人教版八年级数学期中测试题及答案

合集下载

人教版八年级第一学期期中数学试卷及答案八

人教版八年级第一学期期中数学试卷及答案八

人教版八年级第一学期期中数学试卷及答案一、选择题:(每小题3分,共计30分)1.点P(3,2)关于x轴的对称点的坐标是()A.(3,2)B.(﹣3,2)C.(﹣3,﹣2)D.(3,﹣2)2.一个多边形的外角和比内角和大180°,则这个多边形的边数是()A.4B.5C.6D.33.下列疫情防控宣传图片中,是轴对称图形的是()A.勤洗手,勤通风B.打喷嚏,捂口鼻C.有症状,早就医D.防控疫情,我们在一起4.如图,在Rt△ABC和Rt△DBE中,∠ABD=∠EBD=90°,∠ACB=∠E,AB=BD=5,BE=3,则CD的长为()A.1.5B.2C.3D.55.如图,在△ABC中,AB=AC,∠A=120°,D为BC的中点,DE⊥AB于点E,若BC=4,则DE的长为()A.1.5B.2C.1D.6.到三角形三个顶点距离相等的点是()A.三边高线的交点B.三边垂直平分线的交点C.三条中线的交点D.三条内角平分线的交点7.如图,△ABC和△A′B′C′关于直线l对称,若∠A=50°,∠C′=30°,则∠B的度数为()A.30°B.50°C.90°D.100°8.如图,Rt△ABC中,∠C=90°,AD平分∠BAC,交BC于点D,AB=10,S△ABD=15,则CD的长为()A.3B.4C.5D.69.如图,△ABC中,AB+AC=6,直线MN为BC的垂直平分线交AC于点D,连接BD,则△ABD的周长为()A.3B.6C.4D.510.如图,在△ABC中,AB的垂直平分线EF分别交AB、AC边于点E、F,点K为EF上一动点,则BK+CK的最小值是以下哪条线段的长度()A.EF B.AB C.AC D.BC二、填空题:(每小题3分,共计30分11.已知三角形两边长为2和7,则第三边a的取值范围为.12.正方形的对称轴有条.13.如图,在△ABC中,AB=AC,且∠A=100°,∠B=度.14.如图,在△ABC中,∠A=73°,∠C=47°,点D是AC上一点,连接BD.DE⊥AB于E,DF⊥BC于F,若DE=DF,则∠DBF的度数是.15.如图,在△ABC中,AB=4,BC=6,∠B=60°,将△ABC沿BC所在直线向右平移得到△A′B′C′,连接A′C,若BB′=2,则线段A′C的长为.16.如图是由一副三角板拼凑得到的,图中的∠ABC的度数为.17.如图,D是AB延长线上一点,DF交AC于点E,AE=CE,FC∥AB,若AB=3,CF=5,则BD的长是.18.如图三角形纸片中,AB=8cm,BC=6cm,AC=5cm,沿过点B的直线折叠这个三角形,使点C落在AB边上的点E处,折痕为BD,则△AED的周长为cm.19.等腰三角形的周长为13,其中一边长为5,则该等腰三角形的底边长为.20.如图,在△ABC中,过点B作△ABC的角平分线AD的垂线,垂足为F,FG∥AB交AC于点G,若AB=4,则线段FG的长为.三、解答题(21、22题各7分,23、24题各8分,25、26、27题各10分,共60分)21.如图,在Rt△ABC中,∠ACB=90°,∠A=36°,△ABC的外角∠CBD的平分线BE交AC的延长线于点E,F为AC延长线上的一点,连接DF.(1)求∠CBE的度数.(2)若∠F=27°,求证:BE∥DF.22.如图,在平面直角坐标系中,A(﹣2,1),B(﹣3,﹣2),C(1,﹣2).(1)在图中作出△A1B1C1,使△A1B1C1与△ABC关于y轴对称(点A、B、C的对称点分别为A1、B1、C1).(2)写出点A1、B1、C1的坐标.23.某市旧城改造项目计划在一块如图所示的三角形空地上种植某种草皮美化环境,经过测量得AB=AC=40m,△ABC的外角∠ACD=105°.已知这种草皮每平方米a元,则购买这种草皮一共需要多少钱?24.如图1,AB=AC,CD⊥AB于D,BE⊥AC于E,CD、BE交于点F.(1)求证:BD=CE;(2)如图2,连接AF,请直接写出图中所有的全等三角形.25.如图,在△ABC中,∠BAC=∠ACB,点D是BC边上一点,且AD=BD,CE平分∠ACB交AD于点E.(1)若∠ADC=80°,求∠2的度数;(2)过点E作EF∥AB,交BD于点F,求证:∠FEC=3∠3.26.如图1,在△ABC中,AB=AC,点E在AB边上,AD⊥CE交CE的延长线于点D.(1)若∠BAC=2∠DAE,求证:CE=CB;(2)如图2,连接BD,点F为CD的中点,延长BF交AC于点G,连接DG,若AG=DG,求证:BD=BC;(3)如图3,在(2)的条件下,若∠DBC=120°,CD=10,点H为AB的中点,求线段DH的长.27.如图1,在平面直角坐标系中,点O为坐标原点,△ABC的顶点B、C在x轴上(C左B右),点A在y轴正半轴上,∠BAC=120°,点O为BC的中点,AB=8.(1)求点A的坐标;(2)如图2,点D为AC上一点,点F为y轴上一点,AD=AF,连接DF,∠BDE=60°,DE交y轴于点E,设线段AD的长为t,线段OE的长为d,请用含t的式子表示d;(3)在(2)的条件下,当点D与点C重合时,在CA的延长线上取点G,作GH⊥CA交x轴于点K,若GK=AC,连接EH,过点A作AM⊥EH于点M,求点M的纵坐标.参考答案一、选择题:(每小题3分,共计30分)1.点P(3,2)关于x轴的对称点的坐标是()A.(3,2)B.(﹣3,2)C.(﹣3,﹣2)D.(3,﹣2)【分析】根据“关于x轴对称的点,横坐标相同,纵坐标互为相反数”解答.解:点P(3,2)关于x轴的对称点的坐标是(3,﹣2).故选:D.【点评】本题考查了关于x轴、y轴对称点的坐标,解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.2.一个多边形的外角和比内角和大180°,则这个多边形的边数是()A.4B.5C.6D.3【分析】由多边形内角和定理:(n﹣2)•180°(n≥3且n为整数),多边形的外角和是360°,列出关于边数的方程即可求解.解:设这个多边形的边数是n,由题意得:360°﹣(n﹣2)×180°=180°,∴n=3,故选:D.【点评】本题考查多边形的有关知识,关键是掌握多边形内角和定理:(n﹣2)•180°(n≥3且n为整数),多边形的外角和是360°.3.下列疫情防控宣传图片中,是轴对称图形的是()A.勤洗手,勤通风B.打喷嚏,捂口鼻C.有症状,早就医D.防控疫情,我们在一起【分析】如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,根据轴对称图形的概念对各选项分析判断即可得解.解:A.不是轴对称图形,故本选项不合题意;B.不是轴对称图形,故本选项不合题意;C.不是轴对称图形,故本选项不合题意;D.是轴对称图形,故本选项符合题意.故选:D.【点评】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.轴对称图形的对称轴可以是一条,也可以是多条甚至无数条.4.如图,在Rt△ABC和Rt△DBE中,∠ABD=∠EBD=90°,∠ACB=∠E,AB=BD=5,BE=3,则CD的长为()A.1.5B.2C.3D.5【分析】在△ABC与△DBE中,由AAS证明两三角形全等得出BC=BE=3,即可求解.解:在△ABC与△DBE中,,∴△ABC≌△DBE(AAS),∴BC=BE=3,∴CD=BD﹣BC=5﹣3=2,故选:B.【点评】本题考查了全等三角形的判定与性质,熟练掌握全等三角形的判定与性质是解题的关键.5.如图,在△ABC中,AB=AC,∠A=120°,D为BC的中点,DE⊥AB于点E,若BC=4,则DE的长为()A.1.5B.2C.1D.【分析】由AB=AC,∠A=120°推出∠B=30°,从而得到DE=DB,解:∵AB=AC,∠A=120°,∴∠B=∠C=30°,∵D是BC的中点,∴BD=BC=2,∵DE⊥AB,∴∠BED=90°,∴DE=BD=1,故选:C.【点评】本题考查直角三角形的性质,等腰三角形的性质,关键是掌握:在直角三角形中,30°角所对的直角边等于斜边的一半;等腰三角形的两个底角相等.6.到三角形三个顶点距离相等的点是()A.三边高线的交点B.三边垂直平分线的交点C.三条中线的交点D.三条内角平分线的交点【分析】根据线段垂直平分线的性质判断即可.解:到三角形三个顶点距离相等的点是三边垂直平分线的交点,故选:B.【点评】本题考查的是线段的垂直平分线的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.7.如图,△ABC和△A′B′C′关于直线l对称,若∠A=50°,∠C′=30°,则∠B的度数为()A.30°B.50°C.90°D.100°【分析】先根据△ABC和△A′B′C′关于直线l对称得出△ABC≌△A′B′C′,故可得出∠C=∠C′,再由三角形内角和定理即可得出结论.解:∵△ABC和△A′B′C′关于直线l对称,∠A=50°,∠C′=30°,∴△ABC≌△A′B′C′,∴∠C=∠C′=30°,∴∠B=180°﹣∠A﹣∠C=180°﹣50°﹣30°=100°.故选:D.【点评】本题考查的是轴对称的性质,熟知关于轴对称的两个图形全等是解答此题的关键.8.如图,Rt△ABC中,∠C=90°,AD平分∠BAC,交BC于点D,AB=10,S△ABD=15,则CD的长为()A.3B.4C.5D.6【分析】过点D作DE⊥AB于E,根据角平分线上的点到角的两边距离相等可得DE=CD,然后利用△ABD的面积列式计算即可得解.解:如图,过点D作DE⊥AB于E,∵∠C=90°,AD平分∠BAC,∴DE=CD,∴S△ABD=AB•DE=×10•DE=15,解得:DE=3,∴CD=3.故选:A.【点评】本题考查了三角形的面积和角平分线的性质,能熟记角平分线上的点到角两边的距离相等是解此题的关键.9.如图,△ABC中,AB+AC=6,直线MN为BC的垂直平分线交AC于点D,连接BD,则△ABD的周长为()A.3B.6C.4D.5【分析】根据中垂线的性质,可得DC=DB,继而可确定△ABD的周长.解:∵直线MN是线段BC的垂直平分线,∴DB=DC,∴△ABD的周长=AB+AD+BD=AB+AD+DC=AB+AC=6.故选:B.【点评】本题考查了线段垂直平分线的性质,掌握线段垂直平分线上任意一点,到线段两端点的距离相等是解决问题的关键.10.如图,在△ABC中,AB的垂直平分线EF分别交AB、AC边于点E、F,点K为EF上一动点,则BK+CK的最小值是以下哪条线段的长度()A.EF B.AB C.AC D.BC【分析】连接AK,根据线段垂直平分线的性质得到AK=BK,求得BK+CK=AK+CK,得到AK+CK的最小值=BK+CK的最小值,于是得到当AK+CK=AC时,AK+CK的值最小,即BK+CK的值最小,即可得到结论.解:连接AK,∵EF是线段AB的垂直平分线,∴AK=BK,∴BK+CK=AK+CK,∴AK+CK的最小值=BK+CK的最小值,∵AK+CK≥AC,∴当AK+CK=AC时,AK+CK的值最小,即BK+CK的值最小,∴BK+CK的最小值是线段AC的长度,故选:C.【点评】本题考查的是轴对称﹣最短路线问题,线段垂直平分线的性质,三角形的三边关系,熟知线段垂直平分线的性质是解答此题的关键.二、填空题:(每小题3分,共计30分11.已知三角形两边长为2和7,则第三边a的取值范围为5<a<9.【分析】利用“三角形的两边差小于第三边,三角形两边之和大于第三边”,可求出a的取值范围.解:∵7﹣2=5,2+7=9,∴第三边a的取值范围为5<a<9.故答案为:5<a<9.【点评】本题考查了三角形三边关系,牢记“三角形的两边差小于第三边,三角形两边之和大于第三边”是解题的关键.12.正方形的对称轴有4条.【分析】根据正方形的轴对称性作出图形以及对称轴,即可得解.解:如图,正方形对称轴为经过对边中点的直线,两条对角线所在的直线,共4条.故答案为:4.【点评】本题考查了轴对称的性质,熟记正方形的对称轴是解题的关键.13.如图,在△ABC中,AB=AC,且∠A=100°,∠B=40度.【分析】如图,依题意可知该三角形为等腰三角形∠A=100°,利用等腰三角形的性质得另外二角相等,结合三角形内角和易求∠B的值.解:∵AB=AC,∴∠B=∠C,∵∠A=100°,∴∠B==40°.故填40.【点评】本题考查了等腰三角形的性质:等边对等角和三角形内角和定理.借助三角形内角和求角的度数是一种很重要的方法,应熟练掌握.14.如图,在△ABC中,∠A=73°,∠C=47°,点D是AC上一点,连接BD.DE⊥AB于E,DF⊥BC于F,若DE=DF,则∠DBF的度数是30°.【分析】先利用三角形内角和定理可得∠ABC=60°,再利用角平分线的性质定理的逆定理可得BD平分∠ABC,然后利用角平分线的定义进行计算即可解答.解:∵∠A=73°,∠C=47°,∴∠ABC=180°﹣∠A﹣∠C=60°,∵DE⊥AB,DF⊥BC,DE=DF,∴BD平分∠ABC,∴∠DBF=∠ABC=30°,故答案为:30°.【点评】本题考查了角平分线的性质,熟练掌握角平分线的性质定理的逆定理是解题的关键.15.如图,在△ABC中,AB=4,BC=6,∠B=60°,将△ABC沿BC所在直线向右平移得到△A′B′C′,连接A′C,若BB′=2,则线段A′C的长为4.【分析】利用平移可得A′B′=AB=4,∠A′B′C=∠B=60°,再判定△A′B′C是等边三角形,进而可得答案.解:由平移得:A′B′=AB=4,∠A′B′C=∠B=60°,∵BC=6,BB′=2,∴B′C=6﹣2=4,∴△A′B′C是等边三角形,∴A′C=A′B′=4,故答案为:4.【点评】此题主要考查了等边三角形的判定和性质,以及平移的性质,关键是掌握有一个角是60°的等腰三角形是等边三角形.16.如图是由一副三角板拼凑得到的,图中的∠ABC的度数为75°.【分析】由三角形的外角性质可求得∠ABF=15°,从而可求得∠ABC的度数.解:∵∠F=30°,∠BAC=45°,∠BAC是△ABF的外角,∴∠ABF=∠BAC﹣∠F=15°,∵∠CBF=90°,∴∠ABC=∠CBF﹣∠ABF=75°.故答案为:75°.【点评】本题主要考查三角形的外角性质,解答的关键是明确三角形的外角等于与其不相邻的两个内角之和.17.如图,D是AB延长线上一点,DF交AC于点E,AE=CE,FC∥AB,若AB=3,CF=5,则BD的长是2.【分析】由“AAS”可证△ADE≌△CFE,可得CF=AD=5,即可求解.解:∵FC∥AB,∴∠F=∠D,∠A=∠ACF,在△ADE和△CFE中,,∴△ADE≌△CFE(AAS),∴CF=AD=5,∴BD=AD﹣AB=2,故答案为:2.【点评】本题考查了全等三角形的判定和性质,证明三角形全等是解题的关键.18.如图三角形纸片中,AB=8cm,BC=6cm,AC=5cm,沿过点B的直线折叠这个三角形,使点C落在AB边上的点E处,折痕为BD,则△AED的周长为7cm.【分析】先根据折叠的性质可得BE=BC,DE=CD,再求出AE的长,然后求出△ADE的周长=AC+AE,即可得出答案.解:由折叠的性质得:BE=BC=6cm,DE=DC,∴AE=AB﹣BE=AB﹣BC=8﹣6=2(cm),∴△AED的周长=AD+DE+AE=AD+CD+AE=AC+AE=5+2=7(cm),故答案为:7.【点评】本题考查了翻折变换的性质以及三角形周长;熟练掌握翻折变换的性质的解题的关键.19.等腰三角形的周长为13,其中一边长为5,则该等腰三角形的底边长为5或3.【分析】此题分为两种情况:5是等腰三角形的底边或5是等腰三角形的腰.然后进一步根据三角形的三边关系进行分析能否构成三角形.解:当5是等腰三角形的底边时,则其腰长是(13﹣5)÷2=4,能够组成三角形;当5是等腰三角形的腰时,则其底边是13﹣5×2=3,能够组成三角形.所以该等腰三角形的底边为5或3,故答案为:5或3.【点评】此题考查了等腰三角形的两腰相等的性质,同时注意三角形的三边关系.20.如图,在△ABC中,过点B作△ABC的角平分线AD的垂线,垂足为F,FG∥AB交AC于点G,若AB=4,则线段FG的长为2.【分析】延长BF交AC于E,根据角平分线的定义得到∠BAD=∠CAD,根据全等三角形的性质得到AE=AB =4,根据平行线的性质得到∠BAF=∠AFG,得到AG=FG,推出FG=AE=2.解:延长BF交AC于E,∵AD平分∠BAC,∴∠BAD=∠CAD,∵BF⊥AD,∴∠AFB=∠AFE=90°,∵AF=AF,∴△ABF≌△AEF(ASA),∴AE=AB=4,∵FG∥AB,∴∠BAF=∠AFG,∴∠GAF=∠FAG,∴AG=FG,∵∠FAG+∠AEF=∠AFG+∠EFG=90°,∴∠GFE=∠GEF,∴FG=GE,∴FG=AE=2,故答案为:2.【点评】本题考查了全等三角形的判定和性质,角平分线的定义,直角三角形的性质,平行线的性质,等腰三角形的判定和性质,正确地作出辅助线是解题的关键.三、解答题(21、22题各7分,23、24题各8分,25、26、27题各10分,共60分)21.如图,在Rt△ABC中,∠ACB=90°,∠A=36°,△ABC的外角∠CBD的平分线BE交AC的延长线于点E,F为AC延长线上的一点,连接DF.(1)求∠CBE的度数.(2)若∠F=27°,求证:BE∥DF.【分析】(1)由三角形的外角性质可求得∠CBD=126°,再由角平分线的定义即可求∠CBE的度数;(2)结合(1)可求得∠CEB=27°,利用同位角相等,两直线平行即可判定BE∥DF.【解答】(1)解:∵∠ACB=90°,∠A=36°,∠CBD是△ABC的外角,∴∠CBD=∠ACB+∠A=126°,∵BE平分∠CBD,∴∠CBE=∠CBD=63°;(2)证明:∵∠ACB=90°,∠CBE=63°,∴∠CEB=∠ACB﹣∠CBE=27°,∵∠F=27°,∴∠CEB=∠F,∴BE∥DF.【点评】本题主要考查三角形的外角性质,平行线的判定,解答的关键是熟记三角形的外角等于与其不相邻的两个内角之和.22.如图,在平面直角坐标系中,A(﹣2,1),B(﹣3,﹣2),C(1,﹣2).(1)在图中作出△A1B1C1,使△A1B1C1与△ABC关于y轴对称(点A、B、C的对称点分别为A1、B1、C1).(2)写出点A1、B1、C1的坐标.【分析】(1)利用网格特点和轴对称的性质画出点A、B、C关于y轴的对称点即可;(2)利用(1)中所画图形求解.解:(1)如图,△A1B1C1为所作;(2)A1(2,1),B1(3,﹣2),C1(﹣1,﹣2).【点评】本题考查了作图﹣轴对称变换:作轴对称后的图形的依据是轴对称的性质,掌握其基本作法是解决问题的关键(先确定图形的关键点;利用轴对称性质作出关键点的对称点;按原图形中的方式顺次连接对称点).23.某市旧城改造项目计划在一块如图所示的三角形空地上种植某种草皮美化环境,经过测量得AB=AC=40m,△ABC的外角∠ACD=105°.已知这种草皮每平方米a元,则购买这种草皮一共需要多少钱?【分析】如图,过点B作BH⊥AC于点H.证明∠A=30°,求出BH,再求出△ABC的面积,可得结论.解:如图,过点B作BH⊥AC于点H.∵∠ACD=105°,∴∠ACB=75°,∵AB=AC=40m,∴∠ABC=∠ACB=75°,∴∠A=180°﹣2×75°=30°,∵BH⊥AC,∴BH=AB=20m,∴S△ABC=•AC•BH=×40×20=400(m2),∵这种草皮每平方米a元,∴购买这种草皮一共需要400a元.【点评】本题考查等腰三角形的性质,直角三角形30度角的性质,三角形的面积等知识,解题的关键是转化添加常用辅助线,构造直角三角形解决问题.24.如图1,AB=AC,CD⊥AB于D,BE⊥AC于E,CD、BE交于点F.(1)求证:BD=CE;(2)如图2,连接AF,请直接写出图中所有的全等三角形.【分析】(1)根据垂直得出∠CAD=∠BEA=90°,根据全等三角形的判定定理AAS可以证明△ADC≌△AEB,根据全等三角形的性质定理得出AD=AE即可;(2)根据垂直得出∠BDF=∠CEF=90°,根据全等三角形的判定定理得出△BDF≌△CEF,根据全等三角形的性质得出DF=EF,BF=CF,再根据全等三角形的判定定理证明△AFB≌△AFC和△ADF≌△AEF即可.【解答】(1)证明:∵CD⊥AB,BE⊥AC,∴∠CAD=∠BEA=90°,在△ADC和△AEB中,,∴△ADC≌△AEB(AAS),∴AD=AE,∵AB=AC,∴AB﹣AD=AC﹣AE,即BD=CE;(2)解:图中全等三角形有△ADC≌△AEB,△ADF≌△AEF,△ABF≌△ACF,△BDF≌△CEF,理由是:∵CD⊥AB,BE⊥AC,∴∠BDF=∠CEF=90°,在△BDF和△CEF中,,∴△BDF≌△CEF(AAS),∴DF=EF,BF=CF,根据SSS可以证明△AFB≌△AFC和△ADF≌△AEF.【点评】本题考查了全等三角形的判定定理和性质定理,能熟记全等三角形的判定定理是解此题的关键,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS,两直角三角形全等还有HL.25.如图,在△ABC中,∠BAC=∠ACB,点D是BC边上一点,且AD=BD,CE平分∠ACB交AD于点E.(1)若∠ADC=80°,求∠2的度数;(2)过点E作EF∥AB,交BD于点F,求证:∠FEC=3∠3.【分析】(1)首先利用三角形外角的性质求得∠B=40°,再利用三角形内角和求出∠ACB的度数,从而得出答案;(2)设∠B=x,则∠1=x,利用平行线的性质和三角形内角和定理分别表示出∠FEC和∠3,从而解决问题.【解答】(1)解:∵AD=BD,∴∠B=∠1,∵∠ADC=∠B+∠1,∴2∠B=80°,∴∠B=40°,∵∠BAC=∠ACB,∴∠ACB=(180°﹣40°)÷2=70°,∵CE平分∠ACB,∴∠2=∠3=35°;(2)证明:设∠B=x,则∠1=x,∵EF∥AB,∴∠DEF=∠1=x,∴∠ACB=90°﹣x,∴∠2=∠3=45°﹣x,∴∠DEC=180°﹣(∠EDC+∠DCE)=180°﹣(2x+45°﹣x)=135°﹣x,∴∠FEC=∠FED+∠CED=x+135°﹣x=135°﹣x,∴∠FEC=3∠3.【点评】本题主要考查了等腰三角形的性质,三角形内角和定理,平行线的性质等知识,利用参数x分别表示出∠FEC和∠3是解题的关键.26.如图1,在△ABC中,AB=AC,点E在AB边上,AD⊥CE交CE的延长线于点D.(1)若∠BAC=2∠DAE,求证:CE=CB;(2)如图2,连接BD,点F为CD的中点,延长BF交AC于点G,连接DG,若AG=DG,求证:BD=BC;(3)如图3,在(2)的条件下,若∠DBC=120°,CD=10,点H为AB的中点,求线段DH的长.【分析】(1)如图1中,过点A作AH⊥BC于点H,过点C作CT⊥AB于点T,设AH交CT于点O.证明∠CET=∠CBT,可得结论;(2)证明GB垂直平分线段CD即可;(3)过点A作AJ⊥BC于点J,交CD于点Q,连接BQ,过点D作DR⊥AB于点R.解直角三角形求出DR,RH,再利用勾股定理,可得结论.【解答】(1)证明:如图1中,过点A作AH⊥BC于点H,过点C作CT⊥AB于点T,设AH交CT于点O.∵AB=AC,AH⊥BC,∴∠BAH=∠CAH,∵AD⊥CD,CT⊥AB,∴∠ADE=∠CTE=90°,∵∠AED=∠CET,∴∠ECT=∠EAD,∵∠ATC=∠AHC=90°,∠AOT=∠COH,∴∠TCB=∠BAH,∵∠BAC=2∠DAE,∴∠BAH=∠DAE,∴∠ECT=∠BCT,∴∠ECT+∠CET=90°,∠TCB+∠CBT=90°,∴∠CEB=∠CBE,∴CE=CB.(2)证明:如图2中,∵GA=GD,∴∠GAD=∠GDA,∵∠ADC=90°,∴∠GAD+∠ACD=90°,∠ADG+∠GDC=90°,∴∠GDC=∠GCD,∴GD=GC,∵DF=FC,∴GB⊥CD,∴BD=BC;(3)解:过点A作AJ⊥BC于点J,交CD于点Q,连接BQ,过点D作DR⊥AB于点R.∵BD=DC,∠DBC=120°,∴∠BCD=∠BDC=30°,∵AB=AC,AJ⊥BC,∴BJ=CJ,∴QB=QC,∴∠QBC=∠QCB=30°,∴∠BQD=∠QBC+∠QCB=60°,∴∠DBQ=90°,∵∠BDQ=30°,∴QD=2BQ=2CQ,∴DQ=CD=,BQ=,DB=BQ=,∵∠ADQ=∠CJQ=90°,∠AQD=∠CQJ,∴∠DAQ=∠QCJ=30°,∴AD=DQ=,∴AB=AC===,设BR=x,∵DR2=BD2﹣BR2=AD2﹣AR2,∴()2﹣x2=()2﹣(﹣x)2,∴x=,∴DR2=DB2﹣BR2=()2﹣()2=,∵BH=AH=,∴RH=﹣=,∴DH===5.【点评】本题属于三角形综合题,考查了等腰三角形的性质,解直角三角形等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考压轴题.27.如图1,在平面直角坐标系中,点O为坐标原点,△ABC的顶点B、C在x轴上(C左B右),点A在y轴正半轴上,∠BAC=120°,点O为BC的中点,AB=8.(1)求点A的坐标;(2)如图2,点D为AC上一点,点F为y轴上一点,AD=AF,连接DF,∠BDE=60°,DE交y轴于点E,设线段AD的长为t,线段OE的长为d,请用含t的式子表示d;(3)在(2)的条件下,当点D与点C重合时,在CA的延长线上取点G,作GH⊥CA交x轴于点K,若GK=AC,连接EH,过点A作AM⊥EH于点M,求点M的纵坐标.【分析】(1)由线段垂直平分线的性质证出AC=AB,由等腰三角形的性质得出∠ACB=∠ABC,由直角三角形的性质求出OA的长,则可得出答案;(2)证出△ADF为等边三角形,由等边三角形的性质得出∠ADF=∠DFA=60°,AD=DF,证明△DFE≌△DAB(ASA),由全等三角形的性质得出EF=AB=8,则可得出答案;(3)过点E作EN⊥GH,交GH的延长线于点N,连接CN,BE,FM,证明△CGK≌△ECA(AAS),由全等三角形的性质得出CG=CE,证出△CEB为等边三角形,得出∠ABE=90°,∠HBE=90°,证明Rt△BHE≌Rt△NHE(HL),由全等三角形的性质得出∠BEH=∠NEH,证出AM=EM,由等腰三角形的性质可得出答案.解:(1)∵AO⊥BC,O为BC的中点,∴OA垂直平分BC,∴AC=AB,∴∠ACB=∠ABC,∵∠BAC=120°,∴∠ACB=∠ABC=30°,∴OA=AB=4,(2)∵AB=AC,AO⊥BC,∠CAB=120°,∴∠CAF=60°,∵AD=AF,∴△ADF为等边三角形,∴∠ADF=∠DFA=60°,AD=DF,又∵∠EDB=60°,∴∠EDB﹣∠FDB=∠ADF﹣∠FDB,∴∠EDF=∠ADB,∵∠DFE=∠DAB=120°,∴△DFE≌△DAB(ASA),∴EF=AB=8,∵AD=AF=t,∴AE=t+8,∴OE=AE﹣OA=t+8﹣4=t+4,即d=t+4;(3)过点E作EN⊥GH,交GH的延长线于点N,连接CN,BE,FM,∵∠BCE=60°,∠GCK=30°,∴∠GCE=90°,∴∠CEA=30°,∵GH⊥CA,∴∠G=90°,∴∠G=∠ACE,∠GCK=∠CEA,又∵GK=AC,∴△CGK≌△ECA(AAS),∴CG=CE,∵EN⊥GH,∠G=∠ACE=90°,四边形的内角和为360°,∴∠GNC=∠ENC=45°,∴∠ECN=∠ENC=45°,∴CE=EN,∵OC=OB,AE⊥BC,∴CE=BE,∴△CEB为等边三角形,∴∠ABE=90°,∠HBE=90°,∵BE=EN,EH=EH,∴Rt△BHE≌Rt△NHE(HL),∴∠BEH=∠NEH,∴∠AEH=45°,∵AM⊥EH,∴∠MAE=∠AEM=45°,∴AM=EM,∵AE=16,AF=8,∴AF=EF=8,∴OF=4,MF⊥AE,∴点M的纵坐标为﹣4.【点评】本题是三角形综合题,考查了等腰三角形的性质,线段垂直平分线的性质,坐标与图形的性质,全等三角形的判定与性质,等边三角形的判定与性质,等腰直角三角形的判定与性质,熟练掌握全等三角形的判定与性质是解题的关键.。

