最小二乘法一元线性回归

合集下载

第一课时 一元线性回归模型及其参数的最小二乘估计

第一课时 一元线性回归模型及其参数的最小二乘估计

解析 由题意得-x=3+4+4 5+6=4.5, -y=25+30+4 40+45=35. ∵回归直线方程^y=b^x+a^中b^=7,∴35=7×4.5+a^,解得a^=3.5, ∴^y=7x+3.5. ∴当 x=10 时,^y=7×10+3.5=73.5(万元). 答案 73.5
(2)列出下表,并用科学计算器进行有关计算.
i
1
2
3
4
5
xi
2
4
5
6
8
yi
30
40
60
50
70
xiyi
60
160
300
300
560
x2i
4
16
25
36
64
-x=5,-y=50,i=∑5 1x2i =145,i=∑5 1xiyi=1 380
5
∑xiyi-5-x

y
于是可得,b^=i=15
∑xi2-5-x 2
【训练2】 某车间为了规定工时定额,需要确定加工零件所花费的时间,为此做了四 次实验,得到的数据如下:
零件的个数x(个) 加工的时间y(h)
23 2.5 3
45 4 4.5
(1)已知零件个数与加工时间线性相关,求出y关于x的线性回归方程; (2)试预测加工10个零件需要多少时间?
4
解 (1)由表中数据,得∑xiyi=2×2.5+3×3+4×4+5×4.5=52.5, i=1
【迁移2】 (变条件,变设问)本例中近似方程不变,每小时生产有缺点的零件件数是 7,估计机器的转速. 解 因为 y=5710x-67,所以当 y=7 时,7=5710x-67,解得 x≈11,即估计机器的转速约为 11 转/秒.

一元线性回归模型及参数的最小二乘估计课件-高二数学人教A版(2019)选择性必修第三册

一元线性回归模型及参数的最小二乘估计课件-高二数学人教A版(2019)选择性必修第三册
2.方法归纳:数形结合、转化化归. 3.常见误区:不判断变量间是否具有线性相关关系,盲目求解经验回归方程 致误.
§8.2 一元线性回归模型及其应用 第1课时 一元线性回归模型及参数的最小二乘估计
1 一元线性回归模型 2 最小二乘法和
经验回归方程
3 利用经验回归方程
进行预测
01 一元线性回归模型
知识梳理
一元线性回归模型:我们称
Y=bx+a+e, Ee=0,De=σ2
为Y关于x的_一__元__线__性__回__归_
8
∑i=1xiyi-8 x b^ = 8
∑i=1x2i -8 x
y
2
=132245-6-8×8×52×25982=14,
所以a^ = y -b^ x =98-14×52=12,故经验回归方程为y^=14x+12.
(2)若该次考试数学平均分为120分,物理平均分为91.5分,试由(1)的结 论预测数学成绩为128分的同学的物理成绩.
n
(xi- x )2
n
x2i -n x 2
i=1
i=1
由题意可得 x =15×(1+1.5+2+2.5+3)=2, y =15×(0.9+0.7+0.5+0.3+0.2)=0.52.
5
(xi- x )(yi- y )=-1×0.38-0.5×0.18+0.5×(-0.22)+1×(-0.32)
i=1
(1)(2)(3)(4)(5)回归模型,(6)(7)函数模型.
练1习1 若某地财政收入x与支出y满足一元线性回归模型y=bx+a+e(单
位:亿元),其中b=0.7,a=3,|e|≤0.5,如果今年该地区财政收入10亿
元,年支出预计不会超过
A.9亿元 C.10亿元

最小二乘法与 一元线性回归

最小二乘法与 一元线性回归

间限为
0 :
a t / 2 se
1 (x)2 n Sxx
.
1 :
b t / 2 se
1 Sxx
定理5 (期望值的置信区间限)在 100(1 )% 执 行水平下,关于 Y 的分布的期望 y0 0 1x0 的 置信区间的上、下限为
(a bx0 ) t / 2 (n 2) se
1 (x0 x)2
选取 a 和 b 使得误差平方和
n
n
ei2 ( yi a bxi )2
i1
i1
达到最小值.这种获取最优拟合直线方程
的方法称为最小二乘法。

Sxx
n i1
( xi
x)2
Hale Waihona Puke n i1xi21 n
n i1
xi
2
Syy
n i1
( yi
y)2
n i1
yi2
1 n
n i1
2
yi
Sxy
( i 1,2,, n )的随机变量,于是直线回归的统 计模型就可记作
Yi 0 1xi i ,
i 1,2,3,, n
i ~ N(0, 2 ),且彼此独立
fY|X(y|x)
y
x1 x2 x3
y 0 1x
xn
图9-3 最小二乘估计统计假设的示意图 x
定理3 (回归系数的统计性质)若有 n 个观察值
n
Sxx
其中 t /2 (n 2) 是自由度为 n-2 的学生分布的上 / 2 分位点.
定理6 在 100(1 )%置信水平下,x x0 处 Y 的
预测值(也称估计值)yˆ a bx0 的置信区间上、
下限为
(a bx0 ) t / 2 se

