【八年级】八年级数学下册20数据的分析小结与复习学案新版新人教版

合集下载

人教版八年级数学下册《数据分析小结与复习》导学案

人教版八年级数学下册《数据分析小结与复习》导学案

人教版八年级数学下册第20章《小结与复习》教学设计★课标要求★本课是全章的回顾与复习,是在学习完本章内容后,回顾数据的收集、整理、描述、分析的过程,整理数据分析相关的概念及其关系,建立统计知识之间的联系,综合运用统计知识解决实际问题,再次感悟样本估计总体的思想.★学习目标★知识与技能会计算平均数、中位数、众数和方差;过程与方法进一步理解平均数、中位数、众数和方差的统计意义,能根据问题的实际需要选择合适的量表示数据的集中趋势和波动程度;.经历数据处理的基本过程,体会用样本估计总体的思想,感受统计在生活和生产中的作用.情感态度与价值观培养统计意识,形成尊重事实,用数据说话的有态度,认识数据处理的实际意义。

★学习重、难点★分析数据的集中趋势和波动程度,体会样本估计总体的思想.★教法分析★1.注意与前两个学段相关内容的衔接,将三个学段的学习连成一个相互联系、螺旋上升的整体。

因此,教学中要注意对已有知识的复习,在复习的基础上学习新内容,使学生对于分析数据的知识和方法形成整体认识。

2.准确把握教学要求,通过较多实例,从不同的方面进一步感受抽样的必要性,并初步感受样本的代表性,体会不同的抽样可能得到不同的结果,能够用样本的平均数,方差估计总体的平均数、方差等。

★学情学法★学情分析学生在此前已经学习了算术平均数的计算方法,学习了数据的收集和数据的表示等统计知识,在此基础上进行加权平均数的学习,可以加深学生对知识的理解与应用。

另外,学生在此前学习了扇形统计图、条形统计图、折线统计图,在此基础上学习平均数、中位数、众数、方差等知识,可以加深学生对知识的掌握和应用。

学法建议1.本章知识与生产、生活等方面联系非常密切,它的应用已渗透到社会的各个方面。

实际上,我们从事任何工作都离不开数据和统计知识。

因此学习时,多注意联系现实生活问题,提高应用能力。

2.注意多与同学展开讨论,合作交流,提高自己的阅读能力和理解水平及根据计算结果对实际问题作出正确评判的能力。

人教版八年级数学下册第二十章数据的分析小结(教案)

人教版八年级数学下册第二十章数据的分析小结(教案)
-众数:讲解众数在一组数据中的出现次数最多,可能有一个或多个众数的特点。
-方差、标准差的计算与应用:这两个指标是描述数据离散程度的关键,要使学生理解其在实际中的应用。
-方差:重点讲解方差计算公式,强调每个数据值与平均数差的平方在方差计算中的重要性。
-标准差:介绍标准差是方差的平方根,使学生理解标准差在数据标准化描述中的作用。
1.培养学生运用数据分析解决问题的能力,增强数据处理和数学建模的核心素养。
2.提高学生运用平均数、中位数、众数等描述数据集中趋势的能力,理解并运用方差、标准差描述数据离散程度。
3.培养学生制作频数分布表、绘制频数分布直方图的能力,提升几何直观和数据分析素养。
4.引导学生在实际问题中发现数学规律,培养逻辑思维和问题解决能力,增强数学应用意识。
五、教学反思
在今天的教学中,我尝试通过生活中的实例导入新课,希望以此激发学生对数据分析的兴趣。在讲解平均数、中位数、众数等基本概念时,我注意引导学生理解这些指标在描述数据集中趋势时的作用。同时,通过具体案例的分析,让学生感受到数据分析在实际中的应用价值。
在新课讲授过程中,我发现学生在理解方差、标准差等概念时存在一定难度。为了突破这个难点,我采用了举例和比较的方法,帮助他们理解这些指标在描述数据离散程度方面的意义。在实践活动中,学生们分组讨论并进行了实验操作,这有助于巩固他们对数据分析方法的理解。
3.重点难点解析:在讲授过程中,我会特别强调平均数、中位数、众数的计算方法和应用场景。对于难点部分,如方差的计算,我会通过举例和比较来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与数据分析相关的实际问题,如“如何选择合适的统计指标来描述班级同学的体育成绩”。

八年级数学下册第二十章《数据的分析》小结与复习教案(新版)新人教版

八年级数学下册第二十章《数据的分析》小结与复习教案(新版)新人教版

信息,但它受极端值的影响较大;它
的 大小与一组数据中的每个数据均有关系,任何一个数据的变动都会相应引起
的变动 .
⑵一组 数据中出现最
的数据称为这组数据的众数;众数是当一组数据中某一数据重复出现较多时,人
们往往关心的一个量,众数不受极端值的影响。
(3) 将一组数据按照由小到大 ( 或由大到小的 ) 的顺序排列,如果数据的个数是奇数,则处于中间位置的数
第二十章《数据的分析》
教案目标数、中位数、众数和方差的统计
意义,能根据问题的实际需要选择合适的量表示数
据的集中趋势和波动程度;
3.经历数据处理的基本过程,体会用样本估计总体的思想,感受统计在生活和生
产中的作用.
学习重点:分析数据的集中趋势和波动程度,体会样本估计总体的思想.
1200 人,图 20-10-1
是该校各年级学生人数.比.例.. 分布的扇形统计图,图 20-10-2 是该校学生人均.存.款.. 情况的条形统计图.
( 1)九年级学生人均存款多少元?
( 2)该校学生人均存款多少元?
( 3)已知银行一年期定期存款的年利率是 2.25% (“爱心储蓄”免收利息税) ,且每 351 元能提供给一位
).
A . 12 B . 18 C . 14 D . 12
2、衡量样本和总体的波动大小的特征数是(

A .平均数 B .方差 C .众数 D .中位数
3、一组数据按从小到大排列为 1,2,4,x,6,9 这组数据的中位数为 5,?那么这组数据的众数为 ( )
A . 4 B . 5 C .5.5 D .6
_________.
3、若 10 个数的平均数是 3,方差是 4,则将这 10 个数都扩大 1 0 倍,则这组数据的平均数是

