它会有多厚?3、某种细菌在培养过程中,每半小时分裂一次(由一个分裂成两个),若这类细菌由1个分裂为16个,则这个过程要经过多长时间?4、你吃过“手拉面”吗?如果把一个面团拉开,然后对折,再拉开,再对折,……如此来去下去,对折10次,会拉出多少根面条?探究创新乐园1?2.345、比较上面算式结果的大小(在横线上填“>”、“<”或“=”):通过观察归纳,写出能反映这一规律的普通结论.67各项幂的底数与右边幂的底数有什么关系?猜一猜可以引出什么规律,并把这类规律用等式写出来数先生活实践大家都晓得,一个礼拜有77除的余数是多少,假设余数是1,由于今天是礼拜天,那么再过这么多天就是礼拜一;假设余数是2,那么再过这么多天就是礼拜二;假设余数是3,那么再过这么多天就是礼拜三……是以,我们就用上面的实践来解决这个成绩.首先通过列出左边的算式,可以得出右边的结论:(17除的余数为2;(27除的余数为4;(37除的余数为1;(47除的余数为;(57除的余数为;(67除的余数为;(77除的余数为;……7除的余数是...。

七年级数学有理数的乘方练习题(含答案)

七年级数学有理数的乘方练习题(含答案)

有理数的乘方一.选择题1、118表示()A、11个8连乘B、11乘以8C、8个11连乘D、8个别1相加2、-32的值是()A、-9B、9C、-6D、63、下列各对数中,数值相等的是()A、-32与-23B、-23与 (-2)3C、-32与(-3)2D、(-3×2)2与-3×224、下列说法中正确的是()A、23表示2×3的积B、任何一个有理数的偶次幂是正数4,这个C、-32 与 (-3)2互为相反数D、一个数的平方是92数一定是35、下列各式运算结果为正数的是()A、-24×5B、(1-2)×5C、(1-24)×5D、1-(3×5)66、如果一个有理数的平方等于(-2)2,那么这个有理数等于()A、-2B、2C、4D、2或-27、一个数的立方是它本身,那么这个数是()A、 0B、0或1C、-1或1D、0或1或-18、如果一个有理数的正偶次幂是非负数,那么这个数是( ) A 、正数 B 、负数 C 、 非负数 D 、任何有理数 9、-24×(-22)×(-2) 3=( )A 、 29B 、-29C 、-224D 、22410、两个有理数互为相反数,那么它们的n 次幂的值( ) A 、相等 B 、不相等 C 、绝对值相等D 、没有任何关系11、一个有理数的平方是正数,则这个数的立方是( ) A 、正数 B 、负数 C 、正数或负数D 、奇数 12、(-1)2001+(-1)2002÷1-+(-1)2003的值等于( )A 、0B 、 1C 、-1D 、2 二、填空题1、(-2)6中指数为 ,底数为 ;4的底数是 ,指数是 ;523⎪⎭⎫⎝⎛-的底数是 ,指数是 ,结果是 ;2、根据幂的意义,(-3)4表示 ,-43表示 ;3、平方等于641的数是 ,立方等于641的数是 ;4、一个数的15次幂是负数,那么这个数的2003次幂是 ;5、平方等于它本身的数是 ,立方等于它本身的数是 ;6、=⎪⎭⎫ ⎝⎛-343 ,=⎪⎭⎫⎝⎛-343 ,=-433 ;7、()372⋅-,()472⋅-,()572⋅-的大小关系用“<”号连接可表示为 ;8、如果44a a -=,那么a 是 ;9、()()()()=----20022001433221 ;10、如果一个数的平方是它的相反数,那么这个数是 ;如果一个数的平方是它的倒数,那么这个数是 ;11、若032>b a -,则b 0 计算题1、()42-- 2、3211⎪⎭⎫⎝⎛3、()20031-4、()33131-⨯--5、()2332-+-6、()2233-÷-7、()()3322222+-+-- 8、()34255414-÷-⎪⎭⎫ ⎝⎛-÷9、()⎪⎭⎫ ⎝⎛-÷----721322246 10、()()()33220132-⨯+-÷---解答题1、按提示填写:2、有一张厚度是0.2毫米的纸,如果将它连续对折10次,那么它会有多厚?3、某种细菌在培养过程中,每半小时分裂一次(由一个分裂成两个),若这种细菌由1个分裂为16个,则这个过程要经过多长时间?4、你吃过“手拉面”吗?如果把一个面团拉开,然后对折,再拉开,再对折,……如此往复下去,对折10次,会拉出多少根面条?探究创新乐园1、你能求出1021018.0⨯的结果吗?1252、若a是最大的负整数,求200320012000a2002+的值。

七年级数学有理数的乘方练习题(含答案)

七年级数学有理数的乘方练习题(含答案)