一元线性回归模型参数的最小二乘法估计

一元线性回归模型参数的最小二乘法估计

8.2.1一元线性回归模型1.生活经验告诉我们,儿子的身高与父亲的身高相关.一般来说,父亲的身高较高时,儿子的身高通常也较高.为了进一步研究两者之间的关系,有人调查了14名男大学生的身高及其父亲的身高,得到的数据如表1所示.编号1234567891011121314父亲身高/cm 174 170 173 169 182 172 180 172 168 166 182 173 164 180 儿子身高/cm 176 176 170 170 185 176 178 174 170 168 178 172 165 182从图上看,散点大致分布在一条直线附近根据我们学过的整理数据的方法:相关系数r =0.886.父亲身高/cm180 175 170 165 160160 165 170 175180 185 190 ·· ·· · · · 儿子身高/cm· · · · ·185 1).问题1:可以得到什么结论?由散点图的分布趋势表明儿子的身高与父亲的身高线性相关,通过相关系数可知儿子的身高与父亲的身高正线性相关,且相关程度较高.2).问题2:是否可以用函数模型来刻画?不能,因为不符合函数的定义.这其中还受其它因素的影响.3).问题3:那么影响儿子身高的其他因素是什么?影响儿子身高的因素除父亲的身外,还有母亲的身高、生活的环境、饮食习惯、营养水平、体育锻炼等随机的因素,儿子身高是父亲身高的函数的原因是存在这些随机的因素.4).问题4: 你能否考虑到这些随机因素的作用,用类似于函数的表达式,表示儿子身高与父亲身高的关系吗?用x表示父亲身高,Y表示儿子的身高,用e表示各种其它随机因素影响之和,称e为随机误差, 由于儿子身高与父亲身高线性相关,所以Y=bx+a.考虑随机误差后,儿子的身高可以表示为:Y=bx+a+e由于随机误差表示大量已知和未知的各种影响之和,它们会相互抵消,为使问题简洁,可假设随机误差e的均值为0,方差为与父亲身高无关的定值 . 2σ2即E e D eσ:()0,().==我们称①式为Y 关于x 的一元线性回归模型,其中,Y 称为因变量或响应变量,x 称为自变量或解释变量 . a 称为截距参数,b 称为斜率参数;e 是Y 与bx+a 之间的随机误差.2,()0,().Y bx a e E e D e σ=++⎧⎨==⎩① 2、一元线性回归模型如果用x 表示父亲身高,Y 表示儿子的身高,e 表示随机误差.假定随机误差e 的均值为0,方差为与父亲身高无关的定值 ,则它们之间的关系可以表示为2σ4.问题5:你能结合具体实例解释产生模型①中随机误差项的原因吗?产生随机误差e的原因有:(1)除父亲身高外,其他可能影响儿子身高的因素,比如母亲身高、生活环境、饮食习惯和锻炼时间等.(2)在测量儿子身高时,由于测量工具、测量精度所产生的测量误差.(3)实际问题中,我们不知道儿子身高和父亲身高的相关关系是什么,可以利用一元线性回归模型来近似这种关系,这种近似关系也是产生随机误差e的原因.8.2.2一元线性回归模型参数的最小二乘法估计二、自主探究问题1.为了研究两个变量之间的相关关系, 我们建立了一元线性回归模型表达式 刻画的是变量Y 与变量x 之间的线性相关关系,其中参数a 和b 未知,我们如何通过样本数据估计参数a 和b?2,()0,().Y bx a e E e D e σ=++⎧⎨==⎩问题2.我们怎样寻找一条“最好”的直线,使得表示成对样本数据的这些散点在整体上与这条直线最“接近”?从成对样本数据出发,用数学的方法刻画“从整体上看,各散点与蓝色直线最接近”利用点到直线y=bx+a 的“距离”来刻画散点与该直线的接近程度,然后用所有“距离”之和刻画所有样本观测数据与该直线的接近程度.父亲身高/cm180 175 170 165 160160 165 170 175180 185 190 ·· ·· · · · 儿子身高/cm· · · · ·185 父亲身高/cm180 175 170 165 160160 165 170 175 180 185 190·· ·· · · · 儿子身高/cm· · · · ·185设满足一元线性回归模型的两个变量的n 对样本数据为(x 1,y 1),(x 2,y 2),…,(x n ,y n )父亲身高/cm180 175170165 160160165 170 175 180 185 190·· · · · · · 儿子身高/cm· ·· · · 185()()(1,2,3,,-).i i i i i i i i i i i y bx a e i n y bx a e e x y x bx a =++=⋅⋅⋅+=+由),得(显然越小,表示点,与点,的距离越小,()0,.i i i x y =即样本数据点离直线y=bx+a 的竖直距离越小,如上图特别地,当e 时,表示点在这条直线上1-)ni i i y bx a =+∑因此可用(来刻画各样本观测数据与直线y=bx+a 的整体接近程度.()iix y ,y=bx+a()i i x bx a +,·[]21(,)()ni i i Q a b y bx a ==-+∑残差平方和: 即求a ,b 的值,使Q ( a ,b )最小残差:实际值与估计值之间的差值,即 使Q 取得最小值,当且仅当b 的取值为121()()()nii i nii xx y y b xx ==--=-∑∑b.,ˆ,ˆ的最小二乘估计叫做求得a b a b(,).x y 经验回顾直线必经过的符号相同与相关系数r b ˆ最小二乘法我们将 称为Y 关于x 的经验回归方程,也称经验回归函数或经验回归公式,其图形称为经验回归直线,这种求经验回归方程的方法叫最小二乘法.ˆˆˆy bxa =+12111=i ni n22i ni n x x y y ˆb ,x x ˆˆa x y x y x xy b .i i i i i i ΣΣx )n ΣΣ(()()n ====⎧--⎪=⎪⎨-⎪⎪--=⎩-问题2:依据用最小二乘估计一元线性回归模型参数的公式,求出儿子身高Y 关于父亲身高x 的经验回归方程.儿子的身高不一定会是177cm ,这是因为还有其他影响儿子身高的因素,回归模型中的随机误差清楚地表达了这种影响,父亲的身高不能完全决定儿子的身高,不过,我们可以作出推测,当父亲的身高为176cm 时,儿子身高一般在177cm 左右.当x=176时, ,如果一位父亲身高为176cm,他儿子长大后身高一定能长到177cm 吗?为什么?177y ≈083928957ˆy .x .=+的意义?∧b残差的定义,e a bx Y ++=一元线性回归模型,,Y y 对于通过观测得响应到的数据称量为变观测值ˆ,y通过经验回归方程得到称为预报值的ˆ.ˆey y =-残观测值减去预报值称为即差判断模型拟合的效果:残差分析问题3:儿子身高与父亲身高的关系,运用残差分析所得的一元线性回归模型的有效性吗?残差图:作图时纵坐标为残差,横坐标可以选为样本编号,或身高数据或体重估计值等,这样作出的图形称为残差图.从上面的残差图可以看出,残差有正有负,残差点比较均匀地分布在横轴的两边,可以判断样本数据基本满足一元线性回归模型对于随机误差的假设.所以,通过观察残差图可以直观判断样本数据是否满足一元线性回归模型的假设,从而判断回归模型拟合的有效性.所以,只有图(4)满足一元线性回归模型对随机误差的假设图(1)显示残差与观测时间有线性关系,应将时间变量纳入模型; 图(2)显示残差与观测时间有非线性关系,应在模型中加入时间的非线性函数部分; 图(3)说明残差的方差不是一个常数,随观测时间变大而变大图(4)的残差比较均匀地集中在以横轴为对称轴的水平带状区域内.