新人教版 八年级数学下册 第20章 数据的分析 单元教案合集(含章节小结与复习)

新人教版 八年级数学下册 第20章 数据的分析 单元教案合集(含章节小结与复习)

20.1.1 数据的集中趋势一、教学目标1. 理解数据的权和加权平均数的概念;2.掌握加权平均数的计算方法。

3. 初步经历数据的收集与处理过程,发展学生初步的统计意识和数据处理能力。

二、课时安排1课时三、教学重点会求一组数据的算术平均数和加权平均数。

四、教学难点理解加权平均数的概念,利用加权平均数解决实际问题。

五、教学过程(一)新课导入【过渡】在小学的时候,我们就接触过平均数这个概念。

而我们日常生活中,也经常能遇到这类问题,比如我们在每次考试结束后要进行横向对比,看本班级在年级中的所排名次如何,自己在本班中排名第几,这就需要知道各科分数这些数据,并要对数据进行处理之后才能得出结论,现在,我们就来回忆一下平均数。

1、如何求一组数据的平均数?2、七位裁判给某体操运动员打的分数分别为:7.8,8.1,9.5,7.4,8.4,6.4,8.3.如果去掉一个最高分,去掉一个最低分,那么,这位运动员平均得分是多少?(学生回答)【过渡】刚刚的问题呢,都是比较简单的问题,今天我们就来学习一下更进一步的关于平均数的问题。

(二)讲授新课【过渡】在正式的对新课进行讲解之前,我们先通过两个简单的问题,来检查一下同学们的预习情况。

【预习反馈】1、小王参加某企业招聘测试,他的笔试、面试、技能操作得分分别为95分、80分、90分,若依次按照60%、30%、10%确定成绩,则小王的成绩是()A.85.5分B.90分C.92分D.265分2、调查某一路口某时段的汽车流量,记录了30天同一时段通过该路口的汽车辆数,其中有2天是256辆,2天是285辆,23天是899辆,3天是447辆.那么这30天在该时段通过该路口的汽车平均辆数为()A.125辆B.320辆C.770辆D.900辆【过渡】大家刚刚回答的都很正确,看来,大家预习的都不错。