人教版八年级上册数学《期中》测试卷及答案【一套】

人教版八年级上册数学《期中》测试卷及答案【一套】

人教版八年级上册数学《期中》测试卷及答案【一套】 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.估计101+的值在( )A .2和3之间B .3和4之间C .4和5之间D .5和6之间2.若点1(),6A x -,2(),2B x -,32(),C x 在反比例函数12y x =的图像上,则1x ,2x ,3x 的大小关系是( )A .123x x x <<B .213x x x <<C .231x x x <<D .321x x x <<3.下列命题中,真命题是( )A .对角线相等的四边形是矩形B .对角线互相垂直的四边形是菱形C .对角线互相平分的四边形是平行四边形D .对角线互相垂直平分的四边形是正方形4.把函数y x =向上平移3个单位,下列在该平移后的直线上的点是( )A .()2,2B .()2,3C .()2,4D .(2,5)5.若关于x 的一元二次方程(k -1)x 2+4x +1=0有两个不相等的实数根,则k 的取值范围是( )A .k<5B .k<5,且k ≠1C .k ≤5,且k ≠1D .k>56.已知点(224)P m m +,﹣在x 轴上,则点P 的坐标是( ) A .(40), B .(0)4, C .40)(-, D .(0,4)-7.在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是( )A .B .C .D .8.如图,直线AB∥CD,∠C=44°,∠E为直角,则∠1等于()A.132°B.134°C.136°D.138°9.往直径为52cm的圆柱形容器内装入一些水以后,截面如图所示,若水面宽48AB cm=,则水的最大深度为()A.8cm B.10cm C.16cm D.20cm10.如图,边长为6的大正方形中有两个小正方形,若两个小正方形的面积分别为S1,S2,则S1+S2的值为()A.16 B.17C.18 D.19二、填空题(本大题共6小题,每小题3分,共18分)1.已知a、b为两个连续的整数,且11a b<<,则a b+=__________.2.已知2x+3y-5=0,则9x•27y的值为__________.3.使x2-有意义的x的取值范围是________.4.如图为6个边长相等的正方形的组合图形,则∠1+∠2+∠3=_________5.如图所示,把一张长方形纸片沿EF 折叠后,点D C ,分别落在点D C '',的位置.若65EFB ︒∠=,则AED '∠等于________.6.如图所示,在△ABC 中,∠BAC=106°,EF 、MN 分别是AB 、AC 的垂直平分线,点E 、N 在BC 上,则∠EAN=________.三、解答题(本大题共6小题,共72分)1.解方程组:25342x y x y -=⎧⎨+=⎩2.先化简,再从﹣1、2、3、4中选一个合适的数作为x 的值代入求值.2222444424x x x x x x x ⎛⎫---÷ ⎪-+--⎝⎭.3.已知关于x ,y 的方程组325x y a x y a-=+⎧⎨+=⎩. (1)若x ,y 为非负数,求a 的取值范围;(2)若x y >,且20x y +<,求x 的取值范围.4.我市某中学有一块四边形的空地ABCD ,如图所示,为了绿化环境,学校计划在空地上种植草皮,经测量∠A=90°,AB=3m ,DA=4m ,BC=12m ,CD=13m .(1)求出空地ABCD 的面积.(2)若每种植1平方米草皮需要200元,问总共需投入多少元?5.如图所示,在△ABC中,D是BC边上一点,∠1=∠2,∠3=∠4,∠BAC=63°,求∠DAC的度数.6.商场某种商品平均每天可销售30件,每件盈利50元,为了尽快减少库存,商场决定采取适当的降价措施.经调查发现,每件商品每降价1元,商场平均每天可多售出2件.(1)若某天该商品每件降价3元,当天可获利多少元?(2)设每件商品降价x元,则商场日销售量增加____件,每件商品,盈利______元(用含x的代数式表示);(3)在上述销售正常情况下,每件商品降价多少元时,商场日盈利可达到2000元?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、C2、B3、C4、D5、B6、A7、D8、B9、C10、B二、填空题(本大题共6小题,每小题3分,共18分)1、72、2433、x2≥4、135°5、50°6、32°三、解答题(本大题共6小题,共72分)1、21 xy=⎧⎨=-⎩2、x+2;当1x=-时,原式=1.3、(1)a≥2;(2)-5<x<14、(1)36;(2)7200元.5、24°.6、(1)若某天该商品每件降价3元,当天可获利1692元;(2)2x;50﹣x.(3)每件商品降价25元时,商场日盈利可达到2000元.。

人教版八年级上册数学《期中》试卷及答案【完美版】

人教版八年级上册数学《期中》试卷及答案【完美版】

人教版八年级上册数学《期中》试卷及答案【完美版】 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.多项式2mx m -与多项式221x x -+的公因式是( )A .1x -B .1x +C .21x -D .()21x - 2.在平面直角坐标系中,点P(-2,2x +1)所在的象限是( )A .第一象限B .第二象限C .第三象限D .第四象限3.已知:20n 是整数,则满足条件的最小正整数n ( )A .2B .3C .4D .54.关于x 的一元一次不等式≤﹣2的解集为x ≥4,则m 的值为( ) A .14B .7C .﹣2D .2 5.若1a ab+有意义,那么直角坐标系中点A(a,b)在( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限6.下列四个不等式组中,解集在数轴上表示如图所示的是( )A .23x x ≥⎧⎨>-⎩B .23x x ≤⎧⎨<-⎩C .23x x ≥⎧⎨<-⎩D .23x x ≤⎧⎨>-⎩ 7.如图,函数y=2x 和y=ax+4的图象相交于A(m ,3),则不等式2x ax+4<的解集为( )A .3x 2> B .x 3> C .3x 2< D .x 3<8.已知直线m ∥n ,将一块含30°角的直角三角板ABC 按如图方式放置(∠ABC=30°),其中A,B两点分别落在直线m,n上,若∠1=20°,则∠2的度数为()A.20°B.30°C.45°D.50°9.如图所示,下列推理及括号中所注明的推理依据错误的是()A.∵∠1=∠3,∴AB∥CD(内错角相等,两直线平行)B.∵AB∥CD,∴∠1=∠3(两直线平行,内错角相等)C.∵AD∥BC,∴∠BAD+∠ABC=180°(两直线平行,同旁内角互补)D.∵∠DAM=∠CBM,∴AB∥CD(两直线平行,同位角相等)10.如图在△ABC中,BO,CO分别平分∠ABC,∠ACB,交于O,CE为外角∠ACD 的平分线,BO的延长线交CE于点E,记∠BAC=∠1,∠BEC=∠2,则以下结论①∠1=2∠2,②∠BOC=3∠2,③∠BOC=90°+∠1,④∠BOC=90°+∠2正确的是()A.①②③B.①③④C.①④D.①②④二、填空题(本大题共6小题,每小题3分,共18分)1.若关于x,y的二元一次方程组3133x y ax y+=+⎧⎨+=⎩的解满足x+y<2,则a的取值范围为________.21a+8a=__________.3.分解因式:2x2﹣8=_______。

人教版八年级数学上册期中考试卷(附答案)

人教版八年级数学上册期中考试卷(附答案)

人教版八年级数学上册期中考试卷(附答案)学校:___________姓名:___________班级:___________考号:___________第I 卷(选择题)一、选择题(本大题共8小题,共24.0分。

在每小题列出的选项中,选出符合题目的一项)1.下列四个实数中,最小的是( )A. −√ 3B. −2C. 2D. 32.下列各数中,无理数是( )A. √ 9B. √−83C. π2D. 533.与数轴上的点一一对应的是( )A. 有理数B. 无理数C. 整数D. 实数4.估计√ 7+1的值在( )A. 2和3之间B. 3和4之间C. 4和5之间D. 5和6之间5.√ 16的算术平方根是( )A. 4B. 2C. ±4D. ±26.下列运算正确的是( )A. x 3÷x 2=xB. x 3⋅x 2=x 6C. x 3−x 2=xD. x 3+x 2=x 5 7.若(y +3)(y −2)=y 2+my +n ,则m 、n 的值分别为( )A. 5;6B. 5;−6C. 1;6D. 1;−68.已知a =255,b =344,c =433则a 、b 、c 的大小关系是( )A. b >c >aB. a >b >cC. c >a >bD. a <b <c第II 卷(非选择题)二、填空题(本大题共6小题,共18.0分)9.计算:−√ 36= ______ ,√−273= ______ ,√ 16= ______ .10.已知|a +2|+√ b −6=0,则a +b = ______ .11.√ 2−1的相反数是______ ,|√ 2−√ 3|= ______ ,√(−8)33= ______ .12.已知2n =a ,3n =b 则6n = ______ .13.已知x 2−y 2=8,且x +y =4,则x −y =______.14.已知x 2−(m −1)x +16是一个完全平方式,则m 的值等于______.三、解答题(本大题共10小题,共78.0分。

人教版八年级上册数学期中测试卷(含答案)

人教版八年级上册数学期中测试卷(含答案)
(3)如图2,△ABC固定,将△CDE绕点C按顺时针(或逆时针)方向旋转任意角度α,在旋转过程中,(1)中的结论是否总成立?∠AOB的度数是否改变?并说明理由.
参考答案
1.B
2.D
3.A
4.A
5.D
6.C
7.C
8.A
9.D
10.B
11.100°
12.4cm、5cm、6cm
13. , , ,
14.4
15.
A.直角三角形B.锐角三角形C.等边三角形D.钝角三角形
6.(本题3分)如图,点 分别在 的边 、 上, ,若 垂直平分 ,则 ().
A. B. C. D.
7.(本题3分)下列图形:①角;②直角三角形;③等边三角形;④线段;⑤等腰三角形.其中一定是轴对称图形的有()
A.2个B.3个C.4个D.5个
8.(本题3分)如图,在△ABC中,∠B=50°,点D为边AB的中点,点E在边AC上,将△ADE沿DE折叠,使得点A恰好落在BC的延长线上的点F处,DF与AC交于点O,连结CD,则下列结论一定正确的是( )
A.6B.7C.8D.9
3.(本题3分)如图,点D,F,E,A在同一直线上,已知 ,那么添加下列条件不能判断 的是()
A. B. C. D.
4.(本题3分)已知点A(m-1,3)与点B(2,n)关于x轴对称,则m+n的值为( ).
A.0B.-6C.-1D.6
5.(本题3分)若一个三角形三个内角度数的比为11︰7︰3,那么这个三角形是()
人教版八年级上册数学期中测试卷
(满分120分时间100分钟)
题号



总分
得分
一、单选题(共30分)
1.(本题3分)已知等腰三角形的两边长分别为3cm和7cm,则这个三角形的周长为()

人教版八年级上册数学期中考试试卷及答案

人教版八年级上册数学期中考试试卷及答案

八年级上册数学期中考试(时刻:90分钟总分:100分)一.选择题(36分)1.下列结论正确的是()(A)有两个锐角相等的两个直角三角形全等;(B)一条斜边对应相等的两个直角三角形全等;(C)顶角和底边对应相等的两个等腰三角形全等;(D)两个等边三角形全等.2.下列四个图形中,不是轴对称图形的是()AB C3.已知,如图1,AD=AC,BD=BC,O为AB上一点,那么,图中共有()对全等三角形.A. 1B. 2图14.如图2,AD是ABC△的中线,E,F别离是AD和AD延长线上的点,且DE DF,连结BF,CE.下列说法:①CE=BF;②△ABD和△ACD面积相等;③BF∥CE;④△BDF≌△CDE.其中正确的有()A.1个B.2个C.3个D.4个5.直角三角形斜边上的中线把直角三角形分成的两个三角形的关系是()A.形状相同B.周长相等C.面积相等D.全等6.已知一个等腰三角形两内角的度数之比为1:4,则那个等腰三角形顶角的度数为()A.20B.120C.20或120D.367.如图4,已知点O是△ABC内一点,且点O到三边的距离相等,∠A=40,则∠BOC=()A. 0110 B.0120 C.0130 D.01408.圆、正方形、长方形、等腰梯形中有唯一条对称轴的是()A. 圆B. 正方形C. 长方形D. 等腰梯形9.点(3,-2)关于x轴的对称点是( )A. (-3,-2)B. (3,2)C. (-3,2)D. (3,-2)10.下列长度的三线段,能组成等腰三角形的是()A. 1,1,2B. 2,2,5C. 3,3,5D. 3,4,5ADCB图2EFCOAB图411.等腰三角形的一个角是80°,则它的底角是 ( )A. 50°B. 80°C. 50°或80°D. 20°或80°12.若等腰三角形腰上的高是腰长的一半,则那个等腰三角形的底角是 ( )A. 75°或30°B. 75°C. 15°D. 75°和15°二.填空题(18分)13.若是△ABC 和△DEF 全等,△DEF 和△GHI 全等,则△ABC 和△GHI ______全等, 若是△ABC 和△DEF 不全等,△DEF 和△GHI 全等,则△ABC 和△GHI ______全等.(填“必然”或“不必然”或“必然不”)14.点P (-1,2)关于x 轴对称点P 1的坐标为( ).15.如左下图.△ABC ≌△ADE ,则,AB= ,∠E=∠ .若∠BAE=120°∠BAD=40°.则∠BAC= . 16.如图3,AB ,CD 相交于点O ,AD =CB ,请你补充一个条件,使得△AOD ≌△COB .你补充的条件是______.17.点M (-2,1)关于x 轴对称的点N 的坐标是________,直线MN 与x 轴的位置关系是___________.18.如图4,直线AE ∥BD ,点C 在BD 上,若AE =4,BD =8,△ABD 的面积为16,则ACE △的面积为______.三.作图题(6分)19.最近几年来,国家实施“村村通”工程和农村医疗卫生改革,某县打算在张村、李村之间建一座定点医疗站P ,张、李两村座落在两相交公路内(如图所示).医疗站必需知足下列条件:①使其到两公路距离相等,②到张、李两村的距离也相等,请你通过作图确信P 点的位置.(不写作法,要保留作图痕迹)四.解答题(40分)20(本题8分).如图,AB=DF ,AC=DE ,BE=FC ,问:ΔABC 与ΔDEF 全等吗?AB 与DF 平行吗?请说明你的理由。

2024年最新人教版八年级数学(上册)期中考卷及答案(各版本)

2024年最新人教版八年级数学(上册)期中考卷及答案(各版本)

2024年最新人教版八年级数学(上册)期中考卷及答案(各版本)一、选择题:5道(每题1分,共5分)1. 下列数中,最小的数是()A. 3B. 2C. 0D. 12. 已知函数f(x) = 2x + 3,那么f(1)的值为()A. 1B. 1C. 5D. 53. 下列哪个图形是平行四边形()A. 矩形B. 正方形C. 梯形D. 三角形4. 已知等差数列{an}的前三项分别为1,3,5,那么第10项的值为()A. 19B. 20C. 21D. 225. 下列哪个数是无理数()A. √2B. √4C. √9D. √16二、判断题5道(每题1分,共5分)1. 0是正数和负数的分界点。