七年级数学有理数的乘⽅练习题(含答案)有理数的乘⽅⼀.选择题1、118表⽰()A、11个8连乘B、11乘以8C、8个11连乘D、8个别1相加2、-32的值是()A、-9B、9C、-6D、63、下列各对数中,数值相等的是()A、-32与-23B、-23与 (-2)3C、-32与(-3)2D、(-3×2)2与-3×224、下列说法中正确的是()A、23表⽰2×3的积B、任何⼀个有理数的偶次幂是正数4,这个C、-32 与 (-3)2互为相反数D、⼀个数的平⽅是92数⼀定是35、下列各式运算结果为正数的是()A、-24×5B、(1-2)×5C、(1-24)×5D、1-(3×5)66、如果⼀个有理数的平⽅等于(-2)2,那么这个有理数等于()A、-2B、2C、4D、2或-27、⼀个数的⽴⽅是它本⾝,那么这个数是()A 、 0B 、0或1C 、-1或1D 、0或1或-1 8、如果⼀个有理数的正偶次幂是⾮负数,那么这个数是() A 、正数 B 、负数 C 、⾮负数 D 、任何有理数9、-24×(-22)×(-2) 3=()A 、 29B 、-29C 、-224D 、22410、两个有理数互为相反数,那么它们的n 次幂的值() A 、相等 B 、不相等 C 、绝对值相等D 、没有任何关系11、⼀个有理数的平⽅是正数,则这个数的⽴⽅是() A 、正数 B 、负数 C 、正数或负数D 、奇数 12、(-1)2001+(-1)2002÷1-+(-1)2003的值等于()A 、0B 、 1C 、-1D 、2 ⼆、填空题1、(-2)6中指数为,底数为;4的底数是,指数是;523?-的底数是,指数是,结果是;2、根据幂的意义,(-3)4表⽰,-43表⽰;3、平⽅等于641的数是,⽴⽅等于641的数是;4、⼀个数的15次幂是负数,那么这个数的2003次幂是;5、平⽅等于它本⾝的数是,⽴⽅等于它本⾝的数是;6、=??? ??-343 ,=??-343 ,=-433 ;7、()372?-,()472?-,()572?-的⼤⼩关系⽤“<”号连接可表⽰为;8、如果44a a -=,那么a 是;9、()()()()=----20022001433221Λ;10、如果⼀个数的平⽅是它的相反数,那么这个数是;如果⼀个数的平⽅是它的倒数,那么这个数是;11、若032>b a -,则b 0 计算题1、()42-- 2、3211?3、()20031-4、()33131-?--5、()2332-+-6、()2233-÷-7、()()3322222+-+-- 8、()34255414-÷-??-÷9、()??-÷----721322246 10、()()()33220132-?+-÷---解答题1、按提⽰填写:2、有⼀张厚度是毫⽶的纸,如果将它连续对折10次,那么它会有多厚3、某种细菌在培养过程中,每半⼩时分裂⼀次(由⼀个分裂成两个),若这种细菌由1个分裂为16个,则这个过程要经过多长时间4、你吃过“⼿拉⾯”吗如果把⼀个⾯团拉开,然后对折,再拉开,再对折,……如此往复下去,对折10次,会拉出多少根⾯条探究创新乐园1、你能求出1021018.0?的结果吗1252、若a是最⼤的负整数,求20032000a20012002+的值。

七年级数学有理数的乘方练习题(含答案)

七年级数学有理数的乘方练习题(含答案)

有理数的乘方一.选择题1、118表示()A、11个8连乘B、11乘以8C、8个11连乘D、8个别1相加2、-32的值是()A、-9B、9C、-6D、63、下列各对数中,数值相等的是()A、-32与-23B、-23与 (-2)3C、-32与(-3)2D、(-3×2)2与-3×224、下列说法中正确的是()A、23表示2×3的积B、任何一个有理数的偶次幂是正数4,这个C、-32 与 (-3)2互为相反数D、一个数的平方是92数一定是35、下列各式运算结果为正数的是()A、-24×5B、(1-2)×5C、(1-24)×5D、1-(3×5)66、如果一个有理数的平方等于(-2)2,那么这个有理数等于()A、-2B、2C、4D、2或-27、一个数的立方是它本身,那么这个数是()A、 0B、0或1C、-1或1D、0或1或-18、如果一个有理数的正偶次幂是非负数,那么这个数是( ) A 、正数 B 、负数 C 、 非负数 D 、任何有理数 9、-24×(-22)×(-2) 3=( )A 、 29B 、-29C 、-224D 、22410、两个有理数互为相反数,那么它们的n 次幂的值( ) A 、相等 B 、不相等 C 、绝对值相等D 、没有任何关系11、一个有理数的平方是正数,则这个数的立方是( ) A 、正数 B 、负数 C 、正数或负数D 、奇数 12、(-1)2001+(-1)2002÷1-+(-1)2003的值等于( )A 、0B 、 1C 、-1D 、2 二、填空题1、(-2)6中指数为 ,底数为 ;4的底数是 ,指数是 ;523⎪⎭⎫⎝⎛-的底数是 ,指数是 ,结果是 ;2、根据幂的意义,(-3)4表示 ,-43表示 ;3、平方等于641的数是 ,立方等于641的数是 ;4、一个数的15次幂是负数,那么这个数的2003次幂是 ;5、平方等于它本身的数是 ,立方等于它本身的数是 ;6、=⎪⎭⎫ ⎝⎛-343 ,=⎪⎭⎫⎝⎛-343 ,=-433 ;7、()372⋅-,()472⋅-,()572⋅-的大小关系用“<”号连接可表示为 ;8、如果44a a -=,那么a 是 ;9、()()()()=----20022001433221Λ ;10、如果一个数的平方是它的相反数,那么这个数是 ;如果一个数的平方是它的倒数,那么这个数是 ;11、若032>b a -,则b 0 计算题1、()42-- 2、3211⎪⎭⎫⎝⎛3、()20031-4、()33131-⨯--5、()2332-+-6、()2233-÷-7、()()3322222+-+-- 8、()34255414-÷-⎪⎭⎫ ⎝⎛-÷9、()⎪⎭⎫ ⎝⎛-÷----721322246 10、()()()33220132-⨯+-÷---解答题1、按提示填写:2、有一张厚度是0.2毫米的纸,如果将它连续对折10次,那么它会有多厚?3、某种细菌在培养过程中,每半小时分裂一次(由一个分裂成两个),若这种细菌由1个分裂为16个,则这个过程要经过多长时间?4、你吃过“手拉面”吗?如果把一个面团拉开,然后对折,再拉开,再对折,……如此往复下去,对折10次,会拉出多少根面条?探究创新乐园1、你能求出1021018.0⨯的结果吗?1252、若a是最大的负整数,求200320022000a2001+的值。

七年级数学有理数的乘方练习题(含答案)

七年级数学有理数的乘方练习题(含答案)