那么现在,就由我带领大家再来认识加权平均数。

加权平均数:【过渡】通过之前的学习,我们知道了平均数可以反映一组数据的平均水平,那么,在实际问题中,我们有该如何理解平均数的统计意义呢?课本问题1。

人教版八下数学第20章《数据的分析》复习教案+学案

人教版八下数学第20章《数据的分析》复习教案+学案

人教版八下数学第20章《数据的分析》复习教案【思维导图】【教学目标】知识与技能目标了解平均数、众数、中位数、极差、方差有关概念,掌握平均数、方差的计算公式,会找一组数据的中位数、众数、极差,能进行计算和解决生产、生活中的有关问题.过程与方法目标能结合具体情境发现并提出问题,逐步具有观察、猜想、推理、归纳和合作学习能力.情感、态度与价值观目标通过创设问题情境,激发学生自主探求的热情和积极参与的意识;通过合作交流,培养学生团结协作、乐于助人的品质.【教学重点】掌握平均数、方差的计算公式,会找一组数据的中位数、众数、极差,能进行计算和解决生产、生活中的有关问题.【教学难点】选择合适的统计量表示数据的集中趋势.【教学准备】教师准备:教学中出示的例题和图片.学生准备:复习平均数、中位数、众数,并完成本节学案中的自主学习内容. 【知识梳理与建构】专题一平均数【专题分析】平均数的计算考查频率较高,题型以选择题、填空题为主,也涉及解答题,考查形式有:①直接给一组数据或表格中的数据求平均数;②一组数据中含有未知数,已知某个数据代表求其他数据代表.例1若7名学生的体重(单位:kg)分别是:40,42,43,45,47,47,58,则这组数据的平均数是()A.44B.45C.46D.47解析:这组数据共有7个,可以采用简化公式进行计算.将这组数据的每一个数都减去40,得到一组新数据:0,2,3,5,7,7,18,这组新数据的平均数为6,所以原数据的平均数为40+6=46.故选C.[归纳总结]对于由n个数据x1,x2,…,x n组成的一组数据,如果将这组数据中的每一个数据都减去同一个常数a,这组新数据的平均数为',那么原数据的平均数为='+a.对于由n个数据x1,x2,…,x n组成的一组数据,如果x1出现了f1次,x2出现了f2次,…,x k出现了f k次,其中f1+f2+…+f k=n,那么,这组数据的平均数可用加权平均数公式=(f1x1+f2x2+…+f k x k)进行计算.【跟踪训练1】如图所示的是小芹6月1日~7日每天的自主学习时间统计图,则小芹这七天平均每天的自主学习时间是()A.1小时B.1.5小时C.2小时D.3小时解析:先从折线统计图中获取数据信息,然后用这组数据的和除以数据的个数.(2+1+1+1+1+1.5+3)÷7=1.5.故选B.专题二中位数和众数【专题分析】中位数和众数的计算考查频率较高,题型大多以选择题、填空题为主,考查形式有:①直接给出一组数据或表格中的数据求中位数和众数;②一组数据中含有未知数,已知某个数据代表求其他数据代表.例2数据1,2,4,0,5,3,5,中位数和众数分别是()A.3 和2B.3和3C.0和5D.3和5解析:这7个数据按从小到大的顺序排列,位于第4个的是3,故中位数是3;这7个数据中出现次数最多的数据是5,一共出现了2次,所以众数是5.故选D.[规律方法]找中位数要把数据按从小到大(或从大到小)的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数,当数据个数为奇数时,中位数即为中间的一个,当数据个数为偶数时,中位数就是中间两个数的平均数;众数是一组数据中出现次数最多的数据,注意众数可以不止一个.【跟踪训练2】空气质量状况已引起全社会的广泛关注,某市统计了2013年每月空气质量达到良好以上的天数,整理后制成如下折线统计图和扇形统计图.某市2013年每月空气质量良好以上天数折线统计图某市2013年每月空气质量良好以上天数扇形统计图根据以上信息解答下列问题:(1)该市2013年每月空气质量达到良好以上天数的中位数是天,众数是天;(2)求扇形统计图中扇形A的圆心角的度数;(3)根据以上统计图提供的信息,请你简要分析该市的空气质量状况.(字数不超过30字)解析:(1)将这组数据按照一定的顺序排列,取中间两个数的平均数就是中位数;取次数出现最多的那个数就是众数;(2)20天以上的一共有两个数据,360°×=60°,就是扇形A的圆心角的度数;(3)根据题意只要回答正确就可以.解:(1)由题意可得数据为8,9,12,13,13,13,15,16,17,19,21,21,最中间的是13,15,故该市2013年每月空气质量达到良好以上天数的中位数是14天,众数是13天. (2)360°×=60°,答:扇形A的圆心角的度数是60°.(3)答案不唯一,合理即可.月空气质量良好以上的天数在10~20天的占了多数.专题三方差【专题分析】方差是从不同层面反映一组数据的特征数,在解决问题时,准确掌握这些特征数的概念、对应公式,以及灵活运用公式是关键.题型以选择题、填空题为主,考查形式有:①直接给出一组数据或表格中的数据求方差;②根据比较方差值的大小,判定稳定性,解决实际问题.例1一组数据3,4,5,x,7,8的平均数为6,则这组数据的方差是.解析:可以先根据平均数求出x的值,然后根据方差公式求解.∵3,4,5,x,7,8的平均数为6,∴x=9.∴方差为s2=×[(3-6)2+(4-6)2+(5-6)2+(7-6)2+(8-6)2+(9-6)2]=.故填.[归纳总结]数据中有未知数时,一般先求出这个未知数,再根据方差公式计算即可.若一组数据是由另一组数据逐个加几或减几得到的,则这两组数据的方差相同.【跟踪训练3】我市射击队为了从甲、乙两名运动员中选出一名运动员参加省运会比赛,组织了选拔测试,两人分别进行了五次射击,成绩(单位:环)如下:甲10 9 8 9 9乙10 8 9 8 10则应选派运动员参加省运会比赛.〔解析〕甲的平均数是×(10+9+8+9+9)=9,乙的平均数是×(10+8+9+8+10)=9,甲的方差是=×[(10-9)2+(9-9)2+(8-9)2+(9-9)2+(9-9)2]=0.4,乙的方差是=×[(10-9)2+(8-9)2+(9-9)2+(8-9)2+(10-9)2]=0.8,∵<,∴甲的成绩稳定,∴应选择甲运动员参加省运会比赛.故填甲.专题四用样本估计总体【专题知识】一般情况下,如果总体的容量较大,不便分析其数据特征,我们可以通过随机抽取一定的样本,通过样本的数据特征来对总体的数据特征进行估计,但难免有一定误差.本章主要利用平均数、方差的公式,通过计算样本的平均数、方差,估计总体的平均数、方差,进一步感受抽样的必要性,体会用样本估计总体的思想.【专题分析】考查用样本估计总体的题目,选择题、填空题或解答题的形式均有可能出现,一般在3~5分.例4杨静在承包的果园里种植了100棵樱桃树,今年已经进入收获期,从中任意采摘了6棵树上的樱桃,分别称得每棵树的产量(单位:千克)如下表:序号 1 2 3 4 5 6产量17 21 19 18 20 19设这组数据的中位数为m,樱桃的总产量为n,则m,n分别为()A.18,2000B.19,1900C.18.5,1900D.19,1850解析:把数据17,21,19,18,20,19按从小到大的顺序排列为17,18,19,19,20,21,∴中位数为19,平均数为==19,即每棵樱桃树的产量约为19千克,∴樱桃的总产量约为19×100=1900千克.故选B.[易错点津]在求中位数时容易出现的错误是没有把数据按大小顺序排列,而是直接求了表格中从左到右中间两个数的平均数.【跟踪训练4】据省环保网发布的消息,吉首市空气质量评价连续两年居全省14个省辖市城市之首,下表是吉首市2014年5月份前10天的空气质量指数统计表.2014年5月1日~10日空气质量指数(AQI)情况(表一)日期1日2日3日4日5日6日7日8日9日10日空气质量指数(AQI) 28 38 94 53 63 149 53 90 84 35空气质量污染指数标准(AQI)(表二)污染指数等级0~50 优51~100 良101~150 轻微污染151~200 轻度污染(1)请你计算这10天吉首市空气质量指数的平均数,并据此判断这10天吉首市空气质量平均状况属于哪个等级;(用科学计算器计算或笔算,结果保留整数)(2)按规定,当空气质量指数AQI≤100时,空气质量才算“达标”,请你根据表(一)和表(二)所提供的信息,估计今年(365天)吉首市空气质量“达标”的天数.(结果保留整数)解析:(1)算出10天空气质量指数的平均数并根据对应表作出判断即可;(2)先统计出样本中“达标”的天数并算出达标率,再算出今年(365天)吉首市空气质量“达标”的天数即可.解:(1)=×(28+38+94+53+63+149+53+90+84+35)=68.7≈69,这10天空气质量平均状况属于良.(2)∵这10天中“达标”的天数为9天,∴365×=328.5≈329,∴今年吉首市空气质量“达标”的天数为329天.专题五统计思想【专题知识】统计学是用方法论科学,在所有涉及实质性现象的领域中,统计方法都发挥着越来越重要的作用.这些统计方法具有内在的联系和逻辑关系,在认识事物时存在比较通用的模式,这些认识模式是统计学的基本思想.本章中,统计思想就是通过数据收集、数据处理和数据分析,更合理地解决实际问题.【专题分析】统计学是与数据打交道的一门学科,研究如何搜集、整理、计算和分析数据,然后从中找出一些规律,统计思想是用统计知识解决现实生活中涉及数据的问题.题型可以以多种形式出现.例5 某工厂有220名员工,财务科要了解员工收入情况.