()2. 两个负数相乘,结果是正数。

()3. 任何数乘以1都等于它本身。

()4. 两个数的和与它们的顺序无关。

()5. 任何数除以0都有意义。

()三、填空题5道(每题1分,共5分)1. 一个正数与它的相反数相加,结果是______。

2. 函数f(x) = 2x 3中,当x = 2时,f(x)的值为______。

3. 平行四边形的对边______且______。

4. 等差数列{an}的前n项和为______。

5. 两个无理数相乘,结果可能为______。

四、简答题5道(每题2分,共10分)1. 简述实数的分类。

2. 解释等差数列的通项公式。

3. 什么是函数,给出一个函数的例子。

4. 举例说明平行四边形与矩形的区别。

5. 简述勾股定理的内容。

五、应用题:5道(每题2分,共10分)1. 计算下列表达式的值:3x 5,其中x = 4。

2. 已知函数f(x) = x^2 2x + 1,求f(3)的值。

3. 一个等差数列的前3项分别为2,5,8,求第10项的值。

4. 在一个长方形中,长为8cm,宽为6cm,求其对角线的长度。

5. 已知一个正方形的面积为36cm^2,求其边长。

六、分析题:2道(每题5分,共10分)1. 已知一个等差数列的前5项分别为2,5,8,11,14,求该数列的通项公式。

人教版八年级数学上册期中试卷【含答案】

人教版八年级数学上册期中试卷【含答案】

人教版八年级数学上册期中试卷【含答案】专业课原理概述部分一、选择题(每题1分,共5分)1. 若一个三角形的两边长分别为8cm和10cm,且这两边的夹角为60°,则这个三角形的周长为多少?A. 26cmB. 27cmC. 28cmD. 29cm2. 已知函数f(x) = 2x + 3,那么f(-1)的值为多少?A. -1B. 1C. 2D. 33. 下列哪个数是素数?A. 21B. 29C. 35D. 394. 一个长方体的长、宽、高分别为10cm、6cm、4cm,那么这个长方体的对角线长度为多少?A. 12cmB. 14cmC. 16cmD. 18cm5. 若一个等差数列的首项为2,公差为3,那么第10项的值为多少?A. 29B. 30C. 31D. 32二、判断题(每题1分,共5分)1. 任何一个三角形的内角和都是180°。

()2. 两条平行线的斜率相等。

()3. 任何一个偶数都可以表示为2的倍数。

()4. 两个负数相乘的结果是正数。

()5. 任何一个正方体的对角线长度等于它的边长的根号3倍。

()三、填空题(每题1分,共5分)1. 若一个等腰三角形的底边长为8cm,腰长为10cm,那么这个三角形的周长为____cm。

2. 若函数f(x) = x^2 3x + 2,那么f(2)的值为____。

3. 下列数中,____是合数。

4. 一个长方体的长、宽、高分别为10cm、6cm、4cm,那么这个长方体的体积为____cm^3。

5. 若一个等差数列的首项为2,公差为3,那么第10项的值为____。

四、简答题(每题2分,共10分)1. 请简述勾股定理的内容。

2. 请简述等差数列的定义。

3. 请简述平行线的性质。

4. 请简述长方体的表面积的计算方法。

5. 请简述因式分解的意义。

五、应用题(每题2分,共10分)1. 已知一个三角形的两边长分别为10cm和12cm,且这两边的夹角为60°,求这个三角形的面积。

人教版八年级上学期期中考试数学试卷及答案解析(共六套)

人教版八年级上学期期中考试数学试卷及答案解析(共六套)

