流固耦合计算实例资料

合集下载

流固耦合计算实例

流固耦合计算实例

Oscillating Plate with Two-Way Fluid-Structure InteractionANSYS-ChinaIntroductionThis tutorial includes:∙Features∙Overview of the Problem to Solve∙Setting up the Solid Physics in Simulation (ANSYS Workbench)∙Setting up the Fluid Physics and ANSYS Multi-field Settings in ANSYS CFX-Pre∙Obtaining a Solution using ANSYS CFX-Solver Manager∙Viewing Results in ANSYS CFX-PostIf this is the first tutorial you are working with, it is important to review the following topics before beginning:∙Setting the Working Directory∙Changing the Display ColorsUnless you plan on running a session file, you should copy the sample files used in this tutorial from the installation folder for your software (<CFXROOT>/examples/) to your working directory. This prevents you from overwriting source files provided with your installation. If you plan to use a session file, please refer to Playing a Session File.Sample files referenced by this tutorial include:∙OscillatingPlate.pre∙OscillatingPlate.agdb∙OscillatingPlate.gtm∙OscillatingPlate.inp1.FeaturesThis tutorial addresses the following features of ANSYS CFX.In this tutorial you will learn about:∙Moving mesh∙Fluid-solid interaction (including modeling solid deformation using ANSYS)∙Running an ANSYS Multi-field (MFX) simulation∙Post-processing two results files simultaneously.2.Overview of the Problem to SolveThis tutorial uses a simple oscillating plate example to demonstrate how to set up and run a simulation involving two-way Fluid-Structure Interaction, where the fluid physics is solved in ANSYS CFX and the solid physics is solved in the FEA package ANSYS. Coupling between the two solvers is required throughout the solution to model the interaction between fluid and solid as time progresses, and the framework for the coupling is provided by the ANSYS Multi-field solver, using the MFX setup.The geometry consists of a 2D closed cavity. A thin plate is anchored to the bottom of the cavity as shown below:An initial pressure of 100 Pa is applied to one side of the thin plate for 0.5 seconds in order to distort it. Once this pressure is released, the plate oscillates backwards and forwards as it attempts to regain its equilibrium (vertical) position. The surrounding fluid damps the oscillations, which therefore have an amplitude that decreases in time. The CFX Solver calculates how the fluid responds to the motion of the plate, and the ANSYS Solver calculates how the plate deforms as a result of both the initial applied pressure and the pressure resulting from the presence of the fluid. Coupling between the two solvers is required since the solid deformation affects the fluid solution, and the fluid solution affects the solid deformation.The tutorial describes the setup and execution of the calculation inc luding the setup of the solid physics in Simulation (within ANSYS Workbench) and the setup of the fluid physics and ANSYS Multi-field settings in ANSYS CFX-Pre. If you do not have ANSYS Workbench, then you can use the provided ANSYS input file to avoid the need for Simulation.3.Setting up the Solid Physics in Simulation (ANSYS Workbench)This section describes the step-by-step definition of the solid physics in Simulation within ANSYS Workbench that will result in the creation of an ANSYS input file OscillatingPlate.inp. If you prefer, you can instead use the provided OscillatingPlate.inp file and continue from Setting up the Fluid Physics and ANSYS Multi-field Settings in ANSYS CFX-Pre.Creating a New Simulation1.If required, launch ANSYS Workbench.2.Click Empty Project. The Project page appears displaying an unsaved project.3.Select File > Save or click Save button.4.If required, set the path location to a different folder. The default location is your workingdirectory. However, if you have a specific folder that you want to use to store files created during this tutorial, change the path.5.Under File name, type OscillatingPlate.6.Click Save.7.Under Link to Geometry File on the left hand task bar click Browse. Select the providedfile OscillatingPlate.agdb and click Open.8.Make sure that OscillatingPlate.agdb is highlighted and click New simulation from theleft-hand taskbar.Creating the Solid Material1.When Simulation opens, expand Geometry in the project tree at the left hand side of theSimulation window.2.Select Solid, and in the Details view below, select Material.e the arrow that appears next to the material name Structural Steel to select NewMaterial.4.When the Engineering Data window opens, right-click New Material from the tree viewand rename it to Plate.5.Enter 2.5e06 for Young's Modulus, 0.35 for Poisson's Ratio and 2550 for Density.Note that the other properties are not used for this simulation, and that the units for these values are implied by the global units in Simulation.6.Click the Simulation tab near the top of the Workbench window to return to thesimulation.Basic Analysis SettingsThe ANSYS Multi-field simulation is a transient mechanical analysis, with a timestep of 0.1 s and a time duration of 5 s.1.Select New Analysis > Flexible Dynamic from the toolbar.2.Select Analysis Settings from the tree view and in the Details view below, set Auto TimeStepping to Off.3.Set Time Step to 0.1.4.Under Tabular Data at the bottom right of the window, set End Time to5.0 for theSteps = 1 setting.Inserting LoadsLoads are applied to an FEA analysis as the equivalent of boundary conditions in ANSYS CFX. In this section, you will set a fixed support, a fluid-solid interface, and a pressure load. Fixed SupportThe fixed support is required to hold the bottom of the thin plate in place.1.Right-click Flexible Dynamic in the tree and select Insert> Fixed Support from theshortcut menu.2.Rotate the geometry using the Rotate button so that the bottom (low-y) face of thesolid is visible, then select Face and click the low-y face.That face should be highlighted to indicate selection.3.Ensure Fixed Support is selected in the Outline view, then, in the Details view, selectGeometry and click 1 Face to make the Apply button appear (if necessary). Click Apply to set the fixed support.Fluid-Solid InterfaceIt is necessary to define the region in the solid that defines the interface between the fluid in CFX and the solid in ANSYS. Data is exchanged across this interface during the execution of the simulation.1.Right-click Flexible Dynamic in the tree and select Insert > Fluid Solid Interface fromthe shortcut menu.ing the same face-selection procedure described earlier, select the three faces of thegeometry that form the interface between the solid and the fluid (low-x, high-y and high-x faces) by holding down <Ctrl> to select multiple faces. Note that this load is automatically given an interface number of 1.Pressure LoadThe pressure load provides the initial additional pressure of 100 [Pa] for the first 0.5 seconds of the simulation. It is defined using a step function.1.Right-click Flexible Dynamic in the tree and select Insert > Pressure from the shortcutmenu.2.Select the low-x face for Geometry.3.In the Details view, select Magnitude, and using the arrow that appears, select Tabular(Time).4.Under Tabular Data, set a pressure of 100 in the table row corresponding to a time of 0.Note: The units for time and pressure in this table are the global units of [s]and [Pa], respectively.5.You now need to add two new rows to the table. This can be done by typing the new timeand pressure data into the empty row at the bottom of the table, and Simulation will automatically re-order the table in order of time value. Enter a pressure of 100 for a time value of 0.499, and a pressure of 0 for a time value of 0.5.This gives a step function for pressure that can be seen in the chart to the left of the table. Writing the ANSYS Input FileThe Simulation settings are now complete. An ANSYS Multi-field run cannot be launched from within Simulation, so the Solve buttons cannot be used to obtain a solution.1.Instead, highlight Solution in the tree, select Tools> Write ANSYS Input File andchoose to write the solution setup to the file OscillatingPlate.inp.2.The mesh is automatically generated as part of this process. If you want to examine it,select Mesh from the tree.3.Save the Simulation database, use the tab near the top of the Workbench window to returnto the Oscillating Plate [Project] tab, and save the project itself.4.Setting up the Fluid Physics and ANSYS Multi-field Settings in ANSYS CFX-PreThis section describes the step-by-step definition of the flow physics and ANSYS Multi-field settings in ANSYS CFX-Pre.Playing a Session FileIf you want to skip past these instructions and to have ANSYS CFX-Pre set up the simulation automatically, you can select Session > Play Tutorial from the menu in ANSYS CFX-Pre, then run the session file: OscillatingPlate.pre. After you have played the session file as described in earlier tutorials under Playing the Session File and Starting ANSYS CFX-Solver Manager, proceed to Obtaining a Solution using ANSYS CFX-Solver Manager.Creating a New Simulation1.Start ANSYS CFX-Pre.2.Select File > New Simulation.3.Select General and click OK.4.Select File > Save Simulation As.5.Under File name, type OscillatingPlate.6.Click Save.Importing the Mesh1.Right-click Mesh and select Import Mesh.2.Select the provided mesh file, OscillatingPlate.gtm and click Open.Note:The file that was just created in Simulation, OscillatingPlate.inp, will be used as an input file for the ANSYS Solver.Setting the Simulation TypeA transient ANSYS Multi-field run executes as a series of timesteps. The Simulation Type tab is used both to enable an ANSYS Multi-field run and to specify the time-related settings for it (in the External Solver Coupling settings). The ANSYS input file is read by ANSYS CFX-Pre so that it knows which Fluid Solid Interfaces are available.Once the timesteps and time duration are specified for the ANSYS Multi-field run (coupling run), ANSYS CFX automatically picks up these settings and it is not possible to set the timestep and time duration independently. Hence the only option available for Time Duration is Coupling Time Duration, and similarly for the related settings Time Step and Initial Time.1. ClickSimulation Type .2. Apply the following settings3. Click OK .Note :You may see a physics validation message related to the difference in the units used in ANSYS CFX-Pre and the units contained within the ANSYS input file. While it is important to review the units used in any simulation, you should be aware that, in this specific case, the message is not crucial as it is related to temperature units and there is no heat transfer in this case. Therefore, this specific tutorial will not be affected by the physics message. Creating the FluidA custom fluid is created with user-specified properties. 