根据一元线性回归模型中对随机误差的假定,残差应是均值为0,方差为 的随机变量的观测值.2σ观察以下四幅残差图,你认为哪一个残差满足一元线性回归模型中对随机误差的假定?1.残差等于观测值减预测值2.残差的平方和越小越好;3.原始数据中的可疑数据往往是残差绝对值过大的数据;4. 对数据刻画效果比较好的残差图特征:残差点比较均匀的集中在水平带状区域内.归纳小结(残差图中带状越窄,精度越高)1.关于残差图的描述错误的是( )A.残差图的横坐标可以是样本编号B.残差图的横坐标也可以是解释变量或预报变量C.残差点分布的带状区域的宽度越窄相关指数越小D.残差点分布的带状区域的宽度越窄残差平方和越小C 三、巩固提升2.根据如下样本数据:得到的经验回归方程为 ,则( ) A. >0, >0B. >0, <0C. <0, >0D. <0, <0 x 2 3 4 5 6 Y42.5-0.5-2-3a $a $a $a$$b $b$b$b $$ybx a =+$ B3.某种产品的广告支出费用x(单位:万元)与销售额Y(单位:万元)的数据如表:已知Y 关于x 的经验回归方程为 =6.5x+17.5,则当广告支 出费用为5万元时,残差为________. x 2 4 5 6 8Y 30 40 60 50 70$y当x=5时, =6.5×5+17.5=50,表格中对应y=60,于是残差为60-50=10.$y10一元线性回归模型的应用例1.经验表明,对于同一树种,一般树的胸径(树的主干在地面以上1.3m处的直径)越大,树就越高.由于测量树高比测量胸径困难,因此研究人员希望由胸径预测树高.在研究树高与胸径之间的关系时,某林场收集了某种树的一些数据如下表所示,试根据这些数据建立树高关于胸径的经验回归方程.编号 1 2 3 4 5 6胸径/cm 18.1 20.1 22.2 24.4 26.0 28.3树高/m 18.8 19.2 21.0 21.0 22.1 22.1编号7 8 9 10 11 12胸径/cm 29.6 32.4 33.7 35.7 38.3 40.2树高/m 22.4 22.6 23.0 24.3 23.9 24.7dh· · ·· · · · · · · · · 解: 以胸径为横坐标,树高为纵坐标作散点图如下:散点大致分布在一条从左下角到右上角的直线附近,表明两个变量线性相关,并且是正相关,因此可以用一元线性回归模型刻画树高与胸径之间的关系.0.249314.84h d =+··· ·· · · · · · · · 用d 表示胸径,h 表示树高,根据据最小二乘法,计算可得经验回归方程为0.249314.84h d =+根据经验回归方程,由胸径的数据可以计算出树高的预测值(精确到0.1)以及相应的残差,如下表所示.编号胸径/cm 树高观测值/m 树高预测值/m 残差/m1 18.1 18.8 19.4 -0.62 20.1 19.2 19.9 -0.73 22.2 21.0 20.4 0.64 24.4 21.0 20.9 0.15 26.0 22.1 21.3 0.86 28.3 22.1 21.9 0.27 29.6 22.4 22.2 0.28 32.4 22.6 22.9 -0.39 33.7 23.0 23.2 -0.210 35.7 24.3 23.7 0.611 38.3 23.9 24.4 -0.512 40.2 24.7 24.9 -0.2以胸径为横坐标,残差为纵坐标,作残差图,得到下图.30252015-1.0-0.5 0.0 0.5 1.0· · · · · · · 残差/m· · · ·· 354045胸径/cm观察残差表和残差图,可以看到残差的绝对值最大是0.8,所有残差分布在以横轴为对称轴、宽度小于2的带状区域内 .可见经验回归方程较好地刻画了树高与胸径的关系,我们可以根据经验回归方程由胸径预测树高.编号1 2 3 4 5 6 7 8 年份 1896 1912 1921 1930 1936 1956 1960 1968 记录/s 11.8010.6010.4010.3010.2010.1010.009.95例2.人们常将男子短跑100m 的高水平运动员称为“百米飞人”.下表给出了1968年之前男子短跑100m 世界纪录产生的年份和世界纪录的数据.试依据这些成对数据,建立男子短跑100m 世界纪录关于纪录产生年份的经验回归方程以成对数据中的世界纪录产生年份为横坐标,世界纪录为纵坐标作散点图,得到下图在左图中,散点看上去大致分布在一条直线附近,似乎可用一元线性回归模型建立经验回归方程.将经验回归直线叠加到散点图,得到下图:76913031.4902033743.0ˆ1+-=t y用Y 表示男子短跑100m 的世界纪录,t 表示纪录产生的年份 ,利用一元线性回归模型来刻画世界纪录和世界纪录产生年份之间的关系 . 根据最小二乘法,由表中的数据得到经验回归方程为:从图中可以看到,经验回归方程较好地刻画了散点的变化趋势,请再仔细观察图形,你能看出其中存在的问题吗?你能对模型进行修改,以使其更好地反映散点的分布特征吗?仔细观察右图,可以发现散点更趋向于落在中间下凸且递减的某条曲线附近.回顾已有的函数知识,可以发现函数y=-lnx的图象具有类似的形状特征注意到100m短跑的第一个世界纪录产生于1896年, 因此可以认为散点是集中在曲线y=f(t)=c1+c2ln(t-1895)的周围,其中c1、c2为未知参数,且c2<0.y=f(t)=c1+c2ln(t-1895)这是一个非线性经验回归函数,如何利用成对数据估计参数c1、c2令x=ln(t-1895),则Y=c2x+c1对数据进行变化可得下表:编号 1 2 3 4 5 6 7 8 年份/t 1896 1912 1921 1930 1936 1956 1960 1968 x 0.00 2.83 3.26 3.56 3.71 4.11 4.17 4.29 记录/s 11.80 10.60 10.40 10.30 10.20 10.10 10.00 9.95将x=ln(t-1895)代入:得 8012653.114264398.0ˆ2+-=x y上图表明,经验回归方程对于成对数据具有非常好的拟合精度.将经验回归直线叠加到散点图,得到下图: 8012653.114264398.0ˆ2+-=x y8012653.11)1895ln(4264398.0ˆ2+--=t y经验回归方程为对于通过创纪录时间预报世界纪录的问题,我们建立了两个回归模型,得到了两个回归方程,你能判断哪个回归方程拟合的精度更好吗?8012653.114264398.0ˆ2+-=x y① 2ˆ0.4264398ln(1895)11.8012653y t =--+② 我们发现,散点图中各散点都非常靠近②的图象, 表明非线性经验回归方程②对于原始数据的拟合效果远远好于经验回归方程①.(1).直接观察法.在同一坐标系中画出成对数据散点图、非线性经验回归方程②的图象(蓝色)以及经验回归方程①的图象(红色).28212811ˆ,ˆQ Q (()0.004)0.669i i i i eu ===≈=≈∑∑8012653.114264398.0ˆ2+-=x y① 2ˆ0.4264398ln(1895)11.8012653yt =--+②(2).残差分析:残差平方和越小,模型拟合效果越好.Q 2明显小于Q 1,说明非线性回归方程的拟合效果 要优于线性回归方程.R 2越大,表示残差平方和越小,即模型的拟合效果越好 R 2越小,表示残差平方和越大,即模型的拟合效果越差. 21212ˆ()11()n i i nii i y y y y R ==-=-=--∑∑残差平方和。