人教版八年级上学期期中考试数学试卷(一)一、选择题(本题共30分,每小题3分,下列各题均有四个选项,其中只有一个是符合题意的)1.图中的两个三角形全等,则∠α=()A.72°B.60°C.58°D.50°2.下列条件中,不能判定三角形全等的是()A.三条边对应相等B.两边和其中一角对应相等C.两边和夹角对应相等D.两角和它们的夹边对应相等3.下列各式从左到右的变形中,是因式分解的为()A.x(a﹣b)=ax﹣bx B.x2﹣1+y2=(x﹣1)(x+1)+y2C.x2﹣1=(x+1)(x﹣1) D.ax+bx+c=x(a+b)+c4.下列各式中,正确的是()A.B.C. =D.5.若分式的值为0,则x应满足的条件是()A.x=﹣2 B.x=2 C.x≠﹣2 D.x=±26.下列各分式中,最简分式是()A.B.C.D.7.若x2﹣2(m﹣3)x+16是完全平方式,则m的值等于()A.﹣1 B.7 C.7或﹣7 D.7或﹣18.如图,P是∠BAC的平分线AD上一点,PE⊥AB于E,PF⊥AC于F,下列结论中不正确的是()A.PE=PF B.AE=AF C.△APE≌△APF D.AP=PE+PF9.已知:三角形的两边长分别为3和7,则第三边的中线长x的取值范围是()A.2<x<5 B.4<x<10 C.3<x<7 D.无法确定10.如图,在△ABC中,AD是它的角平分线,AB=8cm,AC=6cm,则S△ABD :S△ACD=()A.3:4 B.4:3 C.16:9 D.9:16二、填空题(本题共16分,每小题2分)11.计算:3﹣2= .12.若(x﹣2)0有意义,则x的取值范围是.13.分解因式:x2+x﹣2= .14.如图,亮亮书上的三角形被墨迹污染了一部分,他根据所学的知识很快就画出了一个与书上完全一样的三角形,那么亮亮画图的依据是.15.如图,AC、BD相交于点O,∠A=∠D,请你再补充一个条件,使得△AOB≌△DOC,你补充的条件是.16.在△ABC中,∠C=90°,BC=4cm,∠BAC的平分线交BC于D,且BD:DC=5:3,则D到AB的距离为 cm.17.若x2+4x+1=0,则x2+= .18.请同学们观察 22﹣2=2(2﹣1)=2,23﹣22=22(2﹣1)=22,24﹣23=23(2﹣1)=23…(1)写出表示一般规律的第n个等式;(2)根据所总结的规律计算210﹣29﹣28﹣…﹣22﹣2= .三、解答题(本题共54分)19.(5分)请你阅读下列计算过程,再回答所提出的问题:解:=(A)=(B)=x﹣3﹣3(x+1)(C)=﹣2x﹣6(D)(1)上述计算过程中,从哪一步开始出现错误:;(2)从B到C是否正确,若不正确,错误的原因是;(3)请你正确解答.20.(2分)尺规画图(不用写作法,要保留作图痕迹)如图1,在一次军事演习中,红方侦察员发现蓝方指挥部在A区内,到铁路与到公路的距离相等,且离铁路与公路交叉处B点400米,如果你是红方的指挥员,请你在图2所示的作战图上标出蓝方指挥部的位置点P.21.(6分)分解下列因式:(1)9a2﹣1(2)p3﹣16p2+64p.22.(7分)计算(1)﹣.(2)()﹣1+(﹣1)+(2﹣)0+|﹣3|.23.(5分)先化简,再求值:,其中x=5.24.(5分)解分式方程:.25.(4分)已知:如图,AB=AC,AD=AE,∠1=∠2.求证:△ABD≌△ACE.26.(4分)已知:如图,AB⊥BD,CD⊥BD,AD=BC.求证:(1)AB=DC.(2)AD∥BC.27.(4分)在△AFD和△BEC中,点A、E、F、C在同一直线上,有下面四个论断:(1)AD=CB;(2)AE=CF;(3)∠B=∠D;(4)AD∥BC.请用其中三个作为条件,余下一个作为结论,编一道数学问题,并写出证明过程.28.(4分)若x2+y2﹣4x+2y+5=0,求()2010+y2010的值.29.(4分)已知:正方形ABCD中,∠MAN=45°,∠MAN绕点A顺时针旋转,它的两边分别交CB、DC(或它们的延长线)于点M、N.(1)如图1,当∠MAN绕点A旋转到BM=DN时,有BM+DN=MN.当∠MAN绕点A 旋转到BM≠DN时,如图2,请问图1中的结论还是否成立?如果成立,请给予证明,如果不成立,请说明理由;(2)当∠MAN绕点A旋转到如图3的位置时,线段BM,DN和MN之间有怎样的等量关系?请写出你的猜想,并证明.30.(4分)已知:在△ABC中,∠ABC=100°,∠C的平分线交AB边于点E,在AC边上取点D,使得∠CBD=20°,连结DE.求∠CED的度数.参考答案与试题解析一、选择题(本题共30分,每小题3分,下列各题均有四个选项,其中只有一个是符合题意的)1.图中的两个三角形全等,则∠α=()A.72°B.60°C.58°D.50°【考点】KA:全等三角形的性质.【分析】根据全等三角形对应角相等解答即可.【解答】解:∵两个三角形全等,∴α=58°.故选C.【点评】本题考查了全等三角形的性质,熟记性质并准确识图,确定出对应角是解题的关键.2.下列条件中,不能判定三角形全等的是()A.三条边对应相等B.两边和其中一角对应相等C.两边和夹角对应相等D.两角和它们的夹边对应相等【考点】KB:全等三角形的判定.【分析】根据全等三角形的判定定理逐个判断即可.【解答】解:A、符合全等三角形的判定定理SSS,能推出两三角形全等,故本选项不符合题意;B、不符合全等三角形的判定定理,不能推出两三角形全等,故本选项符合题意;C、符合全等三角形的判定定理SAS,能推出两三角形全等,故本选项不符合题意;D、符合全等三角形的判定定理ASA,能推出两三角形全等,故本选项不符合;故选B.【点评】本题考查了全等三角形的判定定理,能熟记全等三角形的判定定理是解此题的关键,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS.3.下列各式从左到右的变形中,是因式分解的为()A.x(a﹣b)=ax﹣bx B.x2﹣1+y2=(x﹣1)(x+1)+y2C.x2﹣1=(x+1)(x﹣1) D.ax+bx+c=x(a+b)+c【考点】51:因式分解的意义.【分析】根据因式分解的定义作答.把一个多项式化成几个整式的积的形式,叫做把这个多项式因式分解,也叫做把这个多项式分解因式.【解答】解:A、是整式的乘法运算,故选项错误;B、结果不是积的形式,故选项错误;C、x2﹣1=(x+1)(x﹣1),正确;D、结果不是积的形式,故选项错误.故选:C.【点评】熟练地掌握因式分解的定义,明确因式分解的结果应是整式的积的形式.4.下列各式中,正确的是()A.B.C. =D.【考点】65:分式的基本性质.【分析】利用分式的基本性质对各式进行化简即可.【解答】解:A、已经是最简分式,故本选项错误;B、,故本选项错误;C、=,故本选项错误;D、利用分式的基本性质在分式的分子与分母上同时乘以x+y即可得到,故本选项正确;故选D.【点评】本题考查了分式的基本性质,解题的关键是在进行分式的运算时要同时乘除.5.若分式的值为0,则x应满足的条件是()A.x=﹣2 B.x=2 C.x≠﹣2 D.x=±2【考点】63:分式的值为零的条件.【分析】根据分式值为0的条件可得x2﹣4=0且x+2≠0,再解出x的值即可.【解答】解:由题意得:x2﹣4=0且x+2≠0,解得:x=2.故选:B.【点评】此题主要考查了分式的值为零的条件,分式值为零的条件是分子等于零且分母不等于零.6.下列各分式中,最简分式是()A.B.C.D.【考点】68:最简分式.【分析】最简分式是指分子和分母没有公因式.【解答】解:(A)原式=,故A不是最简分式;(B)原式==,故B不是最简分式;(C)原式=,故C是最简分式;(D)原式==,故D不是最简分式;故选(C)【点评】本题考查考查最简分式,要注意将分子分母先分解后,约去公因式.7.若x2﹣2(m﹣3)x+16是完全平方式,则m的值等于()A.﹣1 B.7 C.7或﹣7 D.7或﹣1【考点】4E:完全平方式.【分析】这里首末两项是x和4这两个数的平方,那么中间一项为加上或减去x 和4积的2倍.【解答】解:依题意,得m﹣3=±4,解得m=7或﹣1.故选D.【点评】本题是完全平方公式的应用;两数的平方和,再加上或减去它们积的2倍,就构成了一个完全平方式.注意积的2倍的符号,避免漏解.8.如图,P是∠BAC的平分线AD上一点,PE⊥AB于E,PF⊥AC于F,下列结论中不正确的是()A.PE=PF B.AE=AF C.△APE≌△APF D.AP=PE+PF【考点】KF:角平分线的性质.【分析】题目的已知条件比较充分,满足了角平分线的性质要求的条件,可直接应用性质得到结论,与各选项进行比对,得出答案.【解答】解:∵P是∠BAC的平分线AD上一点,PE⊥AB于E,PF⊥AC于F,∴PE=PF,又有AD=AD∴△APE≌△APF(HL∴AE=AF故选D.【点评】本题主要考查平分线的性质,由已知证明△APE≌△APF是解题的关键.9.已知:三角形的两边长分别为3和7,则第三边的中线长x的取值范围是()A.2<x<5 B.4<x<10 C.3<x<7 D.无法确定【考点】K6:三角形三边关系;K2:三角形的角平分线、中线和高.【分析】根据三角形的三边关系:两边之和大于第三边,两边之差小于第三边.倍长中线,构造一个新的三角形.根据三角形的三边关系就可以求解.【解答】解:7﹣3<2x<7+3,即2<x<5.故选A.【点评】本题主要考查了三角形的三边关系,注意此题构造了一条常见的辅助线:倍长中线.10.如图,在△ABC中,AD是它的角平分线,AB=8cm,AC=6cm,则S△ABD :S△ACD=()A.3:4 B.4:3 C.16:9 D.9:16【考点】K3:三角形的面积.【分析】利用角平分线的性质,可得出△ABD的边AB上的高与△ACD的AC上的高相等,估计三角形的面积公式,即可得出△ABD与△ACD的面积之比等于对应边之比.【解答】解:∵AD是△ABC的角平分线,∴设△ABD的边AB上的高与△ACD的AC上的高分别为h1,h2,∴h1=h2,∴△ABD与△ACD的面积之比=AB:AC=8:6=4:3,故选:B.【点评】本题考查了角平分线的性质,以及三角形的面积公式,熟练掌握三角形角平分线的性质是解题的关键.二、填空题(本题共16分,每小题2分)11.计算:3﹣2= .【考点】6F:负整数指数幂.【分析】根据负整数指数为正整数指数的倒数计算.【解答】解:3﹣2=.故答案为.【点评】本题主要考查了负指数幂的运算,比较简单.12.若(x﹣2)0有意义,则x的取值范围是x≠2 .【考点】6E:零指数幂.【分析】根据非零的零次幂等于1,可得答案.【解答】解:由题意,得x﹣2≠0,解得x≠2,故答案为:x≠2.【点评】本题考查了零指数幂,利用非零的零次幂等于1是解题关键.13.分解因式:x2+x﹣2= (x﹣1)(x+2).【考点】57:因式分解﹣十字相乘法等.【分析】因为(﹣1)×2=﹣2,2﹣1=1,所以利用十字相乘法分解因式即可.【解答】解:∵(﹣1)×2=﹣2,2﹣1=1,∴x2+x﹣2=(x﹣1)(x+2).故答案为:(x﹣1)(x+2).【点评】本题考查的是十字相乘法分解因式,运用十字相乘法分解因式时,要注意观察,尝试,并体会它实质是二项式乘法的逆过程.14.如图,亮亮书上的三角形被墨迹污染了一部分,他根据所学的知识很快就画出了一个与书上完全一样的三角形,那么亮亮画图的依据是两角和它们的夹边分别相等的两个三角形全等.【考点】KE:全等三角形的应用.【分析】根据图象,三角形有两角和它们的夹边是完整的,所以可以根据“角边角”画出即可.【解答】解:根据题意,三角形的两角和它们的夹边是完整的,所以可以利用“角边角”定理作出完全一样的三角形.故答案为:两角和它们的夹边分别相等的两个三角形全等.【点评】本题考查了三角形全等的判定的实际运用,熟练掌握判定定理:两角及其夹边分别对应相等的两个三角形全等是解题的关键.15.如图,AC、BD相交于点O,∠A=∠D,请你再补充一个条件,使得△AOB≌△DOC,你补充的条件是AO=DO或AB=DC或BO=CO .【考点】KB:全等三角形的判定.【分析】本题要判定△AOB≌△DOC,已知∠A=∠D,∠AOB=∠DOC,则可以添加AO=DO或AB=DC或BO=CO从而利用ASA或AAS判定其全等.【解答】解:添加AO=DO或AB=DC或BO=CO后可分别根据ASA、AAS、AAS判定△AOB≌△DOC.故填AO=DO或AB=DC或BO=CO.【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.添加时注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.16.在△ABC中,∠C=90°,BC=4cm,∠BAC的平分线交BC于D,且BD:DC=5:3,则D到AB的距离为 1.5 cm.【考点】KF:角平分线的性质.【分析】作出图形,过点D作DE⊥AB于E,先求出CD的长,再根据角平分线上的点到角的两边的距离相等可得DE=CD解答.【解答】解:如图,过点D作DE⊥AB于E,∵BC=4cm,BD:DC=5:3,∴CD=×4=1.5cm,∵AD是∠BAC的平分线,∴DE=CD=1.5cm.故答案为:1.5.【点评】本题考查了角平分线上的点到角的两边的距离相等的性质,熟记性质是解题的关键,作出图形更形象直观.17.若x2+4x+1=0,则x2+= 14 .【考点】4C:完全平方公式.【分析】由x2+4x+1=0可得x≠0,两边除以x可得到x+=﹣4,再两边平方,根据完全平方公式展开即可得到x2+的值.【解答】解:∵x2+4x+1=0,∴x+4+=0,即x+=﹣4,∴(x+)2=(﹣4)2,∴x2+2+=16,∴x2+=14.故答案为14.【点评】本题考查了完全平方公式:(a±b)2=a2±2ab+b2.也考查了代数式的变形能力.18.请同学们观察 22﹣2=2(2﹣1)=2,23﹣22=22(2﹣1)=22,24﹣23=23(2﹣1)=23…(1)写出表示一般规律的第n个等式2n+1﹣2n=2n;(2)根据所总结的规律计算210﹣29﹣28﹣…﹣22﹣2= 2 .【考点】37:规律型:数字的变化类.【分析】(1)根据等式的变化找出变化规律“第n个等式为2n+1﹣2n=2n”,此题得解;(2)根据2n=2n+1﹣2n将算式210﹣29﹣28﹣…﹣22﹣2进行拆项,合并同类项即可得出结论.【解答】解:(1)观察,发现规律:22﹣2=2(2﹣1)=2,23﹣22=22(2﹣1)=22,24﹣23=23(2﹣1)=23,…,∴第n个等式为2n+1﹣2n=2n.故答案为:2n+1﹣2n=2n.(2)∵2n=2n+1﹣2n,∴210﹣29﹣28﹣…﹣22﹣2=210﹣210+29﹣29+28﹣28+27﹣…﹣23+22﹣2=22﹣2=2.故答案为:2.【点评】本题考查了规律型中数字的变化类,根据等式的变化找出变化规律是解题的关键.三、解答题(本题共54分)19.请你阅读下列计算过程,再回答所提出的问题:解:=(A)=(B)=x﹣3﹣3(x+1)(C)=﹣2x﹣6(D)(1)上述计算过程中,从哪一步开始出现错误: A ;(2)从B到C是否正确,若不正确,错误的原因是不能去分母;(3)请你正确解答.【考点】6B:分式的加减法.【分析】异分母分式相加减,先化为同分母分式,再加减.【解答】解:===,(1)故可知从A开始出现错误;(2)不正确,不能去分母;(3)===.【点评】本题考查异分母分式相加减.应先通分,化为同分母分式,再加减.本题需注意应先把能因式分解的分母因式分解,在计算过程中,分母不变,只把分子相加减.20.尺规画图(不用写作法,要保留作图痕迹)如图1,在一次军事演习中,红方侦察员发现蓝方指挥部在A区内,到铁路与到公路的距离相等,且离铁路与公路交叉处B点400米,如果你是红方的指挥员,请你在图2所示的作战图上标出蓝方指挥部的位置点P.【考点】N4:作图—应用与设计作图;KF:角平分线的性质.【分析】作出角平分线,进而截取PB=400进而得出答案.【解答】解:如图所示:P点即为所求.【点评】此题主要考查了应用设计与作图,正确掌握角平分线的性质是解题关键.21.分解下列因式:(1)9a2﹣1(2)p3﹣16p2+64p.【考点】55:提公因式法与公式法的综合运用.【分析】(1)原式利用平方差公式分解即可;(2)原式提取公因式,再利用完全平方公式分解即可.