1. Click Material.2. Set the name of the new material to Fluid.3. Apply the following settings4.Click OK.Creating the DomainIn order to allow the ANSYS Solver to communicate mesh displacements to the CFX Solver, mesh motion must be activated in CFX.1.Right click Simulation in the Outline tree view and ensure that Automatic DefaultDomain is selected. A domain named Default Domain should now appear under the Simulation branch.2.Double click Default Domain and apply the following settings3.Click OK.Creating the Boundary ConditionsIn addition to the symmetry conditions, another type of boundary condition corresponding with the interaction between the solid and the fluid is required in this tutorial.Fluid Solid External BoundaryThe interface between ANSYS and CFX is defined as an external boundary in CFX that has its mesh displacement being defined by the ANSYS Mult i-field coupling process.When an ANSYS Multi-field specification is being made in ANSYS CFX-Pre, it is necessary to provide the name and number of the matching Fluid Solid Interface that was created in Simulation. Since the interface number in Simulation was 1, the name in question is FSIN_1. (If the interface number had been 2, then the name would have been FSIN_2, and so on.)On this boundary, CFX will send ANSYS the forces on the interface, and ANSYS will send back the total mesh displacement it calculates given the forces passed from CFX and the other defined loads.1.Create a new boundary condition named Interface.2.Apply the following settings3.Click OK.Symmetry BoundariesSince a 2D representation of the flow field is being modeled (using a 3D mesh with one element thickness in the Z direction) symmetry boundaries will be created on the low and high Z 2D regions of the mesh.1.Create a new boundary condition named Sym1.2.Apply the following settings3.Click OK.4.Create a new boundary condition named Sym2.5.Apply the following settings6.Click OK.Setting Initial ValuesSince a transient simulation is being modeled, initial values are required for all variables.1. ClickGlobal Initialization. 2. Apply the following settings:3. Click OK .Setting Solver ControlVarious ANSYS Multi-field settings are contained under Solver Control under the External Coupling tab. Most of these settings do not need to be changed for this simulation.Within each timestep, a series of “coupling” or “stagger” iterations are performed to ensure that CFX, ANSYS and the data exchanged between the two solvers are all consistent. Within each stagger iteration, ANSYS and CFX both run once each, but which one runs first is a user-specifiable setting. In general, it is slightly more efficient to choose the solver that drives the simulation to run first. In this case, the simulation is being driven by the initial pressure applied in ANSYS, so ANSYS is set to solve before CFX within each stagger iteration.1. Click Solver Control .2. Apply the following settings:3.Click OK.Setting Output ControlThis step sets up transient results files to be written at set intervals.1.Click Output Control .2.On the Trn Results tab, create a new transient result with the default name.3.Apply the following settings to Transient Results 1:4.Click the Monitor tab.5.Select Monitor Options.6.Under Monitor Points and Expressions:7.Click Add new item and accept the default name.8.Set Option to Cartesian Coordinates.9.Set Output Variables List to Total Mesh Displacement X.10.Set Cartesian Coordinates to [0, 1, 0].11.Click OK.Writing the Solver (.def) File1.Click Write Solver File .2.If the Physics Validation Summary dialog box appears, click Yes to proceed.3.Apply the following settings4.Ensure Start Solver Manager is selected and click Save.5.If you are notified the file already exists, click Overwrite.6.This file is provided in the tutorial directory and will exist in your working folder if youhave copied it there.7.Quit ANSYS CFX-Pre, saving the simulation (.cfx) file at your discretion.5.Obtaining a Solution using ANSYS CFX-Solver ManagerThe execution of an ANSYS Multi-field simulation requires both the CFX and ANSYS solvers to be running and communicating with each other. ANSYS CFX-Solver Manager can be used to launch both solvers and to monitor the output from both.1.Ensure the Define Run dialog box is displayed.There is a new MultiField tab which contains settings specific for an ANSYS Multi-field simulation.2.On the MultiField tab, check that the ANSYS input file location is correct (the location isrecorded in the definition file but may need to be changed if you have moved files around).3.On UNIX systems, you may need to manually specify where the ANSYS installation is ifit is not in the default location. In this case, you must provide the path to the v110/ansys directory.4.Click Start Run.The run begins by some initial processing of the ANSYS Multi-field input which results in the creation of a file containing the necessary multi-field commands for ANSYS, and then the ANSYS Solver is started. The CFX Solver is then started in such a way that it knows how to communicate with the ANSYS Solver.After the run is under way, two new plots appear in ANSYS CFX-Solver Manager:ANSYS Field Solver (Structural) This plot is produced only when the solid physics is set to use large displacements or when other non-linear analyses are performed. It shows convergence of the ANSYS Solver. Full details of the quantities are described in the ANSYS user documentation. In general, the CRIT quantities are the convergence criteria for each relevant variable, and the L2 quantities represent the L2 Norm of the relevant variable. For convergence, the L2 Norm should be below the criteria. The x-axis of the plot is the cumulative iteration number for ANSYS, which does not correspond to either timesteps or stagger iterations. Several ANSYS iterations will beperformed for each timestep, depending on how quickly ANSYS converges. You will usually see a somewhat “spiky” plot, as each quantity will be unconverged at the start of each time step, and then convergence will improve.ANSYS Interface Loads (Structural)This plot shows the convergence for each quantity that is part of the data exchanged between the CFX and ANSYS Solvers. In this case, four lines appear, corresponding to two force components (FX and FY) and two displacement components (UX and UY). Since the analysis is 2D, FZ and UZ are not exchanged. Each quantity is converged when the plot shows a negative value. The x-axis of the plot corresponds to the cumulative number of stagger iterations (coupling iterations) and there are several of these for every timestep. Again, a spiky plot is expected as the quantities will not be converged at the start of a timestep.The ANSYS out file is displayed in ANSYS CFX-Solver Manager as an extra tab. Similar to the CFX out file, this is a text file recording output from ANSYS as the solution progresses.1.Click the User Points tab and watch how the top of the plate displaces as the solutiondevelops.2.When the solvers have finished and ANSYS CFX-Solver Manager puts up a dialog boxto tell you this, click Yes to post-process the results.3.If using Standalone Mode, quit ANSYS CFX-Solver Manager.6.Viewing Results in ANSYS CFX-PostFor an ANSYS Multi-field run, both the CFX and ANSYS results files will be opened up in ANSYS CFX-Post by default if ANSYS CFX-Post is started from a finished run in ANSYS CFX-Solver Manager.Plotting Results on the SolidWhen ANSYS CFX-Post reads an ANSYS results file, all the ANSYS variables are available to plot on the solid, inc luding stresses and strains. The mesh regions available for plots by default are limited to the full boundary of the solid, plus certain named regions which are automatically created when particular types of load are added in Simulation. For example, any Fluid Solid Interface will have a corresponding mesh region with a name such as FSIN 1. In this case, there is also a named region corresponding to the location of the fixed support, but in general pressure loads do not result in a named region.You can add extra mesh regions for plotting by creating named selections in Simulation - see the Simulation product documentation for more details. Note that the named selection must have a name which contains only English letters, numbers and underscores for the named mesh region to be successfully created.Note that when ANSYS CFX-Post loads an ANSYS results file, the true global range for each variable is not automatically calculated, as this would add a substantial amount of time onto how long it takes to load such a file (you can turn on this calculation using Edit > Options and using the Pre-calculate variable global ranges setting under CFX-Post> Files). When the global range is first used for plotting a variable, it is calculated as the range within the current timestep. As subsequent timesteps are loaded into ANSYS CFX-Post, the Global Range is extended each time variable values are found outside the previous Global Range.1.Turn on the visibility of Boundary ANSYS (under ANSYS > Domain ANSYS).2.Right-click a blank area in the viewer and select Predefined Camera > View Towards-Z. Zoom into the plate to see it clearly.3.Apply the following settings to Boundary ANSYS:4.Click Apply.5.Select Tools> Timestep Selector from the task bar to open the Timestep Selectordialog box. Notice that a separate list of timesteps is available for each results file loaded, although for this case the lists are the same. By default, Sync Cases is set to By Time Value which means that each time you change the timestep for one results file, ANSYS CFX-Post will automatically load the results corresponding to the same time value for all other results files.6.Set Match to Nearest Available.7.Change to a time value of 1 [s] and click Apply.The corresponding transient results are loaded and you can see the mesh move in both the CFX and ANSYS regions.1.Clear the visibility check box of Boundary ANSYS.2.Create a contour plot, set Locations to Boundary ANSYS and Sym2, and set Variable toTotal Mesh Displacement. Click Apply.ing the timestep selector, load time value 1.1 [s] (which is where the maximum totalmesh displacement occurs).This verifies that the contours of Total Mesh Displacement are continuous through both the ANSYS and CFX regions.Many FSI cases will have only relatively small mesh displacements, which can make visualization of the mesh displacement difficult. ANSYS CFX-Post allows you to visually magnify the mesh deformation for ease of viewing such displacements. Although it is not strictly necessary for this case, which has mesh displacements which are easily visible unmagnified, this is illustrated by the next few instructions.ing the timestep selector, load time value 0.1 [s] (which has a much smaller meshdisplacement than the currently loaded timestep).2.Place the mouse over somewhere in the viewer where the background color is showing.Right-click and select Deformation > Auto. Notice that the mesh displacements are now exaggerated. The Auto setting is calculated to make the largest mesh displacement a fixed percentage of the domain size.3.To return the deformations to their true scale, right-click and select Deformation > TrueScale.Creating an Animationing the Timestep Selector dialog box, ensure the time value of 0.1 [s] is loaded.2.Clear the visibility check box of Contour 1.3.Turn on the visibility of Sym2.4.Apply the following settings to Sym2.5.Click Apply.6.Create a vector plot, set Locations to Sym1 and leave Variable set to Velocity. SetColor to be Constant and choose black. Click Apply.7.Select the visibility check box of Boundary ANSYS, and set Color to a constant blue.8.Click Animation .The Animation dialog box appears.9.Select Keyframe Animation.10.In the Animation dialog box:a.Click New to create KeyframeNo1.b.Highlight KeyframeNo1, then change # of Frames to 48.c.Load the last timestep (50) using the timestep selector.d.Click New to create KeyframeNo2.The # of Frames parameter has no effect for the last keyframe, so leave it at thedefault value.e.Select Save MPEG.f.Click Browse next to the MPEG file data box to set a path and file name forthe MPEG file.If the file path is not given, the file will be saved in the directory from whichANSYS CFX-Post was launched.g.Click Save.The MPEG file name (inc luding path) will be set, but the MPEG will not becreated yet.h.Frame 1 is not loaded (The loaded frame is shown in the middle of theAnimation dialog box, beside F:). Click To Beginning to load it then waita few seconds for the frame to load.i.Click Play the animation .The MPEG will be created as the animation proceeds. This will be slow, since atimestep must be loaded and objects must be created for each frame. To view theMPEG file, you need to use a viewer that supports the MPEG format.11.When you have finished, exit ANSYS CFX-Post.。

