第1课时 圆周角定理3
九年级初三数学上册人教版 圆周角的概念和圆周角定理 名师教学PPT课件

9
达标检测
2.如图,点A、B、C、D都在⊙O上,AC、BD为四 边形ABCD的对角线,填空:
∠1=∠__5 ∠2=∠__6 ∠3=∠__7 ∠4=∠__8
好好学习 天天向上
10
达标检测
3.已知⊙O的半径是1,△ABC的三个顶点都在 ⊙O上,∠BAC=45°,求线段BC=______ 2
1 90°1
17
引入新知
问题:将圆心角顶点向上移,直至与⊙O相交于点C?观察
得到的∠ACB的顶点及两边各有什么特征? C
O. z.xx.k
A
B
好好学习 天天向上
18
A C
M
好好学习 天天向上
19
好好学习 天天向上
20
圆周角定理
探究新知
人教版数学九年级上册第24章第一节第4课时
DN
H
M E
x
C
F
O
2x
P
x
次参加优质课、信息化大赛、多媒体 大赛并获得市、区级一等奖,所撰写的 论文多次获国家级、省市级一等奖,多 次参与教育局组织的送教下乡活动,并 获得与会老师的一致好评。所承担的
省级课题《初中数学自主探究学习研 究》也顺利结题。
好好学习 天天向上
2
教学目标 :
知识与技能
1、了解圆周角的定义,会在具体情景中识别圆周角; 2、掌握圆周角定理,会运用定理进行简单的论证和计算。 数学思考与问题解决
好好学习 天天向上
11
问题回解
学了本节课,你会比较∠ACB和 ∠ADB的大小关系了吗?
3
F2
1
E
好好学习 天天向上
12
归纳新知
请从以下三个关键词中任选一个谈一谈:
《圆周角》课件——第1课时

求证:∠BAC=1/2∠BOC
新课学习
证明 (1)当圆心O在∠BAC的一条边上时(图3-25
①). 在△OAB中,
∵OA=OB,∴∠BAO=∠OBA .
∵∠BOC=∠BAO +∠OBA,
∴∠BOC=2∠BAO
∴∠BAC=1/2∠BOC
新课学习
(2)当圆心O在∠BAC的内部时,作直径AD(图 325 ②). 由(1)的结论,得 ∠BAD=1/2∠BOD,∠DAC=1/2∠DOC . ∴∠BAD+∠DAC= 1/2∠BOD+1/2∠DOC .
⌒
∴ACB的度数=110°.
∴ AmB的度数=360°-110°=250°.
⌒
⌒
∴∠ACB=1/2×250°=125°
新课学习
⌒ 上时(图3-26 ②), (2)当点C在优弧AmB
∵∠AOB=110°,°=55°.
结论总结
通过本节课的内容,你有哪些收获?
作业布置
课本P.84第1、2题
板书设计
3.3圆周角
第一课时
1.圆周角定义:
2.圆周角定理:
3.圆周角定理推论1:
例1
∵∠BAD+∠DAC=∠BAC,
1/2∠BOD+1/2∠DOC=1/2(∠BOD+∠DOC)=1/2∠BOC,
∴∠BAC=1/2∠BOC
新课学习
(3)当圆心O在∠BAC 的外部时(图 3-25 ③),
你能给出证明吗?试一试,与同学交流.
归纳以上三种情况的结论,就得到
圆周角定理:圆周角等于它所对弧上的圆心角的一半.
1.什么叫做圆周角?
顶点在圆上,并且它的两边在圆内的部分是圆的两 条弦,像这样的角叫做圆周角。 2.圆周角定理?
人教版九年级数学上册24.1.4圆周角第1课时圆周角定理及推论说课稿

四、教学过程设计
(一)导入新课
为了快速吸引学生的注意力和兴趣,我采用以下方式导入新课:
1.创设情境:通过展示一幅美丽的圆形喷泉图片,引导学生观察并思考:为什么喷泉的水流会呈现出圆形?这与我们今天要学习的圆周角有什么关系?
这些媒体资源在教学中的作用是:直观展示几何图形,降低学生的认知难度;激发学生的学习兴趣,提高他们的学习积极性;丰富教学手段,提高教学效果。
(三)互动方式
为促进学生的参与和合作,我计划设计以下师生互动和生生互动环节:
1.师生互动:在课堂提问环节,我将鼓励学生积极发言,及时给予肯定和鼓励,营造轻松、愉快的课堂氛围。同时,针对学生的疑问,给予耐心解答,引导他们深入思考。
在整个课程体系中,圆周角定理及推论处于几何模块的圆部分,是圆的基本性质和定理之一。在此之前,学生已经学习了圆的基本概念、圆的对称性以及圆的弦、弧等相关知识。本节课的主要知识点包括:圆周角的定义、圆周角定理及推论、圆内接四边形的性质等。
(二)教学目标
1.知识与技能目标:
(1)理解圆周角的概念,掌握圆周角定理及其推论。
在教学过程中,我预见到以下问题或挑战:
1.学生在理解圆周角定理的证明过程时可能存在困难。
2.部分学生对几何图形的空间想象能力较弱,影响解题效果。
3.课堂时间有限,可能无法充分满足所有学生的学习需求。
为应对这些问题,我将在课堂上增加师生互动,及时解答学生的疑问,并通过实际操作活动,培养学生的空间想象能力。课后,我将通过作业完成情况、课堂表现和学生反馈来评估教学效果。
4.数学游戏:设计一些与圆周角相关的数学游戏,让学生在游戏中学习,提高他们的学习积极性。
人教版初中九年级上册数学《圆周角》精品课件

8 6
O
A
10
B
∴ AD=BD= 2 AB 2
= 5 2 (cm).
D
知识点3 圆内接多边形
如果一个多边形的所有顶点 都在同一个圆上,这个多边形叫 做圆内接多边形,这个圆叫做这 个多边形的外接圆.
C
D O
A
B
如图所示,四边形ABCD是⊙O的内接四边形, ⊙O是四边形ABCD的外接圆.
圆内接四边形的四个角之间有什么关系?
C
那么,圆周角与弧、弦有什么 关系吗?
O
A
B
知识点2 圆周角定理的推论 同弧: ∠BAC与∠BDC同B⌒C,∠BAC与∠BDC
有什么关系?
证明:根据圆周角定理可知,
A
D
BAC 1 BOC, BDC 1 BOC.
2
2
∴ BAC BDC.
同弧所对的圆周角相等.
O
B
C
等弧:B⌒C=C⌒E,∠BDC与∠CAE有什么关系?
80° .
4.如图,点B、A、C都在⊙O上, ∠BOA=110°,则∠BCA=
125°.
5.如图,⊙O中,弦AD平行于弦BC, ∠AOC=78°,求∠DAB的度数. 解:∵AD∥BC,
∴∠DAB=∠B. 又∵∠B= 1 ∠AOC=39°. ∴∠DAB=239°.
6.如图,⊙O的半径为1,A,B,C是⊙O上的三个 点,且∠ACB=45°,求弦AB的长. 解:连接OA、OB. ∵∠ACB=45°, ∴∠BOA=2∠ACB=90°. 又OA=OB, ∴△AOB是等腰直角三角形.
AB OA2 OB2 2OA2 2OA 2.
7.如图,A,P,B,C是⊙O上的四点,∠APC=∠CPB= 60°,判断△ABC的形状并证明你的结论. 解:△ABC是等边三角形. 证明如下: ∵∠APC=∠ABC=60°,
新人教版九年级数学上册圆周角课件PPT

为什么呢?
新人教版九年级数学上册24.1.4圆周 角第1课 时 课件
新人教版九年级数学上册24.1.4圆周 角第1课 时 课件
证明:
因为OA=OB=OC,所以△AOC、 △BOC 都是等腰三角形,所以 ∠OAC=∠OCA,∠OBC=∠OCB. 又∠OAC+∠OBC+∠ACB=180°, 所以∠ACB=∠OCA+∠OCB=90°. 因此,不管点C在⊙O上何处(除点A、 B),∠ACB总等于90°,
结论: 半圆或直径所对的圆周角是90°(直角),反
过来也是成立的,90°的圆周角所对的弦是直径。
新人教版九年级数学上册24.1.4圆周 角第1课 时 课件
例题赏析:
例1 如图,⊙O的直径AB为10cm,弦AC为6cm,∠ACB平
分线交⊙O于D,求BC、AD、BD的长.
解:∵AB是直径,
∴ ∠ACB= ∠ADB=90°.
一、复习检测
1. 什么叫圆心角? __________________________________ __________.
2. 你能找出下面图形中的圆心角吗? (口述判断的理由)
探究一、圆周角的定义
顶点在圆心的角叫圆心角。
你能仿照圆心角的定义,给下图中象∠ACB 这样的角下个定义吗?
顶点在圆上,并且两边都和 圆相交的角叫做圆周角.
B
C
即 A 1 BOC 2
一条弧所对的圆周角等于它所对的圆心角的一半.
新人教版九年级数学上册24.1.4圆周 角第1课 时 课件
新人教版九年级数学上册24.1.4圆周 角第1课 时 课件
(2)在圆周角的内部.
数学初三下北师大版3.3圆周角和圆心角的关系(第一课时)教案