有理数的乘圆之阳早格格创做一.采用题 1、118表示( )A 、11个8连乘B 、11乘以8C 、8个11连乘D 、8各别1相加2、-32的值是( )A 、-9B 、9C 、-6D 、6 3、下列各对于数中,数值相等的是( ) A 、 -32 取 -23 B 、-23 取 (-2)3 C 、-32 取(-3)2 D 、(-3×2)2取-3×22 4、下列道法中精确的是( )A 、23表示2×3的积B 、所有一个有理数的奇次幂是正数C 、-32 取 (-3)2互为好异数D 、一个数的仄圆是94,那个数一定是325、下列各式运算截止为正数的是( )A 、-24×5B 、(1-2)×5C 、(1-24)×5D 、1-(3×5)6 6、如果一个有理数的仄圆等于(-2)2,那么那个有理数等于( )A 、-2B 、2C 、4D 、2或者-2 7、一个数的坐圆是它自己,那么那个数是( )A 、 0B 、0或者1C 、-1或者1D 、0或者1或者-18、如果一个有理数的正奇次幂利害背数,那么那个数是( ) A 、正数 B 、背数 C 、 非背数 D 、所有有理数 9、-24×(-22)×(-2) 3=( )A 、 29B 、-29C 、-224D 、22410、二个有理数互为好异数,那么它们的n 次幂的值( ) A 、相等 B 、不相等 C 、千万于值相等 D 、不所有闭系 11、一个有理数的仄圆是正数,则那个数的坐圆是( ) A 、正数 B 、背数 C 、正数或者背数 D 、奇数 12、(-1)2001+(-1)2002÷1-+(-1)2003的值等于( ) A 、0 B 、 1 C 、-1 D 、2 二、挖空题1、(-2)6中指数为,底数为;4的底数是,指数是;523⎪⎭⎫ ⎝⎛-的底数是,指数是,截止是;2、根据幂的意思,(-3)4表示,-43表示;3、仄圆等于641的数是,坐圆等于641的数是;4、一个数的15次幂是背数,那么那个数的2003次幂是;5、仄圆等于它自己的数是,坐圆等于它自己的数是;6、=⎪⎭⎫ ⎝⎛-343,=⎪⎭⎫ ⎝⎛-343,=-433;7、()372⋅-,()472⋅-,()572⋅-的大小闭系用“<”号连交可表示为;8、如果44a a -=,那么a 是;9、()()()()=----20022001433221 ;10、如果一个数的仄圆是它的好异数,那么那个数是;如果一个数的仄圆是它的倒数,那么那个数是;11、若032>b a -,则b 0估计题1、()42-- 2、3211⎪⎭⎫ ⎝⎛3、()20031-4、()33131-⨯--5、()2332-+- 6、()2233-÷-7、()()3322222+-+-- 8、()34255414-÷-⎪⎭⎫ ⎝⎛-÷ 9、()⎪⎭⎫ ⎝⎛-÷----721322246 10、()()()33220132-⨯+-÷---解问题1、按提示挖写:2、有一弛薄度是0.2毫米的纸,如果将它连绝对于合10次,那么它会有多薄?3、某种细菌正在培植历程中,每半小时团结一次(由一个团结成二个),若那种细菌由1个团结为16个,则那个历程要通过多万古间?4、您吃过“脚推里”吗?如果把一个里团推启,而后对于合,再推启,再对于合,……如许往复下去,对于合10次,会推出几根里条?商量革新乐园 1、您能供出1021018125.0⨯的截止吗?2、假如a 最大的背整数,供2003200220012000a a a a+++的值.3、若a 取b 互为倒数,那么2a 取2b 是可互为倒数?3a 取3b 是可互为倒数?4、若a 取b 互为好异数,那么2a 取2b 是可互为好异数?3a 取3b 是可互为好异数?5、比较底下算式截止的大小(正在横线上挖“>”、“<”或者“=” ):通过瞅察归纳,写出能反映那一顺序的普遍论断. 6、根据乘圆的意思可得4442⨯=,44443⨯⨯=,则()()5324444444444444=⨯⨯⨯⨯=⨯⨯⨯⨯=⨯,试估计n m a a ⋅(m 、n 是正整数)7、瞅察下列等式,2311=,233321=+,23336321=++,23333104321=+++…念一念等式左边各项幂的底数取左边幂的底数有什么闭系?猜一猜不妨引出什么顺序,并把那种顺序用等式写出去数教死计试验如果即日是星期天,您知讲再那1002天是星期几吗?大家皆知讲,一个星期有7天,要办理那个问题,咱们只需知讲1002被7除的余数是几,假设余数是1,果为即日是星期天,那么再过那样多天便是星期一;假设余数是2,那么再过那样多天便是星期二;假设余数是3,那么再过那样多天便是星期三……果此,咱们便用底下的试验去办理那个问题.最先通过列出左侧的算式,不妨得出左侧的论断:(1)2=隐然12被7除的余数为2;⨯721+(2)4=隐然22被7除的余数为4;⨯722+(3)17=隐然32被7除的余数为1;⨯23+(4)2⨯24+=隐然42被7除的余数为;72(5)52= 隐然52被7除的余数为;(6)62= 隐然62被7除的余数为;(7)72= 隐然72被7除的余数为;……而后小心瞅察左侧的截止所反映出的顺序,咱们不妨预测出1002被7除的余数是.所以,再过1002天必是星期.共理,咱们也不妨干出下列推断:即日是星期四,再过1002天必是星期.小小数教沙龙1、您知讲1003的个位数字是几吗?2、估计()()10110022-+-3、咱们时常使用的数是十进造数,如91031061022639123+⨯+⨯+⨯=,表示十进造的数要用10个数码:0、1、2、3、4、5、6、7、8、9,正在电子估计机中用的是二进造,只消用二个数码:0战1,如二进造中的1202110112+⨯+⨯=等于十进造的5,10111=1212120211234+⨯+⨯+⨯+⨯等于十进造的23,那么二进造中的1101等于十进造中的数是几?4、19993222221+++++= s ,供s 的值问案:1、C2、A3、B4、C5、B6、D7、D8、D9、B 10、C 11、C 12、C 1、6,-2,4,1,23-,5,32243-; 2、4个-3相乘,3个4的积的好异数;3、81±,41; 4、背数; 5、0战1, 0,1战-1; 6、427,6427,6427---;7、()572⋅-<()372⋅-<()472⋅-; 8、9,0; 9、-1; 10、-1战0,1;11、< 估计题1、-162、8273、-14、25、16、-17、28、-59 9、-73 10、-1 解问题1、好,积,商,幂2、mm 8.20422.010=⨯ 3、2小时 4、1024210=根商量革新乐园1、88188125.080125101101101102101=⨯=⨯⨯=⨯ 2、0 3、均是互为倒数4、2a 取2b 纷歧定互为好异数,3a 取3b 互为好异数 5、>,>,=,二数的仄圆战大于或者等于那二数的积的2倍; 6、nm n m a a a +=⋅7、等式左边各项幂的底数的战等于左边幂的底数,()23332121n n +++=+++数教死计试验2,47425+⨯=,4,17926+⨯=,1,271827+⨯=,2,2,=,- 小小数教沙龙1、个个个n n n 9991999999+⨯=nn n n 10999999999++⨯ 个个个=nn n 10)1999(999++⨯ 个个=nn n 1010999+⨯ 个=nn 10)1999(⨯+个=nn 1010⨯=个个n n 101010101010⨯⨯⨯⨯⨯⨯⨯=n 2102、1003的个位数字是1,提示:331=,932=,2733=,8134=,24335=,72936=……个位数字是按3,9、7、1循环的; 3、1002- 4、135、 199922221++++= s ① 20003222222++++=∴ s ②由②-①: 122000-=s。