现在抽测了10名员工的本月收入,结果如下:(单位:元)166001540015100167001620015800158001600016200 16200(1)这组数据的中位数和众数分别是多少?(2)员工的月平均收入是多少?(3)估算一下财务科本月应准备多少钱发工资.解:(1)将这组数据按照从小到大的顺序排列为15100,15400,15800,15800,16000, 16200,16200,16200,16600,16700,处于中间位置的两个数为16000和16200,故中位数为16100.该组数据中,出现次数最多的数为16200,故众数是16200.(2)员工的月平均收入为(15100×1+15400×1+15800×2+16000×1+16200×3+16600×1+16700×1)÷10=16000(元).(3)从(2)得到员工的月平均收入为16000元,工厂共有220名员工,所以估计财务科本月应准备16000×220=3520000(元).【针对训练5】请根据所给信息,帮助小颖同学完成她的调查报告.2013年4月叶邑八年级学生每天干家务活平均时间的调查报告调查目的了解八年级学生每天干家务活的平均时间调查内容叶邑中学八年级学生干家务活的平均时间调查方式抽样调查调查步骤1.数据的收集:(1)在回龙八年级每班随机调查5名学生(2)统计这些学生2013年4月每天干家务活的平均时间(单位: min),结果如下(其中A表示10 min,B表示20 min,C表示30 min)B A A B B B B AC B B A B B CA B A A C A B B C B A B B A C2.数据的处理:以统计图的形式呈现上述统计结果,请补全统计图3.数据的分析:列式计算随机调查的学生每天干家务活平均时间的平均数(结果保留整数)调查结论叶邑中学八年级共有240名学生,其中大约有名学生每天干家务活的平均时间是20 min解析:先从表格中得出平均每天干家务活的时间为30 min的有5名学生,从而补全统计图,再根据A表示10 min,B表示20 min,C表示30 min和学生数即可求出随机调查的学生每天干家务活的平均时间的平均数,最后根据每天干家务活的平均时间是20 min所占的百分比乘240,即可得出大约每天干家务活的平均时间是20 min的学生数.解:从表中可以看出C的学生数是5人,如图所示,每天干家务活平均时间的平均数是(10×10+15×20+5×30)÷30≈18(min),根据题意得240×=120(人),回龙八年级共有240名学生,其中大约有120名学生每天干家务活的平均时间是20 min.专题六方程思想【专题分析】本章中运用方程思想主要是将一组数据中的未知数据用x,y表示,然后根据已知条件列出方程或方程组求解.例6 八(1)班五位同学参加学校举办的数学素养竞赛.试卷中共有20道题,规定每题答对得5分,答错扣2分,未答得0分.赛后A,B,C,D,E五位同学对照评分标准回忆并记录了自己的答题情况(E同学只记得有7道题未答),具体如下表:参赛同学答对题数答错题数未答题数A19 0 1B17 2 1C15 2 3D17 1 2E//7(1)根据以上信息,求A,B,C,D四位同学成绩的平均分;(2)最后获知A,B,C,D,E五位同学的成绩分别是95分,81分,64分,83分,58分.①求E同学的答对题数和答错题数;②经计算A,B,C,D四位同学实际成绩的平均分是80.75分,与(1)中算得的平均分不相符,发现是其中一位同学记错了自己的答题情况.请指出哪位同学记错了,并写出他的实际答题情况(直接写出答案即可).解析:本题考查了统计知识及二元一次方程(组)的综合应用,解题的关键是能根据题目的条件建立方程或方程组求解实际问题.(1)根据得分规则分别求得4名学生的成绩,再求平均数.(2)①根据E同学的总分和得分规则利用方程组或方程求得E同学的答对题数和答错题数;②根据题目中出现的表格计算A,B,C,D四位同学的得分,与最后获知的A,B,C,D四位同学的成绩进行比较确定记错答题情况的同学,最后求得他的实际答对题数和答错题数.解:(1)A同学的成绩为5×19-2×0+0×1=95(分),B同学的成绩为5×17-2×2+0×1=81(分),C同学的成绩为5×15-2×2+0×3=71(分),D同学的成绩为5×17-2×1+0×2=83(分).A,B,C,D四位同学成绩的平均分为=82.5(分).答:A,B,C,D四位同学成绩的平均分为82.5分.(2)①设E同学答对x题,答错y题.由题意,得解得答:E同学答对12题,答错1题.②C同学,他实际答对14题,答错3题,未答3题.[归纳总结]根据得分规则及学生答题情况建立方程或方程组解决问题.【跟踪训练6】下表是某校九年级(1)班30名学生期末考试的数学成绩表(已污损):成绩/分50 60 70 80 90 100人数/人 2 5 7 3已知该班学生期末考试的数学成绩的平均分是76分.(1)求该班成绩为80分和90分的各有多少人;(2)设该班30名学生数学成绩的众数为a,中位数为b,求a+b的值.解析:(1)根据已知条件,利用平均数的计算公式列出方程组求解即可.(2)根据众数和中位数的概念确定这组数据的众数和中位数,即可求出a +b 的值. 解:(1)设该班有x 人得80分,有y 人得90分,根据题意和平均数的意义,可列出方程组为:⎪⎩⎪⎨⎧----=+=⨯+++⨯+⨯+⨯375230763031009080770560250y x y x , 整理得⎩⎨⎧=+=+1310998y x y x ,解得⎩⎨⎧==58y x 因此该班成绩为80分的学生有8人,成绩为90分的学生有5人.(2)分析表格中的数据可知该班30名学生数学成绩的众数为80分,中位数(按从小到大排序后第15个数和第16个数的平均数)为80分,所以a +b =80+80=160.专题七 数形结合思想【专题知识】数形结合是指将数(或量)与形(图形)结合起来对问题进行研究,本章中许多题目的信息都是通过统计图给出的,有些问题将数据表现在图上,更能直观地反映数据的特点,解决此类题目我们要把抽象的数据和直观的图形结合起来,使问题达到“化难为易、化抽象为直观”.【专题分析】统计中的题目大部分都是以图表形式提供信息,所以涉及运用数形结合思想较广泛.可以以选择题、填空题或解答题的形式出现.例7 某高中学校为使高一新生入校后及时穿上合身的校服,现提前对某校九年级三班学生所穿校服型号情况进行了摸底调查,并根据调查结果绘制了如下两个不完整的统计图(校服型号以身高作为标准,共分为6种型号).根据以上信息,解答下列问题:(1)该班共有多少名学生?其中穿175型号校服的学生有多少?(2)在条形统计图中,请把空缺的部分补充完整;(3)在扇形统计图中,请计算185型号校服所对应扇形圆心角的大小;(4)求该班学生所穿校服型号的众数和中位数.解析: (1)由条形统计图确定165型号的人数,由扇形统计图确定165型号占的百分比,得出总人数,再用总人数乘175型号占的百分比求出穿175型号校服的学生人数;(2)根据人数把条形统计图补充完整;(3)由条形统计图得出穿185型号校服的人数,再计算出百分比,用360°乘百分比求出圆心角的度数;(4)观察各个数据,出现次数最多的是众数,排序后中间的两个数据的平均数是中位数.解:(1)15÷30%=50(人),50×20%=10(人),即该班共有50名学生,其中穿175型号校服的学生有10人.(2)补充如下:(3)圆心角的度数为360°×=14.4°.(4)165和170出现的次数最多,都是15次,故众数是165和170;共50个数据,第25个和第26个数据都是170,故中位数是170.[解题策略]本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.除此之外,此题还需要准确掌握平均数、中位数、众数的概念及计算方法.【跟踪训练7】在“大家跳起来”的乡村学校舞蹈比赛中,某校10名学生参赛成绩统计如图所示.对于这10名学生的参赛成绩,下列说法中错误的是() A.众数是90 B.中位数是90 C.平均数是90 D.极差是15解析:根据折线统计图,可以发现数据80出现次数是1,数据85出现次数是2,数据90 出现次数是5,数据95 出现次数是2,按照数据由小到大的次数累加确定中位数,根据次数出现多少判断众数,结合平均数计算方法确定平均数,极差用最大数据减去最小数据即可.易于看出众数是90,A正确,中位数是90,B正确,极差是95-80=15,D正确,运用排除法C错误,也可进一步计算平均数为(80×1+85×2+90×5+95×2)÷10=89,C错误.故选C.人教版八下数学第20章《数据的分析》复习学案【学习目标】知识与技能了解总体、个体、样本等概念,理解统计的基本思想是用样本的特征去估计总体的特征,会用平均数、中位数、众数、极差、方差进行数据处理.过程与方法经历探索数据的收集、整理、分析过程,在活动中发展学生的统计意识和数据处理的方法与能力.情感态度与价值观培养合作交流的意识与能力,提高解决简单的实际问题能力,形成一定的数据意识和解决问题的能力,体会特征数据的应用价值.【学习重点】应用样本数字特征估计总体的相应特征,处理实际问题中的统计内容.【学习难点】方差概念的理解和应用.【自主学习】Step 1:梳理知识夯实基础知识线索:平均数中位数众数极差方差集中趋势波动大小数字特征应用本章思想:平均数是衡量样本(求一组数据)和总体平均水平的特征数,通常用样本的平均数去估计总体的平均数。