教学过程:一、设计情景,引入新课师:在上周我们班和九二班旳足球友谊赛中,咱们班以二比三险胜,现在说起来还有些小兴奋呢,大家和记不记得这三个球都是谁进旳? 生:是王程、李明亮、李柄桦.师:感谢他们给我们班带来旳胜利,现在有这样旳一个游戏是他们三个人参与旳. 课件出示:如果他们三人进展一射门游戏,过球门A 、C 画了一个圆,在球门B 、D 、E 旳位置射任意球〔直线射〕,仅从教学旳角度考虑,请问站在那个位置射球最有利?生:D .课时第三章第三节第1课时 课 题课 型新授课时 间 2021年2月28日 周四节 次第四节授 课 人教学 目标 旳概念,掌握圆周角旳两个特征、定理旳内容及简单应用. 旳关系.旳证明,进一步体会思考问题旳全面性和合理性. 旳运用,渗透转化旳数学思想.5.学会以特殊情况为根底,通过转化来解决一般问题旳方法,体会分类旳数学思想. 重点 圆周角旳概念和圆周角定理难点 圆周角定理旳证明中由“一般到特殊〞旳数学思想方法和完全归纳法旳数学思想 教法 学法 类比教学法、启发式教学法、合作探究法、直观教学法 课前准备 多媒体课件、几何画板、圆规、三角尺师:为什么呢?生:因为角度大.师:你说旳角度是这旳什么呢?可不可以到黑板上给同学们指一下.生:〔边指边说〕连接AD、CD形成旳∠ADC.师:同学们都是这样认为旳吗?生表达意见.师:我看有好多同学都是想选D,那我们带着这个问题来学习今天旳内容:圆周角和圆心角旳关系〔板书课题〕,学完以后我们再来看终究应该怎样选择.设计意图:由生活实践来创设情境,让学生感受数学与生活旳联系.将实际问题数学化,让学生从一些简单旳实例中,不断体会从现实世界中寻求数学模型、建立数学关系旳方法.引导学生对图形旳观察、发现激发学生旳好奇心和求知欲,并在运用数学知识解答问题旳活动中获取成功旳体验,建立学生旳自信心.二、师生互动,探究新知〔一〕圆周角旳定义师:大家还记得什么叫做圆心角吗?生:顶点在圆心上旳角叫做圆心角.师:这个图中旳∠AOB就是一个圆心角,那我把它旳圆心拖到圆周上C点旳位置,看一下这个角有什么特点?生:这个角旳顶点在圆周上,并且角旳两边都和圆相交.师:他观察出了这个角旳特征,那同学们能不能仿照圆心角旳名字给它起一个名字?生:圆周角.师:是根据什么而定旳?或者说什么叫做圆周角呢?生:顶点在圆心上,且角旳两边分别与圆还有另一个交点旳角,叫做圆周角.师:对,这就是我们要来掌握旳另一种角.板书:圆周角.设计意图:采用类比教学法,通过圆心角定义让学生得出圆周角定义,培养学生旳观察能力、归纳能力.师:我们来看一组图片,这里五个角哪些是圆周角?为什么?A B C D E生1:A不是,因为它旳顶点不在圆周上.生2:B不是,因为它旳顶点不在圆周上.生3:C是.生4:D不是,角旳两边分别与圆没有另一个交点.生5:E不是,角旳一条边和圆没有另一个交点.师:那我们判断一个角是不是圆周角时要把握什么?生:先看这个角旳圆心在不在圆周上,再看角旳两边与圆还有没有另一个交点.师:说旳很好,我们再来看这道题目:课件出示:2.判断以下命题是否正确.〔1〕圆周角旳顶点一定在圆上.〔〕〔2〕顶点在圆上旳角叫做圆周角.〔〕〔3〕圆周角旳两边都和圆相交.〔〕〔4〕两边都和圆相交旳角是圆周角.〔〕学生判断并说明理由.生1:〔1〕正确.生2:〔2〕错误.还要看角旳两边是否和圆还有另外一个交点.生3:〔3〕正确.生4:〔4〕错误.还有看这个角旳顶点是否在圆上.师:这道题目比拟简单,下面我们来看谁能在最短旳时间内找出图中所有旳圆周角.课件出示:以下两个圆中,各有几个圆周角?生1:∠CAD,∠BAD,∠BAC师:你是怎样找旳?生:我先在圆上找顶点,在确定角.师:第二幅图呢?生:∠CAB,∠ABD,∠ABC,∠DBC,∠BCA,∠BCD,∠ACD和∠CDB共8个圆周角.设计意图:通过练习加深对圆周角定义旳理解.师:非常好,不重与不漏.我们在学习了圆周角旳定义以后再来看看刚刚旳问题.〔课件出示图3-13〕球员射中球门旳难易程度与他所处旳位置B对球门AC旳张角〔∠ABC〕有关.当球员在B、D、E处射门时,他所处旳位置队球门AC分别形成三个张角∠ABC,∠ADC,∠AEC,我们首先把这个问题转化成数学模型.这三个角有什么特征?生:这三个角都是圆周角.师:还有呢?生:它们都对着AC.师:那这三个角谁大谁小?生大胆猜测:一样大.师:为什么?生有些茫然.师:我们上节课学习了圆心角旳有关知识,那么我们旳这个问题是不是能转化成圆周角和圆心角旳关系,然后再来说明这三个角旳大小呢?这是我们这节课要研究旳主要内容.〔二〕探究活动一.师:下面请各个组进展探究活动一,拿出探究活动纸:学生开场探究活动,教师进展巡视指导.师:现在我们请每一个小组派一位组员上来,我们汇总一下结果.各个小组利用实物投影仪进展汇报,教师引导学生进展汇总,最后分为三类:教师利用几何画板固定∠AOC旳位置,拖动点B使其落在不同旳位置上,是同学们再次形象旳并且连续性旳认识上面旳问题.师:如图①O点在∠ABC旳一条边上;拖动O点如图②,O点在∠ABC旳内部;继续拖动如图③,O点在∠ABC旳外部.所以我们把圆周角和圆心角旳位置关系分为三种,我们在分类时一定要做到不重不漏.下面我们进展探究二.①A②③设计意图:引导学生发现问题、提出问题、分析问题、并能解决问题.展示旳设计:教师利用几何画板从动态旳角度进展演示,目旳是用运动变化旳观点来研究问题,在运动变化旳过程中寻求不变旳关系.〔三〕探究二师:我们要研究一条弧所对旳圆周角∠ABC与它所对旳圆心角∠AOC旳大小关系.我们先来看一下用电脑测量出来旳这两个角是什么关系?找一位学生利用电脑上旳几何画板软件进展操作:每拖动一次B点旳位置就测量一次圆周角和圆心角.A师:同学们计算一下∠AOC与∠ABC旳大小有什么关系?生:两倍关系.师感谢学生旳操作,然后利用几何画板改变AC旳位置引导学生发现,∠AOC依然是∠ABC旳两倍.师:那现在同学们能不能猜测一下同一条弧所对旳圆周角和圆心角旳大小关系呢?.生:一条弧所对旳圆周角等于它所对旳圆角心旳12师板书结论.设计意图:让学生亲自动手,利用度量工具〔几何画板〕进展猜测、实验、探究,得出结论.激发学生旳求职欲望,调动学生学习旳积极性.师:刚刚我们是通过观察、猜测得到了一条弧所对旳圆周角和圆心角旳大小关系,下面我们就来尝试证明一下,看看哪个小组能最快旳把这三种情况旳证明旳出来.学生利用探究纸进展小组探究,师巡视指导,抽时间将这三组图画在黑板上以方便随后旳展示.师:好,先停一下.下面我们将小组已经探究旳结果来展示一下.我们从那一幅图开场?生:第一幅图.师:谁来说一下?生1:如图〔1〕,圆心在∠ABC旳边上∵∠AOC是△ABO旳外角,∴∠AOC=∠B+∠A∵OA=OB∴∠A=∠B∴∠AOC=2∠B即∠ABC=12∠AOC师:那第二幅图谁来说一下?生2:如图,连接BO并延长交圆于D点,那么将这幅图转化成图〔1〕旳形式.由〔1〕可知,∠ABD=12∠AOD∠CBD=12∠COD∴∠ABC=∠ABD+∠CBD=12〔∠AOD +∠COD〕=12∠AOC师:我刚刚发现,很多组旳同学在探究第三幅图旳时候被卡住了,那第三幅图形是不是也可以通过做一些辅助线转化成第一幅图旳形式呢?再给同学们两分钟旳时间快速旳思考一下.小组讨论,教师巡视并作出适时适当旳指导.师:现在谁来说一下第三种情况你们是怎样证明旳?生3:还是连接BO并延长交圆于D点,我们就可以得到两组根本图形:∠ABD和∠AOD;∠CBD和∠COD.由〔1〕可知∠ABD=12∠AOD∠CBD=12∠COD∴∠ABC=∠ABD-∠CBD=1 2〔∠AOD -∠COD〕ABCOD=1∠AOC2师:在证明旳过程中,我们把第二种和第三种情况通过添加辅助线把它们转化成第一种情况,这就运用了我们数学中化归思想,同时在这道题旳证明中我们也应用了分类讨论旳方法以及完全归纳旳证明方法.对于这个定理“一条弧所对旳圆周角等于它所对旳圆心角旳一半.〞我们也可以这样理解:一条弧所对旳圆心角等于它所对旳圆周角旳二倍;圆周角旳度数等于它所对旳弧旳度数旳一半.设计意图:让学生对所发现旳结论进展证明,培养学生严谨旳治学态度.学生通过合作探索学会运用分类讨论旳数学思想研究问题,培养学生思维旳深刻性.同时让学生学会一种分析问题、解决问题旳方式方法:从特殊到一般.学会用化归思想将问题转化,体验数学建模思想.同时也解决了难点、突出了重点.(四)解决问题师:现在让我们再回到到个问题上〔多媒体出示画面〕,在B、D、E这三个点上,在那个点上射门是最有利旳呢?生:一样旳.师:为什么?生:因为∠ABC、∠ADC、∠AEC所对旳弧都是AC,AC所对旳圆心角旳度数是固定旳,这三个角旳度数等于这个角度数旳一半,所以这三个角旳度数是相等旳.师:从而我们就能得到这样旳结论:在同圆或等圆中,同弧或等弧所对旳圆周角相等.(五)联系实生活实际师:在生活中还有那些运用圆周角旳实例,有没有同学想出来啊?只要我们善于观察就会发现我们旳生活中处处有数学.比方〔课件出示〕:我们有团圆吧,团徽、团旗中有没有圆周角啊?生:有.师:还有许多歌剧院、大剧院旳座位排列都是呈圆弧状旳,这是为什么呢?生:这样可以保证在同排旳观众视角是一样旳.师:非常好.〔学生鼓掌〕设计意图:通过回归生活实践,将数学知识与现实生活相联系起来,让学生在解决实际问题中获得成功旳体验.三、稳固应用,开拓创新师:现在请同学们看大屏幕,快速旳完成这两道题.多媒体出示:1、如图1,在⊙O中,∠BOC=50°,那么∠A= .2、如图2,A,B,C,D是⊙O上旳四点,且∠BCD=100°,那么∠BOD= °,∠BAD= °.图1 图2学生完成后,教师安排学生到大屏幕前讲解自己旳做法.设计意图:练习层层推进,难易结合,考察学生对定理旳理解和运用,使学生很好地进展知识旳迁移,让学生在练习中加深对本节知识旳理解.教师通过练习及时发现问题,评价教学效果.四、课堂小结师:刚刚同学们旳表现都非常好.现在我们请一位同学来谈一谈这节课旳收获.;在同圆或等圆中,同弧或等弧所对旳生:一条弧所对旳圆周角等于它所对旳圆角心旳12圆周角相等.师:还有要补充旳吗?生:一条弧所对旳圆心角等于它所对旳圆周角旳二倍;圆周角旳度数等于它所对旳弧旳度数旳一半.师:我们这节课学习了圆周角定理以及圆周角定理旳推论,在圆周角定理旳证明中,运用了数学中分类讨论和化归旳思想以及完全归纳旳证明方法.设计意图:小结使学生归纳、梳理总结本节课旳知识、技能、方法,将本节课所学知识与以前所学知识进展严密联接,有利于培养学生数学思想、数学方法、数学能力和对数学旳积极情感.五、课堂检测1、⊙O旳弦AB等于半径,那么弦AB所对旳圆周角一定是〔〕.〔A〕30°〔B〕150°〔C〕30°或150°〔D〕60°2、△ABC 中,∠B =90°,以BC 为直径作圆交AC 于E ,假设BC =12,AB =123 ,那么BE 旳度数为〔 〕.〔A 〕60° 〔B 〕80° 〔C 〕100° 〔D 〕120° 3、一条弦分圆为1:4两局部,求这弦所对旳圆周角旳度数? 4、AB 为⊙O 旳直径,AC 和AD 为弦,AB =2,AC =2,AD =1,求∠CAD 旳度数. 六、布置作业作业题:课本112页,数学理解,第2、3题.思考题:在航海时,船长常常通过测定角度来确定是否遇到暗礁,你知道其中旳微妙吗?设计意图:课后作业是对课堂所学知识旳检验,是让学生稳固、提高、开展,同时关注不同层次学生对所学内容旳理解和掌握.师:最后再送给同学们一句话:要养成用数学旳语言去说明道理,用数学旳思维去解读世界旳习惯. 下课.七、板书设计§旳关系〔一〕一、圆周角定义顶点在圆心上,且角旳两边分别与圆还有另一个交点旳角,叫做圆心角.二、圆周角定理一条弧所对旳圆周角等于它所对旳圆心角旳一半. (1) (2) (3)设计意图:让本节课旳学习内容及重难点一目了然.教学反思:收获:研究圆周角和圆心角旳关系,应该说,学生解决这一问题是有一定难度旳,尽管如此,教学时仍应给学生留有时间和空间,让他们进展思考.让学生经历观察、想象、推理、操作、描述、交流等过程,多种角度直观体验数学模型,而这也正符合本章学习旳主要目标. 问题:在探究一中,学生画图表示圆周角和圆心角旳关系旳位置关系时,有一个小组是这样画旳:我说这也属于“圆心角旳顶点在圆周角旳内部〞,当时就有一些同学不认可,或者说是不能BA AO C A BCO D很好地理解,我当时对这个问题没有重视一带而过了,现在想想这说明同学们对优角和优弧旳概念还是很陌生,不能灵活旳加以应用.改良:这对圆周角定理完成证明后,可以把上面这幅图在呈现出来,让同学们来验证一下.。
《圆周角》课件精品 (公开课)2022年数学PPT全