有理数乘方练习题

有理数乘方练习题


A.1/8 B.3/8 C. - 1/8 D. -3/8
16.若( b+1 )2+3︱a-2︱=0, 则a-2b的值是
A. -4 B.0 C.4
D.2
三、计算。
1
-10 + 8÷( -2 ) 2-(-4)×(-3)
2
-49 + 2×( -3 )2+ ( -6 ) ÷ ( -1/9 )
1、118表示( ) A、11个8连乘 B、11乘以8 C、8个11连乘 D、8个别1相加 2、-32的值是( ) A、-9 B、9 C、-6 D、6 3、下列各对数中,数值相等的是( ) A、 -32 与 -23 B、-23与 (-2)3 C、-32 与 (-3)2 D、(-3×2)2与-3 4、下列说法中正确的是( ) A、23表示2×3的积是正数 C、-32 与 (-3)2互为相反数
六.3.78×107是________位数。
七.若a为大于1的有理数,则 a , , 三者按照从小到大的顺序列为_______________.
八.用四舍五入法得到的近似值0.380精确到________位,48.68万精确到_________位。
10. 1.8亿精确到_________位,有效数字为_______________。 11.代数式( a + 2 )2+ 5取得最小值时的 a的值为___________. 12.如果有理数a,b满足︱a-b︱=b-a,︱a︱=2,︱b︱=1,则( a + b ) =__________.
01 D、一个数的平方是4/9,这个数一定是2/3
下列各式运算结果为正数的是( )
02 A、-24×5 B、(1-2)×5 C、(1-24)×5 D. 1-(3×5)6

七年级数学上册《第二章-有理数的乘方》练习题-带答案(北师大版)

七年级数学上册《第二章-有理数的乘方》练习题-带答案(北师大版)

七年级数学上册《第二章有理数的乘方》练习题-带答案(北师大版)一、选择题1.35的4次幂的相反数记做( )A.(-354) B.345C.-(35)4 D.-35×42.下列说法正确的是( )A.23表示2×3的积B.任何有理数的偶次方都是正数C.一个数的平方是9,这个数一定是3D.-32与(-3)2互为相反数3.下列各对数中,是互为相反数的是( )A.+(﹣2)和﹣(+2)B.﹣(﹣2)和﹣2C.+(+2)和﹣(﹣2)D.(﹣2)3和324.下列计算错误的是( )A.(﹣1)2028=1B.﹣3﹣2=﹣1C.(﹣1)×3=﹣3D.0×2027×(﹣2028)=05.下列各式中,一定成立的是( )A.(-3)2=32B.(-3)3=33C.-32=|-32|D.(-3)3=|(-3)3|6.计算(-2)3-(-2)2的结果是( )A.-4B.4C.12D.-127.下列各式:①﹣(﹣2);②﹣|﹣2|;③﹣22;④﹣(﹣2)2,计算结果为负数的个数有( )A.4个B.3个C.2个D.1个8.按一定规律排列的一列数依次为:2,3,10,15,26,35,…,按此规律排列下去,则这列数中的第100个数是( )A.9999B.10000C.10001D.10002二、填空题9.计算:(﹣2)3= .10.计算:|﹣22|=11.计算:(1)(-5)2=_______;(2)-52=_______;(3)(-27)3=_____;(4)-237=______.12.将它们-24,(-2)3,(-2)2按从小到大的顺序排列.13.如果(x+3)2+|y﹣2|=0,则x y= .14.将从1开始的连续自然数按以下规律排列:第1行 1第2行 2 3 4第3行9 8 7 6 5第4行10 11 12 13 14 15 16第5行25 24 23 22 21 20 19 18 17…则2023在第行.三、解答题15.计算:(-1)2029×(-2);16.计算:-(-3)2÷(-2)3;17.计算:-(-3-5)+(-2)2×5+(-2)318.计算:22×(5-7)÷(-0.5)+3×(-2)2.19.(1)在数轴上把下列各数表示出来:﹣1,﹣|﹣2.5|,﹣(﹣2),(﹣1)100,﹣22 (2)将上列各数用“<”连接起来: .20.a,b为有理数,若规定一种新的运算“⊕”,定义a⊕b=a2-b2-ab+1,请根据“⊕”的定义计算:(1)-3⊕4;(2)(-1⊕1)⊕(-2).21.已知|a|=5,b2=4,且a<b,求ab-(a+b)的值.22.先阅读材料,再根据材料中所提供的方法解答下列问题:我们在求1+2+3+…+99+100的值时,可以用下面的方法:我们设S=1+2+3+…+99+100①,那么S=100+99+98+…+3+2+1②.然后,我们由①+②,得2S=(100+1)+(99+2)+(98+3)+…+(99+2)+(100+1),共100个101.2S=101+101+101+…+101=100×101所以S=100×101÷2=5050.依据上述方法,求下列各式的值:(1)1+3+5+…+97+99;(2)5+10+15+…+195+200.参考答案1.C2.D3.B4.B5.A6.D7.B8.A.9.答案为:﹣8.10.答案为:4.11.答案为:(1)25 (2)-25 (3)-8343(4)-8712.答案为:-24<(-2)3<(-2)213.答案为:9.14.答案为:45.15.解:原式=(-1)×(-2)=2.16.解:原式=-9÷(-8)=9 8 .17.解:原式=1418.解:原式=4×(-2)(-2)+3×4=16+12=28.19.解:如图所示;(2)由图可知,﹣22<﹣|﹣2.5|<﹣1<(﹣1)100<﹣(﹣2).20.解:(1)-3⊕4=(-3)2-42-(-3)×4+1=6(2)(-1⊕1)⊕(-2)=[(-1)2-12-(-1)×1+1]⊕(-2)=2⊕(-2)=22-(-2)2-2×(-2)+1=5 21.解:由|a|=5得:a=±5,由b2=4得b=±2又∵a<b,∴a=-5,b=±2∴当a=-5,b=2时,ab-(a+b)=(-5)×2-(-5+2)=-7;当a=-5,b=-2时,ab-(a+b)=(-5)×(-2)-[-5+(-2)]=1722.解:(1)设S=1+3+5+…+97+99①,那么S=99+97+…+5+3+1②①+②,得2S=(1+99)+(3+97)+…+(97+3)+(99+1),共50个100.2S=100+100+…+100=50×100,所以S=2500即1+3+5+…+97+99=2500.(2)设S=5+10+15+…+195+200①,那么S=200+195+…+15+10+5②①+②得2S=(5+200)+(10+195)+(15+190)+…+(195+10)+(200+5),共40个205. 2S=205+205+…+205=205×40,所以S=4100即5+10+15+…+195+200=4100.。