新人教版八年级数学下册《二十章 数据的分析 小结 习题训练》教案_3

新人教版八年级数学下册《二十章 数据的分析  小结  习题训练》教案_3

《数据的分析》复习教案一、复习目标1.会计算加权平均数,理解“权”的意义,能选择适当的统计量表示数据的集中趋势;2.会计算极差和方差,理解它们的统计意义,会用它们表示数据的波动情况.3、在用样本的平均数、方差估计总体的平均数、方差过程中,进一步感受抽样的必要性,体会用样本估计总体的思想.二、复习重点用样本的集中趋势和波动情况估计总体的集中趋势和波动情况.三、复习难点选择合适的统计量来反映具体问题中的数据特征.四、复习过程(一)知识框图,整体把握(二)释疑解惑,加深理解1请归纳出平均数、中位数和众数这三种刻画数据集中趋势的统计量的意义和特征.2算术平均数和加权平均数有什么区别和联系?举例说明加权平均数中“权”的意义.3举例说明极差和方差是怎样刻画数据的波动情况的?(三)典例精析,复习新知例1 为了解5路公共汽车的运营情况,公交部门统计了某天5路公共汽车每个运行班次的载客量,得到下表:(1)这天5(2)从表中,你能知道这一天5路公共汽车大约有多少班次的载客量在平均载客量以上吗?占全天总班次的百分比是多少?例2. 一家鞋店在一段时间内销售了某种女鞋30双,各种尺码鞋的销售量如下表所示:假如你是老板,你最关心哪一个统计量?你会如何进货?例3.甲、乙两支篮球队在集训期内进行了五场比赛,将比赛成绩进行统计后,绘制成图1、图2的统计图.(1)在图2中,画出折线表示乙队在集训期内这五场比赛成绩的变化情况;(2)已知甲队五场比赛成绩的平均分x 甲=90分,请你计算乙队五场比赛成绩的平均分x 乙;(3)如果从甲、乙两队中选派一支球队参加篮球锦标赛,根据上述统计情况,试从平均分、折线的走势、获胜场数三个方面分别进行简要分析,你认为选派哪支球队参加比赛更能取得好成绩?例4.九(1)班同学为了解2011年某小区家庭月均用水情况,随机调查了该小区部分家庭,并将调查数据进行如下整理:请解答以下问题:(1)把上面的频数分布表和频数分布直方图补充完整;(2)求该小区用水量不超过15 t 的家庭占被调查家庭总数的百分比;(3)若该小区有1 000户家庭,根据调查数据估计,该小区月均用水量超过20 t 的家庭大约有多少户?。

新人教版八年级数学下册《二十章 数据的分析 小结 构建知识体系》教案_8

新人教版八年级数学下册《二十章 数据的分析  小结  构建知识体系》教案_8

《数据的分析》总结与复习【教学任务分析】
【教学环节安排】
.
重难点3 用样本估计整体
〖例3〗在我市开展的“好书伴我成长”读书活动中,某中学为了解八年级300名学生读书情况,随机调查了八年级50名学生读书的册数,统计数据如下表:
50个样本的平均数、众数和中位数;
根据样本数据,估计该校八年级300名学生在本次活动中读书
册的人数。

教学反思:
《数据的分析》这一章是整个初中阶段统计版块最后一个内容.所以本章的复习除了对本章知识回顾外,还对以前学过的知识进行总结,并尽可能让学生理解和掌握从数据采集、整理、描述到分析数据这样一个完整的过程,进一步体会统计与生活的联系,感受统计在生产和生活中的作用.因这一部分比较简单,所以尽可能地让学生自主交流、自主复习,教师给予适当点拨。