【解答】解:(1)原式=(3a+1)(3a﹣1);(2)原式=p(p2﹣16p+64)=p(p﹣8)2.【点评】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.22.计算(1)﹣.(2)()﹣1+(﹣1)+(2﹣)0+|﹣3|.【考点】6B:分式的加减法;2C:实数的运算;6E:零指数幂;6F:负整数指数幂.【分析】(1)直接利用分式加减运算法则化简求出答案;(2)直接利用负指数幂的性质以及零指数幂的性质以及绝对值的性质分别化简求出答案.【解答】解:(1)原式===;(2)原式=2﹣1+1+3=5.【点评】此题主要考查了分式得加减运算以及实数运算,正确掌握运算法则是解题关键.23.先化简,再求值:,其中x=5.【考点】6D:分式的化简求值.【分析】把原式的第二项被除式分母及除式分母都分解因式,然后利用除以一个数等于乘以这个数的倒数把除法运算化为乘法运算,约分后,再与第一项通分,利用同分母分式的减法运算计算,可化为最简,最后把x的值代入化简的式子中即可求出值.【解答】解:==﹣=﹣===,(4分)当x=5时,原式==.(5分)【点评】此题考查了分式的化简求值,分式的化简求值时,加减的关键是通分,通分的关键是找出各分母的最简公分母,分式的乘除关键是约分,约分的关键是找出公因式,本题属于化简求值题,解答此类题要先将原式化为最简,再代值,同时注意有时计算后还能约分,比如本题倒数第二步约去公因式x+1.24.解分式方程:.【考点】B3:解分式方程;86:解一元一次方程.【分析】方程的两边都乘以5(x+1),把分式方程转化成整式方程,求出方程的解,再代入方程进行检验即可.【解答】解:方程的两边都乘以5(x+1)、去分母得:5x=2x+5x+5,移项、合并同类项得:2x=﹣5,∴系数化成1得:x=﹣,经检验x=﹣是原方程的解,∴原方程的解是x=﹣.【点评】本题考查了分式方程的解法,关键是把分式方程转化成整式方程,注意一定要检验.25.已知:如图,AB=AC,AD=AE,∠1=∠2.求证:△ABD≌△ACE.【考点】KB:全等三角形的判定.【分析】首先得出∠EAC=∠BAD,进而利用全等三角形的判定方法(SAS)得出即可.【解答】证明:∵∠1=∠2,∴∠EAC=∠BAD,在△DAB和△EAC中,∴△ABD≌△ACE(SAS)【点评】此题主要考查了全等三角形的判定,正确应用全等三角形的判定方法是解题关键.26.已知:如图,AB⊥BD,CD⊥BD,AD=BC.求证:(1)AB=DC.(2)AD∥BC.【考点】KD:全等三角形的判定与性质.【分析】(1)易证△ABD≌△CDB,根据全等三角形的对应边相等知AB=DC;(2)因为△ABD≌△CDB,所以全等三角形的对应角∠ADB=∠CBD.然后由平行线的判定定理知AD∥BC.【解答】证明:(1)∵AB⊥BD,CD⊥BD,∴∠ABD=∠CDB=90°,∴在Rt△ABD和Rt△CDB中,,∴Rt△ABD≌Rt△CDB(HL),∴AB=DC(全等三角形的对应边相等);(2)∵Rt△ABD≌Rt△CDB[由(1)知],∴∠ADB=∠CBD(全等三角形的对应角相等),∴AD∥BC(内错角相等,两直线平行).【点评】本题考查了全等三角形的判定与性质.判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.以及三角形全等的性质:全等三角形的对应边、对应角相等.27.在△AFD和△BEC中,点A、E、F、C在同一直线上,有下面四个论断:(1)AD=CB;(2)AE=CF;(3)∠B=∠D;(4)AD∥BC.请用其中三个作为条件,余下一个作为结论,编一道数学问题,并写出证明过程.【考点】KD:全等三角形的判定与性质.【分析】只要以其中三个作为条件,能够得出另一个结论正确即可,下边以(1)、(2)、(4)为条件,(3)为结论为例.【解答】解:以(1)、(2)、(4)为条件,(3)为结论.证明:∵AE=CF,∴AF=CE,∵AD∥BC,∴∠A=∠C,又AD=BC,∴△ADF≌△CBE(SAS),∴∠B=∠D.【点评】本题与命题联系在一起,归根到底主要还是考查了全等三角形的判定及性质问题,应熟练掌握.28.若x2+y2﹣4x+2y+5=0,求()2010+y2010的值.【考点】AE:配方法的应用;1F:非负数的性质:偶次方.【分析】根据x2+y2﹣4x+2y+5=0,可以求得x、y的值,从而可以求得所求式子的值.【解答】解:∵x2+y2﹣4x+2y+5=0,∴x2﹣4x+4+y2+2y+1=0,∴(x﹣2)2+(y+1)2=0,∴x﹣2=0,y+1=0,解得,x=2,y=﹣1,∴()2010+y2010==1+1=2.【点评】本题考查配方法的应用、非负数的性质,解题的关键是明确题意,找出所求问题需要的条件.29.已知:正方形ABCD中,∠MAN=45°,∠MAN绕点A顺时针旋转,它的两边分别交CB、DC(或它们的延长线)于点M、N.(1)如图1,当∠MAN绕点A旋转到BM=DN时,有BM+DN=MN.当∠MAN绕点A旋转到BM≠DN时,如图2,请问图1中的结论还是否成立?如果成立,请给予证明,如果不成立,请说明理由;(2)当∠MAN绕点A旋转到如图3的位置时,线段BM,DN和MN之间有怎样的等量关系?请写出你的猜想,并证明.【考点】LE:正方形的性质;KD:全等三角形的判定与性质;R2:旋转的性质.【分析】(1)在MB的延长线上截取BE=DN,连接AE,根据正方形性质得出AD=AB,∠D=∠DAB=∠ABC=∠ABE=90°,证△ABE≌△ADN推出AE=AN;∠EAB=∠NAD,求出∠EAM=∠MAN,根据SAS证△AEM≌△ANM,推出ME=MN即可;(2)在DN上截取DE=MB,连接AE,证△ABM≌△ADE,推出AM=AE;∠MAB=∠EAD,求出∠EAN=∠MAN,根据SAS证△AMN≌△AEN,推出MN=EN即可.【解答】解:(1)图1中的结论仍然成立,即BM+DN=MN,理由为:如图2,在MB的延长线上截取BE=DN,连接AE,∵四边形ABCD是正方形,∴AD=AB,∠D=∠DAB=∠ABC=∠ABE=90°,∵在△ABE和△ADN中,∴△ABE≌△ADN(SAS).∴AE=AN;∠EAB=∠NAD,∵∠DAB=90°,∠MAN=45°,∴∠DAN+∠BAM=45°,∴∠EAM=∠BAM+∠EAB=45°=∠MAN,∵在△AEM和△ANM中,∴△AEM≌△ANM(SAS),∴ME=MN,∴MN=ME=BE+BM=DN+BM,即DN+BM=MN;(2)猜想:线段BM,DN和MN之间的等量关系为:DN﹣BM=MN.证明:如图3,在DN上截取DE=MB,连接AE,∵由(1)知:AD=AB,∠D=∠ABM=90°,BM=DE,∴△ABM≌△ADE(SAS).∴AM=AE;∠MAB=∠EAD,∵∠MAN=45°=∠MAB+∠BAN,∴∠DAE+∠BAN=45°,∴∠EAN=90°﹣45°=45°=∠MAN,∵在△AMN和△AEN中,∴△AMN≌△AEN(SAS),∴MN=EN,∵DN﹣DE=EN,∴DN﹣BM=MN.【点评】本题考查了正方形性质和全等三角形的性质和判定的应用,题目具有一定的代表性,是一道比较好的题目,证明过程类似,培养了学生的猜想能力和分析归纳能力.30.已知:在△ABC中,∠ABC=100°,∠C的平分线交AB边于点E,在AC边上取点D,使得∠CBD=20°,连结DE.求∠CED的度数.【考点】KD:全等三角形的判定与性质;KF:角平分线的性质.【分析】分别作EF⊥CB的延长线于F,EH⊥AC于H,EG⊥BD于G.利用CE是角平分线,角平分线的性质定理,得EF=EH,再证明∠ABD=∠EBF,同理可证:EF=EG,根据HL证明Rt△EDH≌Rt△EDG,根据全等三角形的性质和角的和差关系可求∠CED.【解答】解:分别作EF⊥CB的延长线于F,EH⊥AC于H,EG⊥BD于G.∵CE是角平分线,∴EF=EH.∠ABC=100°,∠DBC=20°,∴∠ABD=80°,又∵∠EBF=80°,∴∠ABD=∠EBF,∴EF=EG,∴EH=EG,在Rt△EDH与Rt△EDG中,,∴Rt△EDH≌Rt△EDG(HL),∴∠EDH=∠EDG,∴∠CED=∠EDH﹣∠ECD=(∠BDH﹣∠BCA)=×20°=10°.【点评】本题考查了全等三角形的判定与性质,角的平分线的性质定理和逆定理,本题的关键是作出辅助线,以及角的平分线性质定理的应用.人教版八年级上学期期中考试数学试卷(二)一、精心选一选(每小题3分,共30分)1.计算(﹣)﹣3的结果是()A.﹣B.﹣C.﹣343 D.﹣212.将,(﹣2)0,(﹣3)2这三个数按从小到大的顺序排列,正确的结果是()A.(﹣2)0<<(﹣3)2B.<(﹣2)0<(﹣3)2C.(﹣3)2<(﹣2)0<D.(﹣2)0<(﹣3)2<3.下列各式中,从左到右的变形是因式分解的是()A.a2﹣4ab+4b2=(a﹣2b)2 B.x2﹣xy2﹣1=xy(x﹣y)﹣1C.(x+2y)(x﹣2y)=x2﹣4y2D.ax+ay+a=a(x+y)4.如图所示,AB=AC,要说明△ADC≌△AEB,需添加的条件不能是()A.∠B=∠C B.AD=AE C.∠ADC=∠AEB D.DC=BE5.在下列图案中,不是轴对称图形的是()A.B.C.D.6.如图,若OP平分∠AOB,PC⊥OA,PD⊥OB,垂足分别是C、D,则下列结论中错误的是()A.PC=PD B.OC=PC C.∠CPO=∠DPO D.OC=OD7.下列等式成立的是()A.B.C.D.8.如图,△ABC≌△BAD,点A和点B,点C和点D是对应点,如果AB=6cm,BD=5cm,AD=4cm,那么BC的长是()A.4 B.5 C.6 D.无法确定9.如图,正方形ABCD的边长为4,将一个足够大的直角三角板的直角顶点放于点A处,该三角形板的两条直角边与CD交于点F,与CB延长线交于点E,四边形AECF的面积是()A.16 B.12 C.8 D.410.如图,将一张正方形纸片经两次对折,并剪出一个菱形小洞后展开铺平,得到的图形是()A.B.C.D.二.细心填一填(每小题2分,共20分)11.一种细菌的半径为0.000407m,用科学记数法表示为m.12.当x= 时,分式没有意义;当x= 时,分式的值为0.13.计算(﹣)3÷(﹣)2的结果是.14.计算+的结果是.15.若x2+mx+16是完全平方式,则m= .16.如图,在△ABC和△DEF 中,AB=DE,AC=DF.请再添加一个条件,使△ABC 和△DFE全等.添加的条件是(填写一个即可):,理由是.17.如图,把△ABC绕C点顺时针旋转30°,得到△A′B′C,A′B′交AC于点D,若∠A′DC=80°,则∠A=°.18.如图,在△ABC中,∠C=90°,AD平分∠CAB,BC=8cm,BD=5cm,那么点D 到线段AB的距离是cm.19.如图,△ABC中,AB=AC,AB的垂直平分线交AC于P点.(1)若∠A=35°,则∠BPC=;(2)若AB=5cm,BC=3cm,则△PBC的周长= .20.探究:观察下列各式,,,…请你根据以上式子的规律填写: = ;= .三.精心解一解:(21,22每小题2分,23,24,25每小题2分,共16分)21.因式分解:2mx2﹣4mx+2m= .22.因式分解:x2y﹣9y= .23.化简:﹣+.24.先化简,再求值:(1﹣)÷,其中x=2.25.解分式方程:四.耐心想一想:(本小题4分)26.四川5.12特大地震受灾地区急需大量赈灾帐篷,某帐篷生产企业接到生产任务后,加大生产投入,提高生产效率,实际每天生产帐篷比原计划多200顶,已知现在生产3000顶帐篷所用的时间与原计划生产2000顶的时间相同.现在该企业每天能生产多少顶帐篷?五.精确作一作:作图题(本小题4分)27.某地区要在区域S内(即∠COD内部)建一个超市M,如图所示,按照要求,超市M到两个新建的居民小区A,B的距离相等,到两条公路OC,OD的距离也相等.这个超市应该建在何处?(要求:尺规作图,不写作法,保留作图痕迹)六.耐心看一看(每小题6分)28.如图,△ABC中A(﹣2,3),B(﹣31),C(﹣1,2).(1)画出△ABC关于x轴对称的△A1B1C1;并写出△A1B1C1三个顶点坐标:,,.(2)画出△ABC关于y轴对称的△A2B2C2;并写出△A2B2C2三个顶点坐标:,,.七.严密推一推(每小题4分,共20分)29.已知:如图,AB=DE,AC=DF,BE=CF.求证:∠A=∠D.30.如图,已知AB=AD,AC=AE,∠1=∠2,求证:BC=DE.31.已知:AC⊥BC,BD⊥AD,AC与BD交于O,AC=BD.求证:(1)BC=AD;(2)AO=BO.32.如图,在四边形ABCD中,AD∥BC,E为CD的中点,连接AE、BE,BE⊥AE,延长AE交BC的延长线于点F.求证:(1)FC=AD;(2)AB=BC+AD.33.已知:如图,在△ABC中,∠ACB=90°,CD⊥AB于点D,点E在AC上,CE=BC,过E点作AC的垂线,交CD的延长线于点F.求证:AB=FC.八.挑战自我(选做本题4分)34.如图,在四边形ABCD中,对角线AC平分∠BAD,AB>AD,试判断AB﹣AD 与CD﹣CB的大小关系,并证明你的结论.解:结论:证明:参考答案与试题解析一、精心选一选(每小题3分,共30分)1.计算(﹣)﹣3的结果是()A.﹣B.﹣C.﹣343 D.﹣21【考点】负整数指数幂.【分析】根据负整数指数为正整数指数的倒数进行计算即可.【解答】解:原式=(﹣7)3=﹣343.故选:C.【点评】此题主要考查了负整数指数幂、乘方,关键是掌握负整数指数为正整数指数的倒数.2.将,(﹣2)0,(﹣3)2这三个数按从小到大的顺序排列,正确的结果是()A.(﹣2)0<<(﹣3)2B.<(﹣2)0<(﹣3)2 C.(﹣3)2<(﹣2)0<D.(﹣2)0<(﹣3)2<【考点】负整数指数幂;有理数的乘方;零指数幂.【分析】分别根据零指数幂,负整数指数幂和平方的运法则进行计算,再比较大小即可.【解答】解:∵=6,(﹣2)0=1,(﹣3)2=9,又∵1<6<9,∴(﹣2)0<<(﹣3)2.故选A.【点评】主要考查了零指数幂,负整数指数幂和平方的运算.负整数指数幂为相应的正整数指数幂的倒数;任何非0数的0次幂等于1.3.下列各式中,从左到右的变形是因式分解的是()A.a2﹣4ab+4b2=(a﹣2b)2 B.x2﹣xy2﹣1=xy(x﹣y)﹣1C.(x+2y)(x﹣2y)=x2﹣4y2D.ax+ay+a=a(x+y)【考点】因式分解的意义.【分析】根据因式分解是把一个多项式转化成几个整式积的形式,可得答案.【解答】解:A、把一个多项式转化成几个整式积的形式,故A正确;B、每把一个多项式转化成几个整式积的形式,故B错误;C、是整式的乘法,故C错误;D、把一个多项式转化成几个整式积的形式,故D正确;故选:D.【点评】本题考查了因式分解的意义,利用了因式分解的意义.4.如图所示,AB=AC,要说明△ADC≌△AEB,需添加的条件不能是()A.∠B=∠C B.AD=AE C.∠ADC=∠AEB D.DC=BE【考点】全等三角形的判定.【分析】△ADC和△AEB中,已知的条件有AB=AC,∠A=∠A;要判定两三角形全等只需条件:一组对应角相等,或AD=AE即可.可据此进行判断,两边及一边的对角相等是不能判定两个三角形全等的.【解答】解:A、当∠B=∠C时,符合ASA的判定条件,故A正确;B、当AD=AE时,符合SAS的判定条件,故B正确;C、当∠ADC=∠AEB时,符合AAS的判定条件,故C正确;D、当DC=BE时,给出的条件是SSA,不能判定两个三角形全等,故D错误;故选:D.【点评】本题主要考查的是全等三角形的判定方法,需注意的是SSA和AAA不能作为判定两个三角形全等的依据.5.在下列图案中,不是轴对称图形的是()A.B.C.D.【考点】轴对称图形.【分析】根据轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可.【解答】解:A、B、C都是轴对称图形,D不是轴对称图形,故选:D.【点评】此题主要考查了轴对称图形,关键是正确找出对称轴的位置.6.如图,若OP平分∠AOB,PC⊥OA,PD⊥OB,垂足分别是C、D,则下列结论中错误的是()A.PC=PD B.OC=PC C.∠CPO=∠DPO D.OC=OD【考点】角平分线的性质.。