openfoam流固耦合算例

openfoam流固耦合算例

OpenFOAM是一个开源的流体动力学(CFD)软件包,用于模拟和分析流体力学问题。

流固耦合是指在流动场中引入固体物质,使流体和固体之间产生相互作用。

在OpenFOAM 中,可以使用PimpleFoam或SimpleFoam等求解器来实现流固耦合。

以下是一个简单的流固耦合算例:1. 首先,创建一个包含流动场和固体物质的网格文件(例如,使用blockMesh生成的网格文件)。

2. 使用OpenFOAM的解算器(如pimpleFoam或simpleFoam)对流动场进行求解。

3. 在流动场的计算过程中,将固体物质的物理属性(如密度、弹性模量等)考虑进去。

这可以通过在流动场的计算文件中添加相应的物理参数来实现。

4. 当流动场的计算完成后,使用OpenFOAM的后处理工具(如paraFoam或foamToVTK)对结果进行分析和可视化。

以下是一个简单的流固耦合算例的代码示例:```cpp// 在流动场的计算文件中添加固体物质的物理参数dimensions [0 2 -2 0 0 0 0];internalField uniform 1;boundaryField{inlet{type zeroGradient;}outlet{type zeroGradient;}}// 在流动场的计算文件中添加固体物质的物理属性physics fluidSubset;p_rgh p_rgh;rho rho;mu mu;k k;// 使用pimpleFoam求解器对流动场进行求解solvers{pimpleFoam{nNonOrthogonalCorrectors 0;}}// 使用paraFoam后处理工具对结果进行分析和可视化paraFoam{writeControl timeStep;writeInterval 1;writePrecision 6;writeFormat ascii;timeFormat general;folder paraFoamResults;}```这个算例仅作为一个简单的示例,实际应用中可能需要根据具体问题进行调整。

fluent流固耦合传热算例

fluent流固耦合传热算例

fluent流固耦合传热算例摘要:I.引言- 介绍fluent 软件和流固耦合传热算例II.流固耦合传热的基本概念- 解释流固耦合传热- 说明流固耦合传热在工程领域的重要性III.fluent 软件介绍- 介绍fluent 软件的背景和功能- 说明fluent 软件在流固耦合传热计算方面的应用IV.流固耦合传热算例- 介绍一个具体的流固耦合传热算例- 详细描述算例的步骤和结果V.结论- 总结流固耦合传热算例的重要性- 提出进一步研究的建议正文:I.引言fluent 软件是一款专业的流体动力学模拟软件,广泛应用于航空航天、汽车制造、能源等行业。

在fluent 中,流固耦合传热是一个重要的计算功能。

本文将介绍fluent 软件和流固耦合传热算例,并通过一个具体的算例详细说明流固耦合传热在工程领域中的应用。

II.流固耦合传热的基本概念流固耦合传热是指在流体流动过程中,由于流体和固体壁面之间的温度差而产生的热传递现象。

在实际工程中,流体和固体之间的热传递过程往往是非常复杂的,需要通过数值模拟来进行分析。

fluent 软件提供了一种流固耦合传热计算的功能,可以帮助工程师更好地理解和优化工程过程中的热传递现象。

III.fluent 软件介绍fluent 软件由美国ANSYS 公司开发,是一款功能强大的流体动力学模拟软件。

fluent 软件可以模拟多种流体流动和传热现象,包括稳态和瞬态模拟、层流和紊流模拟、等温、绝热和热传导模拟等。

在fluent 中,用户可以自定义模型和求解器,以满足不同工程需求。

在流固耦合传热方面,fluent 软件提供了一种耦合求解器,可以将流体流动和固体传热两个问题同时求解。

这种耦合求解器可以大大提高计算效率,并更好地模拟实际工程中的热传递过程。

IV.流固耦合传热算例下面我们通过一个具体的算例来说明fluent 软件在流固耦合传热计算方面的应用。

算例描述:一个矩形通道中,流体流动与固体壁面的热传递过程。

ansys流固耦合案例

ansys流固耦合案例

ansys流固耦合案例1. Ansys流固耦合案例:热沉设计热沉是一种用于散热的设备,通常用于电子设备中,以降低温度并保护设备不受过热损坏。

在设计热沉时,流体流动和热传导是两个重要的物理过程。

Ansys流固耦合可以帮助工程师模拟和优化热沉的设计。

在这个案例中,我们考虑了一个由铝合金制成的热沉。

热沉的底部与电子设备紧密接触,通过流体流动和热传导来吸收和传递热量。

通过使用Ansys的流固耦合模块,我们可以解决以下问题:1) 流体流动模拟:我们可以使用Ansys Fluent模块模拟流体在热沉内部的流动情况。

通过设定合适的边界条件和材料属性,我们可以计算出流体的速度场和压力场。

2) 热传导模拟:我们可以使用Ansys Mechanical模块模拟热沉内部的热传导过程。

通过设定热源和材料属性,我们可以计算出热沉内部的温度分布。

3) 流固耦合模拟:在流体流动和热传导模拟的基础上,我们可以使用Ansys的流固耦合模块将二者结合起来。

通过设定合适的耦合条件,我们可以模拟出流体对热沉的冷却效果,并计算出热沉的最终温度分布。

通过这个案例,我们可以优化热沉的设计,以达到更好的散热效果。

我们可以调整热沉的几何形状、材料属性和流体流动条件,以最大程度地提高散热效率,并确保电子设备的正常运行。

2. Ansys流固耦合案例:风力发电机叶片设计风力发电机叶片是将风能转化为机械能的关键部件。

在设计风力发电机叶片时,流体力学和结构力学是两个重要的物理过程。

Ansys 流固耦合可以帮助工程师模拟和优化叶片的设计。

在这个案例中,我们考虑了一个三叶式风力发电机叶片。

叶片由复合材料制成,通过受风力作用,将机械能传递给发电机。

通过使用Ansys的流固耦合模块,我们可以解决以下问题:1) 风场模拟:我们可以使用Ansys Fluent模块模拟风力对叶片的作用。

通过设定合适的边界条件和材料属性,我们可以计算出风场的速度场和压力场。

2) 结构分析:我们可以使用Ansys Mechanical模块模拟叶片的结构响应。

ADINA流固耦合实例

ADINA流固耦合实例

实例3 隧道内具有柔性结构的流固耦合分析问题:隧道内具有柔性结构的流固耦合如图3-1所示。

图3-1 流体-固体结构示意图一、目的1. 掌握流固耦合作用FSI在Adina-AUI中的操作过程。

2. 掌握用伸缩比例因子画流固耦合模型。

3. 定义引导点(leader-follower points)。

二、定义模型主控数据1. 定义标题:选Control→Heading→敲入标题“exe03: Fluid flow over a flexible structure in a channel, ADINA input”→and click OK。

