完全平方数知识讲解
完全平方公式讲解
完全平方公式讲解第一部分概念导入1 •问题:根据乘方的定义,我们知道:穿=日・a,那么(a+b) 2应该写成什么样的形式呢? ( a+b) 2的运算结果有什么规律?计算下列各式,你能发现什么规律?(1)_____________________________ (P+1)2=( p+1)( P+1) = ;( m+2)2= ;(2)(P-1)2= ( p-1) ( p-1) = _______ ;( m-2) 2= _____ ;2 •学生计算3 •得到结果:(1) (p+1) 2= (p+1) ( p+1) =p2+2p+12 2(m+2) = (m+2) (m+2) = m +4m+4(2) (p-1) 2= (p-1) (p-1) = p2-2p+12 2(m-2) = ( m-2) ( m-2=m -4m+44•分析推广:结果中有两个数的平方和,而2p=2 • p • 1, 4m=2- m- 2,恰好是两个数乘积的二倍。
(1) ( 2)之间只差一个符号。
推广:计算(a+b) 2= ______ _______ _(a-b) 2= _________________ 【2]得到公式,分析公式(1) •结论:(a+b) 2=a2+2ab+b2(a-b)2=a2-2ab+b2即:两数和(或差)的平方,等于它们的平方和,加(或减)它们的积的2倍.(2 )公式特征左边:二项式的平方右边:二项式中每一项的平方与这两项乘积2倍的和.注意:公式右边2ab的符号取决于左边二项式中两项的符号.若这两项同号,则2ab取“ + ”,若这两项异号,则2ab的符号为“―” •(3)公式中字母可代表的含义公式中的a和b可代表一个字母,一个数字及单项式.(4 )几何解释图1 — 5图1 —5中最大正方形的面积可用两种形式表示:©( a + b) 2②a2+ 2ab+ b2,由于这两个代数式表示同一块面积,所以应相等,即( a + b) 2= a2+ 2ab + b2因此,用几何图形证明了完全平方公式的正确性.【学习方法指导][例1 ]计算(1) (3a+ 2b) 2(2) (mn —n2) 2点拨:运用完全平方式的时候,要搞清楚公式中a,b在题目中分别代表什么,在展开的过程中要把它们当作整体来做,适当的地方应打括号,如:进行平方的时候.同时应注意公式中2ab的符号.解:(1) (3a + 2b) 2=( 3a) 2+ 2 • ( 3a) • (2b) + ( 2b) 2= 9a2+ 12ab + 4b2(2) (rnn— iCT ?◎ b—〔机打)z—g(讥”)* 异+( ii)zA + *</ — 2 必+ ¥=z>? if —2 mtf ~\~ »4注意:(2)中n2的指数2与公式中b2的二次方所代表含义不同,所以在展开过程中不要漏掉“二次方”.[例2 ]计算(1)(- m- n) 2(2) (- 5a—2) ( 5a+ 2)点拨:(1)可直接用完全平方公式•由于一m与一n是同号,所以公式中的2ab取“ + ” .( 2)中两个二项式虽然不同,但若将第一个括号中的“一”提出,则剩下的两个括号里的项完全相同,可利用完全平方公式进行计算.解:(1) (- m- n) 2=(-m) 2+ 2 •( —m) (- n) + (—n) 2=m2+ 2mn+ n2(2)(- 5a- 2) (5a+ 2)=-(5a+ 2) (5a+ 2)=-(5a+ 2) 2=-(25a2+ 20a + 4)=-25a2- 20a- 4小结:由(2)可知,将两个二项式相乘,两个括号里的每一项都相反的话,可先作适当调整,再利用完全平方公式进行计算.[例3 ]计算(1)(x-2y) 2-( x- y) (x+ y)(2)(m-n) (m2- n2) ( m+ n)点拨:(1)可分别应用平方差公式与完全平方公式进行乘法运算,再化简. (2)可先利用平方差公式将m-n与m + n相乘,再将所得结果m2- n2与中间括号里的m2- n2相乘,可利用完全平方公式.解:(1) (x- 2y) 2-( x - y) (x+ y)=(x2- 4xy+ 4护)-(x2- y2)=x2- 4xy+ 4y2- x2+ y2=-4xy+ 5y2(2) (m-n) (m2- n2) ( m+ n)=(m- n) ( m+ n) ( m^- n2)=(m^-n2) (m2-n2)=(m2) 2- 2 • m2• n2+( n2) 2=m4- 2m2n2+ n4说明:这两题在能用公式的地方尽量用公式,是因为应用公式可以简化运算,若想不到,用多乘多也可.[例4]计算:(x+ — ) 2-(x- y ) 22 2a 2—b 2=一、选择题1•下列运算中,正确的是() 2•下列运算中,利用完全平方公式计算正确的是(点拨:第一种方法是利用完全平方公式直接展开,第二种方法是可利用平方差公式逆运算:(a + b ) (a — b ),将此题转化为平方差公式进行计算.解法一:(x + y ) 222 (x 2+ xy + 仝)— 42(x 2— xy + L )4 =x 2+ xy + 2 y 2—x 2 + xy — 44=2xy解法二: = [“+和+仃-和+炉-3-子口u u(出+ tO =* y■加』[例 5]计算:(a — 2b + 1) ( a + 2b — 1)点拨:此题“三项式乘三项式”,且这两个括号中的三项只有符号不同•先找出两个括号中完全相同的项放在一起,再把互为相反数的项放在一起, 构成(a + b ) ( a — b )的形式,利用平方差公式进行简化运算.