一元线性回归

一元线性回归

《土地利用规划学》一元线性回归分析学院:资源与环境学院班级:2013009姓名:x学号:201300926指导老师:x目录一、根据数据绘制散点图: (1)二、用最小二乘法确定回归直线方程的参数: (1)1)最小二乘法原理 (1)2)求回归直线方程的步骤 (3)三、回归模型的检验: (4)1)拟合优度检验(R2): (4)2)相关系数显著性检验: (5)3)回归方程的显著性检验(F 检验) (6)四、用excel进行回归分析 (7)五、总结 (15)一、根据数据绘制散点图:◎由上述数据,以销售额为y 轴(因变量),广告支出为X 轴(自变量)在EXCEL 可以绘制散点图如下图:◎从散点图的形态来看,广告支出与销售额之间似乎存在正的线性相关关系。

大致分布在某条直线附近。

所以假设回归方程为:x y βα+=二、用最小二乘法确定回归直线方程的参数: 1)最小二乘法原理年份 1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00 9.00 10.00 广告支出(万元)x 4.00 7.00 9.00 12.00 14.00 17.00 20.00 22.00 25.00 27.00销售额y7.00 12.00 17.00 20.00 23.00 26.00 29.00 32.00 35.00 40.00最小二乘法原理可以从一组测定的数据中寻求变量之间的依赖关系,这种函数关系称为经验公式。

考虑函数y=ax+b ,其中a,b 为待定常数。

如果Pi(xi,yi)(i=1,2,...,n )在一条直线上,则可以认为变量之间的关系为y=ax+b 。

但一般说来, 这些点不可能在同一直线上. 记Ei=yi-(axi+b),它反映了用直线y=ax+b 来描述x=xi ,y=yi 时,计算值y 与实际值yi 的偏差。

当然,要求偏差越小越好,但由于Ei 可正可负,所以不能认为当∑Ei=0时,函数y=ax+b 就好好地反应了变量之间的关系,因为可能每个偏差的绝对值都很大。

回归预测

回归预测

回归预测法回归预测法回归预测法是指根据预测的相关性原则,找出影响预测目标的各因素,并用数学方法找出这些因素与预测目标之间的函数关系的近似表达,再利用样本数据对其模型估计参数及对模型进行误差检验,一旦模型确定,就可利用模型,根据因素的变化值进行预测。

回归预测法一元线性回归预测法(最小二乘法)公式:Y = a + b XX----自变量Y----因变量或预测量a,b----回归系数根据已有的历史数据Xi Yi i = 1,2,3,...n ( n 为实际数据点数目),求出回归系数 a , b为了简化计算,令 ( X1 + X2 + ... + Xn ) = 0,可以得出a , b 的计算公式如下:a = ( Y1 + Y2 +... + Yn ) / nb = ( X1 Y1 + X2 Y2 + ... + Xn Yn ) / ( X12 + X22 + ... + Xn2 )回归分析预测法的概念回归分析预测法,是在分析市场现象自变量和因变量之间相关关系的基础上,建立变量之间的回归方程,并将回归方程作为预测模型,根据自变量在预测期的数量变化来预测因变量关系大多表现为相关关系,因此,回归分析预测法是一种重要的市场预测方法,当我们在对市场现象未来发展状况和水平进行预测时,如果能将影响市场预测对象的主要因素找到,并且能够取得其数量资料,就可以采用回归分析预测法进行预测。

它是一种具体的、行之有效的、实用价值很高的常用市场预测方法。

回归分析预测法的分类回归分析预测法有多种类型。

依据相关关系中自变量的个数不同分类,可分为一元回归分析预测法和多元回归分析预测法。

在一元回归分析预测法中,自变量只有一个,而在多元回归分析预测法中,自变量有两个以上。

依据自变量和因变量之间的相关关系不同,可分为线性回归预测和非线性回归预测。

回归分析预测法的步骤1.根据预测目标,确定自变量和因变量明确预测的具体目标,也就确定了因变量。

如预测具体目标是下一年度的销售量,那么销售量Y就是因变量。

最小二乘法(OLS)的原理解析

最小二乘法(OLS)的原理解析
最小二乘法(OLS)的原理解析 ​
定义​
最小二乘法(OLS),英文全称ordinary least squares,又称最小平方法,是回归分析 (regression analysis)最根本的一个形式,对模型条件要求最少,也就是使散点图上的所有观测值 到回归直线距离的平方和最小。它通过最小化误差的平方和寻找数据的最佳函数匹配。利用最小二乘 法可以简便地求得未知的数据,并使得这些求得的数据与实际数据之间误差的平方和为最小,最小二 乘法还可用于曲线拟合,其他一些优化问题也可通过最小化能量或最大化熵用最小二乘法来表达。
公式​
在一元线性回归模型中,回归方程一般表示为​
yi ​
=
β^0​