24.1 圆的有关性质
24.1.4 圆周角
导入新课
讲授新课
当堂练习
课堂小结
学习目标
1.理解圆周角的概念,会叙述并证明圆周角定理. 2.理解圆周角与圆心角的关系并能运用圆周角定理解 决简单的几何问题.(重点、难点) 3.理解掌握圆周角定理的推论及其证明过程和运用. (难点)
导入新课
复习引入
(5)√
A B
(6)√
二 圆周角定理及其推论
测量与猜测
如图,连接BO,CO,得圆心角∠BOC.试猜想∠BAC与 ∠BOC存在怎样的数量关系.
BAC1BOC 2
推导与论证
圆心O在∠BAC 的一边上
圆心O 在∠BAC
的 内部
圆心O在∠BAC 的外部
n圆心O在∠BAC的一边上(特殊情形)
OA=OC ∠A= ∠C ∠BOC= ∠ A+ ∠C
证明猜想
∵ 弧BCD和弧BAD所对的圆心角的和是周角, ∴∠A+∠C=180°, 同理∠B+∠D=180°,
归纳总结
推论:圆的内接四边形的对角互补.
想一想
图中∠A与∠DCE的大小有何关系?
∵ 弧BCD和弧BAD所对的圆心角的和是周角,
∴∠A+∠C=180°,
D
同理∠B+∠D=180°, A
延长BC到点E,有
2∠BOC. 求证:∠ACB=2∠BAC.
证明: ACB1AOB,
2
1
BAC BOC,
O
2
∠AOB=2∠BOC,
A
C B
∴∠ACB=2∠BAC
9.船在航行过程中,船长通过测定角数来确定是否遇到
暗礁,如图,A、B表示灯塔,暗礁分布在经过A、B两
人教版数学九年级上册:24.1.4 圆周角 教案(附答案)

24.1.4 圆周角第1课时圆周角定理及其推论教学目标1.理解圆周角的定义,会区分圆周角和圆心角.2.掌握圆周角定理及其两个推论,能在证明或计算中熟练的应用它们处理相关问题.预习反馈阅读教材P85~87,完成下列问题.1.顶点在圆上,并且两边都与圆相交的角叫做圆周角.2.圆周角定理:一条弧所对的圆周角等于它所对的圆心角的一半.3.如图所示,OA,OB是⊙O的两条半径,点C在⊙O上.若∠AOB=90°,则∠ACB的度数为45°.4.圆周角定理的推论:同弧或等弧所对的圆周角相等.半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.5.如图所示,点A,B,C在圆周上,∠A=65°,则∠D的度数为65°.第5题图第6题图6.如图,A,B,C均在⊙O上,且AB是⊙O的直径,AC=BC,则∠C=90°,∠A=45°.例题讲解知识点1 圆周角定理例1 (教材补充例题)如图所示,点A ,B ,C 在⊙O 上,连接OA ,OB ,若∠ABO =25°,求∠C 的度数.【解答】 ∵OA =OB ,∠ABO =25°, ∴∠BAO =∠ABO =25°. ∴∠AOB =130°. ∴∠C =12∠AOB =65°.【跟踪训练1】 如图,点A ,B ,C 在⊙O 上,若∠ABC +∠AOC =90°,则∠AOC 大小为60°.知识点2 圆周角定理的推论例2 (教材P87例4)如图,⊙O 的直径AB 为10 cm ,弦AC 为6 cm ,∠ACB 的平分线交⊙O 于D ,求BC ,AD ,BD 的长.【解答】 连接OD. ∵AB 是直径,∴∠ACB =∠ADB =90°. 在Rt △ABC 中,BC=AB2-AC2=102-62=8(cm).∵CD平分∠ACB,∴∠ACD=∠BCD.∴∠AOD=∠BOD.∴AD=BD.又在Rt△ABD中,AD2+BD2=AB2,∴AD=BD=22AB=22×10=52(cm).例3(教材补充例题)如图,△ABC的顶点都在⊙O上,AD是⊙O的直径,AD=2,∠B=∠DAC,则AC=1.【归纳总结】 1.圆周角定理及其推论中的转化思想:(1)弧是圆周角、圆心角的中介,通过弧可实现圆周角、圆心角之间的转化;(2)在同圆或等圆中,90°的圆周角和直径之间可以相互转化.2.圆周角定理及其推论中常用的辅助线:当题目中出现直径时,通常作出直径所对的圆周角,可得直角,然后结合直角三角形解决问题,即“见直径作直角”.3.利用圆周角定理及其推论进行证明时常用的思路:(1)在同圆或等圆中,若要证弧相等,则考虑证明这两条弧所对的圆周角相等;(2)在同圆或等圆中,若要证圆周角相等,则考虑证明这两个圆周角所对的弧相等;(3)当有直径时,常利用直径所对的圆周角为直角解决问题.【跟踪训练2】如图所示,点A,B,C在⊙O上,已知∠B=60°,则∠CAO=30°.第2题图第3题图【点拨】 连接OC ,构造圆心角的同时构造等腰三角形.【跟踪训练3】 如图所示,AB 是⊙O 的直径,AC 是弦,若∠ACO =32°,则∠B =58°.巩固训练1.如图所示,已知圆心角∠BOC =100°,点A 为优弧BC ︵上一点,则圆周角∠BAC 的度数为50°.第1题图 第2题图2.如图所示,OA 为⊙O 的半径,以OA 为直径的⊙C 与⊙O 的弦AB 相交于点D ,若OD =5 cm ,则BE =10__cm .【点拨】 利用两个直径构造两个垂直,从而构造平行,产生三角形的中位线. 3.如图所示,在⊙O 中,∠AOB =100°,C 为优弧AB ︵的中点,则∠CAB 的度数为65°.第3题图 第4题图4.如图,OA ,OB ,OC 都是⊙O 的半径,∠AOB =2∠BOC.求证:∠ACB =2∠BAC. 证明:∵∠AOB 是劣弧AB ︵所对的圆心角,∠ACB 是劣弧AB ︵所对的圆周角, ∴∠AOB =2∠ACB.同理∠BOC =2∠BAC.∵∠AOB=2∠BOC,∴∠ACB=2∠BAC.【点拨】看圆周角一定先看它是哪条弧所对的圆周角,再看所对的圆心角.课堂小结圆周角的定义、定理及推论.第2课时圆内接四边形教学目标1.理解圆周角的定义,会区分圆周角和圆心角.2.理解同弧或等弧所对的圆心角和圆周角的关系,理解记忆各个推论,能在证明或计算中熟练的应用它们处理相关问题.预习反馈阅读教材P87~88,完成下列问题.1.如果一个多边形的所有顶点都在同一个圆上,这个多边形叫做圆内接多边形,这个圆叫做多边形的外接圆.如图,四边形ABCD是⊙O的内接四边形,⊙O是四边形ABCD的外接圆.第1,2题图第3题图2.圆内接四边形的对角互补.如图,∠A+∠C=180°,∠B+∠D=180°.3.如图,四边形ABCD为⊙O的内接四边形,已知∠BOD=100°,则∠A=50°,∠BCD =130°.例题讲解例 如图所示,已知AB 是⊙O 的直径,∠BAC =32°,D 是AC ︵的中点,那么∠DAC 的度数是多少?【解答】 连接BC.∵AB 是⊙O 的直径,∴∠ACB =90°. 又∵∠BAC =32°, ∴∠B =90°-32°=58°.∴∠D =180°-∠B =122°(圆内接四边形的对角互补). 又∵D 是AC ︵的中点,∴∠DAC =∠DCA =12(180°-∠D)=29°.【跟踪训练1】 已知圆内接四边形ABCD 中,∠A ∶∠B ∶∠C =1∶3∶5,则∠D 的度数为90°.【跟踪训练2】 如图,在⊙O 的内接四边形ABCD 中,点E 在DC 的延长线上.若∠A =50°,则∠BCE =50°.巩固训练1.如图,⊙O 的内接四边形ABCD 中,∠A =120°,则∠BOD 等于120°.第1题图第2题图2.如图所示,圆内接四边形ABCD两组对边的延长线分别相交于点E,F,且∠A=56°,∠E=32°,则∠F=36°.课堂小结圆内接四边形的对角互补.。
3.4 圆周角和圆心角的关系 第1课时(教案)-北师大版数学九年级下册