本节课不足之处:由于学生基础较差,内容安排有些紧凑,后面的巩固练习没有时间完成,对于个别基础较差、自觉性不够的学生没有得到特别的关注和指导等。

人教版八年级数学下册第20章《数据的分析》复习小结教学设计

人教版八年级数学下册第20章《数据的分析》复习小结教学设计

小结与复习 教学设计教学设计思想:首先回顾本章的主要概念,在深刻认识各概念的特点基础上,形成本章的知识网络,通过例题进一步体会它们在不同情境中应用。

教学目标1.知识与技能:描述平均数,中位数,众数的差别,初步感受它们在不同情境中的应用;概述刻画数据波动的统计量:极差,方差。

2.情感态度与价值观:通过小组活动,培养团队精神。

通过解决身边的实际问题,初步认识数学与人类生活的密切联系及对人类历史发展的作用。

教学重点:平均数,中位数,众数在不同情境中的应用;建立本章知识网络。

课时安排:1课时教学媒体:幻灯片课件教学过程回顾本章的主要内容:1.加权平均数的概念及与算术平均数区别和联系,举例说明加权平均数的“权”的意义。

2.中位数与众数的概念及求法。

3.极差,方差的概念及求法。

4.使用计算器求数据的相关量。

这些内容之间有怎样的联系呢?一般的,对于n 个数12,,,,n x x x 把121()n x x x n +++ 叫做这n 个数的算术平均数。

若n 个数中,x 1出现f 1次,x 2出现f 2次,…,x k 出现f k 次,(这里f 1+f 2+...+f k =n ),那么1122k kx f x f ...x f x n +++=这个公式叫加权平均数公式,其中f 1,f 2,…,f k 叫做权,这个“权”含有所占分量较重之意,f i 越大,表示x i 个数越多,“权”就越重。

算术平均数是加权平均数的一种特殊情况,加权平均数包括算术平均数,当加权平均数中的权相等时,就是算术平均数。

将一组数据按照由小到大(或由大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就这组数据的中位数;如果数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数。

中位数是一个位置代表值,利用中位数分析数据可以获得一些信息。

如果已知一组数据的中位数,那么可以知道,小于或大于这个中位数的数据各占一半。

众数也常作为一组数据的代表,一组数据中出现次数最多的数据就是这组数据的众数。

八年级数学下册第二十章数据的分析数学活动教案(新版)新人教版(共5篇)

八年级数学下册第二十章数据的分析数学活动教案(新版)新人教版(共5篇)

八年级数学下册第二十章数据的分析数学活动教案(新版)新人教版(共5篇)第一篇:八年级数学下册第二十章数据的分析数学活动教案 (新版)新人教版第二十章数据的分析【教学目标】知识与技能进一步理解平均数、中位数、众数、方差等统计量的意义,会用适当的统计量进行数据分析;过程与方法经历提出问题,数据收集、整理、描述、分析等统计过程,体会样本估计总体的思想,发展数据分析观念;情感、态度与价值观体会统计的实际应用价值.【教学重难点】重点:结合身边素材提出统计问题,开展统计活动.难点:结合身边素材提出统计问题,开展统计活动.【导学过程】【情景导入】我们已经学习了数据的收集、整理、描述、分析等统计活动,统计与生活实际紧密联系,其实,我们身边就有大量的统计问题.请大家分组讨论,每一小组提出一个可以在课内调查的统计问题.【新知探究】活动1、请同学们合作完成下面的活动:1.全班同学一起讨论,提出5个问题对全班同学进行调查,例如全班同学的平均身高是多少?全班同学的平均体重是多少?等等;2.全班同学分成五个小组,每个小组选择一个问题进行调查,并将调查过程和结果在全班展示;3.将各组的结果汇总到一起,得到全班同学的一个“平均情况”,找出一个最能代表全班“平均情况”的同学.活动2、请全班同学分成几个小组,合作完成下面的活动:1.每个小组分别测量本组同学的每分脉搏次数,得到几组数据;2.求出本组数据的平均数、中位数、众数、方差等;3.与其他小组进行交流,估计一颗“正常”心脏的每分跳动次数;4.查找资料,看看一颗“正常”心脏的每分跳动次数,与你们的调查结果进行对照,谈谈你们对用样本估计总体的感受.以“每分脉搏次数问题” 为例,进行现场调查分析.统计调查的基本步骤是哪些?(1)你的小组准备采用什么方法收集数据?是全面调查方式还是抽样调查方式?(2)你的小组准备怎样整理数据和描述数据?(3)你的小组准备怎样分析数据?请各组介绍和展示统计分析过程及得到的结论:(1)介绍你所在小组的数据收集与分析过程;(2)你得出了哪些结论?依据分别是什么?【知识梳理】1.本次统计活动中,你经历了哪些环节?2.各个统计环节你是怎样做的?3.经历这次调查活动,你有什么体会?第二篇:新人教八年级下册数学期末考试知识点归纳新人教八年级下册数学期末考试知识点归纳二次根式知识回顾1.二次根式:式子(ge;0)叫做二次根式。