+
β^ x 1 i ​


​,所用到的是statmodels模块中
OLS(最小二乘法),通过实际值​ yi​ ​与拟合值​ y^i​​ ​差的平方和Q最小,也就是残差平方和最小,来
确定拟合方程中的系数​ β1​ ​和截距​ β0​ ​,公式如下:​
n
n

(​ xi
)2


(


xi
)2

i=1
i=1
n
n
n
n
​ ​ (∑

xi2
)(



yi
)


(∑
xi)(∑
xiyi
)

β^ = i=1
0​

i=1 n
i=1
i=1
n
n

(​ xi
)2


(

一元线性回归的最小二乘估计

一元线性回归的最小二乘估计
最小方差性
最小二乘估计是在所有线性无偏估计中方差最小的。
易于计算
最小二乘估计可以通过矩阵运算或者最优化方法快速计算得到。
最小二乘估计的应用范围和局限性
1 广泛应用
最小二乘估计在经济学、统计学、机器学习等领域有着广泛的应用。
2 数据相关性要求
最小二乘估计需要假设自变量和因变量之间存在线性关系,并且数据的相关性较强。
一元线性回归的最小二乘 估计
最小二乘估计(Least Squares Estimation)是一种常用的线性回归参数估计方 法,通过最小化数据与回归直线之间的垂直距离,寻找使模型与数据拟合最 好的参数组合。
最小二乘估计的背景和概念
回归分析起源
最小二乘估计最早由高斯提出,用于解决天文观测中的误差问题。
最小二乘估计可以应用于医疗研 究,分析药物剂量和疗效之间的 关系,指导临床决策。
残差图
残差图用于检验回归模型是否合理, 是否存在模型假设的违背。
最小二乘估计的公式推导
1 回归直线的表达式
2 最优参数估计
3 参数估计的标准误差
最小二乘估计通过最小化残 差平方和来求解回归直线的 斜率和截距。
最小二乘估计的求解可以通 过矩阵运算和最优化方法来 实现。
最小二乘估计可以估计参数 的标准误差,用于判断参数 估计的精确程度。
线性回归模型
线性回归模型假设自变பைடு நூலகம்和因变量之间存在线性关系,是最小二乘估计的基础。
误差项的假设
最小二乘估计假设误差项满足独立同分布的正态分布。
一元线性回归的基本原理和模型
散点图
通过散点图可以直观地观察自变量 和因变量之间的关系。
回归直线
线性回归模型通过一条直线拟合数 据,表示自变量对因变量的影响。

最小二乘法探究

最小二乘法探究

最小二乘法探究0. 前言最小二乘法发源于天体物理学,并广泛应用于其他各个学科。

最小二乘法(Least squares )又称最小平方法,一元线性回归法,是一种数学优化技术,用于建立经验公式,利用它可以把生产或实验中所积累的某些经验提高到理论上加以分析。

它通过最小化误差的平方和寻找数据的最佳函数匹配。

利用最小二乘法可以简便地求得未知的数据,并使得这些求得的数据与实际数据之间误差的平方和为最小。

最小二乘法还可用于曲线拟合,是我们在建模竞赛中常用的一种手段。

一些优化问题也可通过最小化能量或最大化熵用最小二乘法来表达。

最小二乘法发源于天体物理学,并广泛应用于其他各个学科。

最小二乘法对于统计学具有十分重要的意义。

相关回归分析,方差分析和线性模型理论等数理统计学的几大分支都以最小二乘法为理论基础,正如美国统计学家斯蒂格勒(S.M,Stigler )所说,“最小二乘法之于数理统计学犹如微积分之于数学”。

故对最小二乘法做一番探究进而理解并掌握这一思想是十分有必要的。

1. 原理在古汉语中“平方”称为“二乘”,“最小”指的是参数的估计值要保证各个观测点与估计点的距离的平方和达到最小。

根据教材中的描述(两个变量间的函数关系),其基本原理为: 根据已知的自变量与因变量数据做出散点图,进而观察判定出两者间的函数关系,本次探讨以一次函数关系为例,其他类型的函数关系也可通过两边取对数等方法转化为一次函数形式进行求解。

认定y =f (x )是线性函数:f (x )=ax +b a,b 即为待求的常数。

对于求的函数,我们希望它可以尽可能多的拟合到已知的数据点,或者说尽可能的靠近。

转化为量化形式即为使偏差y i −f (x i ) 都很小,对此经过综合分析我们用M =∑[y i −(ax i +b )]2imax i=0最小来保证每个偏差的绝对值都很小,即根据偏差的平方和为最小的条件来确定常数a,b 。

然后运用多远函数的极值求法知识来求解求M =(a,b )的极小值,具体步骤为:{M a (a,b )=0M b (a,b )=0>>>>>>>>>>>>>>{ðM ða =−2∑[y i −(ax i +b )]x i =0imax i=0ðM ðb =−2∑[y i −(ax i +b )]=0imax i=0 >>>>{∑[y i −(ax i +b )]x i =0imax i=0∑[y i −(ax i +b )]=0imax i=0>>>>>>{a ∑x i 2+b ∑x i imax i=0=∑y i x i imax i=0imax i=0a ∑x i + 8b =∑y i imax i=0imax i=0 (1) 然后再列表计算∑x i 2,∑x i imax i=0,∑y i x i imax i=0imaxi=0,及 ∑y i imax i=0,代入方程组(1),即可求出a,b 。

从统计学看线性回归(1)——一元线性回归

从统计学看线性回归(1)——一元线性回归

从统计学看线性回归(1)——⼀元线性回归⽬录1. ⼀元线性回归模型的数学形式2. 回归参数β0 , β1的估计3. 最⼩⼆乘估计的性质 线性性 ⽆偏性 最⼩⽅差性⼀、⼀元线性回归模型的数学形式 ⼀元线性回归是描述两个变量之间相关关系的最简单的回归模型。