第4节圆周角和圆心角的关系1.经历探索圆周角和圆心角及其所对弧的关系的过程.2.理解圆周角的概念,了解并证明圆周角定理及其推论.3.理解圆的内接四边形的性质.1.经历探索圆周角和圆心角及其所对弧的关系的过程,培养学生观察、分析、猜想、归纳和逻辑推理的能力.2.通过渗透分类讨论、归纳等数学思想方法,培养学生的探究意识和探索新知识的能力.在经历探索圆周角和圆心角关系的过程中,感受探索的艰辛与喜悦,体验数学活动充满着探索与创造,激发学生的学习欲望.【重点】1.掌握圆周角定理及其证明过程.2.运用圆周角定理及其推论解决相关问题.3.圆的内接四边形的性质及其应用.【难点】1.圆周角定理的证明过程.2.体会分类讨论、归纳等数学思想方法的应用.第1课时圆周角定理及其推论11.理解圆周角的概念,掌握圆周角和圆心角之间的关系(圆周角定理)及其推论1,并会运用它们进行有关的证明和运算.2.理解并掌握圆周角和圆心角之间的关系(圆周角定理)的证明方法.经历探索圆周角和圆心角的关系的过程,学会以特殊情况为基础,通过转化来解决一般性问题的方法,渗透分类的数学思想.通过观察、猜想、验证、推理,培养学生探索数学问题的能力和方法.【重点】掌握圆周角的概念、圆周角定理及推论1及其证明过程.【难点】了解圆周角与圆心的三种位置关系,用化归思想合情推理验证圆周角定理.【教师准备】多媒体课件.【学生准备】1.复习三角形外角的知识和圆的基础知识.2.圆规和直尺.导入一:课件出示:如图所示,有一只小蚂蚁从C点出发,沿着圆周的方向逆时针爬行,在爬行的过程中,蚂蚁所在的点B与点A,C所组成的∠ABC的度数会发生变化吗?若∠AOC=60°,那么∠ABC的度数可能是多少?学生猜测:∠ABC的度数应该不会发生变化,∠ABC的度数可能是30°.【问题】∠ABC是什么角?圆心角∠AOC和∠ABC之间有什么样的关系?[设计意图]通过活泼的小蚂蚁的运动,让学生初步感知圆周角的基本概念以及圆周角与圆心角的关系,使学生对本节课的探究任务一目了然.导入二:课件出示:同学们,你们喜欢踢足球吗?看了2014年巴西世界杯和2015年加拿大女足世界杯了吗?(投影展示世界杯的精彩片段)【问题】请同学们想一想,球员射中球门的难易与什么有关?【学生活动】学生思考后积极回答,学生的答案可能会五花八门.【引导】射门球员与两个门柱组成的角度会决定球员射中球门的难易程度,相信学完本节课的知识你就可以解决这个问题了.[设计意图]由学生熟知的世界杯为引子,创设问题情境,吸引学生的注意,激发学生的学习兴趣.复习所学过的圆心角,并且引出要学习的圆周角,引导学生在观察图形的基础上进行独立思考,然后再进行合作交流,最后达成共识.课件出示:如图所示,球员射中球门的难易程度与他所处的位置B对球门AC的张角(∠ABC)有关.当球员分别站在B,D,E的位置上射门时,哪个位置进球的可能性大?【学生活动】学生思考后并猜测,可能会有大部分的学生认为在D处进球的可能性大,也有学生认为一样大.【教师活动】教师对于学生的回答,暂时不做评论,教师出示动画效果的视频进行演示,继续引导学生思考下面的问题.【问题】图中的三个角∠ABC,∠ADC,∠AEC,以前见过这种类型的角吗?它们有什么共同特征?【学生活动】生观察后,与同伴交流,代表小结三个角的共同特征:(1)角的顶点在圆上;(2)角在圆的内部;(3)角的两边都与圆相交.【教师点评】我们把具有这样特征的角称为圆周角.圆周角的概念:顶点在圆上,两边分别与圆还有另一个交点,像这样的角,叫做圆周角.【教师强调】理解圆周角的概念的两个特征:(1)角的顶点在圆上;(2)角的两边都与圆相交.[过渡语]同学们了解了圆周角的概念,通过下面的题目,来检测一下同学们对圆周角概念的理解程度.判断下列图中的角是否是圆周角,并说明理由.【学生活动】先让学生观察思考,独立判断,基础差的学生回答,并说明是与不是的理由.[设计意图]让学生学好基础知识、基本概念,识别其内容反映出来的数学思想和方法,培养学生的基本技能及分析问题和解决问题的能力,使学生通过自己的观察与探索,发现、理解并掌握圆周角的定义.课件出示:【做一做】如图所示,∠AOB=80°.问题1请你画出几个所对的圆周角,这几个圆周角有什么关系吗?请与同伴进行交流.教师引导学生动手操作并思考下面的问题:1.你所画出的圆周角的度数之间有什么关系?你是怎么得到这个结论的?2.你能画出多少个圆周角?【师生活动】要求学生动手操作,师巡视,发现学生出现的问题,及时纠正.学生独立完成并与同伴进行交流后,代表发言.1.使用量角器进行测量可得所对的圆周角的度数都相等.2.可以画出无数个相等的圆周角.问题2这些圆周角与圆心角∠AOB的大小有什么关系?你是怎么发现的?与同伴进行交流.【师生活动】学生继续进行操作,师参与其中.【学生活动】学生独立完成并与同伴进行交流后,代表发言.利用量角器得出所对的圆周角都等于40°,都等于所对的圆心角80°的一半.【议一议】如果改变图中的∠AOB的度数,上面的结论还成立吗?【活动方式】分组探究,分别以∠AOB的度数为30°,90°,120°和150°为例,分四组练习,得出结论.再结合各组的结论,总结出圆周角与圆心角之间的关系.【学生活动】学生在小组内交流、汇总,并在全班交流、补充.【教师归纳】圆周角与圆心的位置关系只有三种:(1)圆心在圆周角的一边上(如图(1)所示);(2)圆心在圆周角的内部(如图(2)所示);(3)圆心在圆周角的外部(如图(3)所示).【教师活动】要求学生独立写出已知和求证,并利用图(1)进行证明.教师引导学生思考下面的问题:1.△AOC是什么三角形?2.∠AOB与△AOC有什么关系?代表展示:如图(1)所示,∠ACB是所对的圆周角,∠AOB是所对的圆心角.求证∠C=·∠AOB.证明:圆心O在∠C的一条边上,如图(1)所示.∵∠AOB是△AOC的外角,∴∠AOB=∠A+∠C.∵OA=OC,∴∠A=∠C.∴∠AOB=2∠C,即∠C=∠AOB.【做一做】请你完成其他两种情况的证明.教师引导学生思考下面的问题:1.证明圆周角定理的主要思路是什么?2.我们用推理论证的方法得到了第一种情况结论是成立的.对于第二、三种情况都可以转化成圆心在圆周角的一边上的情况去处理.如何进行转化呢?【师生活动】学生分组讨论,师要参与其中,对有困难的小组进行指点.代表发言:1.主要是利用等腰三角形的外角的知识进行证明.2.可以通过作直径的方法进行转化.【活动方式】分成四组解答,第一、三组利用图(2)进行证明,第二、四组利用图(3)进行证明.【学生活动】学生讨论后,理清了思路,独立解答.找2名学生代表板演展示.【教师活动】师利用多媒体出示证明过程,规范学生的证明步骤.证明:圆心O在圆周角的内部(如图所示).在☉O中作直径CD,由前面的结论可知∠ACD=∠AOD,∠BCD=∠BOD,∴∠ACD+∠BCD=∠AOD+∠BOD.即∠ACB=∠AOB.证明:圆心O在圆周角的外部(如图所示).在☉O中作直径CD,由前面的结论可知∠ACD=∠AOD,∠BCD=∠BOD,∴∠ACD-∠BCD=∠AOD-∠BOD.即∠ACB=∠AOB.[设计意图]通过测量和推理证明两种方式得出圆周角的判定定理,加深了学生对于圆周角定【想一想】在射门游戏中,当球员在B,D,E处射门时,所形成的三个张角∠ABC,∠ADC,∠AEC的大小有什么关系?你能用圆周角定理证明你的结论吗?学生分析:如图所示,因为∠ABC,∠ADC,∠AEC都是同一条所对的圆周角,根据圆周角定理,它们都等于所对的圆心角∠AOC度数的一半,所以这三个角都相等.【问题】根据上述探究的结论,以及三个圆周角的共性,你还能得出什么样的结论?【师生总结】圆周角定理推论1:同弧或等弧所对的圆周角相等.【想一想】你现在知道球员在哪个位置把球射进球门的可能性大了吗?学生统一了想法:因为∠ABC=∠ADC=∠AEC,所以球员在B,D,E处把球射进球门的可能性是一样大的.[设计意图]利用情境题及时巩固新知,使每个学生都有收获,感受成功的喜悦,充分肯定探索活动的意义,提高学生的积极性和主观能动性.[知识拓展]在同一个圆中,同弦所对的圆周角可能相等也可能互补.如图所示.【教师强调】(1)“同弧”指“同一个圆”.(2)“等弧”指“在同圆或等圆中”.(3)“同弧或等弧”不能改为“同弦或等弦”.1.圆周角的概念.2.圆周角定理.3.圆周角定理的证明方法.4.圆周角定理的推论1.1.(2014·温州中考)如图所示,已知A,B,C在☉O上,为优弧,下列选项中与∠AOB相等的是()A.2∠CB.4∠BC.4∠AD.∠B+∠C解析:由圆周角定理可得∠AOB=2∠C.故选A.2.如图所示,在☉O中,AC∥OB,∠BAO=25°,则∠BOC的度数为()A.25°B.50°C.60°D.80°解析:∵OA=OB,∴∠B=∠BAO=25°,∵AC∥OB,∴∠BAC=∠B=25°,∴∠BOC=2∠BAC=50°.故选B.3.如图所示,☉O的直径CD⊥AB,∠AOC=50°,则∠CDB的大小为.解析:由垂径定理,得=,∴∠CDB=·∠AOC=25°.故填25°.4.如图所示,☉O是△ABC的外接圆,点D为上一点,∠ABC=∠BDC=60°,AC=3cm,求△ABC的周长.解:∵=,∴∠BDC=∠BAC.∵∠ABC=∠BDC=60°,∴∠ABC=∠BAC=60°,∴∠ACB=60°.∴△ABC为等边三角形.∵AC=3cm,∴△ABC的周长为3×3=9(cm).第1课时1.圆周角的概念:顶点在圆上,两边分别与圆还有另一个交点的角.2.圆周角定理:圆周角的度数等于它所对弧上的圆心角度数的一半.3.圆周角定理的推论1:同弧或等弧所对的圆周角相等.一、教材作业【必做题】1.教材第80页随堂练习第1,2题.2.教材第80页习题3.4第1,2,3题.【选做题】教材第81页习题3.4第4题.二、课后作业【基础巩固】1.(2014·山西中考)如图所示,☉O是△ABC的外接圆,连接OA,OB,∠OBA=50°,则∠C的度数为()A.30°B.40°C.50°D.80°2.(2014·株洲中考)如图所示,点A,B,C都在圆O上,如果∠AOB+∠ACB=84°,那么∠ACB的大小是.3.如图所示,边长为1的小正方形网格中,☉O的圆心在格点上,则∠AED的余弦值是.【能力提升】4.(2014·齐齐哈尔中考)如图所示,在☉O中,OD⊥BC,∠BOD=60°,则∠CAD的度数等于()A.15°B.20°C.25°D.30°5.如图所示,点E是的中点,点A在☉O上,AE交BC于D.求证BE2=AE·DE.6.如图所示,A,B,C,D是☉O上的四点,AB=AC,AD交BC于点E,AE=2,ED=4,求AB的长.7.如图所示,在半径为5cm的☉O中,直径AB与弦CD相交于点P,∠CAB=50°,∠APD=80°.(1)求∠ABD的大小;(2)求弦BD的长.【拓展探究】8.(2015·安徽中考)在☉O中,直径AB=6,BC是弦,∠ABC=30°,点P在BC上,点Q在☉O上,且OP⊥PQ.(1)如图(1)所示,当PQ∥AB时,求PQ的长度;(2)如图(2)所示,当点P在BC上移动时,求PQ长的最大值.【答案与解析】1.B(解析:∵OA=OB,∠OBA=50°,∴∠OAB=∠OBA=50°,∴∠AOB=180°-50°×2=80°,∴∠C=∠AOB=40°.故选B.)2.28°(解析:∵∠AOB=2∠ACB,∠AOB+∠ACB=84°,∴3∠ACB=84°,∴∠ACB=28°.故填28°.)3.(解析:∵∠AED与∠ABC都对应,∴∠AED=∠ABC,在Rt△ABC中,AB=2,AC=1,根据勾股定理得BC=,则cos∠AED=cos∠ABC==.)4.D(解析:∵在☉O中,OD⊥BC,∴=,∴∠CAD=∠BOD=×60°=30°.故选D.)5.证明:∵点E是的中点,∴=.∴∠BAE=∠CBE,∵∠E=∠E(公共角),∴△BDE∽△ABE,∴BE∶AE=DE∶BE,∴BE2=AE·DE.6.解:∵在☉O中,AB=AC,∴弧AB=弧AC.∴∠ABC=∠D.又∠BAE=∠DAB,∴△ABE∽△ADB.∴=,即AB2=AE·AD=2×6=12.∴AB=2.7.解:(1)∵∠APD是△APC的外角,∠CAB=50°,∠APD=80°,∴∠C=80°-50°=30°,∴∠ABD=∠C=30°.(2)如图所示,过点O作OE⊥BD于点E,则BD=2BE,由(1)知∠ABD=30°,OB=5cm,∴BE=OB·cos30°=3×=(cm),∴BD=2BE=2×=3(cm).8.解:(1)连接OQ,如图(1)所示,∵PQ∥AB,OP⊥PQ,∴OP⊥AB,在Rt△OBP中,∵tan B=,∴OP=3tan30°=,在Rt△OPQ中,∵OP=,OQ=3,∴PQ==.(2)连接OQ,如图(2)所示,在Rt△OPQ中,PQ==,∴当OP的长最小时,PQ的长最大,此时OP⊥BC,则OP=OB=,∴PQ长的最大值为=.本节课教学设计上,一是注重了创设情境,激发学生学习的兴趣、主动性和求知欲望,为下一步教学的顺利展开开个好头;二是注重了引导学生经历探索、验证、论证、应用数学新知的过程,鼓励学生用动手实践、自主探究、合作交流的学习方法进行学习,使学生在数学活动中深刻地理解知识和掌握由特殊到一般的认知方法.探索并证明圆周角和圆心角的关系,学生解决起来是有一定难度的,教学时可以给学生留出充足的时间和空间,让他们进行思考、交流.学生在经历画图、猜想、推理、交流、严格证明等过程后,自己得出了结论,收到了预期的效果.在学生证明圆周角定理时由于引导效果不好,导致有些学生解决问题还有困难,不知如何入手.今后在教学中多训练学生的思维能力,再放手,采取结对子帮扶,充分发挥小组长的示范作用.练习(教材第80页)1.解:∠A=∠BOC=×50°=25°.2.解:∠BDC=∠BAC.相等的角还有:∠ADB=∠ACB,∠DBA=∠DCA,∠CAD=∠CBD.习题3.4(教材第80页)1.解:∠ACB=2∠BAC.∵∠ACB=∠AOB,∠BAC=∠BOC,且∠AOB=2∠BOC,∴∠ACB=2∠BAC.2.解:∵∠C=100°,∴∠BOD(大于180°的)=200°,∴∠BOD(小于180°的)=160°,∴∠A=∠BOD=×160°=80°.3.解:尽量保证同排的人视角相同.4.解:当船位于安全区域时,∠α小于“危险角”.对于圆周角的概念的得出,可以通过对情境题的仔细观察就可以直接得出圆周角的概念,而定理的探索,则需要通过动手操作,利用量角器测量的方法得出圆周角与圆心角之间的关系.对于圆周角定理的证明遵循“由特殊到一般”的方法,对于三种可能性的证明则可以利用“转化”的思想方法进行解决.。
圆周角和圆心角的关系ppt课件