新人教版八年级数学下册《二十章 数据的分析 小结 习题训练》教案_3

新人教版八年级数学下册《二十章 数据的分析  小结  习题训练》教案_3

《第二十章数据的分析》复习课教学设计课题:数学人教2011课标版八年级下册第二十章复习课一、内容和内容解析1.内容通过统计量(平均数、中位数、众数及方差)的计算分析数据的集中趋势和波动程度,用样本估计总体.2.内容解析由于本章是本套教科书统计部分的最后一章,因此在复习时要在统计分析的大环境下进行,让学生经历统计的基本过程,但又要侧重于通过统计量分析数据的集中趋势和波动程度.样本估计总体是统计的基本思想,而集中趋势和波动程度是数据的两大基本特征,为了分析数据的特征,选择适当的样本,选择适当的统计量分析数据的特征(集中趋势和波动程度),是本章的核心所在.因此,本节课的重点是:用抽样方法分析数据的集中趋势和波动程度,体会样本估计总体的思想.二、目标和目标解析1.目标(1)会计算平均数、中位数、众数和方差.(2)进一步理解平均数、中位数、众数和方差等统计量的统计意义,能根据问题的实际需要选择合适的统计量表示数据的集中趋势和波动情况.(3)经历数据处理的基本过程,体会用样本估计总体的思想,感受统计在生活和生产中的作用.2.目标解析目标(1)要求学生要学会各个统计量的计算方法.目标(2)能结合问题情境和数据特征,理解各个统计量的统计意义,并能选择适当的统计量分析数据.目标(3)是通过对数据收集、整理、描述和分析等各个环节所学的方法和策略的整理和归纳,使学生对统计调查有一个整体的认识.三、教学问题诊断分析通过以前及本章内容的学习,学生已经学会各个统计量的计算,对统计的基本过程、基本思想和方法有了一定的认识,但是要在具体问题情境中灵活运用各个统计量解决问题的能力还需进一步加强,因此在复习中要通过对实际问题的分析和解决,提高学生灵活运用统计知识解决问题的能力.本节课的教学难点是:灵活运用平均数、中位数、众数和方差分析数据特征,解决实际问题.四、教学过程设计1.知识回顾甲乙问题1我们在市场上买杨梅,面对这两种杨梅,我们怎样检验哪种杨梅更甜并做出选择?师生活动:教师引导学生结合生活经验说出“试吃”方法。

人教版八年级下册数学:第20章 数据的分析小结与复习

人教版八年级下册数学:第20章 数据的分析小结与复习

A.平均数
B.众数
C.中位数
D.方差
2.(2016年宜昌中考试题)在6月26日“国际禁毒日”
来临之际,华明中学围绕“珍爱生命,远离毒品”
主题,组织师生到当地戒毒所开展相关问题的问卷 调查活动.其中“初次吸毒时的年龄”在17至21岁 的统计结果如图所示,则这些年龄的众数是( C). A.18 B.19 C.20 D.21
准为:86分及以上为优秀;76分~85分为良好;60分~75分为及格;59分及
以下为不及格.某校从九年级学生中随机抽取了10%的学生进行了体质测试,
得分情况如下图.
(1)在抽取的学生中不及格人数所占的百分比是

(2)小明按以下方法计算出抽取的学生平均得分是:(90+78+66+42)÷4=
69.根据所学的统计知识判断小明的计算是否正确,若不正确,请写出正确
质量好些;
(2)计算出s2B 的大小,考虑平均数与方差,说明哪台机器出的
产品质量好些; s2B 0.008 s2A
∴B的操作更稳定
例题4


专业的杨梅质检员有检测杨梅糖度的仪器.
质检员抽样调查各10 颗甲、乙两种杨梅的糖度,得
到的结果分别如下(糖度越高,杨梅越甜):
甲:10 11 11 12 12 13 13 13 14 15
人教版八年级下册
第20章 数据的分析 小结与复习
“数据,已经渗透
到当今每一个行业和业 务职能领域,成为重要 的生产因素。人们对于 海量数据的挖掘和运用, 预示着新一波生产率增 长和消费者盈余浪潮的 到来。”
麦肯锡
统计调查的基本步骤
数据收集 数据整理
数据描述 数据分析
本章知识结构图
数据的 集中趋势

八年级数学下册 20 数据的分析复习教案 (新版)新人教

八年级数学下册 20 数据的分析复习教案 (新版)新人教

第20章数据的分析一、复习目标1.加权平均数、中位数、众数以及方差的计算;2.加权平均数、中位数以及众数的区别与联系。

二、课时安排1课时三、复习重难点(1)加权平均数、中位数、众数以及方差的计算;(2)正确选择统计量四、教学过程(一)知识梳理1.加权平均数的定义及计算公式一般地,若n个数x1,x2,…,x n的权分别是w1,w2,…,w n,则叫做这n个数的加权平均数。

在求n个数的平均数时,如果x1出现f1次,x2出现f2次,…,x k出现f k次(这里f1+f2+…+f k=n)那么这n个数的算术平均数=也叫做x1,x2,…,x k这k个数的加权平均数,其中f1,f2,…,f k分别叫做x1,x2,…,x k的权。

对于权的理解:在实际问题中:当各项权相等时,计算平均数就要采用算术平均数;当各项权不相等时,计算平均数就要采用加权平均数。

2.中位数的定义及确定方法将一组数据按照由小到大(或由大到小)的顺序排列,如果数据的个数是奇数,则称处于中间位置的数为这组数据的中位数。

如果数据的个数是偶数,则称中间两个数据的平均数为这组数据的中位数。

3.众数的定义及确定方法一组数据中出现次数最多的数据称为这组数据的众数。

当一组数据有较多的重复数据时,众数往往能更好地反映其集中趋势。

4.方差的概念及计算设有n个数据x1,x2,x3,…,x n,各数据与它们的平均数的差的平方分别是(x1-)2,(x2-)2,…, (x n-)2,我们用它们的平均数,即用s2= [(x1-)2+ (x2-)2+ …+(x n-)2 ]来衡量这组数据的波动大小,并把它叫做这组数据的方差,记做s2。