⾃变量与因变量间的线性关系的数学结构通常⽤式(1)的形式:y = β0 + β1x + ε (1)其中两个变量y与x之间的关系⽤两部分描述。

⼀部分是由于x的变化引起y线性变化的部分,即β0+ β1x,另⼀部分是由其他⼀切随机因素引起的,记为ε。

该式确切的表达了变量x与y之间密切关系,但密切的程度⼜没有到x唯⼀确定y的这种特殊关系。

式(1)称为变量y对x的⼀元线性回归理论模型。

⼀般称y为被解释变量(因变量),x为解释变量(⾃变量),β0和β1是未知参数,成β0为回归常数,β1为回归系数。

ε表⽰其他随机因素的影响。

⼀般假定ε是不可观测的随机误差,它是⼀个随机变量,通常假定ε满⾜:(2)对式(1)两边求期望,得E(y) = β0 + β1x, (3)称式(3)为回归⽅程。

E(ε) = 0 可以理解为ε对 y 的总体影响期望为 0,也就是说在给定 x 下,由x确定的线性部分β0 + β1x 已经确定,现在只有ε对 y 产⽣影响,在 x = x0,ε = 0即除x以外其他⼀切因素对 y 的影响为0时,设 y = y0,经过多次采样,y 的值在 y0 上下波动(因为采样中ε不恒等于0),若 E(ε) = 0 则说明综合多次采样的结果,ε对 y 的综合影响为0,则可以很好的分析 x 对 y 的影响(因为其他⼀切因素的综合影响为0,但要保证样本量不能太少);若 E(ε) = c ≠ 0,即ε对 y 的综合影响是⼀个不为0的常数,则E(y) = β0 + β1x + E(ε),那么 E(ε) 这个常数可以直接被β0 捕获,从⽽变为公式(3);若 E(ε) = 变量,则说明ε在不同的 x 下对 y 的影响不同,那么说明存在其他变量也对 y 有显著作⽤。

一元线性回归方程中回归系数的几种确定方法

一元线性回归方程中回归系数的几种确定方法
n反映了实际观测值yi与回归直线上相应纵坐标yi之间的偏离程度?我们希望yi与y值在处理上比较麻烦通常是用偏差的平方和来代替即要求ab的值使ni的n个偏差构成的总偏差越小越好这才说明所找的直线是最理想的?由于绝对q6ni1yiyi26ni1yiabxi2达到最小?使偏差平方和q6i1yiabxi2最小的方法称为最小二乘法?1方法一将偏差平方和展开得q6ni1yiabxi26ni1y2i2a6ni1yina22b6nni1xiyi2ab6nx2i2b6ni1xib26ni1x2ina22ab6ni1xi6i1yib26i1ni1xiyi6ni1y2i?把上式看成是关于a的二次函数a2的系数n0当a2b6ni1xi62nni1yi1n6ni1yib6ni1xiybx时q取最小值?其中y1n6ni1yix1n6ni1xi?同理把q的展开式重新按b的降幂排列看成是关于b的二次函数?可以得到当bn6ni1xiyia6x2ii1xi6ni1时q取最小值?将a1n6ni1yib6ni1xi代入得?blxylxx其中lxy6从而回归系数ab可由公式ni1xixyiylxx6ni1xix2blxylxxaybx求得这样回归直线方程就建立起来了?2方法二将偏差平方和变形为q6ni1yiybxixyabx26ni1yiy2b26ni1xix22b6ni1yiyxixnyabx2设r6xix26nni1yiyxix6ni1ni1yiy212lxylxxlxy12为相关系数其中lxy6则i1xixyiylxx6ni1xix2lyy6ni1yiy2?qlyyb2lxx2blxynyabx2704第4期刘连福
0 引 言
一元线性回归模型是统计学中回归分析预测理论的一种重要方法 ,应用于自然科学 、工程技术和经
济分析的各个领域 ,有较强的实用性·该方法的基本思想是 : 首先确定两个变量之间是否存在线性相

2.2 一元线性回归模型的最小二乘估计

2.2 一元线性回归模型的最小二乘估计

511 382950 562500 260712
1018 1068480 1102500 1035510
963 1299510 1822500 926599
5769300 7425000 4590020
640000 352836 1210000 407044 1960000 1258884 2890000 1334025 4000000 1982464 5290000 2544025 6760000 3876961 8410000 4318084 10240000 6682225 12250000 6400900 53650000 29157448
2无偏性即估计量的均值期望等于总体回归参数真值3有效性最小方差性即在所有线性无偏估计量中最小二乘估计量2证明最小方差性假设为不全为零的常数则容易证明具有最的小方差普通最小二乘估计量ordinaryleastsquaresestimators称为最佳线性无偏估计量bestlinearunbiasedestimatorblue
易知 故
ki
xi 0 xi2
ˆ1 1 ki i
ki Xi 1
E(ˆ1 ) E(1 ki i ) 1 ki E(i ) 1
同样地,容易得出
E(ˆ0 ) E(0 wi i ) E(0 ) wi E(i ) 0
二、参数的普通最小二乘估计(OLS)
给定一组样本观测值(Xi, Yi)(i=1,2,…n)要 求样本回归函数尽可能好地拟合这组值.
普通最小二乘法(Ordinary least squares, OLS) 给出的判断标准是:二者之差的平方和
n
n
Q (Yi Yˆi )2 (Yi (ˆ0 ˆ1 X i )) 2

一元线性回归模型的参数估计

一元线性回归模型的参数估计

散点图
某居民小区家庭收入(X)与消费支出(Y)
Y
1500
的散点图
1300
1100
900
Yˆ = aˆ + bˆX
700
500
X
600
1100
1600
2100
最小二乘准则
Y
.(Xi,Yi)
. Yˆ = aˆ + bˆX (X j ,Yˆj )
ei
. . (Xi,Yˆi)
0
. ej
(Xj,Yj)
X
min
参数估计计算表
Yi
xi
yi
3637 3919 4185 4331 4616 4998 5359 6030
37075
-1517.4 -961.4 -640.4 -375.4 53.6 479.6 1058.6 1902.6 ——
-997.4 -715.4 -449.4 -303.4 -18.4 363.6 724.6 1395.6 ——
X = X i = 46403 = 5800.375
n
8
Y = Yi = 37075 = 4634.375
n
8
根据表 2 合计栏的数据及以上关于 X 和Y 的计
算结果可得:
bˆ1 =
xi yi = 6198658.9 0.7083 xi2 8751239.9
bˆ0 = Y - bˆ1 X 525.8662
2.对回归系数(斜率)进行统计假设检验,信度为 0.05。
3.估计可决系数并进行统计假设检验,信度为 0.05。
4.若下一年度居民货币收入为 25.5 亿元,预测购买消费品
支出的金额及预测区间,信度为 0.05。