-18-
3.4 圆周角和圆心角的关系
解析:如解析图,连接 AB,DE,则∠ABE=∠ADE. ∵ 所对的圆心角的度数为 50°,∴∠ABE= ∠ADE =25°. ∵ 点 A,B,C,D 在 ⊙O 上 ,∴四边形 ABCD 是圆内接四边形, ∴∠ABC+∠ADC=180°, ∴∠ABE+∠EBC+∠ADC=180°, ∴∠EBC+∠ADC=180°-∠ABE=180°-25°=155°. 答案:155° 题型解法:本题考查了圆周角定理和圆内接四边形的 性质,作出辅助线构建圆内接四边形是解题的关键.
-10-
3.4 圆周角和圆心角的关系
■考点四 圆内接四边形
定义
四边形的四个顶点都在同一个圆上,这个四边形叫做圆内接四边形,这个 圆叫做四边形的外接圆
推论 圆内接四边形的对角互补
拓展 圆内接四边形的任何外角等于内对角
注意 并不是所有的四边形都存在外接圆,只有对角互补的四边形才存在外接圆
-11-
3.4 圆周角和圆心角的关系
A. 20° B. 40°
C. 50° D. 70°
-7-
3.4 圆周角和圆心角的关系
3. 如图,已知△ABC 的三个顶点都在同一圆上,且 AC=6,BC=8,AB=10, 则该圆的半径长是 ________.
(第 3 题图)
(第 4 题图)
4. 如图,AB=BC,∠ABC =120°,AD 为 ⊙O 的直径 ,AD=6,那么 AB 的
值为 ______.
-8-
3.4 圆周角和圆心角的关系
5. 如图,AB=AC,AB 是直径,求证:BC=2DE. (第 5 题图)
圆周角课件苏科版数学九年级上册