2. FSI分析:在右边Analysis Type区选FSI按钮。

3. 主控自由度选Control→Degrees of Freedom→不选X-Translation, X-Rotation, Y-Rotation andZ-Rotation按钮→and click OK。

4. 分析假设:大位移,小应变。

选Control→Analysis Assumptions→Kinematics→设置“Displacements/Rotations”为Large→ click OK。

(注:非常薄的结构,因此为小应变)。

三、力学模型1. 柔性结构建立模型1). 柔性结构几何模型坐标点如表3-1,几何结构如图3-2所示。

其几何面见表3-2所示。

①选Define Points 图标→按表3-1输入几何点坐标→ click OK .②选Define Surfaces 图标→设置TYPE 为Vertex → click OK(如图3-2所示)。

2). 施加固定边界条件和流-固边界条件①.图3-2中,在L2线上施加固定约束,其过程可用Adina-AUI 完成。

②. 流-固边界,选Model →Boundary Conditions →FSIBoundary →add FSI boundary number 1→在表中头两行敲入流固边界线编号1和 3 and click OK 。

pfc流固耦合算例

pfc流固耦合算例

pfc流固耦合算例近年来,计算流体力学(CFD)的发展迅猛,越来越多的研究者开始关注流固耦合问题。

PFC(Particle Flow Code)流固耦合算例是一种模拟复杂多相介质力学及其与流体相互作用的先进数值模拟工具,已广泛应用于工程、地质学和环境科学领域中。

本文将详细介绍PFC流固耦合算例的实现过程和应用价值。

一、PFC流固耦合算例的原理和方法PFC流固耦合算例主要基于两种离散元素:球状颗粒和粘性线状元素。

通过PFC数值模拟,可以精确地模拟非线性、非均匀以及多相介质体系的机械行为。

在PFC流固耦合算例中,颗粒作为建筑单元,液体或气体作为流体相互作用介质,二者通过边界条件和相互作用模型进行交互。

具体而言,PFC流固耦合算例分为三个主要步骤:1、建立模型在建立模型阶段,首先需要确定物理模型中的物理属性、颗粒形状和大小、界面张力等参数。

其次,需要将颗粒单元与流体相互作用的交界面分离出来,并使用合适的相互作用模型描述它们之间的相互作用。

2、模拟运行在模拟运行过程中,需分别在颗粒单元和流体介质中运用质量守恒定律、动量守恒定律以及能量守恒定律。

流体动力学模型的计算结果会影响颗粒结构的运动,从而影响随后的力学和物理行为。

因此,在模拟运行中,需要反复调试并确定边界条件和相互作用模型,确保计算结果的准确性和可靠性。

3、结果分析通过对模拟结果的分析,可以获得颗粒结构和流体相互作用参数的信息,包括颗粒的位置、速度、加速度和应力、流场速度场、压力场等。

这些参数信息对于分析物质的输运、转移和分离过程等相关问题具有重要意义,可为后续的研究提供参考。

二、PFC流固耦合算例的应用价值PFC流固耦合算例在许多领域都有重要的应用价值。

例如:1、矿山工程PFC流固耦合算例可用于矿山垮塌的数值模拟,利用颗粒和流体相互作用模型来模拟和预测颗粒体系的初始状态、暴力过程和稳定状态,并对塌方过程和潜在危险因素进行全面分析。

2、土木工程PFC流固耦合算例能够模拟土体和岩石的强度、变形和破坏,预测土体和岩石物理性质变化的规律,为土木工程设计、施工和维护提供可靠的依据。

旋转式压缩机流固耦合计算示例

旋转式压缩机流固耦合计算示例

◇ 保证两sliding面相重合面积的流场联通,未重合的流场为不流通。重 合面积的大小始终发生变化;
◇ 所有模型在ADINA建立。
FOCUSED ON EXCELLENCE
计算模型
ADINA
模拟实际分成两个阶段,但计算过程可为一个文件。 第一阶段,转子轴心从初始同心位置进行偏心移 动,0~0.6s;
◇ 用户可在此模型基础上加入复杂流体特性和出口 的流固耦合部分,进行实际问题模拟。
FOCUSED ON EXCELLENCE
ADINA
旋转式压缩机流固耦合计算示例
ADINA技术部
单位制:mm,Mpa,s。
FOCUSED ON EXCELLENCE
计算模型
◇ 转子直径48mm; ◇ 额定转速1000rpm;
ADINA
偏心转子有限元网格
FOCUSED ON EXCELLENCE
计算模型
ADINA
流场初始网格 ◇ 转子空腔和排气管用sliding mesh处理;
第二阶段,转子在偏心位置转动,0.6s~。
命令流文件:rotor-compress.in,gas-compress.in。
FOCUSED ON EXCE的典型速度场分布
FOCUSED ON EXCELLENCE
其它说明
ADINA
◇ 本模型只说明如何建立旋转式压缩机几何建模、 网格划分方法、周期变化流场空间定义方法、SIMPLE 求解器设置、时间步长选择等等;

ADINA流固耦合实例

ADINA流固耦合实例

实例3 隧道内具有柔性结构的流固耦合分析问题:隧道内具有柔性结构的流固耦合如图3-1所示。

图3-1 流体-固体结构示意图一、目的1. 掌握流固耦合作用FSI在Adina-AUI中的操作过程。

2. 掌握用伸缩比例因子画流固耦合模型。

3. 定义引导点(leader-follower points)。

二、定义模型主控数据1. 定义标题:选Control→Heading→敲入标题“exe03: Fluid flow over a flexible structure in a channel, ADINA input”→and click OK。

2. FSI分析:在右边Analysis Type区选FSI按钮。

3. 主控自由度选Control→Degrees of Freedom→不选X-Translation, X-Rotation, Y-Rotation andZ-Rotation按钮→and click OK。

4. 分析假设:大位移,小应变。

选Control→Analysis Assumptions→Kinematics→设置“Displacements/Rotations”为Large→ click OK。

(注:非常薄的结构,因此为小应变)。

三、力学模型1. 柔性结构建立模型1). 柔性结构几何模型坐标点如表3-1,几何结构如图3-2所示。

其几何面见表3-2所示。

①选Define Points 图标→按表3-1输入几何点坐标→ click OK .②选Define Surfaces 图标→设置TYPE 为Vertex → click OK(如图3-2所示)。

2). 施加固定边界条件和流-固边界条件①.图3-2中,在L2线上施加固定约束,其过程可用Adina-AUI 完成。

②. 流-固边界,选Model →Boundary Conditions →FSIBoundary →add FSI boundary number 1→在表中头两行敲入流固边界线编号1和 3 and click OK 。