人教版八年级上册数学期中测试卷(含答案)

人教版八年级上册数学期中测试卷(含答案)

人教版八年级上册数学期中测试卷姓名班级学号成绩一、单项选择题(每小题2分, 共12分)1.下列银行标志中,不是轴对称图形的为()A. B. C. D.2.点(﹣2,3)关于y轴的对称点的坐标为()A.(﹣2,﹣3) B.(2,3) C.(﹣2,3) D.(2,﹣3)3.已知等腰三角形的一个内角为40°,则这个等腰三角形的底角为()A.40° B.100° C.40°或100° D.40°或70°4.如图,△ABC与△A′B′C′关于直线l对称,若∠A=68°,∠C′=38°,则∠B的度数为()A.74° B.38° C.94° D.68°(第4题图)(第5题图)(第6题图)AB长为半径画弧,两弧交点的连线交5.如图,在△ABC中,AB=AC,分别以点A、点B为圆心,以大于12AC于点D,交AB于点E,连接BD,若∠A=40°,则∠DBC=()A.40° B.30° C.20° D.10°6.小明把一副含45°,30°的直角三角板如图摆放,其中∠C=∠F=90°,∠A=45°,∠D=30°,则∠α+∠β等于()A.280°B.290° C.285° D.295°二、填空题(每小题3分, 共24分)7.如图,在已知的△ABC中,按以下步骤作图:BC的长为半径作弧,两弧相交于两点M,N;①分别以B,C为圆心,以大于12②作直线MN交AB于点D,连接CD.若CD=AC,∠A=50°,则∠ACB=.8.等腰三角形的周长为20cm,一边长为6cm,则底边长为cm.9.若点P(﹣3,4)和点Q(a,b)关于x轴对称,则2a+b=.10.如图,∠ADB=90°,∠DAB=∠BAC,BD=4,AC=10,则△ABC的面积是.(第7题图)(第10题图)(第11题图)11.如图,AB∥CF,E为DF的中点,若AB=7cm,CF=5cm,则BD=cm.12.如图,△ABC中AB=AC,AB的垂直平分线交AC于点D.若∠A=40°,则∠DBC=.(第12题图)(第13题图)(第14题图)13.如图,把一张长方形纸片ABCD沿EF折叠,∠1=55°,则∠2=度.14.如图,已知△ABC中∠A=43°,∠B=73°,点B,C,D,E在同一直线上,且CG=CD,DF=DE,则∠E=度.三、解答题(每小题5分,共20分)15.一个多边形的内角和比它的外角和的3倍少180°,求这个多边形的边数.16.如图,在平面直角坐标系中有一个△ABC,顶点A(﹣1,3),B(2,0),C(﹣3,﹣1).(1)画出△ABC关于y轴的对称图形△A1B1C1(不写画法);点A关于x轴对称的点坐标为;点B关于y轴对称的点坐标为;(2)若网格上的每个小正方形的边长为1则△ABC的面积是.17.如图,在△ABC中,AB=AC,AD是BC上边的中线,BE⊥AC于点E,求证:∠CBE=∠BAD.18.如图,四边形ABCD中,AD∥BC,∠ABD=30°,AB=AD,DC⊥BC于点C,若BD=2,求CD的长.四、解答题(每小题7分,共28分)19.如图,在△ABC中,AB=AC,AB的垂直平分线MN交AC于点D,交AB于点E.(1)若∠A=40°,求∠DBC的度数;(2)若AE=6,△CBD的周长为20,求BC的长.20.如图,在△ABC中,AC=BC.(1)尺规作图:在AC上找一点M,使得∠MBC=∠C;(不写作法,保留作图痕迹)(2)在(1)的条件下,若满足BM=AB时,求∠C的度数.21.课间,小明拿着老师的等腰直角三角尺玩,不小心掉到两堆砖块之间,如图所示.(1)求证:△ADC≌△CEB;(2)已知DE=35cm,请你帮小明求出砖块的厚度a的大小(每块砖的厚度相同).22.如图所示,△ABC和△A′BC存在着某种对应关系(它们关于BC对称),其中A的对应点是A′,A(3,6),A′(3,0),△ABC内部的点M(4,4)的对应点是N(4,2).(1)你知道它们的对应点的坐标有什么关系吗?(2)如果△ABC内有一点P(x,y),那么在△A′BC内P的对应点P′的坐标是什么?五、解答题(每小题8分,共16分)23.(1)证明角平分线具有的性质:角平分线上的点到角的两边的距离相等.为了更直观、清楚地表达题意,我们通常在证明之前画出图形,并用符号表示已知和求证.如图1,已知:OC平分∠AOB,点P在OC上,PD⊥OA,PE⊥OB,垂足分别为D,E.求证:PD=PE.(2)如图2,在△OAB中,OP平分∠AOB,交AB于点P,PD⊥OA于点D,PE⊥OB于点E,OA=OB=6,若S△OAB=15,求PD的长.24.某轮船由西向东航行,在A处测得小岛P的方位是北偏东75°,又继续航行7海里后,在B处测得小岛P的方位是北偏东60°求:(1)此时轮船与小岛P的距离BP是多少海里.(2)小岛点P方圆3海里内有暗礁,如果轮船继续向东行驶,请问轮船有没有触礁的危险?说明理由.六、解答题(每小题10分,共20分)25.感知:如图①,点E为等边三角形ABC中AC边上一点,连接BE,以BE为边在BE的左侧作等边三角形BDE,连接AD。

人教版八年级上册数学期中试卷及答案【完整】

人教版八年级上册数学期中试卷及答案【完整】

人教版八年级上册数学期中试卷及答案【完整】 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.﹣3的绝对值是( )A .﹣3B .3C .-13D .132.估计7+1的值( )A .在1和2之间B .在2和3之间C .在3和4之间D .在4和5之间 3.下列说法不一定成立的是( )A .若a b >,则a c b c +>+B .若a c b c +>+,则a b >C .若a b >,则22ac bc >D .若22ac bc >,则a b >4.已知关于x 的分式方程21m x -+=1的解是负数,则m 的取值范围是( ) A .m ≤3 B .m ≤3且m ≠2C .m <3D .m <3且m ≠2 5.如果2(21)12a a -=-,则a 的取值范围是( )A .12a <B .12a ≤C .12a >D .12a ≥ 6.下列对一元二次方程x 2+x ﹣3=0根的情况的判断,正确的是( )A .有两个不相等实数根B .有两个相等实数根C .有且只有一个实数根D .没有实数根7.如图,在△ABC 中,AB=3,AC=4,BC=5,P 为边 BC 上一动点,PE ⊥AB 于 E ,PF ⊥AC 于 F ,M 为 EF 中点,则 AM 的最小值为( )A .1B .1.3C .1.2D .1.58.如图,在平行四边形ABCD 中,∠DBC=45°,DE ⊥BC 于E ,BF ⊥CD 于F ,DE,BF相交于H,BF与AD的延长线相交于点G,下面给出四个结论:①2BD BE=;②∠A=∠BHE;③AB=BH;④△BCF≌△DCE,其中正确的结论是()A.①②③B.①②④C.②③④D.①②③④8.如图,在矩形AOBC中,A(–2,0),B(0,1).若正比例函数y=kx的图象经过点C,则k的值为()A.–12B.12C.–2 D.210.如图,已知BD是ABC的角平分线,ED是BC的垂直平分线,90BAC∠=︒,3AD=,则CE的长为()A.6 B.5 C.4 D.33二、填空题(本大题共6小题,每小题3分,共18分)1.若一个多边形的内角和是其外角和的3倍,则这个多边形的边数是______.2.计算:16=_______.3.在数轴上表示实数a的点如图所示,化简2(5)a-+|a-2|的结果为____________.4.如图,AB∥CD,则∠1+∠3—∠2的度数等于 _________.5.如图,正方形纸片ABCD 的边长为12,E 是边CD 上一点,连接AE .折叠该纸片,使点A 落在AE 上的G 点,并使折痕经过点B ,得到折痕BF ,点F 在AD 上.若5DE =,则GE 的长为__________.6.如图,在平面直角坐标系中,矩形ABCO 的边CO 、OA 分别在x 轴、y 轴上,点E 在边BC 上,将该矩形沿AE 折叠,点B 恰好落在边OC 上的F 处.若OA =8,CF =4,则点E 的坐标是________.三、解答题(本大题共6小题,共72分)1.解方程(1)2250x x --= (2)1421x x =-+2.先化简,再求值:21(1)11x x x ÷+--,其中21x =.3.已知:关于x 的一元二次方程221(1)204x m x m +++-=.(1)若此方程有两个实数根,求m 的最小整数值;(2)若此方程的两个实数根为1x ,2x ,且满足22211221184x x x m x +=--,求m 的值.4.在▱ABCD 中,∠BAD 的平分线交直线BC 于点E ,交直线DC 于点F(1)在图1中证明CE=CF;(2)若∠ABC=90°,G是EF的中点(如图2),直接写出∠BDG的度数;(3)若∠ABC=120°,FG∥CE,FG=CE,分别连接DB、DG(如图3),求∠BDG 的度数.5.如图1,在正方形ABCD中,P是对角线BD上的一点,点E在AD的延长线上,且PA=PE,PE交CD于F(1)证明:PC=PE;(2)求∠CPE的度数;(3)如图2,把正方形ABCD改为菱形ABCD,其他条件不变,当∠ABC=120°时,连接CE,试探究线段AP与线段CE的数量关系,并说明理由.6.在我市某一城市美化工程招标时,有甲、乙两个工程队投标,经测算:甲队单独完成这项工程需要60天,若由甲队先做20天,剩下的工程由甲、乙合作24天可完成.(1)乙队单独完成这项工程需要多少天?(2)甲队施工一天,需付工程款3.5万元,乙队施工一天需付工程款2万元.若该工程计划在70天内完成,在不超过计划天数的前提下,是由甲队或乙队单独完成工程省钱?还是由甲乙两队全程合作完成该工程省钱?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、C3、C4、D5、B6、A7、C8、A9、A10、D二、填空题(本大题共6小题,每小题3分,共18分)1、82、43、3.4、180°5、49136、(-10,3)三、解答题(本大题共6小题,共72分)1、(1)1211x x ==(2)3x =是方程的解.2、11x +,23、(1)-4;(2)m=34、(1)略;(2)45°;(3)略.5、(1)略(2)90°(3)AP=CE6、(1)乙队单独完成需90天;(2)在不超过计划天数的前提下,由甲、乙合作完成最省钱.。