1. 一条弧所对的圆周角有无数个.
2. 一条弧所对的圆心角只有一个.
3. 由于圆心角的度数与它所对的弧的度数相
等,所以也可以说:圆周角的度数等于它所对
的弧的度数的一半. 这两种表述是一致的,解题
时,也可以直接作为定理加以应用.
感悟新知
例2 [中考·连云港] 如图2.4-5,点A、B、C在⊙O上,BC=
所有的四边形都有外接圆,只有对角互补的四边形
才有外接圆.
感悟新知
例4 [中考·雅安] 如图2.4-9,四边形ABCD为⊙O的内接四
边形,若四边形OBCD为菱形,则∠BAD的度数为
(
)
A. 45°
B. 60°
C. 72°
D. 36°
感悟新知
解题秘方:紧扣圆内接四边形的性质、圆周角定理及菱
形对角相等得到∠BAD 与∠BCD 之间的数量关系,然
感悟新知
知识点 1 圆周角
1. 圆周角的定义 顶点在圆上,并且两边都和圆相交的
角叫做圆周角.
特别解读
圆周角必须满足两个条件:
1. 顶点在圆上;2. 两边都和圆相交.
感悟新知
2. 圆心角与圆周角的区分与联系
名称
圆心角
圆周角
关系
区分
联系
顶点在圆心
顶点在圆上
在同圆中,一条弧所
在同圆中,一条弧所
对的圆心角只有唯一
系求出BC 的长,进而可求出半径.
感悟新知
解:如图2.4-7,连接BC. ∵∠BOC=90°,
∴ BC是⊙A的直径(90°的圆周角所对的弦是直径).
∵∠ODB=30°,
∴∠OCB=∠ODB=30°
(同弧所对的圆周角相等).
沪科版数学九年级下册 圆周角定理及其推论

O
E
B DC
8. 已知 ⊙O 的弦 AB 的长等于 ⊙O 的半径,求此弦 AB
所对的圆周角的度数.
解:分下面两种情况:
(1) 如图①所示,连接 OA,OB,在优弧 ACB 上任取
一点 C,连接 CA,CB.
∵ AB=OA=OB,
∴ 在等边△AOB 中,∠AOB=60°. ∴∠ACB= 1 ∠AOB=30°. 即弦 AB 所对2的圆周角等于 30°.
图①
(2) 如图②所示,连接 OA,OB,在劣弧 AB 上任取一点
D,连接 AD,OD,BD.
则∠BAD= 1 ∠BOD,∠ABD= 1∠AOD.
∴∠BAD+∠2 ABD=
1 2
(∠BOD+2∠AOD)=
同 (1) 可知∠AOB=60°,
1 2
∠AOB.
∴∠BAD+∠ABD=30°.
∴∠ADB=180°-(∠BAD+∠ABD)=150°,
∠ACD = 60°,∠ADC = 70°. 求∠APC 的度数.
解:连接 BC,如图,则∠ACB = 90°,
C
∠DCB =∠ACB-∠ACD = 90°-60° = 30°.
又∵∠BAD =∠DCB = 30°,
A
∴∠APC =∠BAD +∠ADC = 30° + 70°
O PB
= 100°.
D
∵ BAC 1 BOC,BDC 1 BOC,
2
2
∴∠BAC =∠BDC.
问题2 如图,若 CD EF,∠A 与∠B 相等吗?
解:相等.
AB
CD EF, COD EOF.
A 1 COD, B 1 EOF,
2
圆周角第1课时 圆周角定理及推论 教案 2020-2021学年沪科版数学九年级下册

24.3 圆周角第1课时圆周角定理及推论一、教学目标1.理解圆周角的概念,学会识别圆周角;2.了解圆周角与圆心角的关系,能够理解和掌握圆周角定理及推论,并进行简单的计算与证明.二、教学重点及难点重点:了解圆周角与圆心角的关系.难点:能够理解和掌握圆周角定理及推论,并进行简单的计算与证明.三、教学用具多媒体课件四、相关资料无五、教学过程【情景引入】你喜欢看足球比赛吗?你踢过足球吗?第六届东亚四强赛于2015年在武汉举行,共有来自亚洲的8支球队参加赛事,共进行24场比赛决定冠军队伍.比赛如图所示,甲队员在圆心O处,乙队员在圆上C处,丙队员带球突破防守把球传给乙,乙依然把球传给了甲,你知道为什么吗?你能用数学知识解释一下吗?【探究新知】【知识点解析】圆周角,本微课资源针对圆周角进行讲解,并结合具体例题,提高知识的应用能力。
【探究1】圆心角、圆周角问题:我们已经知道,顶点在圆心的角叫圆心角,那么当角的顶点发生变化时,我们能得到几种情况?图3-4-13处理方式:学生根据上图的几种情况,类比圆心角定义,得出圆周角定义:顶点在圆上,并且两边分别与圆还有另一个交点的角叫做圆周角.【数学探究】探究圆周角与圆心角的数量关系,通过探究的方式 ,定量地揭示出圆周角与圆心角的数量关系,同时根据圆周角和圆心角不同的分布,分类讨论,证明定理的正确性. 试一试:指出图3-4-14中的圆心角和圆周角.图3-4-14解:圆心角有∠AOB ,∠AOC ,∠BOC ; 圆周角有∠BAC ,∠ABC ,∠ACB .处理方式:图中圆里有3条半径和3条弦,当学生讲出正确答案后,则需要老师从旁总结寻找圆心角和圆周角的方法.寻找圆心角关注的是半径,任意两条半径所夹的角就是一个圆心角,个数由半径的条数决定.寻找圆周角则应关注弦和弦与圆的交点,任意两弦和两弦的交点组成一个圆周角,数圆周角关键是看弦与圆的交点,看以这个交点为顶点能引出多少条弦,每两条弦所夹的角即是一个圆周角,数完一个交点后,再数另一个交点.这里要注意,因为半径AO 没有延长,所以∠OAB 严格来说还不算是一个圆周角,这里有必要向学生说明一下,但以后在解题中,我们又往往会忽略这些角,因为只要把半径AO 延长与圆相交后,就会形成圆周角了,所以这里要特别注意.【探究2】 探究同一条弧所对圆周角与圆心角的关系画一个80°的圆心角,然后再画同弧所对的圆周角,动手画一画并思考下列问题: 问题1:你所画的这几个圆周角与圆心角的大小有什么关系?如果改变圆心角度数,这个关系依然成立吗?问题2:通过上述问题,你有何猜想?问题3:对于有限次的测量得到的结论,必须通过其论证,怎么证明呢?说说你的想法,并与同伴交流.(几何画板展示)教师适时引导:能否考虑从特殊情况入手试一下.圆周角――→特殊一边经过圆心.由图3-4-15可知,显然∠ABC =12∠AOC ,结论成立.(预设学生口述,并展示)证明:∵∠AOC 是△ABO 的外角, ∴∠AOC =∠ABO +∠BAO .∵OA =OB ,∴∠ABO =∠BAO .∴∠AOC =2∠ABO . 图3-4-15即∠ABC =12∠AOC .如果∠ABC 的两边都不经过圆心(如图3-4-16),那么结果怎样?特殊情况会给我们什么启发吗?你能将下图中的两种情况分别转化成上图中的情况去解决吗?(学生互相交流、讨论)图3-4-16如图①,当点O 在∠ABC 内部时,只要作出直径BD ,将这个角转化为上述情况的两个角的和即可证出.由刚才的结论可知:∠ABD =12∠AOD ,∠CBD =12∠COD ,∴∠ABD +∠CBD =12(∠AOD +∠COD ),即∠ABC =12∠AOC .如图②,当点O 在∠ABC 外部时,仍然是作出直径BD ,将这个角转化成上述情形的两个角的差即可.由前面的结果,有∠ABD =12∠AOD ,∠CBD =12∠COD ,∴∠ABD -∠CBD =12(∠AOD -∠COD ),即∠ABC =12∠AOC .问题4:还会有其他情况吗?经过刚才我们一起探讨,得到了什么结论?教师适时总结:这一结论称为圆周角定理.板书:圆周角的度数等于它所对弧上的圆心角度数的一半.问题5:在上述经历探索圆周角和圆心角的关系的过程中,我们学到了什么方法?图3-4-17处理方式:学生通过从对特殊角的圆周角与圆心角的数量关系入手进行猜想,进而提出猜想、作图,然后写出已知、求证,并进行讨论、交流,在教师的引导下寻找解决问题的途径.教师在讲台利用几何画板演示圆心与圆周角的三种不同位置情况,配合学生的思考过程进行逐步演示分析.并给学生充足的时间思考.通过回顾圆周角定理的证明过程,体会探究过程中的数学思想方法的运用.多让学生用自己的语言表述当中用到的方法,然后教师再进行深加工.【探究3】 探究同弧或等弧所对圆周角之间的关系问题回顾:如图3-4-18,当球员在B ,D ,E 处射门时,他所处的位置对球门AC 分别形成三个张角∠ABC ,∠ADC ,∠AEC ,这三个角的大小有什么关系?处理方式:通过回顾之前提出的问题,直接应用圆周角定理解决问题,然后推导出另一条圆周角与弧的定理.分析:如图3-4-18,连接AO ,CO ,∵∠ABC =12∠AOC ,∠ADC =12∠AOC ,∠AEC =12∠AOC ,∴∠ABC =∠ADC =∠AEC .图3-4-18由此得出定理:同弧或等弧所对的圆周角相等. 【新知运用】 探究点一:圆周角定理【类型一】 利用圆周角定理求角例1 如图,AB 是⊙O 的直径,C ,D 为圆上两点,∠AOC =130°,则∠D 等于( )A .25°B .30°C .35°D .50°解析:本题考查同弧所对圆周角与圆心角的关系.∵∠AOC =130°,∠AOB =180°,∴∠BOC =50°,∴∠D =25°.故选A .方法总结:在同圆或等圆中,同弧和等弧所对的圆周角相等,一条弧所对的圆周角是它所对的圆心角的一半.【类型二】 同弦所对圆周角中的分类讨论思想例2 已知⊙O 的弦AB 长等于⊙O 的半径,求此弦AB 所对的圆周角的度数.解析:弦AB 的长恰好等于⊙O 的半径,则△OAB 是等边三角形,则∠AOB =60°.而弦AB 所对的弧有两段,一段是优弧,一段是劣弧,因此本题要分类讨论.解:分下面两种情况:如图①所示,连接OA ,OB ,在⊙O 上任取一点C ,连接CA ,CB .∵AB =OA =OB ,∴∠AOB =60°,∴∠ACB =12∠AOB =30°.即弦AB 所对的圆周角等于30°.如图②所示,连接OA ,OB ,在劣弧上任取一点D ,连接AD ,OD ,BD ,则∠BAD =12∠BOD ,∠ABD =12∠AOD .∴∠BAD +∠ABD =12(∠BOD +∠AOD )=12∠AOB .∵AB 的长等于⊙O 的半径,∴△AOB 为等边三角形,∠AOB =60°.∴∠BAD +∠ABD =30°,∠ADB =180°-(∠BAD +∠ABD )=150°,即弦AB 所对的圆周角为150°.综上所述,弦AB 所对的圆周角的度数是30°或150°.方法总结:本题考查了等边三角形的判定和性质、圆周角定理和圆内接四边形的性质.要注意的是弦AB 所对的圆周角有两种情况,需分类讨论,解题时可分别作图,结合图形求解,以免漏解.探究点二:圆周角定理的推论【类型一】 利用圆周角定理的推论1解题例3 如图所示,边长为1的小正方形构成的网格中,半径为1的⊙O 的圆心O 在格点上,则∠AED 的正切值等于( )A .55 B .255 C .2 D .12解析:根据同弧或等弧所对的圆周角相等来求解,∵∠E =∠ABD ,∴tan ∠AED =tan∠ABD = AC AB =12.故选D .方法总结:解题的关键是在同圆或等圆中,相等的两条弧所对的圆周角也相等.注意与三角函数的结合.【类型二】 利用圆周角定理的推论2解题例4 如图所示,已知△ABC 的顶点在⊙O 上,AD 是△ABC 的高,AE 是⊙O 的直径,求证:∠BAE =∠CAD .解析:连接BE 构造Rt △ABE ,由AD 是△ABC 的高得Rt △ACD ,要证∠BAE =∠CAD ,只要证出它们的余角∠E 与∠C 相等,而∠E 与∠C 是同弧AB 所对的圆周角.证明:连接BE ,∵AE 是⊙O 的直径,∴∠ABE =90°,∴∠BAE +∠E =90°.∵AD 是△ABC 的高,∴∠ADC =90°,∴∠CAD +∠C =90°.∵AB ︵=AB ︵,∴∠E =∠C .∵∠BAE +∠E =90°,∠CAD +∠C =90°,∴∠BAE =∠CAD .方法总结:涉及直径时,通常是利用“直径所对的圆周角是直角”来构造直角三角形,并借助直角三角形的性质来解决问题. 【随堂检测】1.如图,在⊙O 中,△ABC 是等边三角形,AD 是直径,则∠ADB =________°,∠DAB =________°.2.如图,A ,B ,E ,C 四点都在⊙O 上,AD 是△ABC 的高,∠CAD =∠EAB ,AE 是⊙O 的直径吗?为什么?3.如图,在⊙O 中,直径AB 为10 cm ,弦AC 为6 cm ,∠ACB 的平分线交⊙O 于点D .求BC ,AD 和BD 的长.六、课堂小结1.圆周角的概念 2.圆周角定理一条弧所对的圆周角等于它所对的圆心角的一半. 3.圆周角定理的推论推论1:在同圆或等圆中,同弧或等弧所对的圆周角相等,相等的圆周角所对的弧也相等.推论2:半圆或直径所对的圆周角是直角;90°的圆周角所对的弦是直径.设计意图:通过问题的设置将本节课所学的知识点进行集中的梳理,归纳总结出本节课的重点知识。
沪科版九年级数学下册圆周角定理及其推论