fluent流固耦合传热算例

fluent流固耦合传热算例

Fluent流固耦合传热算例介绍在工程领域中,流固耦合传热是一个重要的研究领域。

通过数值模拟方法,我们可以对流体和固体之间的传热过程进行分析和优化。

Fluent是一种常用的流体动力学软件,可以用于模拟流体的运动和传热。

本文将介绍一个关于Fluent流固耦合传热的算例,讨论其原理、步骤和结果分析。

算例背景我们以一个热交换器为例来进行流固耦合传热的模拟。

热交换器是一种常见的设备,用于将热量从一个流体传递到另一个流体,常见于工业生产和能源系统中。

通过模拟热交换器的传热过程,我们可以更好地了解其工作原理,优化设计,并提高其传热效率。

模型建立几何模型首先,我们需要建立热交换器的几何模型。

根据具体的热交换器类型和尺寸,我们可以使用CAD软件绘制出几何模型,并导入到Fluent中进行后续的模拟分析。

边界条件在模拟中,我们需要设置合适的边界条件来模拟实际工况。

对于热交换器的模拟,我们通常需要设置流体的入口温度、出口温度、流速等参数,以及固体壁面的温度和热传导系数。

数值模拟流体模拟在进行流固耦合传热模拟之前,我们首先需要进行流体模拟。

通过Fluent软件,我们可以对流体的运动进行数值模拟,并得到流体的速度场、压力场等关键参数。

在热交换器模拟中,我们需要注意流体的流动特性,如湍流、层流等,以及流体的物性参数,如密度、粘度等。

固体传热模拟在得到流体模拟的结果后,我们可以将其作为固体传热模拟的边界条件。

通过设置固体壁面的温度和热传导系数,我们可以模拟固体的传热过程。

在热交换器模拟中,我们通常关注固体的温度分布、热流密度等参数。

流固耦合模拟最后,我们将流体模拟和固体传热模拟结合起来,进行流固耦合传热模拟。

在Fluent中,我们可以通过设置合适的耦合算法和迭代步长,将流体和固体的传热过程耦合起来。

通过迭代计算,我们可以得到流体和固体的传热过程,并分析其传热特性和效率。

结果分析通过流固耦合传热模拟,我们可以得到丰富的结果数据,如流体的速度场、压力场,固体的温度分布、热流密度等。

ANSYS流固耦合分析实例

ANSYS流固耦合分析实例
闭 ANSYS CFX-Solver Manager
通过 ANSYS CFX-Post 观察结果
在固体薄板上观察结果 1. 显示Boundary ANSYS(在 ANSYS > Domain ANSYS中) 2. 对 Boundary ANSYS进行如下设置
3. 点击Apply 4. 选择Tools > Timestep Selector ,打开Timestep
Details窗口,设置Auto Time Stepping为off 3. 设置Time Step为0.1 [s] 4. 在整个窗口底边靠右的Tabular Data面板,设置End Time为5.0
模拟中固体问题的描述—加入载荷
固定支撑:为确保薄板的底部固定于平板,需要设置固定 支撑条件。
1. 右击目录树中Transient Stress,在快捷菜单中选择Insert > Fixed Support
0 [pa]对应于0.5 [s]
模拟中固体问题的描述—记录ANSYS输入文件
现在,模拟设置已经完成。在Simulation中ANSYS MultiField并不运行,因此用求解器按钮并不能得到结果 1. 然而,在目录树中的高亮Solution中,选择Tools > Write ANSYS Input File,把结果写进文件OscillatingPlate.inp 2. 网格是自动生成的,如果想检查,可以在目录树中选择 Mesh 3. 保存Simulation数据,返回Oscillating Plate [Project]面 板,存储Project
Geometry File下,点击Browse,打开所提供 的OscillatingPlate.agdb文件 7. 确认OscillatingPlate.agdb被选(高亮显示), 点击New simulation

fluent流固耦合传热算例

fluent流固耦合传热算例

fluent流固耦合传热算例一、fluent简介Fluent是一款专业的流体动力学模拟软件,由美国ANSYS公司开发。

它具有强大的计算能力和广泛的适用范围,可以模拟多种流体流动、传热等问题。

在工程领域、科研单位和高校等领域具有广泛的应用。

二、流固耦合传热概述流固耦合传热问题是指在流体流动过程中,固体壁面与流体之间的热量传递。

这种问题涉及到流体力学、传热学和固体力学等多个学科,具有一定的复杂性。

通过Fluent 软件进行模拟分析,可以得到流场、温度场和应力场等多场耦合的数值解。

三、算例介绍本文将介绍一个简单的流固耦合传热算例,以演示Fluent 的操作方法和注意事项。

算例模型为一个矩形通道,通道内部流动的是水,壁面材料为铜。

通道两侧分别为冷却水进口和出口,冷却水的温度分别为30℃和40℃。

模拟目标是求解通道内水的流速、温度分布以及壁面的热应力。

四、操作步骤及注意事项1.打开Fluent 软件,创建新项目。

2.导入几何模型,本文采用矩形通道模型。

3.定义物理模型,包括流体物性(如密度、比热容等)、壁面材料(如铜)以及冷却水边界条件。

4.划分网格,选择合适的网格类型和密度。

5.设置求解器参数,包括收敛标准、迭代次数等。

6.启动计算,观察结果收敛情况。

7.分析结果,包括流速分布、温度分布以及壁面热应力。

注意事项:1.在设置物理模型时,要确保与实际情况相符。

2.网格划分要合理,以保证计算精度和收敛速度。

3.根据问题特点,选择合适的求解器参数。

五、结果分析与讨论通过Fluent 模拟,得到以下结果:1.通道内水流速分布均匀,无明显涡流产生。

2.通道内温度分布呈现梯度变化,进口处温度较低,出口处温度较高。

3.壁面热应力分布均匀,符合热应力计算公式。

分析与讨论:1.流速分布对传热性能有一定影响,适当提高流速可以增强传热效果。

2.温度分布反映了热量在通道内的传递情况,与实际工程应用中的需求相符。

3.壁面热应力的计算结果可以为工程设计提供参考,以避免因热应力导致的材料损伤或设备故障。

ansys workbench的管道热流固耦合案例

ansys workbench的管道热流固耦合案例

图 3 fill 命令选取内部面
图 4 入口出口命名
选定所有外部壁面定义为 wall。最后定义耦合面,定义流固交界面流体一侧的三个面为 interfacef2s,定义流固交界面固体一侧的三个面为 interfaces2f,面的选取如图 5 所示。
图 5 流体域和固体域边界图示
四、网格划分
双击 A3 打开 Meshing 模块,网格划分主要有三部分,选定固体域定义网格方法为 Automatic Method,选定流体域定义网格方法同样为 Automatic Method,最后,在流体域中 选择与固体域相交的三个面定义膨胀层 Inflation。为了使网格更合适质量更好,在 detail of ‘mesh’面板中定义相应参数,其中定义 Relevance 为 100,Relevance Center 为 fine,Smoothing 为 High,Span Angle Center 为 Fine,其余选项均保持默认即可。单击 Generate Mesh 生成网 格,得到节点数为 64628,网格数量为 190857。观察网格质量,网格质量总体均在 0.5 以上, 基本可以认为网格质量良好。
七、变形及热应力分析
双击 C5 进入静态结构计算模块右键单击 Imported Load 打开右键菜单后单击 Imported Load 导入固体域的温度。右键单击 Static Structural—Insert—Fixed Support 给三个入口端面
施加固定约束。完成边界条件的加载。右键单击 Solution 插入总变形和应力。单击 solve 进 行求解。
图 2 数据传送关系
在 SolidWorks 中 建 立 相 应 模 型 , 并 转 化 成 ansys 适 用 的 x_t 格 式 。 双 击 A2 打 开 DesignModeler,导入相应模型。

fluent流固耦合传热算例

fluent流固耦合传热算例

fluent流固耦合传热算例一、流固耦合传热概念介绍流固耦合传热是指在流体与固体之间,由于温度差异导致的热量传递过程。

在这种传热方式中,流体与固体的温度分布、热应力以及流动状态均会相互影响,使得传热过程变得复杂。

流固耦合传热在工程领域具有广泛的应用,如航空航天、汽车制造、能源化工等行业。

二、流固耦合传热算例背景及意义本文将围绕一个具体的流固耦合传热算例进行阐述,以揭示这种传热方式在不同条件下的规律。

通过分析算例,我们将更好地理解流固耦合传热过程,为实际工程问题提供理论依据。

三、算例具体内容与分析本算例考虑一个二维矩形通道,通道内充满流体,流体与通道壁之间存在温度差。

通道的宽度和高度分别为a和b,流体在通道内沿x方向流动,温度沿y方向分布。

我们假设流体为牛顿流体,通道壁为恒温壁,通道左边界温度为T1,右边界温度为T2。

根据热力学原理,流体在通道内传输热量的大小与流速、流体比热容、通道长度、宽度和温度差有关。

在本算例中,我们通过数值模拟方法求解流固耦合传热方程。

首先,对流体域进行网格划分,然后采用有限元方法求解流体域的热传导方程;接着,根据流体域的温度分布,计算流体的热流密度;最后,根据流体的热流密度和通道壁的温度分布,求解固体域的热传导方程。