七年级数学上册《有理数的乘方》同步练习题(附答案)

七年级数学上册《有理数的乘方》同步练习题(附答案)

七年级数学上册《有理数的乘方》同步练习题(附答案)一、选择题1、对乘积(−3)×(−3)×(−3)×(−3)记法正确的是( )A .-34B .(-3)4C .-(+3)4D .-(-3)42、下列计算:①(−12)2=14;②(25)2=45;③(−0.2)3=0.008;④−32=9;⑤−(−13)2=19.其中正确的是( )A .1个B .2个C .3个D .4个3、已知|x −3|+(2+y)2=0,则y x 的值为( )A .9B .−9C .−8D .84、计算(−23)2019×1.52020×(−1)2022的结果是( )A .23B .32C .−23D .−325、如图是一个计算程序,若输入a 的值为2-,则输出的结果应为( ).A .2B .2-C .±2D .−46、下列各数:①−12;②−(−1)2;③−13;④|−(−1)2|,其中结果等于−1的是( ) A .①①①B .①①①C .①①①D .①①①①7、若a =−0.1,则a ,1a ,a 3从小到大排列的顺序是( )A .a 3<a <1aB .a <1a <a 3C .1a <a <a 3D .a <a 3<1a8、观察下列等式:3¹=3,3²=9,3³=27,…,则3+32+…+32019的末位数字是( )A.0B.1C.3D.99、设a=-2×42,b=-(2×4)2,c=-(2-4)2,则a,b,c的大小关系为()A. a<b<cB. b<a<cC. c<b<aD. b<c<a二、填空题10、定义运算:若a m=b,则log a b=m(a>0),例如23=8,则log28=3.运用以上定义,计算:log5125−log381=______.11、观察下列各式:1-122=12×32,1-132=2433,1-142=34×54⋯,根据上面的等式所反映的规律(1-122)(1-132)(1-142)⋯(1−120192)=________12、几个相同的加数相加,可以简化记为乘法:(1)3+3+3+3+3=________(2)(-3)+(-3)+(-3)+(-3)=_____________若干个非零数连乘,确定乘积符号的方法是:若有奇数个负因数,则得_________;若有偶数个负因数,则得_________13、求n个相同因数的积的运算,叫做_____,乘方的结果叫做______.在n a中,a叫做______,n叫做______.当n a看做a的n次方的结果时,也可读作“___________”.14、有理数乘方的符号法则:负数的奇次幂是________,负数的偶次幂是__________.正数的任何次幂都是________,0的任何正整数次幂都是______.15、有理数的混合运算顺序:①先算______,再算乘除,最后算______;②同级运算,从___到___进行;③如果有括号,要先算__________的运算.(按小括号、中括号、大括号依次进行)16、(-5)2的底数是____,指数是____,(-5)2表示2个____的乘积,叫做____的2次方,也叫做-5的_____.三、计算题17、计算:(1)﹣12+11﹣10+26;(2)413 991899()9918555⨯+⨯--⨯;(3)−32−35÷(−7)+18×(−13)2.18、计算:(1)−3−(−8)+(−6)+(+10)(2)−14+|3−5|−8÷(−2)×12(3)3×(−1)3+(−5)×(−3)(4)(12−13)÷(−16)+(−2)2×(−14)19、计算:(1)17+(−2)−(−67)(2)6.868×(−5)+68.68×(−1.2)+3.434×(+34)(3)−23+|2−3|−2×(−1)2013(4)−14−[1−(1−0.5×13)×6].参考答案一、选择题1、B【分析】根据乘方的意义,可知四个(-3)相乘,可记为(−3)4.【详解】(−3)×(−3)×(−3)×(−3)=(−3)4.故选:B .【点睛】本题考查有理数乘方的意义:求几个相同因数积的运算,叫做乘方.2、A【分析】根据乘方的意义:a n 表示n 个a 相乘,分别计算出结果,根据结果判断即可.【详解】①(−12)2=14,故本选项正确,②(25)2=425,故本选项错误,③(−0.2)3=−0.008,故本选项错误,④−32=−9,故本选项错误,⑤−(−13)2=−19,故本选项错误,正确的有:①1个.故选:A .【点睛】本题主要考查了乘方的意义,能正确进行计算是解此题的关键,注意计算时应先确定结果的符号.3、C【分析】根据非负数的性质求出x 、y 的值,代入计算即可.【详解】解:根据题意得,x -3=0,2+y =0,①x =3,y =-2,①y x =(-2)3=-8.故选:C .【点睛】本题考查了非负数的性质.熟练掌握非负数的性质是解题的关键.4、D【分析】根据乘方的意义进行简便运算,再根据有理数乘法计算即可.【详解】解:(−23)2019×1.52020×(−1)2022, =−(23)2019×1.52020×1 =−23×⋅⋅⋅×23�2019个×1.5×⋅⋅⋅×1.5�2020个,=−23×1.5⋅⋅⋅×23×1.5�2019个×1.5, =−32,故选:D .【点睛】本题考查了有理数的混合运算,解题关键是熟练依据乘方的意义进行简便运算,准确进行计算.5、B【分析】根据图表列出代数式(a 2−2)×(−3)+4,再按照有理数混合运算的顺序,先乘方后乘除最后算加减,有括号的先算括号里面的,从而可得答案.