8.2.2一元线性回归模型的最小二乘估计课件(人教版)

8.2.2一元线性回归模型的最小二乘估计课件(人教版)
ෝ =0.839x +28.957,令
ෝ=x,则
通过经验回归方程
x=179.733,即当父亲身高为179.733cm时,儿子的平均身
高与父亲的身高一样.
对于响应变量Y , 通过视察得到的数据称为观测值 , 通
ෝ为预测值. 视察值减去预测值称为
过经验回归方程得到的
残差.
残差是随机误差的估计结果,通过对残差的分析可判
෡ 叫做b,a的最小二乘估计.
求得的,ෝ

ഥ); 与相关系数
易得: 经验回归直线必过样本中心(ഥ
,
r符号相同.
对于上表中的数据,利
用我们学过的公式可以计算出

=0.839
,ෝ
=28.957,求出儿
子身高Y关于父亲身高x的经验
回归方程为
ŷ 0.839 x 28.957
相应的经验回归直线如图所示.
n i =1
n i =1
n
n
Q(a,b ) = ( yi - bxi - a ) = [ yi - bxi - ( y - bx ) + ( y - bx ) - a ]
2
i =1
n
2
i =1
= [( yi y ) b( xi - x ) + ( y - bx ) - a ]
2
i =1
i =1
综上,当a)( y y )
i
i
i =1
.
n
( x - x)
2
i
i =1
ˆ
ˆ
a
=
y

bx
时, Q到达最小.
ˆ aˆ 称为Y 关于x 的经验回归方程,也称

一元线性回归方程式

一元线性回归方程式

一元线性回归方程式为:y=a+b x
b=n∑xy−∑x∑y n∑x2−(∑x)2
a=y̅−bx̅
其中a、b都是待定参数,可以用最小二乘法求得。

(最小平方法)b表示直线的斜率,又称为回归系数。

n表示所有数据的项数。

∑x表示所有x的求和
∑y表示所有y的求和
∑xy表示所有xy的求和
∑x2表示所有x2的求和
(∑x)2表示∑x的平方,即所有x的求和再求平方。

x̅表示所有x的平均数
y̅表示所有y的平均数
答题解法如下:
解:(答:)相关数据如下表:
根据公式b=n∑xy−∑x∑y
n∑x2−(∑x)2
得:
b=6∗1481−21∗426
6∗79−212=8886−8946
474−441
=−60
33
=-1.82
根据公式a=y̅−bx̅得:
a=71−(−1.82)∗3.5=71-(-6.37)=71+6.37=77.37
代入方程式y=a+b x得:
y=77.37+(-1.82)x=77.37-1.82 x
已知7月份产量为7000件,则x=7(千件),代入得:
y=77.37-1.82 x=77.37-1.82*7=77.37-12.74=64.63(元)
根据一元回归方程(最小乘法或最小平方法),当7月份产量为7000件时,其单位成本为64.63元。

高中数学(新人教A版)选择性必修二:一元线性回归模型、一元线性回归模型参数的最小二乘估计【精品课件】

高中数学(新人教A版)选择性必修二:一元线性回归模型、一元线性回归模型参数的最小二乘估计【精品课件】

0.177 9
0.094 9
-1.071 1
^
e=
^
y-y
残差图如图所示.
由图可知,残差比较均匀地分布在横轴的两边,说明选用的模型比较合适.
(4)计算得R2≈0.985 5.说明拟合效果较好.
反思感悟(1)解答本类题目应先通过散点图、样本相关系数来分析两个变
量是否线性相关,再利用求经验回归方程的公式求解经验回归方程,并利用
归公式,其图形称为经验回归直线.这种求经验回归方程的方法叫做最小二乘
^ ^
法,求得的b, a叫做 b,a 的最小二乘估计.
n
^
∑ (x i -x)(y i -y)
b = i=1n
2
∑ (x i -x)
其中
,
i=1
^
^
a = y-bx.
回归直线过样本点的中心(x, y)
2.残差与残差分析
对于响应变量Y,通过观测得到的数据称为观测值,通过经验回归方程得到
2
∑ 2 -
=1
^
^
, = −Biblioteka )解 (1)散点图如图:
(2)由(1)中散点图可知 y 与 x 线性相关.
4
因为 ∑ xiyi=6×2+8×3+10×5+12×6=158,
=1
6+8+10+12
2+3+5+6
x=
=9,y =
=4,
4
4
4
∑ 2 =62+82+102+122=344,
2.67
由z=ln ae0+xln b及最小二乘法,得
ln b≈0.047 7,ln ae0≈2.378,

第二章 一元线性回归

第二章 一元线性回归

总体分布的正态性检验一般采取Jarque-Bera检验。正
态分布的偏度(三阶矩)S=0,峰度(四阶矩)K=3,若样
本来自正态总体,则他们分别在0,3附近。基于此构造一
个包含x2(卡方)统计量:
n为样本容量,k为自由度.
Jarque和Bera证明了在正态性假定下,如果J-B统计量
的相伴概率值小于设定的概率水平,则拒绝原假设,不认
很好地解释了Y;否则,X不能很好地解释Y。
(c)自由度的分解
总自由度: dfT=n-1 回归自由度:dfE=k=1( k为自变量的个数) 残差自由度:dfR=n-k-1=n-2 自由度分解:dfT=dfR+dfE