周 圆周角定理
角
及其推论: 推论
①同弧或等弧所对的圆周角相等. ②半圆(或直径)所对的圆周角是直角,90°的圆
周角所对的弦是直径.
∵∠BAC=∠DAC-∠DAB
又∵∠DAC=
1 2
∠DOC
∠DAB=
1 2
∠DOB
∴∠BAC= 1 ∠DOC- 1 ∠DOB
2
2
=
1 2
∠BOC
A O D B
C
A A
O B
C
O B
C
A O
B C
定理:一条弧所对的圆周角等于它所对 圆心角的一半
【对应训练】
如图,⊙O是△ABC的外接圆,∠OCB=50°, 则∠A等于( A )
∠AED=75°,则∠B=( D )
A.15°
B.40°
C.5°
D.35°
3.如图,⊙O中,弦AD平行于弦BC,
∠AOC=78°,求∠DAB的度数.
解:∵AD∥BC,
∴∠DAB=∠B.
又∵∠B=
1 2
∠AOC=39°.
∴∠DAB=39°.
圆周角的定义:顶点在圆上,并且两边都和圆相交的角.
圆
定理: 一条弧所对的圆周角等于它所对的圆心角的一半.
O
ACB 12AOB
A
B
(1)在圆上任取B⌒C,画出圆心角∠BOC 和圆周角∠BAC,圆心角与圆周角有几种位置 关系?
A A
A
O
O
O
B
C
B
B
C
C
(2)如何证明一条弧所对的圆周角等于它所 对的圆心角的一半?
第一种情况: A
证明:∵ OA=OC,
人教版九年级数学上册24.1.4圆周角第1课时圆周角定理及推论优秀教学案例

3.教师关注每个小组的学习进度,及时给予指导和鼓励,使他们在合作中共同成长。
(四)总结归纳
1.教师引导学生进行总结,让学生回顾本节课所学的内容,巩固知识点。
2.教师通过归纳总结,提炼出圆周角定理的重要性和应用价值,使学生能够更好地理解和掌握。
3.教师对学生的学习情况进行评价,鼓励他们继续保持良好的学习态度。
(五)作业小结
1.教师布置相关的作业,让学生巩固所学知识,提高他们的应用能力。
2.教师要求学生.教师对学生的作业进行批改和评价,及时给予反馈,帮助学生提高。
作为一名特级教师,我深知教学内容与过程的重要性。在教学过程中,我注重导入新课,讲授新知,引导学生进行小组讨论,进行总结归纳,以及布置作业小结。通过这五个方面的教学内容与过程,我希望能够为学生提供一个全面、深入的学习平台,帮助他们更好地理解和掌握圆周角定理及推论,提高他们的数学素养。
在教学过程中,我关注每一个学生的学习状态,及时给予反馈和鼓励,使他们在课堂上充分展示自己。针对不同学生的学习需求,我采取个性化的辅导措施,使他们在原有基础上得到提高。
此外,我还注重培养学生的团队协作能力和表达能力。在课堂讨论环节,我鼓励学生积极参与,表达自己的观点,与他人交流,从而提高他们的沟通能力和合作意识。
3.学生通过小组合作、讨论交流,培养他们的团队合作精神和沟通能力,提高他们的人际交往能力。
4.学生能够在学习过程中,养成积极思考、主动探究的良好学习习惯,培养他们的自主学习能力。
作为一名特级教师,我始终坚持以学生为中心,关注每一个学生的全面发展。在教学过程中,我注重知识的传授与技能的培养,更注重学生过程与方法的体验,以及情感态度与价值观的塑造。通过制定这份详细的教学目标,我希望能够为学生提供一个全面、深入的学习平台,帮助他们更好地理解和掌握圆周角定理及推论,提高他们的数学素养。
第一章 §2 2.1 圆周角定理