【详解】由图可得,当a =−2时,(a 2−2)×(−3)+4=[(−2)2−2]×(−3)+4=(4−2)×(−3)+4=2×(−3)+4=(−6)+4=−2.故选择:B .【点睛】本题考查的是代数式的求值,弄懂题意,掌握代数式的运算顺序与有理数运算法则是解题的关键.6、C【分析】根据有理数的乘方,以及相反数和绝对值的求法,逐项判定即可.【详解】解:①−12=−1,②2(1)1--=-,③−13=−1,④|−(−1)2|=1,∴其中结果等于-1的是:①①①.故选:C.【点睛】此题主要考查了有理数的乘方,以及相反数和绝对值的求法,求一个数的相反数的方法就是在这个数的前边添加“-”.7、C【分析】根据a=−0.1,分别求出1a,a3的值,然后比较大小即可.【详解】解:∵a=−0.1∴1a=−10,a3=−0.001∴1a<a<a3故选C.【点睛】本题考查了有理数大小的比较,正确理解倒数、相反数和乘方的意义是解题的关键.8、D【分析】由题意得出规律是末位数,每4个一循环,由2019÷4=504……3,求出31+32+33+…+32019的末位数字的和,即可得出答案.【详解】解:①31=3,32=9,33=27,34=81,35=243,36=729,37=2187,…,①末位数,每4个一循环,①2019÷4=504……3,①31+32+33+…+32019的末位数字相当于:3+9+7+1+…+7=(3+9+7+1)×504+3+9+7=10099,①31+32+33+…+32019的末位数字是9;故选:D.【点睛】本题考查了数字的变化类.本题涉及到两个规律,一个是3的乘方的末位数字以4个一循环,一个是每一个循环末位数字之和为0.9、C【分析】略二、填空题10、-1【分析】根据题意可以计算出所求式子的值.【详解】解:由题意可得,log5125-log381=3-4=-1,故答案为:-1.【点睛】本题考查了新定义运算,解答本题的关键是明确新定义运算的计算方法.11、10102019【分析】先根据已知等式探索出变形规律,然后根据规律进行变形,计算有理数的乘法运算即可.【详解】解:由已知等式可知:1−122=12×32=2−12×2+12,1−132=23×43=3−13×3+13,1−142=34×54=4−14×4+14,归纳类推得:1−1n2=n−1n⋅n+1n,其中n为正整数,则1−120192=2019−12019×2019+12019=20182019×20202019,因此(1−122)(1−132)(1−142)⋯(1−120192),=12×32×23×43×34×54×⋯×20182019×20202019,=12×20202019,=10102019,故答案为:10102019.【点睛】此题考查的是有理数运算的规律题,根据已知等式探索出运算规律并应用是解题关键.12、①. 乘方①. 幂①. 底数①. 指数①. a的n次幂13、①. 负数①. 正数①. 正数①. 014、①. 乘方①. 加减①. 左①. 右①. 括号内15、①. -5 ①. 2 ①. -5 ①. -5 ①. 平方16、(1)15;(2)0;(3)-2【分析】(1)先同号相加,再异号相加;(2)根据乘法交换律计算;(3)先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算.【详解】解:(1)-12+11-10+26=-22+37=15;(2)99×1845+99×(−15)−99×1835=99×(1845−15−1835)=99×0=0;(3)−32−35÷(−7)+18×(−13)2=-9+5+18×19=-9+5+2=-2.【点睛】本题考查了有理数的混合运算,有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化.17、(1)9;(2)3;(3)12;(4)-57【分析】(1)先化简,再计算加减法;(2)先算乘方和绝对值,再算乘除,最后算加减;(3)先算乘方,再算乘法,最后算加减;(4)先算乘方和括号内的,再算乘除,最后算加减.【详解】解:(1)−3−(−8)+(−6)+(+10)=-3+8-6+10=-9+18=9;(2)−14+|3−5|−8÷(−2)×12=-1+2+2=3;(3)3×(−1)3+(−5)×(−3)=3×(−1)+5×3=−3+15=12;(4)(12−13)÷(−16)+(−2)2×(−14)=1 6÷(−16)−4×14=−1−56=-57【点睛】本题考查了有理数的混合运算,有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化.18、(1)-1;(2)0;(3)-5;(4)3【分析】(1)先化简符号,再作加减法;(2)利用乘法结合律简化计算;(3)先算乘方和绝对值,再算乘法,最后算加减;(4)先算乘方和括号,再算乘除,最后算加减.【详解】解:(1)17+(−2)−(−67)=1 7+67−2=12=-1;(2)6.868×(−5)+68.68×(−1.2)+3.434×(+34) =6.868×(−5)+6.868×(−12)+6.868×(+17)=6.868×[(−5)+(−12)+(+17)]=6.868×0=0;(3)−23+|2−3|−2×(−1)2013=−8+1−2×(−1)=−8+1+2=-5;(4)−14−[1−(1−0.5×13)×6]=−1−[1−(1−12×13)×6]=−1−(1−56×6) =−1−(1−5)=−1+4=3【点睛】本题考查了有理数的混合运算,解题的关键是掌握运算法则和运算顺序.。