人教版八年级第一学期期中数学试卷及答案

人教版八年级第一学期期中数学试卷及答案

人教版八年级第一学期期中数学试卷及答案(试卷共6页,考试时间120分钟,满分150分)一、选择题:(本大题共12个小题,每小题4分,共48分)每个小题的下面,都给出了代号为A、B、C、D的四个答案,其中只有一个是正确的,请将答题卡上对应题目的正确答案标号涂黑.1. 在下列长度的四组线段中,能组成三角形的是()A. 3,7,15B. 1,2,4C. 5,5,10D. 2,3,32. 下列图形中具有稳定性的是()A B C D3. 若画△ABC中AB边上的高,下列画法中正确的是().A B C D4. 如图所示,亮亮书上的三角形被墨迹污染了一部分,很快他就根据所学知识画出一个与书上完全一样的三角形,那么这两个三角形完全一样的依据是()A. ASAB. SASC. AASD. SSS5. 如图2,、、分别表示,ABC的三边长,则下面与,ABC一定全等的三角形是( )A B C D6. 等腰三角形的两边长是6cm和3cm,那么它的周长是( )A. 9cmB. 12 cmC. 12 cm或15 cmD. 15 cm7. 一个多边形的内角和是外角和的2倍,这个多边形是()A. 四边形B. 五边形C. 六边形D. 八边形8. 在△ABC中,已知点D、E、F分别是BC、AD、CE的中点,且△ABC的面积是8,则△BEF的面积是()8题 9题 10题A. 2B. 1C. 4D. 39. 如图,AB ∥DE ,AF =DC ,若要证明△ABC ≌△DEF ,还需补充的条件是( )A. AC =DFB. AB =DEC. ∠A =∠DD. BC =EF10. 如图,已知点O 是△ABC 内一点,且点O 到三边的距离相等,,A=40゜,则,BOC=( )A .130°B .140°C .110°D .120°11. 关于x 的不等式组3420x a x -<⎧⎨->⎩有3个正整数解,且关于x 方程2x ﹣a =2有整数解,则满足条件的所有整数a 的值之和为( )A. 25B. 26C. 27D. 3912. 如图,在ABD △和ACE 中,AB AD =,AC AE =,AB AC >,50DAB CAE ∠=∠=︒连接BE ,CD 交于点F ,连接AF .下列结论:①BE CD =;②50EFC ∠=︒;③AF 平分DAE △;④FA 平分DFE ∠.其中正确的个数为( )A. 1个B. 2个C. 3个D. 4个二、填空题:(本大题6个小题,每小题4分,共24分)请将每小题的答案直接填在答题卡中对应的横线上.13. 一个多边形的每个外角都等于60°,则这个多边形的边数为________.14. 如图,小强利用全等三角形的知识测量池塘两段M,N 的距离,如果OP =ON ,OQ=OM ,PQ=30m 则池塘两段M,N 的距离为________.15. 如图,在,ABC 中,,C =90°,AD 平分,BAC ,AB =5,CD =2,则,ABD 的面积是________.14题 15题 17题16. 小马虎同学在计算某个凸多边形的内角和时得到1840°,老师说他算错了,于是小马虎认真地检查了一遍发现漏算了一个内角,求漏算的那个内角是________度.17. 在ABC 中,5AC =,中线7AD =,则AB 边的取值范围是________.18. 特产专卖店销售桃片、米花糖、麻花三种特产,其中每包桃片的成本是麻花的2倍,每包桃片、米花糖、麻花的售价分别比其成本高20%、30%、20%.该店五月份销售桃片、米花糖、麻花的数量之比为1∶3∶2,三种特产的总利润是总成本的25%,则每包米花糖与每包麻花的成本之比为_________.三、解答题:(本大题2个小题,每小题8分,共16分)解答时每小题必须给出必要的演算过程或推理步骤,请将解答书写在答题卡中对应的位置上.19. 如图,点E 、F 在BC 上,BE =CF ,AB =DC ,∠B =∠C .求证:∠A =∠D .20.如图,在Rt ABC △中,,C =90°.(1)作,BAC 的平分线AD 交边BC 于点D .(尺规作图,保留作图痕迹,不写作法)(2)在(1)的条件下,若,BAC =38°,求,ADB 的度数.四、解答题(每小题10分,共40分)解答时每小题必须给出必要的演算过程或推理步骤,请将解答书写在答题卡中对应的位置上.AE 和BD 相交于点O .21. 如图,,A =,B ,AE =BE ,点DAC 边上,,1=,2,(1)求证:△AEC ,△BED ;(2)若,1=42°,求,BDE的度数.22、如图,AD是,ABC的高,AE平分,BAC.(1)若,B=64°,,C=48°,求,DAE的度数;(2)若,B﹣,C=32°,求,DAE的度数.23.如图(1)在△ABC中,∠ACB=90°,AC=BC,直线MN经过点C,且AD⊥MN于点D,BE⊥MN于点E.(1)求证:①△ADC≌△CEB;②DE=AD+BE.(2)当直线MN绕点C旋转到图(2)的位置时,DE、AD、BE又怎样的关系?并加以证明.24. 如图所示,在人教版八年级上册数学教材P53的数学活动中有这样一段描述:(1)D 为△ABC 外一点,若AD =CD ,AB =CB ,则我们把这种两组邻边分别相等的四边形叫做“筝形”,试猜想筝形对角线AC 、BD 有什么性质?并证明你的猜想.(2)知识拓展:如果D 为△ABC 内一点,BD 平分∠ABC ,且AD =CD ,试证明:AB =CB .五.解答题:(本大题2个小题,25题10分,26题12分,共22分)解答时每小题必须给出必要的演算过程或推理步骤,请将解答书写在答题卡中对应的位置上.25. 对于一个三位自然数m ,若m 的百位数字等于两个一位正整数a 与b 的和()a b >,m 的个位数字等于两个一位正整数a 与b 的差,m 的十位数字等于b ,则称m 是“和差数”,规定(),m F a b =.例如:723是“和差数”,因为752=+,352=-,22=,所以723是“和差数”,即()7235,2F =.(1)填空:()3,1F =______.(2)请判断311是否是“和差数”?并说明理由;(3)若一个三位自然数910010n x y =⨯++(18x ≤<,18y ≤<,x 、y 是整数,即n 的百位数字是9,十位数字是x ,个位数字是y )为“和差数”,求所有满足条件的“和差数”n .26. (1)如图1,在四边形ABCD 中,AB =AD ,,B =,D =90°,E 、F 分别是边BC 、CD 上的点,且,EAF =12,BAD . 求证:EF =BE +FD ;(2)如图2在四边形ABCD 中,AB =AD ,,B +,D =180°,E 、F 分别是边BC 、CD 上的点,且EF =BE +FD ; 求证:,EAF =12,BAD ,(3)如图3在四边形ABCD 中,AB =AD ,,B +,ADC =180°,E 、F 分别是边BC 、CD 延长线上的点,且,EAF =40°,,BAD =80°, 写出EF 、BE 、FD 之间的数量关系,并证明你的结论.数学试卷参考答案一、选择题D C C A B D C A B C B C二、填空题:6 30m 5 140 919AB << 4:3三、解答题:19. 解∵BE =CF ,∴BE +EF =CF +EF ,即BF =CE . ---------------2在△ABF 和△DCE 中,AB DC B C BF CE =⎧⎪∠=∠⎨⎪=⎩--------------------5∴△ABF≌△DCE,∴∠A=∠D.--------------------8 20.解:(1)如图,AD即为所作:--------------------5(2),AD平分,BAC,,BAC=38°,,1192CAD BAC∠∠==︒,,,C=90°,,,ADB=,CAD+,C=109°. --------------------8四、解答题21.解(1)∵AE和BD相交于点O,∴∠AOD=∠BOE.在△AOD和△BOE中,∵∠A=∠B,∴∠BEO=∠2.又∵∠1=∠2,∴∠1=∠BEO,∴∠AEC=∠BED.在△AEC和△BED中,∵A BAE BEAEC BED∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△AEC≌△BED(ASA).--------------------5(2)∵△AEC≌△BED,∴EC=ED,∠C=∠BDE.在△EDC中,∵EC=ED,∠1=42°,∴∠C=∠EDC=(180°-42°)÷2=69°,∴∠BDE=∠C=69°.--------------------10 22.解:(1),AD是,ABC的高,,B=64°,,C=48°,,,BAC=180°-,B-,C=68°,,BAD=26°.,AE平分,BAC,,,BAE=34°.,,DAE=,BAE-,BAD=8°;--------------------5(2),,B-,C=32°,,,B=,C+32°.,AD是,ABC的高,,,BAC=180°-,B-,C=148°-2,C,,,BAD=90°-,B=58°-,C.,AE平分,BAC,,,BAE=74°-,C.,,DAE=,BAE-,BAD=74°-,C-(58°-,C)=16°,答:,DAE的度数为16°.--------------------10 23.(1)①证明:∵AD⊥DE,BE⊥DE,∴∠ADC=∠BEC=90°,∵∠ACB=90°,∴∠ACD+∠BCE=90°,∠DAC+∠ACD=90°,∴∠DAC=∠BCE,在△ADC和△CEB中,,∴△ADC≌△CEB(AAS).--------------------3②证明:由(1)知:△ADC≌△CEB,∴AD=CE,CD=BE,∵DC+CE=DE,∴AD+BE=DE.--------------------5(2)证明:∵BE⊥EC,AD⊥CE,∴∠ADC=∠BEC=90°,∴∠EBC+∠ECB=90°,∵∠ACB=90°,∴∠ECB+∠ACE=90°,∴∠ACD=∠EBC,在△ADC和△CEB中,,∴△ADC≌△CEB(AAS),∴AD =CE ,CD =BE ,∴DE =EC ﹣CD =AD ﹣BE . --------------------1024.解:(1)猜想BD ⊥AC∵AD =CD ,AB =CB ,在△ADB 和△BCD 中,AB BCAD DC BD BD=⎧⎪=⎨⎪=⎩∴△ADB ≌△CDB (SSS ),∴∠BAD =∠BCD ,∠ADO =∠CDO ,在△AOD 和△ODC 中,AD DCADO ODC OD OD=⎧⎪∠=∠⎨⎪=⎩,∴△AOD ≌△COD (SAS ),∴∠AOD =∠COD ,而∠AOD +∠COD =180°,∴∠DOC =90°,∴BD ⊥AC . --------------------5 (2)如图,过点D 分别作DE ⊥AB ,DF ⊥ACA ,垂足分别为E ,F , ∵BD 平分∠ABC ,∴DE =DF ,∵AD =AD ,∴Rt △BDE ≌Rt △BDF (HL ),∴BE =BF ,∵ED =FD ,AD =CD ,∴Rt △ADE ≌Rt △CDF (HL ),∴AE =CF ,∴BE +AE =CF +BF ,即AB =CB . --------------------10五.解答题:25. 解:(1) 412; --------------------2(2)311是“和差数”,,321=+,121=-,11=,,311是“和差数”; --------------------4(3),910010n x y =⨯++(18x ≤<,18y <≤,x 、y 是整数) ,9a b a b y +=⎧⎨-=⎩,29a y =+,514a y b =⎧⎪=⎨⎪=⎩,633a y b =⎧⎪=⎨⎪=⎩,752a y b =⎧⎪=⎨⎪=⎩,871a yb =⎧⎪=⎨⎪=⎩,941n =或933或925或917. --------------------10 26.解:(1)延长EB 到G ,使BG =DF ,连接AG .,,ABG =,ABC =,D =90°,AB =AD ,,,ABG ,,ADF .,AG =AF ,,1=,2.,,1+,3=,2+,3=,EAF =12,BAD .,,GAE =,EAF .又,AE =AE ,,,AEG ,,AEF .,EG =EF .,EG =BE +BG .,EF =BE +FD --------------------4(2)证明:如图2,延长CB 至M ,使BM =DF ,连接AM , ∵∠ABC +∠D =180°,∠ABC +∠1=180°,∴∠1=∠D , 在△ABM 和△ADF 中,1AB ADD BM DF=⎧⎪∠=∠⎨⎪=⎩∴△ABM ≌△ADF (SAS ),∴AM =AF ,∠3=∠2,MB=FD,∵EF =BE +FD∴EF=BE+MB∴EF=EM在△MAE和△F AE中,{AM=AF EM=EF AE=AE∴△MAE≌△F AE(SSS),∴∠EAF=∠MAE∵∠3+∠4=∠EAF,∴∠EAM=∠3+∠4=∠2+∠4=∠EAF,而∠2+∠4+∠EAF=∠BAD∴∠EAF=12∠BAD--------------------8(3)结论EF=BE+FD不成立,应当是EF=BE-FD.证明:在BE上截取BG,使BG=DF,连接AG.,,B+,ADC=180°,,ADF+,ADC=180°,,,B=,ADF.,AB=AD,,,ABG,,ADF.,,BAG=,DAF,AG=AF.,,BAG+,EAD=,DAF+,EAD=,EAF=12,BAD.,,GAE=,EAF.,AE=AE,,,AEG,,AEF.,EG=EF,EG=BE-BG,EF=BE-FD.--------------------12。

人教版八年级上册数学期中测试卷(含答案)

人教版八年级上册数学期中测试卷(含答案)