6.方差的意义方差越大, 数据的波动越大,越不稳定。

方差越小,数据的波动就越小,越稳定。

(二)题型、方法归纳本章的重点是根据实际情况,如何正确的选择统计量表示数据的集中趋势及波动程度。

平均数、中位数与众数的特点:平均数计算要用到所有的数据,任何一个数据的变动都会相应引起平均数的变动,它能够充分利用所有的数据信息,但它受极端值的影响较大。

人教版八年级数学下册《数据的分析小结与复习》教学设计

人教版八年级数学下册《数据的分析小结与复习》教学设计

人教版八年级数学下册第20章《数据的分析小结》教学设计难点分析数据的集中趋势和波动程度,体会样本估计总体的思想.教学资源教材,教参,备课组意见教法设计自主学习、启发引导本课重点解决问题构建知识体系本课学生所得课前准备学生预习准备预习课本,完成自主学习任务单教师教学准备研读教材、教参,分析学生学情教学过程1复习平均数、中位数、众数基本概念2举例说明平均数、中位数、众数的意义.3算术平均数与加权平均数有什么联系和区别?举例说明加权平均数“权”的意义.举例说明怎样用方差刻画数据的波动程度.5举例说明刻画数据特征的量在决策中的作用.6搜集关于“统计学”方面的资料(如学科发展史、思想方法、人物等),从某个角度谈谈你对统计的认识.分组展示第一组:1复习平均数、中位数、众数相关概念;平均数: 一组数据的总和与这组数据的个数之比叫做这组数据的平均数.计算公式:平均数:是反映一组数据的平均水平情况的量.中位数定义:把一组数据从小到大的顺序排列,位于中间的数称为这组数据的中位数.众数的定义:在一组数据中,把出现次数最多的数叫做这组数据的众数.(允许一组数据有多个众数出现)2举例说明平均数、中位数、众数的意义;本周是学校合理化建议周,为此我们小组对于参加体育锻炼的情况进行了调查,从三个年级随机抽取了50名学生,对他们在一周内平均每天参加体育锻炼的时间进行了统计,请你根据统计表所提供的信息回答以下问题:(1)样本中每天参加体育锻炼的时间为60分钟的学生有名;(2)样本的平均数约为分钟,中位数是分钟,众数是分钟;(3)若全校共有1200名学生,请你估计每天参加体育锻炼时间超过1小时的有人(4)请指出用(2)中的哪个数据反映该学校的学生参加体育锻炼的实际水平更合理些.请说出你的理由;(5)为保证学生每天有1小时的体育锻炼时间,我们应向校长提出哪些合理化建议?3拓展延伸;小明同学所在班级有36个人,这次他考了80分,全班同学的平均分是78分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

【关键字】八年级
第二十章小结与复习
【学习目标】
1.复习与回顾本章的重要知识.
2.总结本章的重要思想方法.
【学习重点】
平均数、中位数、众数和方差的意义.
【学习难点】
解决简单的实际问题.
情景导入生成问题
知识结构我能建:
自学互研生成能力
【自主探究】
1.某校男子足球队的年龄分布情况如下表:
则这些队员年龄的众数和中位数分别是( A )
A.15,15 B.15,14 C.16,15 D.14,15
2.“植树节”时,九年级一班6个小组的植树棵数分别为5,7,3,x,6,4.已知这组数据的众数是5,则该组数据的平均数是5.
【合作探究】
某校为了解学生“体育大课间”的锻炼效果,中考体育尝试结束后,随机从学校720名考生中抽取部分学生的体育尝试成绩绘制了条形统计图.试根据统计图提供的信息,回答下列问题:
(1)共抽取了80名学生的体育尝试成绩进行统计;
(2)随机抽取的这部分学生中男生体育成绩的平均数是26.4,众数是27;女生体育成绩的中位数是27;
(3)若将不低于27分的成绩评为优秀,估计这720名考生中,成绩为优秀的学生大约是多少?
解:720×=396(人).
答:这720名考生中,成绩为优秀的大约是396名.
【自主探究】
某跳远队甲、乙两名运动员最近10次跳远成绩的平均数为602 cm,若甲跳远成绩的方差为s=65.84,乙跳远成绩的方差为s=285.21,则成绩比较稳定的是甲.(选填“甲”或“乙”)
【合作探究】
从甲、乙两位车工加工的零件中,各抽查了8件,量得直径尺寸如下:(单位:mm)
甲:35.01,35.03,35.05,34.98,34.96,35.00,35.02,34.95
乙:35.04,34.99,34.97,35.00,35.03,35.01,34.99,35.01
(1)求x甲和x乙,s和s;
(2)说明谁的零件尺寸更接近35 mm.
解:(1)x甲=35,x乙=35.005,s=0.001 05,s=0.000 45.
(2)∵s>s,∴乙的零件尺寸更接近35 mm.
【自主探究】
某商场对上月笔袋销售的情况进行统计如下表所示:
经理决定本月进笔袋时多进一些蓝色的,经理的这一决定应用了哪个统计知识( D )
A.平均数B.方差C.中位数D.众数
【合作探究】
某学校举行演讲比赛,选出了10名同学担任评委,并事先拟定从如下4个方案中选择合理的方案来确定每个演讲者的最后得分(满分为10分):
方案1 所有评委所给分的平均数.
方案2 在所有评委所给分中,去掉一个最高分和一个最低分,然后再计算其余给分的平均数.
方案3 所有评委所给分的中位数.
方案 4 所有评委所给分的众数.为了探究上述方案的合理性,先对某个同学的演讲成绩进行统计实验.下面是这个同学的得分统计图:
(1)分别按上述4个方案计算这个同学演讲的最后得分;
(2)根据(1)中的结果,请用统计的知识说明哪些方案不适合作为这个同学的演讲的最后得分.
解:(1)方案1:7.7,方案2:8,方案3:8,方案4:8或8.4;
(2)因为方案1的平均数受极端值的影响,不能反映这组数据的“平均水平”,所以方案1不符合作为最后得分的方案;方案4中的众数有两个,众数失去了实际意义,所以方案4不适合作为最后得分的方案.
交流展示生成新知
【交流预展】
1.将阅读教材时“生成的问题”和通过“自主探究、合作探究”得出的“结论”展示在各小组的小黑板上,并将疑难问题也板演到黑板上,再一次通过小组间就上述疑难问题相互释疑.
2.各小组由组长统一分配展示任务,由代表将“问题和结论”展示在黑板上,通过交流“生成新知”.
【展示提升】
知识模块一平均数、中位数、众数
知识模块二方差
知识模块三用平均数、众数和方差解决实际问题
检测反馈达成目标
【当堂检测】
1.要判断小红同学的数学考试成绩是否稳定,那么需要知道的是她最近连续几次数学考试成绩的( D) A.平均数B.中位数C.众数D.方差
2.已知一组数据x1,x2,…,x n的方差是s2,则新的一组数据ax1+1,ax2+1,…,ax n+1(a为常数,a≠0)的方差是a2s2.(用含a,s2的代数式表示)
【课后检测】见学生用书
课后反思查漏补缺
1.收获:________________________________________________________________________
2.存在困惑:________________________________________________________________________
此文档是由网络收集并进行重新排版整理.word可编辑版本!。

相关文档
最新文档