有理数的乘方练习题及答案

有理数的乘方练习题及答案

2F 列各对数中,数值相等的是(F 列说法中正确的是(4 D 、一个数的平方是-,这个数- —定是9F 列各式运算结果为正数的是 7、一个数的立方是它本身,那么这个数是( )A 、0B 、0 或 1C 、— 1 或 1D 、0 或 1 或—1 &如果一个有理数的正偶次幕是非负数,那么这个数是()A 、正数B 、负数C 、非负数D 、任何有理数4239、一 2 X ( — 2) X ( — 2)=( )992424A 、2B 、一 2C 、一 2D 、210、两个有理数互为相反数,那么它们的 n 次幕的值()A 、相等B 、不相等C 、绝对值相等D 、没有任何关系11、 一个有理数的平方是正数 ,则这个数的立方是( )A 、正数B 、负数C 、正数或负数D 、奇数12、 ( — 1) + ( — 1)十-1 + ( —1) 的值等于( )A 、0B 、1C 、一 1D 、2二、填空题•选择题1、118表示(A 、11个8连乘 、11乘以8 2、 —32的值是( A、 有理数的乘方C 、8个11连乘D 、8个别 1相加A、 2 3—3 与一2 B C、 2 2—3 与(一3) D、一23 与(—2)3 、(—3X 2)2与—3X 22 A 、 23表示2 X 3的积 、任何一个有理数的偶次幕是正数C 、 —32与(一3)2互为相反数A 、 4C 、(1 — 2) X 5如果一个有理数的平方等于 (—2)2,那么这个有理数等于4 —2 X5 B 、(1 — 2) X 5、1 — (3 X 5)6A 、 —2B 、2C 、4D 、2 或一21、( — 2)6中指数为 __ ,底数为 _____ ;4的底数是 _________ ,指数是 _______的底数是 _______指数是________ ,结果是 ______ ;2、根据幕的意义,(—3)4表示__________ , —43表示_____________1 13、平方等于—的数是 ____________ ,立方等于—的数是______________64 64一个数的15次幕是负数,那么这个数的 2003次幕是平方等于它本身的数是,立方等于它本身的数是⑴3-I14丿345-2 7 , -2 7 , -2 7的大小关系用“v”号连接可表示为1-2 2 _3 3 _42001-2002 二这个数是11、若-a 2b 3> 0 ,则 b 0 计算题 仁 7.-23、-1 20032 2、- 32 一 3_2 2 -2 -2 3 23-26 - -2 4 -32 -■10、--2 1: ~'3 = I.-'1 § ■ 0'2 3(3)3I I 4.丿 8、 如果4=—a ,那么a 是10、如果一个数的平方是它的相反数,那么这个数是 ;如果一个数的平方是它的倒数,那么、-13 -3 -1 3-23-3 2解答题1、按提示填写:2、有一张厚度是0.2毫米的纸,如果将它连续对折10次,那么它会有多厚?3、某种细菌在培养过程中,每半小时分裂一次(由一个分裂成两个),若这种细菌由1个分裂为16个, 则这个过程要经过多长时间?4、你吃过“手拉面”吗?如果把一个面团拉开,然后对折,再拉开,再对折,……如此往复下去,对折10次,会拉出多少根面条?探究创新乐园1、你能求出0.1251018102的结果吗?2、若a是最大的负整数,求a2000 - a2001 - a2002 - a2003的值。

有理数乘方练习题

有理数乘方练习题

有理数乘方练习题一、选择题(每题3分,共15分)1. 计算下列哪个选项的结果为正数:A. \( (-2)^3 \)B. \( (-3)^2 \)C. \( (-4)^5 \)D. \( (-5)^6 \)2. 下列哪个选项的计算结果为负数:A. \( 3^2 \)B. \( (-2)^4 \)C. \( 5^3 \)D. \( (-3)^3 \)3. 根据有理数乘方的规则,下列哪个选项的计算结果最大:A. \( 2^3 \)B. \( 3^2 \)C. \( 4^1 \)D. \( 5^0 \)4. 计算下列哪个选项的结果为1:A. \( (-1)^2 \)B. \( (-1)^3 \)C. \( (-1)^4 \)D. \( (-1)^5 \)5. 下列哪个选项的计算结果为0:A. \( 0^1 \)B. \( 0^2 \)C. \( 0^3 \)D. \( 0^0 \)二、填空题(每题2分,共20分)6. 计算 \( (-3)^3 \) 的结果为 _________ 。

7. 计算 \( 2^{-3} \) 的结果为 _________ 。

8. 任何非零数的0次方都等于 _________ 。

9. \( (-2)^3 \) 等于 _________ 。

10. \( 5^3 \) 等于 _________ 。

11. 如果 \( a \) 是一个负数,那么 \( a^2 \) 是一个 _________ 数。

12. \( (-3)^2 \) 等于 _________ 。

13. \( (-1)^{\text{偶数}} \) 总是等于 _________ 。

14. \( (-1)^{\text{奇数}} \) 总是等于 _________ 。

15. 如果 \( a \) 和 \( b \) 是两个正数,那么 \( a^b \) 总是一个 _________ 数。

三、计算题(每题5分,共30分)16. 计算 \( 3^3 - 2^2 \)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