四、结果讨论与启示通过分析算例,我们可以得到以下结论:1.在流速一定时,通道宽度对流固耦合传热效果有显著影响。

宽度越大,传热效果越好。

2.在通道宽度一定时,流速对流固耦合传热效果有明显规律。

流速越大,传热效果越好,但增速逐渐减缓。

3.流固耦合传热过程中,流体与通道壁的温度分布存在一定的差异,这有利于提高传热效果。

4.通过对流固耦合传热算例的研究,我们可以为实际工程中的热管理问题提供理论指导,如优化通道设计、提高传热设备效率等。

总之,本文通过对流固耦合传热算例的研究,揭示了流速、通道宽度等因素对传热效果的影响规律。

这些结论为实际工程问题提供了有益的参考,有助于提高传热设备的性能和效率。

fluent流固耦合传热算例

fluent流固耦合传热算例

fluent流固耦合传热算例fluent流固耦合传热算例是针对流体和固体之间热量传递的一种数值模拟方法。

在工程领域中,流固耦合传热问题广泛存在于换热器、散热器、核电站等领域,对于优化设计、提高传热效率以及解决实际工程问题具有重要意义。

一、流固耦合传热概念介绍流固耦合传热是指在流体与固体之间由于温度差引起的热量传递过程。

在这种传热方式中,流体和固体的温度场、速度场以及压力场之间存在相互影响的关系。

流固耦合传热问题可以分为内部耦合和外部耦合两种类型。

内部耦合是指流体和固体内部的热量传递过程,而外部耦合是指流体和固体之间的热量交换。

二、流固耦合传热算例背景及意义本文以某实际工程为背景,通过fluent软件对流固耦合传热问题进行数值模拟。

旨在揭示流体与固体之间热量传递的规律,为实际工程提供参考依据。

通过分析算例,可以优化传热装置设计,提高传热效率,降低能耗,从而降低生产成本。

三、算例具体内容与分析本算例采用fluent软件进行数值模拟,考虑流体在固体内部的流动与热量传递。

模拟过程中,流体与固体的温度、速度、压力等参数随时间和空间的变化关系。

通过计算得到流体与固体之间的热量交换,从而分析传热过程的性能。

四、结果讨论与启示通过对流固耦合传热算例的分析,得到以下结论:1.在流固耦合传热过程中,流体的温度分布和速度分布对固体表面的热量传递有显著影响。

2.固体内部的温度分布存在一定的规律,可通过优化固体材料、改变流体流动方式等方法提高传热效果。

3.流固耦合传热问题具有较强的非线性特点,需要采用数值模拟方法进行深入研究。

本算例为实际工程提供了有益的参考,启示我们在设计传热装置时,要充分考虑流体与固体之间的相互作用,从而实现高效、节能的目标。

综上所述,fluent流固耦合传热算例对于揭示流体与固体之间热量传递规律具有重要的实际意义。

双向流固耦合实例

双向流固耦合实例

双向流固耦合实例(Fluent与structure)说明:本例只应用于FLUENT14.0以上版本。

ANSYS 14.0是2011年底新推出的版本,在该版本中,加入了一个新的模块System Coupling,目前只能用于fluent与ansys mechanical的双向流固耦合计算。

官方文档中有介绍说以后会逐渐添加对其它求解器的支持,不过这不重要,重要的是现在FLUENT终于可以不用借助第三方软件进行双向流固耦合计算了,个人认为这是新版本一个不小的改进。

模块及数据传递方式如下图所示。

一、几何准备流固耦合计算的模型准备与单独的流体计算不同,它需要同时创建流体模型与固体模型。

在geometry模块中同时创建流体模型与固体模型。

到后面流体模型或固体模块中再进行模型禁用处理。

模型中的尺寸:v1:32mm,h2:120mm,h5:60mm,h3:3mm,v4:15mm。

由于流体计算中需要进行动网格设置,因此推荐使用四面体网格。

当然如果挡板刚度很大网格变形很小时,可以使用六面体网格,划分六面体网格可以先将几何进行slice切割。

这里对流体区域网格划分六面体网格,固体域同样划分六面体网格。

二、流体部分设置1、网格划分双击B3单元格,进入meshing模块进行网格划分。

禁用固体部分几何。

设定各相关部分的尺寸,由于固体区域几何较为整齐,因此在切割后只需设定一个全局尺寸即可划分全六面体网格。

这里设定全局尺寸为1mm。

划分网格后如下图所示。

2、进行边界命名,以方便在fluent中进行边界条件设置设置左侧面为速度进口velocity inlet,右侧面为自由出流outflow,上侧面为壁面边界wall_top,正对的两侧面为壁面边界wall_side1与wall_side2(这两个边界在动网格设定中为变形域),设定与固体交界面为壁面边界(该边界在动网格中设定为system coupling类型)。