2.1 圆周角定理对应学生用书P12]1.圆周角定理(1)文字语言:一条弧所对的圆周角等于它所对的圆心角的一半;圆周角的度数等于它所对的弧的度数的一半.(2)符号语言:在⊙O BAC,∠BOC,则有∠BAC=∠BOC=(3)图形语言:如图所示.2.圆周角定理的推论(1)推论1 同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等.(2)推论2 半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弧是半圆.1.圆周角定理中圆周角与圆心角所对的弧是同一段弧吗?提示:一定对着同一条弧才能有定理中的数量关系.2.推论1中若把“同弧或等弧”改为“同弦或等弦”结论还成立吗?提示:不成立.因为一条弦所对的圆周角有两种可能,在一般情况下是不相等的.对应学生用书P13]利用圆周角定理解决计算问题[例1][思路点拨] 本题主要考查圆周角定理.顶点A的位置不确定,所以点A和圆心O可能在BC的同侧,也可能在BC的异侧.[精解详析] (1)当点A和圆心O在BC的同侧时,如图①所示.∵OB=OC,∴∠OBC=∠OCB.∵∠OBC=35°,∴∠BOC=180°-2∠OBC=110°.∴∠BAC=∠BOC=55°.(2)当点A和圆心O在BC的异侧时,如图②所示.设P为圆上与圆心O在BC的同侧一点,连接PB,PC.∵OB=OC,∴∠OBC=∠OCB.∵∠OBC=35°,∴∠BOC=180°-2∠OBC=110°.∴∠BPC=∠BOC=55°.∴∠BAC=180°-∠BPC=180°-55°=125°.综上所得,∠A的度数是55°或125°.使用圆周角定理时,一定要注意“同一条弧”所对的圆周角与圆心角这一条件.1.如图,△ABC内接于⊙O,OD⊥BC于D,∠A=50°,则∠OCD的度数是( )A.40° B.25°C.50° D.60°解析:选A 连接OB.因为∠A=50°,所以BC弦所对的圆心角∠BOC=100°,∠COD=∠BOC=50°,∠OCD=90°-∠COD=90°-50°=40°.所以∠OCD=40°.[例2] 如图,已知AB为⊙O的直径,AC为弦,OD∥BC,交AC于D,BC=4 cm.(1)试判断OD与AC的关系;(2)求OD的长;(3)若2sin A-1=0,求⊙O的直径.[思路点拨] 本题主要考查圆周角定理推论2的应用.解题时,可判断∠ACB=90°.利用OD∥BC可得OD⊥AC.用相似可得OD的长,由边角关系可求⊙O的直径.[精解详析] (1)∵AB为⊙O的直径,∴∠ACB=90°.∵OD∥BC,∴∠ADO=∠ACB=90°,∴OD⊥AC.(2)∵△AOD∽△ABC,∴==,∴OD=BC=×4=2(cm).(3)∵2sin A-1=0,∴sin A=.∵sin A=,∴=,∴AB=2BC=2×4=8(cm).“半圆(直径)所对的圆周角是直角,和直径能构成直角三角形”这一性质应用广泛,解题时注意直角三角形中有关定理的应用.本例的条件变为:“弦AC=4,BC=3,CD⊥AB于D”,求CD.解:由勾股定理知AB=5,∵S△ACB=AC·BC=AB·CD,∴3×4=5×CD,∴CD=.利用圆周角定理解决证明问题[例3]E,求证:AE =BE.[思路点拨] 本题主要考查利用圆周角定理证明问题.解题时只需在△ABE中证明∠ABE=∠EAB.而要证这两个角相等,只需借助∠ACB即可.[精解详析] ∵BC是⊙O的直径,∴∠BAC为直角,又AD⊥BC,∴Rt△BDA∽Rt△BAC.∴∠BAD=∠BCA.FBA=∠ACB.∴∠BAD=∠FBA.∴△ABE为等腰三角形.∴AE=BE.有关圆的题目中,圆周角与它所对的弧及弦可以相互转化.即欲证圆周角相等,可转化为证明它们所对的弧相等.要证线段相等可以转化为证明它们所对的弧相等.这是证明圆中线段相等的常用方法.2.如图,AB是⊙O的直径,C为圆周上一点,∠ABC=30°,⊙O过点B的切线与CO的延长线交于点D.求证:(1)∠CAB=∠BOD.(2)△ABC≌△ODB.证明:(1)因为AB是⊙O的直径,所以∠ACB=90°,由∠ABC=30°,所以∠CAB=60°.又OB=OC,所以∠OCB=∠OBC=30°,所以∠BOD=60°,所以∠CAB=∠BOD.(2)在Rt△ABC中,∠ABC=30°,得AC=AB,又OB=AB,所以AC=OB.由BD切⊙O于点B,得∠OBD=90°.在△ABC和△ODB中,所以△ABC≌△ODB.本课时主要考查圆周角定理及推论的计算与证明问题,难度中档.[考题印证]如图,AB是圆O的直径,D,E为圆O上位于AB异侧的两点,连接BD并延长至点C,使BD=DC,连接AC,AE,DE.求证:∠E=∠C.[命题立意]本题主要考查圆周角定理的推论及平行线的性质.[自主尝试] 连接OD,因为BD=DC,O为AB的中点,所以OD∥AC,于是∠ODB=∠C.因为OB=OD,所以∠ODB=∠B.于是∠B=∠C.因为点A,E,B,D都在圆O上,且D,E为圆O上位于AB异侧的两点,所以∠E和∠B为同弧所对的圆周角,故∠E=∠B.所以∠E=∠C.对应学生用书P14]一、选择题1.如图,CD是⊙O的直径,弦AB⊥CD于E,∠BCD=25°,则下列结论错误的是( )A.AE=BE B.OE=DEC.∠AOD=50° D.D解析:选B 因为CD是⊙O的直径,弦AB⊥CD,AE=BE,因为∠BCD=25°,所以∠AOD=2∠BCD=50°,故A,C,D正确,B不能得证.2.如图所示,AB是⊙O的直径,C AC=8,BC=6,则⊙O的半径r等于( )A. B.5C.10 D.不确定解析:选B 由已知得∠ACB=90°,∴AB==10,即2r=10,r=5.3.如图,直径为10的⊙C经过点A(0,5)和点O(0,0),B是y轴右侧⊙C弧上一点,则cos∠ABO的值为( )A. B.C. D.解析:选B 法一:设⊙C与x轴另一个交点为D,连接AD,如图所示:因为∠AOD=90°,所以AD为⊙C的直径,又因为∠ABO与∠ADO为圆弧AO所对的圆周角,所以∠ABO=∠ADO,又因为A(0,5),所以OA=5,在Rt△ADO中,AD=10,AO=5,根据勾股定理得:OD==5.所以cos∠ABO=cos∠ADO===,故选B.法二:连接CO,因为OA=5,AC=CO=5,所以△ACO为等边三角形,∠ACO=60°,∠ABO=∠ACO=30°,所以cos∠ABO=cos 30°=.4.已知P R都在弦AB的同侧,且点P Q的圆内,点R(如图),则( )A.∠AQB<∠APB<∠ARBB.∠AQB<∠ARB<∠APBC.∠APB<∠AQB<∠ARBD.∠ARB<∠APB<∠AQB解析:选D 如图所示,延长AQ交圆O于点C,设AR与圆O相交于点D,连接BC,BD,则有∠AQB>∠ACB,∠ADB>∠ARB.因为∠ACB=∠APB=∠ADB,所以∠AQB>∠APB>∠ARB.二、填空题5.如图,点A,B,C在⊙O上,∠AOC=60°,则∠ABC的度数是.解析:因为∠AOC=60°,所以弧ABC的度数为60°,AC对的优弧的度数为360°-60°=300°,所以∠ABC=150°.答案:150°6.如图,在△ABC中,AB为⊙O的直径,∠B=60°,∠BOD=100°,则∠C的度数为.解析:因为∠BOD=100°,所以∠A=∠BOD=50°.因为∠B=60°,所以∠C=180°-∠A-∠B=70°.答案:70°7.如图,△ABC为⊙O的内接三角形,AB为⊙O的直径,点D在⊙O 上,∠ADC=68°,则∠BAC= .解析:因为AB是圆O的直径,所以弧ACB的度数为180°,它所对的圆周角为90°,所以∠BAC=90°-∠ABC=90°-∠ADC=90°-68°=22°.答案:22°8.如图,在半径为2 cm的⊙O内有长为2 cm的弦AB,则此弦所对的圆心角∠AOB为.解析:作OC⊥AB于C,则BC=,在Rt△BOC中,∵OC===1(cm),∴=,∴sin∠B=,∠B=30°,∴∠BOC=60°,∴∠AOB=120°.答案:120°三、解答题9.如图,在⊙O中,弦AB=16,点C在⊙O上,且sin C=.求⊙O的半径长.解:作直径AD,连接BD,则∠ABD=90°,∠D=∠C.因为sin C=,所以sin D=.在Rt△ABD中,sin D==,又因为AB=16,所以AD=16×=20,所以OA=AD=10,即⊙O的半径长为10.10.如图,已知在⊙O中,直径AB为10 cm,弦AC为6 cm,∠ACB的平分线交⊙O于D,求BC,AD和BD的长.解:因为AB为直径,所以∠ACB=∠ADB=90°.在Rt△ABC中,BC===8(cm).因为CD平分∠ACB,所以△ADB为等腰三角形.所以AD=BD=AB=×10=5(cm).11.如图,AB是⊙O的直径,弦CD⊥AB于点N,点M在⊙O上,∠1=∠C.(1)求证:CB∥MD.(2)若BC=4,sin M=,求⊙O的直径.解:(1)证明:因为∠C与∠M是同一弧所对的圆周角,所以∠C=∠M.又∠1=∠C,所以∠1=∠M,所以CB∥MD(内错角相等,两直线平行).(2)由sin M=知,sin C=,所以=,BN=×4=.由射影定理得:BC2=BN·AB,则AB=6.所以⊙O的直径为6.。
人教版数学九年级上册《圆周角》圆(第1课时圆周角及其定理)

A.1 个 C.3 个
B.2 个 D.4 个
5
2.【湖北宜昌中考】如图,点 A、B、C 均在⊙O 上,当∠OBC=40°时,∠A 的 度数是( A )
A.50° C.60°
B.55° D.65°
6
3.【广东广州中考】如图,AB 是⊙O 的弦,OC⊥AB,交⊙O 于点 C,连接 OA、 OB、BC,若∠ABC=20°,则∠AOB 的度数是( D )
20
(2)过点 A 作 AM⊥DF 于点 M.设 AF=2a.∵△AEF 是等边三 角形,∴FM=EM=a,AM= 3a.在 Rt△DAM 中,AD= 7AF =2 7a,AM= 3a,∴DM= AD2-AM2= 2 7a - 2 3a2=5a, ∴BF=DF=DM+FM=5a+a=6a,∴AB=AF+BF=8a.在 Rt △ABC 中,∠B=30°,∠ACB=90°,∴AC=12AB=4a,∴CE=AC-AE=2a,∴ EF=CE=2a,∴∠ECF=∠EFC.∵∠AEF=∠ECF+∠EFC=60°,∴∠EFC= 30°,∴∠AFC=∠AFE+∠EFC=60°+30°=90°,∴CF⊥AB.
11
能力提升
8.如图,把直角三角板的直角顶点 O 放在破损玻璃镜的圆周上,两直角边与圆 弧分别交于点 M、N,量得 OM=8 cm,ON=6 cm,则该圆玻璃镜的半径是( B )
A. 10 cm C.6 cm
B.5 cm D.10 cm
12
9.如图,在⊙O 中,半径 OC⊥弦 AB 于点 D,点 E 在⊙O 上,∠E=22.5°, AB=4,则半径 OB 等于( C )
︵︵ BC= AB2-AC2= 102-82=6.∵BC=CD,∴BC=CD,∴OC⊥BD 于点 E,∴BE =DE.∵BE2=BC2-EC2=OB2-OE2,∴62-(5-x)2=52-x2.解得 x=75.∵BE=DE, BO=OA,∴AD=2OE=154,∴四边形 ABCD 的周长=BC+CD+AB+AD=6+6+ 10+154=1254.