人教版八年级上册数学期中测试卷(满分120分时间100分钟)学校一、单选题(共30分)1.(本题3分)下面四个图形中,线段BE能表示三角形ABC的高的是()A.B.C.D.2.(本题3分)下列所给图形中,不是轴对称图形的是()A.B.C.D.3.(本题3分)下列长度的三条线段能组成三角形的是()A.1,2,3B.2,3,5C.3,4,8D.5,6,10 4.(本题3分)如图,点D,E分别在等腰ABC的腰AB,AC上,添加下列条件,不△≌△的是()能判定ABE ACD∠=∠A.DCB EBC∠=∠B.ADC AEB=C.AD AE=D.BE CD5.(本题3分)等腰三角形具有“三线合一”的性质,以下哪个不是三线之一()A.底边上的高B.腰上的高C.底边上的中线D.顶角的角平分线6.(本题3分)要使如图所示的六边形木架不变形,则至少需要钉上木条的根数为()A.1B.2C.3D.47.(本题3分)如图,已知AB=AD,那么添加下列一个条件后,仍无法判定△ABC△△ADC 的是()A.△B=△D=90°B.△BCA=△DCA C.△ABC=△ADC D.CB=CD 8.(本题3分)如图,△ABC中,△C=90°,AC=BC,AD平分△CAB,交BC于点D,DE△AB于点E,且AB=6cm,则△DEB的周长为()A.4B.8C.6D.129.(本题3分)如图,已知图中的两个三角形全等,则△α的度数是()A.72°B.60°C.58°D.50°10.(本题3分)如图,AD是△ABC的中线,E,F分别是AD和AD延长线上的点,且DE=DF,连接BF,CE.下列说法△△BDF△△CDE;△△ABD和△ACD面积相等;△BF△CE;△CE=BF.其中正确的有()A.1个B.2个C.3个D.4个二、填空题(共15分)11.(本题3分)如图,在△ABC 中,△C =90°,△B =15°,DE 是AB 的垂直平分线,BE =5,则AC 的长为__________12.(本题3分)线段CD 是由线段AB 平移得到的,点A (4,7)的对应点为C (-1,4)则点B (-4,-1)的对应点D 的坐标为________.13.(本题3分)一个多边形的内角和等于其外角和的两倍,则这个多边形的边数为______. 14.(本题3分)如图,AB =AC ,要直接依据ASA 证出△ABE △△ACD ,应添加的一个条件是_______.15.(本题3分)如图,ΔABC 是等边三角形,AD 是BC 边上的高,E 是AC 的中点,P 是AD 上的一个动点,当PC +PE 的和最小时,△ACP =_____.三、解答题(共75分)16.(本题9分)如图,在ABC 中,D 是AB 上一点,且BD AD CD ==,过B 作BE CD ⊥,分别交AC 于点E 、交CD 于点F .(1)求证:ABC 是直角三角形;(2)求证:A EBC ∠=∠;(3)如果:2AC BC =,请猜想BE 和CD 的数量关系,并证明你的猜想.17.(本题6分)如图,点B 、E 、C 、F 在同一直线上,BE =CF ,AB =DE ,AC =DF . 求证:AC ∥DF .18.(本题6分)如图,点E 、C 、D 在同一条直线上、AE AC =AD AB =、EAC DAB ∠=∠.求证:EAC DCO ∠=∠.19.(本题6分)在△ABC 中,AD 是高,AE 、BF 是角平分线,它们相交于点O ,△BAC =50°,△C =70°,求△DAE 和△AOB 的度数.20.(本题9分)如图,在△ABC 中,△B =△C ,点D 、E 、F 分别在AB 、BC 、AC 边上,且BE =CF ,AD +EC =AB .(1)求证:DE =EF ;(2)当△A =36°时,求△DEF 的度数.21.(本题12分)如图,在三角形ABC中,△ABC=90°,AB=BC,点A,B分别在坐标轴上.AC与y轴交于点E,D为AC中点,连接BD,OD.(1)若点C的横坐标为﹣3,求点B的坐标;(2)若OA平分△BAC,BE=6,求BCE的面积;(3)求△DOE的度数.22.(本题12分)如图,在△ABC中,CE为△ABC的角平分线,AD△CE交BC于点D,垂足为点F.且△ACB=2△B.(1)当△B=31°时,求△BAD的度数;(2)求证:BE=EC;(3)求证:AB=2CF.23.(本题15分)在学习完第十二章后,刘老师让同学们独立完成识本56页第9题:如图1,△ACB=90°,AC=BC,AD△CE,BE△CE,垂足分别为D,E.AD=2.5cm,DE=1.7cm,求BE的长.(1)请你也独立完成这道题;(2)待同学们完成这道题后,刘老师又出示了一道题:在课本原题其它条件不变的前提下,将CE所在直线旋转到△ABC的外部(如图2),请你猜想AD,DE,BE三者之间的数量关系,直接写出结论,不需证明.(3)如图3,将(1)中的条件改为:在△ABC中,AC=BC,D,C,E三点在同一条直线上,并且有△BEC=△ADC=△BCA=α,其中α为任意纯角,那么(2)中你的猜想是否还成立?若成立,请证明;若不成立,请说明理由.参考答案1.B2.B3.D4.D5.B6.C7.C8.C9.D10.D11.2.55212.()9,4--13.614.△C =△B15.30˚16.(1)略;(2)略;(3)CD BE =,理由略 17.略18.略19.△DAE 的度数为 5°;△AOB 的度数为125° 20.(1)见解析;(1)△DEF =72°. 21.(1)(0,3)(2)9(3)45° 22.(1)28°;(2)略;(3)略23.(1)0.8cm ;(2)AD BE DE +=;(3)成立,证明略。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

人教版八年级数学期中测试题及答案本页仅作为文档页封面,使用时可以删除This document is for reference only-rar21year.March第1题图2018--2019(上)八年级数学期中考试卷(考试用时:100分钟 ; 满分: 120分)班级: 姓名: 分数:一、选择题(共12小题,每小题3分,共36分.请将正确答案的序号填入对应题目后的括号内) 1.下列图形分别是桂林、湖南、甘肃、佛山电视台的台徽,其中为轴对称图形的是( ).2. 对于任意三角形的高,下列说法不正确的是( ) A .锐角三角形有三条高 B .直角三角形只有一条高C .任意三角形都有三条高D .钝角三角形有两条高在三角形的外部 3. 一个三角形的两边长为3和8,第三边长为奇数,则第三边长为( ) A. 5或7 B. 7或9 C. 7 D. 94. 等腰三角形的一个角是80°,则它的底角是( ) A. 50° B. 80° C. 50°或80° D. 20°或80°5. 点M (3,2)关于y 轴对称的点的坐标为 ( )。

A.(—3,2) B.(-3,-2) C. (3,-2) D. (2,-3)6. 如图,∠B=∠D=90°,CB=CD ,∠1=30°,则∠2=( )。

A .30° B. 40° C. 50° D. 60°7. 现有四根木棒,长度分别为4cm ,6cm ,8cm ,10cm.从中任取 三根木棒,能组成三角形的个数为( )A .1个B .2个C .3个D .4个8. 如图,△ABC 中,AB=AC ,D 为BC 的中点,以下结论: (1)△ABD ≌△ACD ; (2)AD ⊥BC ;(3)∠B=∠C ; (4)AD 是△ABC 的角平分线。

其中正确的有( )。

BC DB CD第12题图第11题第8题图第9题图A.1个 B. 2个 C. 3个 D. 4个9. 如图,△ABC中,AC=AD=BD,∠DAC=80º,则∠B的度数是()A.40º B.35º C.25º D.20º10. 如果一个多边形的每个内角都相等,且内角和为1800°,那么该多边形的一个外角是()A.30º B.36º C.60º D.72º11.如图所示,某同学把一块三角形的玻璃不小心打碎成了三块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的办法是带()去.A.① B.② C.③ D.①和②12.用正三角形、正四边形和正六四边形按如图所示的规律拼图案,即从第二个图案开始,每个图案中正三角形的个数都比上一个图案中正三角形的个数多4个.则第n个图案中正三角形的个数为() (用含n的代数式表示).A.2n+1 B. 3n+2 C. 4n+2 D. 4n-2二、填空题(本大题共6小题,每小题4分,共24分.请把答案填写在相应题目后的横线上)13. 若A(x,3)关于y轴的对称点是B(-2,y),则x=____ ,y=______ ,点A关于x轴的对称点的坐标是___________ 。

14.如图:ΔABE≌ΔACD,AB=10cm,∠A=60°,∠B=30°,则AD=_____ cm,∠ADC=_____。

_…第一个图案第二个图案第三个图案BD15. 如图,已知线段AB 、CD 相交于点O ,且∠A=∠B ,只需补充一个条件_______,则有△AOC ≌△BOD 。

16.如图,直线a 、b 、c 表示三条公路,现要建一个货物中转站,要求它到三条公路的距离相等,则可供选择的地址有 处.17. 如图,七星形中∠A+∠B+∠C+∠D+∠E+∠F+∠G = 18. 如图,小亮从A 点出发前进10m ,向右转15°, 再前进10m ,又向右转15°…… 这样一直走下去, 他第一次回到出发点A 时,一共走了 m三、解答题(本大题共8小题,共96分)19.(本题10分)一个多边形的内角和比它的外角和的3倍少180°,这个多边形的边数是多少?20(本题12分)已知:点B 、E 、C 、F 在同一直线上,AB =DE ,∠A =∠D ,AC ∥DF . 求证:⑴ △ABC ≌△DEF ; ⑵ BE =CF .21.(本题12分)如图,△ABC 中,AB=AC=CD ,BD=AD ,求△ABC 中各角的度数。

第18题图A15°15°第21题图第20题图22.(本题12分)△ABC 在平面直角坐标系中的位置如图所示.A 、B 、C 三点在格点上. (1)作出△ABC 关于x 轴对称的△A 1B 1C 1,并写出点C 1的坐标; (2)作出△ABC 关于y 对称的△A 2B 2C 2,并写出点C 2的坐标.23.(本题12分) 如图,点B 和点C 分别为∠MAN 两边上的点,AB =AC .(1)按下列语句画出图形:(要求不写作法,保留作图痕迹) ① AD ⊥BC ,垂足为D ;② ∠BCN 的平分线CE 与AD 的延长线交于点E ; ③ 连结BE .(2)在完成(1)后不添加线段和字母的情况下,请你写出除△ABD ≌△ACD 外的两对全等三角形: ≌ , ≌ ; 并选择其中的一对全等三角形予以证明.24、(本题12分) 如图,AD 为△ABC 的中线,BE 为△ABD 的中线。

(1)∠ABE=15°, ∠BAD=40°,求∠BED 的度数;(2)若△ABC 的面积为40,BD=5,则E 到BC 边的距离为多少。

yxNMAB C第22题图第23题图第24题图25.(本题12分)如图,点B在线段AC上,点E在线段BD上,∠ABD=∠DBC,AB=DB,EB=CB,M,N分别是AE,CD的中点。

试探索BM和BN的关系,并证明你的结论。

26、(本题14分)如图,已知:E是∠AOB的平分线上一点,EC⊥OB,ED⊥OA,C、D是垂足,连接CD,且交OE于点F.(1)求证:OE是CD的垂直平分线.(2)若∠AOB=60º,请你探究OE,EF之间有什么数量关系?并证明你的结论。

第26题图2018-2019(上)期中试卷八年级数学答题卡三、解答题:(本大题共8小题,共96分)新人教版八年级数学(上)期中测试试卷参考答案一、选择题1、D2、B3、B4、C5、A6、D7、C8、D9、C 10、A 11、C、 12、C二、填空题13、2,3, (2,-3) 14、5, 90° 15、CO=DO 或AO=BO 或AC=DB(只能填一个)16、4 17、180° 18、240三、解答题:19、(1)解:设多边形的边数为n,依题意得……………1分(n-2).180°= 3×360°-180°……………3分解得n=7 -----------5分答:这个多边形的边数是7 ……………6分20、证明:(1)∵AC∥DF∴∠ACB=∠F在△ABC与△DEF中∴△ABC≌△DEF(2) ∵△ABC≌△DEF∴BC=EF∴BC–EC=EF–EC即BE=CF ……………8分21、解:∵AB=AC,AC=CD,BD=AD,∴∠B=∠C=∠BAD,∠CAD=∠CDA,(等边对等角)设∠B=x,则∠CDA=∠BAD+∠B=2x,从而∠CAD=∠CDA=2x,∠C=x∴△ADC中,∠CAD+∠CDA+∠C=2x+2x+x= 180°解得x= 36°∴在△ABC中,∠B=∠C=36°,∠CAB=108°22、作图略,作出△ABC关于x轴的对称图形△A1B1C1.-----3分,点C1的坐标(3,﹣2)-----4分作出△ABC关于y对称的△A2B2C2 -----7分点C2的坐标(﹣3,2) -----8分23.解:(1)①②③每画对一条线给1分……………………………………………(3分)(2)△ABE≌△ACE;△BDE≌△CDE . ………………………………(5分)(3)选择△ABE≌△ACE进行证明.∵AB=AC,AD⊥BC∴∠BAE=∠CAE …………………………(6分)在△ABE和△ACE中………………………(7分)∴△ABE≌△ACE(SAS)…………………………………………(8分)选择△BDE≌△CDE进行证明.∵AB=AC,AD⊥BC∴BD=CD ………………………………(6分)在△BDE和△CDE中…………………(7分)∴△BDE≌△CDE(SAS)…………………………………………(8分)24、解:(1)∵∠BED=∠ABE+∠BAE ……………(1分)∠ABE=15°, ∠BAD=40∴∠BED=15°+ 40°=55°……………(3分)(2)∵SABC=40,AD是△ABC的中线△∴SABD=20 ……………(4分)△∵BE是△ABD的中线EDB=10 ……………(5分)∴S△过E作EH⊥BC ……………(6分)EDB=(BD×EH) /2∵S△S△EDB=10, BD=5∴EH=4 ……………(7分)即:E到BC边的距离为4. ……………(8分)25、解:BM=BN,BM⊥BN。

……………2分,证明:在 △ABE 和△DBC 中⎪⎩⎪⎨⎧=∠=∠=CB EB DBC ABD DB AB∴△ABE E ≌△DBC (SAS )……………4分∴∠BAE =∠BDC∴AE =CD ……………5分∵M 、N 分别是AE 、CD 的中点∴AM =DN ……………6分在 △ABM 和△DBN 中⎪⎩⎪⎨⎧=∠=∠=DN AM BDN BAM DB AB∴△BAM E ≌△BDN (SAS ) ……………7分∴BM =BN ……………8分∠ABM =∠DBN∵∠ABD =∠DBC, ∠ABD +∠DBC =180°∴∠ABD =∠ABM +∠MBE =90°∴∠MBE +∠DBN =90°即:BM ⊥BN ……………9分∴BM =BN ,BM ⊥BN ……………10分26、(12分) 证明:(1)∵E 是∠AOB 的平分线上一点,EC ⊥OB ,ED ⊥OA∴ED=EC∵OE=OE∴Rt △OED ≌Rt △OEC∴OC=OD∵OE平分∠AOB∴OE是CD的垂直平分线. ……………6分(2)OE=4EF ……………8分理由如下:∵OE平分∠AOB, ∠AOB=60º,∴∠AOE=∠BOE=30º∵ED⊥OA∴OE=2DE∵∠EFD=90º,∠DEO=90º-∠DOE=90º-30º=60º∴∠EDF=30º∴DE=2EF∴OE=4EF ……………12分。

相关文档
最新文档