操作方式:选择对应的表面,点击右键,选择菜单create named selection,然后输入相应的边界名称。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Oscillating Plate with Two-Way Fluid-Structure InteractionANSYS-ChinaIntroductionThis tutorial includes:« Features*Overview of the Problem to Solve«Setti ng up the Solid Physics in Simulatio n (ANSYS Workbe nch)«Setti ng up the Fluid Physics and ANSYS Multi-field Setti ngs in ANSYS CFX-Pre«Obta ining a Solution using ANSYS CFX-Solver Ma nager« Viewi ng Results in ANSYS CFX-PostIf this is the first tutorial you are working with, it is important to review the following topics before begi nning:*Sett ing the Worki ng Directory*Cha nging the Display ColorsUni ess you pla n on running a sessi on file, you should copy the sample files used in this tutorial from the in stallati on folder for your software (<CFXROOT>/examples/) to your work ing directory. This preve nts you from overwriti ng source files provided with your in stallatio n. If you pla n to use a sessi on file, please refer to Play ing a Sessi on File.Sample files refere need by this tutorial in clude:*Oscillati ngPlate.pre*Oscillati ngPlate.agdb*Oscillat in gPlate.gtm*Oscillati ngPlate.i np1.FeaturesIn this tutorial you will lear n about:*Moving mesh*Fluid-solid in teract ion (in cludi ng modeli ng solid deformati on using ANSYS)*Running an ANSYS Multi-field (MFX) simulatio n*Post-process ing two results files simulta neously.2.Overview of the Problem to SolveThis tutorial uses a simple oscillat ing plate example to dem on strate how to set up and run a simulation involving two-way Fluid-Structure Interaction, where the fluid physics is solved in ANSYS CFX and the solid physics is solved in the FEA package ANSYS. Coupling between the two solvers is required throughout the soluti on to model the in teract ion betwee n fluid and solid as time progresses, and the framework for the coupli ng is provided by the ANSYS Multi-field solver, using the MFX setup.The geometry con sists of a 2D closed cavity. A thin plate is an chored to the bottom of the cavity as show n below:An in itial pressure of 100 Pa is applied to one side of the thin plate for 0.5 sec onds in order todistort it. Once this pressure is released, the plate oscillates backwards and forwards as it attempts to regain its equilibrium (vertical) position. The surrounding fluid damps the oscillations, which therefore have an amplitude that decreases in time. The CFX Solver calculates how the fluid resp onds to the moti on of the plate, and the ANSYS Solver calculates how the plate deforms as a result of both the in itial applied pressure and the pressure result ing from the prese nee of the fluid. Coupli ng betwee n the two solvers is required si nee the solid deformati on affects the fluid soluti on, and the fluid solution affects the solid deformation.The tutorial describes the setup and execution of the calculation including the setup of the solid physics in Simulati on (withi n ANSYS Workbe nch) and the setup of the fluid physics andANSYS Multi-field sett ings in ANSYS CFX-Pre. If you do n ot have ANSYS Workbe nch, the n you can use the provided ANSYS in put file to avoid the n eed for Simulatio n.3.Setting up the Solid Physics in Simulation (ANSYS Workbench)This secti on describes the step-by-step defi niti on of the solid physics in Simulati on with in ANSYS Workbe nch that will result in the creation of an ANSYS in put file Oscillati ngPlate.i np. If you prefer, you can in stead use the provided Oscillati ngPlate.i np file and continue from Sett ing up the Fluid Physics and ANSYS Multi-field Setti ngs in ANSYS CFX-Pre.Creating a New Simulatio n1.If required, lau nch ANSYS Workbe nch.2.Click Empty Project. The Project page appears displaying an unsaved project.3.Select File > Save or click Save butt on.4. If required, set the path location to a different folder. The default location is your workingdirectory. However, if you have a specific folder that you want to use to store files created duringthis tutorial, change the path.5.Un der File name , type Oscillat in gPlate. 6. Click Save.7. Under Link to Geometry File on the left hand task bar click Browse. Select the provided fileOscillatingPlate.agdb and click Open .8. Make sure that OscillatingPlate.agdb is highlighted and click New simulation from the left-ha ndtaskbar.Creati ng the Solid Material1. When Simulatio n ope ns, expa nd Geometry in the project tree at the left hand side of the Simulatio nwin dow.2. Select Solid, and in the Details view below, select Material .3. Use the arrow that appears next to the material name Structural Steel to select New Material .4. When the Engineering Data window ope ns, right-click New Material from the tree viewand ren ame it to Plate.Mil fit .(j •,,會更平皓时■白HC M » ■J laWjHrrtefip* m ThMmM r^rciLH : lrv«y. 0 CJ||"H1 in5. Enter 2.5e06 for Young's Modulus , 0.35 for Poisson's Ratio and 2550 for Density .Note that the other properties are not used for this simulati on, and that the un its for these valuesare implied by the global un its in Simulati on.6. Click the Simulation tab near the top of the Workbench window to return to thesimulatio n.Basic An alysis Sett ings| (fa VIUrtAt Vociii 14* I ImpThe ANSYS Multi-field simulation is a transient mechanical analysis, with a timestep of 0.1 s and a time duration of 5 s.1.Select New Analysis > Flexible Dynamic from the toolbar.2.Select An alysis Setti ngs from the tree view and in the Details view below, set Auto Time Stepping toOff.3.Set Time Step to 0.1.4.Under Tabular Data at the bottom right of the window, set End Time to5.0 for the Steps = 1 sett in g. Inserting LoadsLoads are applied to an FEA an alysis as the equivale nt of boun dary con diti ons in ANSYSCFX. In this sect ion, you will set a fixed support, a fluid-solid in terface, and a pressure load.Fixed SupportThe fixed support is required to hold the bottom of the thin plate in place.1.Right-click Flexible Dynamic in the tree and select Insert > Fixed Support from the shortcut menu.2.Rotate the geometry using the Rotate 丄butt on so that the bottom (low-y) face of the solid isvisible, then select Face 卜】and click the low-y face.That face should be highlighted to in dicate selecti on.3.Ensure Fixed Support is selected in the Outline view, then, in the Details view, select Geometry andclick 1 Face to make the Apply butt on appear (if n ecessary). Click Apply to set the fixed support. Fluid-Solid InterfaceIt is n ecessary to defi ne the regi on in the solid that defi nes the in terface betwee n the fluid in CFX and the solid in ANSYS. Data is excha nged across this in terface duri ng the executi on of the simulatio n.1.Right-click Flexible Dynamic in the tree and select Insert > Fluid Solid Interface from the shortcutmenu.ing the same face-selection procedure described earlier, select the three faces of thegeometry that form the in terface betwee n the solid and the fluid (low-x, high-y and high-x faces) by holding down <Ctrl> to select multiple faces. Note that this load is automatically give n an interface nu mber of 1.Pressure LoadThe pressure load provides the in itial additi onal pressure of 100 [Pa] for the first 0.5 sec onds of the simulati on .It is defi ned using a step function.1.Right-click Flexible Dyn amic in the tree and select Insert > Pressure from the shortcut menu.2.Select the low-x face for Geometry.3.In the Details view, select Magnitude , and using the arrow that appears, select Tabular (Time).4.Under Tabular Data , set a pressure of 100 in the table row corresponding to a time of 0.Note: The units for time and pressure in this table are the global units of [s] and [Pa], respectively.5.You now n eed to add two new rows to the table. This can be done by typi ng the new timeand pressure data into the empty row at the bottom of the table, and Simulation will automatically re-order the table in order of time value. Enter a pressure of 100 for a time value of 0.499, and apressure of 0 for a time value of 0.5.This gives a step function for pressure that can be see n in the chart to the left of the table.Writi ng the ANSYS In put FileThe Simulation settings are now complete. An ANSYS Multi-field run cannot be launched from with in Simulati on, so the Solve butt ons cannot be used to obta in a soluti on.1.In stead, highlight Solution in the tree, select Tools > Write ANSYS Input File and choose to write thesolution setup to the file OscillatingPlate.inp.2.The mesh is automatically gen erated as part of this process. If you want to exam ine it,select Mesh from the tree.3.Save the Simulation database, use the tab near the top of the Workbench window to return to theOscillating Plate [Project] tab, and save the project itself.4.Setting up the Fluid Physics and ANSYS Multi-field Settings in ANSYS CFX-PreThis section describes the step-by-step definition of the flow physics and ANSYS Multi-field settings in ANSYS CFX-Pre.Playing a Session FileIf you want to skip past these instructions and to have ANSYS CFX-Pre set up the simulation automatically, you can select Session> Play Tutorial from the menu in ANSYS CFX-Pre, then run the session file: OscillatingPlate.pre. After you have played the session file as described in earlier tutorials under Playing the Session File and Starting ANSYS CFX-Solver Manager, proceed to Obtaining a Solution using ANSYS CFX-SolverManager.Creating a New Simulation1.Start ANSYS CFX-Pre.2. Select File > New Simulation .3.Select General and click OK.4. Select File > Save Simulation As.5.Under File name, type OscillatingPlate.6.Click Save.Importing the Mesh1.Right-click Mesh and select Import Mesh .2.Select the provided mesh file, OscillatingPlate.gtm and click Open.Note:The file that was just created in Simulation, OscillatingPlate.inp, will be used as an input file for the ANSYS Solver.Setting the Simulation TypeA transient ANSYS Multi-field run executes as a series of timesteps. The Simulation Typetab is used both to enable an ANSYS Multi-field run and to specify the time-related settings for it (in the External Solver Coupling settings). The ANSYS input file is read by ANSYS CFX-Pre so that it knows which Fluid Solid Interfaces are available.Once the timesteps and time duration are specified for the ANSYS Multi-field run (coupling run), ANSYS CFX automatically picks up these settings and it is not possible to set the timestepand time duration independently. Hence the only option available for Time Duration is CouplingTime Duration, and similarly for the related settings Time Step and Initial Time.Note : You may see a physics validation message related to the difference in the units used inANSYS CFX-Pre and the units con tai ned withi n the ANSYS in put file. While it is importa nt toreview the units used in any simulation, you should be aware that, in this specific case, the message is notcrucial as it is related to temperature un its and there is no heat tran sfer in this case. Therefore, thisspecific tutorial will not be affected by the physics message.Creat ing the FluidA custom fluid is created with user-specified properties.1.Click Material 因. 2. Set the n ame of the new material to Fluid.3. Apply the follow ing sett ings1.Click Simulation Type2. Apply the follow ing sett ings3. Click OK .Creat ing the Doma inIn order to allow the ANSYS Solver to com muni cate mesh displaceme nts to the CFX Solver, mesh moti onmust be activated in CFX.1. Right click Simulation in the Outline tree view and ensure that Automatic DefaultDomain is selected. A domain named Default Domain should now appear under theSimulatio n branch.2. Double click Default Doma in and apply the followi ng sett ingsCreati ng the Boun dary Con diti onsIn addition to the symmetry conditions, another type of boundary condition correspondingwith the in teract ion betwee n the solid and the fluid is required in this tutorial.Fluid Solid Exter nal Boun dary4.The in terface betwee n ANSYS and CFX is defi ned as an exter nal boun dary in CFX that has its mesh displacement being defined by the ANSYS Multi-field coupling process.When an ANSYS Multi-field specification is being made in ANSYS CFX-Pre, it is necessary to provide the name and number of the matching Fluid Solid Interface that was created in Simulati on. Since the in terface nu mber in Simulati on was 1, the n ame in questi on is FSIN_1. (If the in terface nu mber had bee n 2, the n the n ame would have bee n FSIN_2, and so on.)On this bou ndary, CFX will se nd ANSYS the