有理数的乘方(1)
一.选择题
1、118表示( )
A 、11个8连乘
B 、11乘以8
C 、8个11连乘
D 、8个别1相加
2、-32的值是( )
A 、-9
B 、9
C 、-6
D 、6
3、下列各对数中,数值相等的是( )
A 、 -32 与 -23
B 、-23 与 (-2)3
C 、-32 与 (-3)2
D 、(-3×2)2与-3×22
4、下列说法中正确的是( )
A 、23表示2×3的积
B 、任何一个有理数的偶次幂是正数
C 、-32 与 (-3)2互为相反数
D 、一个数的平方是94,这个数一定是3
2 5、下列各式运算结果为正数的是( )
A 、-24×5
B 、(1-2)×5
C 、(1-24)×5
D 、1-(3×5)6
二、填空题
1、(-2)6中指数为 ,底数为 ;4的底数是 ,指数是 ;5
23⎪⎭⎫ ⎝⎛-的底数是 ,指数是 ,结果是 ;
2、根据幂的意义,(-3)4表示 ,-43表示 ;
3、平方等于641的数是 ,立方等于64
1的数是 ; 4、一个数的15次幂是负数,那么这个数的2003次幂是 ;
5、平方等于它本身的数是 ,立方等于它本身的数是 ;
计算题
1、()42--
2、3
211⎪⎭⎫ ⎝⎛ 3、()20031- 4、()3
3131-⨯-- 5、()2332-+- 6、()2233-÷-
有理数的乘方(2)
一.选择题
1、如果一个有理数的平方等于(-2)2,那么这个有理数等于( )
A 、-2
B 、2
C 、4
D 、2或-2
2、一个数的立方是它本身,那么这个数是( )
A 、 0
B 、0或1
C 、-1或1
D 、0或1或-1
3、如果一个有理数的正偶次幂是非负数,那么这个数是( )
A 、正数
B 、负数
C 、 非负数
D 、任何有理数
4、-24×(-22)×(-2) 3=( )
A 、 29
B 、-29
C 、-224
D 、224
5、两个有理数互为相反数,那么它们的n 次幂的值( )
A 、相等
B 、不相等
C 、绝对值相等
D 、没有任何关系
6、一个有理数的平方是正数,则这个数的立方是( )
A 、正数
B 、负数
C 、正数或负数
D 、奇数
7、(-1)2001+(-1)2002÷1-+(-1)2003的值等于( )
A 、0
B 、 1
C 、-1
D 、2
二、填空题
1、=⎪⎭⎫ ⎝⎛-343 ,=⎪⎭⎫ ⎝⎛-3
43 ,=-433 ; 2、()372⋅-,()472⋅-,()5
72⋅-的大小关系用“<”号连接可表示为 ; 3、如果44a a -=,那么a 是 ;
4、()()()()=----20022001433221 ;
5、如果一个数的平方是它的相反数,那么这个数是 ;如果一个数的平方是它的倒数,那么这个数是 ;
6、若032>b a -,则b 0
计算题
1、()()3322222+-+--
2、()34255414-÷-⎪⎭
⎫ ⎝⎛-÷
3、()⎪⎭
⎫ ⎝⎛-÷----721322246 4、()()()33220132-⨯+-÷--- 解答题
1、按提示填写:
2、有一张厚度是0.2毫米的纸,如果将它连续对折10次,那么它会有多厚?
3、某种细菌在培养过程中,每半小时分裂一次(由一个分裂成两个),若这种细菌由1个分裂为16个,则这个过程要经过多长时间?
4、你吃过“手拉面”吗?如果把一个面团拉开,然后对折,再拉开,再对折,……如此往复下去,对折10次,会拉出多少根面条?
探究创新乐园
1、你能求出1021018125.0⨯的结果吗?
2、若a 是最大的负整数,求2003200220012000a a a a +++的值。

3、若a 与b 互为倒数,那么2a 与2b 是否互为倒数?3a 与3b 是否互为倒数?
4、若a 与b 互为相反数,那么2a 与2b 是否互为相反数?3a 与3b 是否互为相反数?
5、比较下面算式结果的大小(在横线上填“>”、“<”或“=” ): 通过观察归纳,写出能反映这一规律的一般结论。

6、根据乘方的意义可得4442⨯=,44443⨯⨯=,
则()()5324444444444444=⨯⨯⨯⨯=⨯⨯⨯⨯=⨯,试计算n m a a ⋅(m 、n 是正整数)
7、观察下列等式,2311=,233321=+,23336321=++,23333104321=+++…想一想等式左边各项幂的底数与右边幂的底数有什么关系?猜一猜可以引出什么规律,并把这种规律用等式写出来
数学生活实践
如果今天是星期天,你知道再这1002天是星期几吗?
大家都知道,一个星期有7天,要解决这个问题,我们只需知道1002被7除的余数是多少,假设余数是1,因为今天是星期天,那么再过这么多天就是星期一;假设余数是2,那么再过这么多天就是星期二;假设余数是3,那么再过这么多天就是星期三……
因此,我们就用下面的实践来解决这个问题。

首先通过列出左侧的算式,可以得出右侧的结论:
(1)27021+⨯= 显然12被7除的余数为2;
(2)47022+⨯= 显然22被7除的余数为4;
(3)1
=显然32被7除的余数为1;
23+

7
(4)2

24+
=显然42被7除的余数为;
7
2
(5)52= 显然52被7除的余数为;
(6)62= 显然62被7除的余数为;
(7)72= 显然72被7除的余数为;
……
然后仔细观察右侧的结果所反映出的规律,我们可以猜想出100
2被7除的余数是。

所以,再过100
2天必是星期。

同理,我们也可以做出下列判断:今天是星期四,再过100
2天必是星期。

相关文档
最新文档