1 n
xi
x
uˆi

xi x uˆi xi uˆi x uˆi
xi uˆi x uˆi xi uˆi x 0 由(2)式 xi uˆi 0
covx,uˆ 0
估计残差与拟合值不相关
covyˆ,uˆ
1

yˆ uˆ
n
yˆ yˆ uˆ yˆuˆ yˆuˆ
p value P(| T || t |) P(| T |1.85) 2P(T 1.85) 0.0718
面积=0.9282
面积=0.0359
面积=0.0359
-1.85
1.85
以上p值意味着,如果虚拟假设正确,那么我们约有 7.2%次观察到t统计量的绝对值至少和1.85一样大。可以 看出, p值越小,对应的统计量值t应该越大,越可能拒 绝H0。
同样地,容易得出
E(ˆ0 ) E(0 wi i ) E(0 ) wi E(i ) 0
(3)有效性(最小方差性,即在所有线性无偏估 计量中,最小二乘估计量 aˆ, bˆ具有最小方差
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
7
依照方差与协方差的定义,我们类似地可以定义随机向量的 方差—协方差矩阵。仍然以 3 个观测值 Y1,Y2,Y3 构成的随机向量
Yi 的方差为 Y 来说明,记每个随机变量
2
Yi
,任意两个随机变量
Yi , Y j 的协方差为 Yi , Y j ,这些方差和协方差可以组成一个矩阵,
称为随机变量 Y 的方差—协方差矩阵,常常简称为 Y 的协方差矩阵, 用
3
• 四、线性回归模型和非线性回归模型 • 分类的标准:回归模型的期望函数关于 参数的倒数是否与参数有关。即期望函 数的一阶导函数是否仍然是关于参数的 函数。如果导函数不是关于参数的函数, 即参数是线性的,则称该回归模型是线 性回归模型;反之,则称该回归模型是 非线性回归模型。
4
五、回归模型的矩阵方法和随 机矩阵
依照矩阵运算法则,可用矩阵表示为:
Y X
(2.1.14)
在(2.1.14)式中,X 一般是非随机矩阵,通常称为设计矩阵;Y、

则是常数向量。 都是随机向量,而
6
(二) 随机向量的数学期望和协方差矩阵
在(2.1.14)式中,Y 和
的元素都是随机变量,因此是随机向量。
1、 随机向量的数学期望。 随机向量的数学期望仍然是向量,是由原向量相应的随机变量元素的 数学期望值组成的向量。
i 1,2,...,n E Y nxk E Yij , j 1,2,...,k (2.1.16)


2、 随机向量的协方差矩阵。 记 Y 的方差为
2 Y E Y E Y 2


(2.1.17)
记 Y 与 Z 的协方差为 Y , Z EY E Y Z E Z (2.1.18)
2 Y
或VarY 表示:
2 Y1 Y1 , Y2 Y1 , Y3 VarY Y2 , Y1 2 Y2 Y2 , Y1 Y3 , Y1 Y3 , Y2 2 Y3

为了使模型中包含一个常数项,通常假设解释变量矩阵第一列的 取舍全为 1, 即假设 X 11 , X 21 ,..., X n1 1,1,...1 。 也就是说,解释变量中的第一个变量通常假设为取值恒为 1 的变量。
5
2、被解释变量向量 Y、参数向量
和随机干扰向量

Y1 1 1 Y 2 2 Y ; ; 2 ... ... ... Y n k n
• 五、随机干扰项服从正态分布。该假设 给出了被解释变量的概率分布。 • 六、随机干扰项的期望值为0。即: • E(u)=0 • 七、随机干扰项具有方差齐性。即: • 八、随机干扰项相互独立。 •
在矩阵(2.1.19)中,方差 的协方差,有
(2.1.19)
2 Yi
Yi , Y j Y j , Yi
在矩阵的主对角线上;对于 i≠j 时 。
8
对 n×1 维随机向量,有:
... 2 Yn , Yn 在每个观测点上方差 假如,设由 3 个观测值组成的随机干扰项向量 ... ...
第三章 回归分析概要
• • • • 第一节、经典线性回归模型 第二节、普通最小二乘估计和最大似然估计 第三节、假设检验 第四节、置信区间
1
第一节 经典线性回归模型
• 一、函数关系和统计关系 • (一)函数关系是一一对应的确定性关 系。(举例见教材) • (二)统计关系是不完全一致的对应关 系。(举例见教材) • 二、理论模型和回归模型 • Y=f(X1,X2,……,Xp)
• Y=f(X1,X2,…,Xk; ū)
2
• 三、随机误差和系统误差 • 1、随机误差:是由随机因素形成的误差。 所 谓随机因素,是指那些对被解释变量的作用不 显著,其作用方向不稳定(时正时负),在重 复试验中,正作用与负作用可以相互抵消的因 素。 • 2、系统误差:由系统因素形成的误差。所谓 系统因素,是指那些对被解释变量的作用较显 著,其作用方向稳定,重复试验也不可能相互 抵消的因素。
一般线性回归模型的矩阵表示法 1、解释变量矩阵 X
X 11 X X 21 ...
X 12 X 22 ...
Xn1 X n 2
... X 1k 1 X 12 ... X 2 k 1 X 22 ... ... ... ... ... X nk 1 X n 2

... X 1k ... X 2 K ... ... ... X nk
9
六、经典线性回归模型及其 假设条件
• 一、有正确的期望函数。 • 它要求在线性回归模型中没有遗漏任何重 要的解释变量,也没有包含任何多余的解释变 量。 • 二、被解释变量等于期望函数与随机干扰项之 和。 • 三、随机干扰项独立于期望函数。即所有解释 变量Xj与随机干扰项u不相关。 • 四、解释变量矩阵X是非随机矩阵,且其秩为 列满秩的,即rank(X)=k。 10 •
2 2 i 相同,即 ,并且随机干扰项彼此不相关,即对于 i≠j,
2 Y1 Y1 , Y2 Y2 , Y1 2 Y2 Var Y ... ... Yn , Y1 Yn , Y2
... .ห้องสมุดไป่ตู้.
Y1 , Yn Y2 , Yn
(2.1.21)

i , j 0

于是可得到随机向量

的方差—协方差矩阵为:
2 0 0 1 0 0 (2.1.22) Var 0 2 0 2 0 1 0 2 0 0 0 0 1
相关文档
最新文档