forces on the in terface, and ANSYS will send back the total mesh displacement it calculates given the forces passed from CFX and the other defi ned loads.1.Create a new boun dary con diti on n amed In terface.2.Apply the follow ing sett ings3.Click OK.Symmetry Boun dariesSince a 2D representation of the flow field is being modeled (using a 3D mesh with one eleme nt thick ness in the Z direct ion) symmetry boun daries will be created on the low and high Z 2D regi ons of the mesh.1.Create a new boun dary con diti on n amed Sym1.2.Apply the follow ing sett ings4.Create a new boun dary con diti on n amed Sym2.5.Apply the follow ing sett ings6.Click OK.Setting Initial ValuesSince a transient simulation is being modeled, initial values are required for all variables.1. Click Global InitializationVarious ANSYS Multi-field sett ings are co ntain ed un der Solver Control un der the ExternalCoupling tab. Most of these sett ings do not n eed to be cha nged for this simulati on.With in each timestep, a series of “ coupli ng ” or “ stagger ” iterati ons are performed to ensure that CFX, ANSYS and the data excha nged betwee n the two solvers are all con siste nt. Within each stagger iteration, ANSYS and CFX both run once each, but which one runs first is a user-specifiable setting. In general, it is slightly more efficient to choose the solver that drives the simulation to run first. In this case, the simulation is being driven by the initial pressure applied in ANSYS, so ANSYS is set to solve before CFX within each stagger iteratio n.2. Apply the follow ing sett ings:ITabSett ingH ValueBasic Sett ingsTran sie nt Scheme > Optio nSecondOrderBackward EulerCon verge nee Con trol > Minimum Number ofCoefficie nt Loops(Selected)Con verge nee Con trol > Minimum Number of Coefficie nt Loops > Min. Coeff. Loops2【回 Con verge nee Con trol > Max. Coeff. LoopsI 3External Coupli ngCoupling Step Control > Solution SequeneeCon trol > Solve ANSYS FieldsBefore CFX Fields农 This setting is optional. The default value of 1 is also acceptable.3.Click OK .Setting Output ControlThis step sets up transient results files to be written at set intervals.2. On the Trn Results tab, create a new transient result with the default name.|Setti ng1 ||ValueOption^Selected Variables〔Output Variable List| Pressure, Total Mesh Displaceme nt. Velocity Output Freque ncy > Opti on||Every Coupli ng Step【引冃 This setting writes a transient results file every multi-field timestep.4.Click the Monitor tab.5. Select Monitor Options .6.Un der Monitor Points and Expressions :8. Set Option to Cartesia n Coordin ates. 9.Set Output Variables List to Total Mesh Displacement X.1. Click Output Control7. Click Add new item and accept the default n ame.10.Set Cartesian Coordinates to [0, 1,0].11.Click OK.Writi ng the Solver (.def) FileClick Write Solver File1.2.If the Physics Validation Summary dialog box appears, click Yes to proceed.3.Apply the follow ing sett ings| Sett ing | I Value|^ile n amelOscillat in gPlate.defQuit CFX - Pre 迢(Selected)|a]If using ANSYS CFX-Pre in Standalone Mode. |4.Ensure Start Solver Manager is selected and click Save.5.If you are notified the file already exists, click Overwrite .6.This file is provided in the tutorial directory and will exist in your working folder if you have copiedit there.7.Quit ANSYS CFX-Pre, savi ng the simulatio n ( .cfx) file at your discreti on.5.Obtaining a Solution using ANSYS CFX-Solver ManagerThe execution of an ANSYS Multi-field simulation requires both the CFX and ANSYS solvers to be running and com muni cat ing with each other. ANSYS CFX-Solver Man ager can be used to launch both solvers and to mon itor the output from both.1.En sure the Define Run dialog box is displayed.There is a new MultiField tab which contains settings specific for an ANSYS Multi-field simulatio n.2.On the MultiField tab, check that the ANSYS in put file location is correct (the location is recordedin the definition file but may need to be changed if you have moved files aroun d).3.On UNIX systems, you may need to manually specify where the ANSYS installation is if it is not in thedefault locati on. In this case, you must provide the path to the v110/a nsys directory.The run begi ns by some in itial process ing of the ANSYS Multi-field in put which results in the creati on of a file containing the n ecessary multi-field comma nds for ANSYS, and the n the ANSYS Solver is started. The CFX Solver is then started in such a way that it knows how to commu ni cate with the ANSYS Solver.After the run is un der way, two new plots appear in ANSYS CFX-Solver Man ager:ANSYS Field Solver (Structural) This plot is produced only whe n the solid physics is set to use large displaceme nts or whe n other non-I in ear an alyses are performed. It shows con verge nee of the ANSYS Solver. Full details of the quantities are described in the ANSYS user documentation. In gen eral, the CRIT qua ntities are the con verge nce criteria for each releva nt variable, and the L2 qua ntities represe nt the L2 Norm of the releva nt variable. For con verge nce, the L2 Norm should be below the criteria. The x-axis of the plot is the cumulative iterati on nu mber for ANSYS, which does not correspond to either timesteps or stagger iterations. Several ANSYS iterations will be performed for each timestep, depe nding on how quickly ANSYS con verges. You will usually see a somewhat “ spiky ” plot, as each qua ntity will be uncon verged at the start of each timestepnd the n con verge nce will improve.ANSYS Inteface Loads (Structural) This plot shows the con verge nce for each qua ntity that is part of the data exchanged between the CFX and ANSYS Solvers. In this case, four lines appear, corresp onding to two force comp onents (FX and FY) and two displaceme nt comp onents (UX and UY). Since the an alysis is 2D, FZ and UZ are not excha nged. Each qua ntity is con verged when the plot shows a negative value. The x-axis of the plot corresponds to the cumulative nu mber of stagger iterati ons (coupli ng iterati ons) and there are several of these for every timestep. Aga in, a spiky plot is expected as the qua ntities will not be con verged at thestart of a timestep.The ANSYS out file is displayed in ANSYS CFX-Solver Ma nager as an extra tab. Similar to the CFX out file, this is a text file recording output from ANSYS as the solution progresses.1.Click the User Points tab and watch how the top of the plate displaces as the solution develops.2.When the solvers have fini shed and ANSYS CFX-Solver Man ager puts up a dialog boxto tell you this, click Yes to post-process the results.3.If using Sta ndalo ne Mode, quit ANSYS CFX-Solver Man ager.6.Viewing Results in ANSYS CFX-PostFor an ANSYS Multi-field run, both the CFX and ANSYS results files will be opened up in ANSYS CFX-Post by default if ANSYS CFX-Post is started from a finished run in ANSYS CFX-Solver Man ager.Plotting Results on the SolidWhen ANSYS CFX-Post reads an ANSYS results file, all the ANSYS variables are available to plot on the solid, in cludi ng stresses and stra ins. The mesh regi ons available for plots by default are limited to the full boundary of the solid, plus certain named regions which are automatically created when particular types of load are added in Simulation. For example, any Fluid Solid In terface will have a corresp onding mesh regi on with a n ame such as FSIN 1. In this case, there is also a named region corresponding to the location of the fixed support, but in general pressure loads do not result in a n amed regi on.You can add extra mesh regi ons for plott ing by creat ing n amed select ions in Simulatio n - see the Simulation product documentation for more details. Note that the named selection must have a n ame which contains only En glish letters, nu mbers and un derscores for the n amed mesh regi on to be successfully created.Note that when ANSYS CFX-Post loads an ANSYS results file, the true global range for each variable is not automatically calculated, as this would add a substantial amount of time onto how long it takes to load such a file (you can turn on this calculati on using Edit > Options and using the Pre-calculate variable global ranges setting under CFX-Post > Files). When the global range is first used for plott ing a variable, it is calculated as the range with in the curre nt timestep. As subsequent timesteps are loaded into ANSYS CFX-Post, the Global Range is exte nded each time variable values are found outside the previous Global Ran ge.1.Tur n on the visibility of Bou ndary ANSYS (un der ANSYS > Domai n ANSYS).2.Right-click a blank area in the viewer and select Predefined Camera > View Towards -Z. Zoom into theplate to see it clearly.3.Apply the followi ng sett ings to Bou ndary ANSYS:4. Click Apply .5. Select Tools > Timestep Selector from the task bar to open the Timestep Selector dialog box. Noticethat a separate list of timesteps is available for each results file loaded, although for this casethe lists are the same. By default, Sync Cases is set to By Time Value which means that each time you change the timestep for one results file, ANSYS CFX-Post will automatically load the resultscorresponding to the same time value for all other results files.6. Set Match to Nearest Available .7.Change to a time value of 1 [s] and click Apply .The corresponding transient results are loaded and you can see the mesh move in both the CFX and ANSYS regions.1. Clear the visibility check box of Boundary ANSYS.2.Create a contour plot, set Locations to Boundary ANSYS and Sym2, and set Variable to Total MeshDisplacement. Click Apply .ing the timestep selector, load time value 1.1 [s] (which is where the maximum total meshdisplacement occurs).This verifies that the contours of Total Mesh Displacement are continuous through both the ANSYS and CFX regions.Many FSI cases will have only relatively small mesh displacements, which can make visualization of the mesh displacement difficult. ANSYS CFX-Post allows you to visually magnify the mesh deformation for ease of viewing such displacements. Although it is not strictly necessary for this case, which has mesh displacements which are easily visible unmagnified, this is illustrated by the next few instructions.ing the timestep selector, load time value 0.1 [s] (which has a much smaller mesh displacement thanthe currently loaded timestep).2. Place the mouse over somewhere in the viewer where the background color is showing. Right-click andselect Deformation > Auto. Notice that the mesh displacements are now exaggerated. The Auto settingis calculated to make the largest mesh displacement a fixed percentage of the domain size.3. To retur n the deformati ons to their true scale, right-click and select Deformation > True Scale.Creat ing an An imatio n1. Using the Timestep Selector dialog box, en sure the time value of 0.1 [s] is loaded.2. Clear the visibility check box of Con tour 1.3. Turn on the visibility of Sym2.4.Apply the followi ng sett ings to Sym2.| Setting "Value Color |〔Mode °Variable VariablePressure5. Click Apply .6.Create a vector plot, set Locations to Sym1 and leave Variable set to Velocity. Set Color to be Constant and choose black. Click Apply .7. Select the visibility check box of Bou ndary ANSYS, and set Color to a con sta nt blue.The Animation dialog box appears. 9.Select Keyframe Animation .10. In the Animation dialog box:a. Click New LJ to create KeyframeNo1.b. Highlight KeyframeNo1, then change # of Frames to 48.c.Load the last timestep (50) using the timestep selector.d. Click New to create KeyframeNo2.The # of Frames parameter has no effect for the last keyframe, so leave it at the default value.e. Select Save MPEG .the MPEG file.8. Click An imationf. Click Browsenext to the MPEG file data box to set a path and file name forIf the file path is not given, the file will be saved in the directory from which ANSYS CFX-Post was lau nched.g.Click Save.The MPEG file name (including path) will be set, but the MPEG will not be created yet.h.Frame 1 is not loaded (The loaded frame is shown in the middle of the Animation dialog box,beside F:). Click To Beginning IEJ to load it the n wait a few sec onds for the frame to load.i.Click Play the animation ".The MPEG will be created as the animation proceeds. This will be slow, since a timestep must be loaded and objects must be created for each frame. To view the MPEG file, you n eed to use a viewer that supports the MPEG format.。

相关文档
最新文档