(a -W相反-[a-(26-1) J La *^(26 -1).②寿_(2卜・关键:此题最重要一步就是由①到②的过程转化, 随堂练习要保证代数式在形式发生变化的同时,大小不变!A . 3a+2b=5abB . (a — 1) 2=a 2— 2a+1C . a 6心a 2D . (a 4) 5=a 9A . (x+y ) 2=x 2+y 2B . ( x — y ) 2=x 2 — y2C . (- x+y ) 2=x 2-2xy+y 2D . (- x -y ) 2=x 2- 2xy+y 23•下列各式计算结果为 2xy - x 2-y 2的是() A . (x - y ) 2 B . (- x -y ) 2 C .-( x+y ) 2 D .-( x -y )4•若等式(x - 4) 2=x 2 - 8x+m 2成立,则m 的值是()A . 16B . 4C . - 4D . 4 或—4二、 填空题5. (- x -2y ) 2= ______.6. 若(3x+4y ) 2= (3x - 4y ) 2+B ,贝U B= ______ .7. _______________________________ 若 a - b=3, ab=2,则 a 2+b 2= . 19 9 8 . ( --- ---- y ) 2= — x 2— xy+ ______ ; ( ____ ) 2=——a 2- 6ab+ _____ .34 16 三、 解答题 9 .利用完全平方公式计算:(1) 20082; ( 2) 782 .110 .先化简,再求值:(2x - 1) (x+2)-( x -2) 2-( x+2) 2,其中 x=-311利用公式计算:196212某正方形边长a cm ,若把这个正方形的边长减小1 1 分别求a 2+2 , (a - ) 2的值a a15.为了扩大绿化面积,若将一个正方形花坛的边长增加 3米,?则它的面积就增加 39平方米,求这个正方3 cm ,则面积减少了多少?13.已知 x+y=1 , 求1 x 2+xy+丄y 2的值. 2 2114.已知 a+ =5 a形花坛的边长.-时,找不到计算器,去向小华借,小华看了看题说根本2 不需要用计算器,而且很快说岀了答案•你知道他是怎么做的吗?17.已知:a + b=- 5,ab = - 6,求a2+ b2.18利用公式计算:992- 119.计算(1) (ab 1)( ab 1) ; (2) ( 2x 3)( 2x 3);(3) 1022; (4) 992.(5)(a b1)(a b 1) ; (6) (m 2n p)2.20. 一个正方形的边长增加3cm,它的面积就增加239cm ,这个正方形的边长是多少?21.当a1,b 1时,求(3a 2b)(3a22b) (a 2b)2的值16.小明在计算2200920082 2 20092007 2009200922.求证:当n为整数时,两个连续奇数的平方差2 2(2n 1) (2n 1)是8的倍数23. 观察下列等式:2 2 2 .2 2 2 2 21 0 1 ,2 1 3,3 2 5 ,4 3 7,请用含自然数n的等式表示这种规律为:____________________ .2 224. 已知4x Mxy 9y是一个完全平方式,求M的值.25.2005年12月1日是星期四,请问:再过2005 2天的后一天是星期几?答案1. B2. C 点拨:(x+y) 2=x2+2xy+y2,所以 A 不正确;(x—y2=x2- 2xy+y2,所以 B 不正确;(—x+y) 2= (-x) 2+2 (-x) y+y2=x2—2xy+y2,所以C正确;(—x —y) 2= (x+y) 2=x2+2xy+y2,所以 D 也不正确,故选C.3. D4. D 点拨:因为(x-4) 2=2—8x+16,所以若(x-4) 2=x2-8x+m2成立,则m2=16,从而得m=±4,故选D.__ 、5. x2+4xy+4y2点拨:(—x —2y) 2=[ —(x+2y) ] 2= (x+2y ) 2=x2+4xy+4y2.6. 48xy 点拨:B= (3x+4y) 2—( 3x —4y) 2=9x2+24xy+16y2—( 9x2—24xy+16y2) ?=?9x2+?24xy+16y 2—92 +24xy—16y2=48xy .7. 13 点拨:因为a—b=3,ab=2,所以a F+b2= (a—b) 2+2ab=32+2X2=9+4=13.3 1 2 3 28. —x; — y ; —a—4b;16b22 9 4三、9. 解:(1) 20082= (2000+8) 2 =20002+2 X2000 >8+8 2=4000000+32000+64=4032064;(2)782= ( 80—2) 2=802—2X80X2+22=6400 —320+4=6084.10. 解:(2x—1) (x+2 ) — ( x—2) 2—( x+2) 2=2x2+4x —x —2—( x2—4x+4 ) — ( x2+4x+4 )=2x 2+3x —2 —x2+4x —4 —x2—4x —4=3x —10 .1 1当x=—时,原式=3X(—-) —10=—1—10=—11.3 311思路:196接近整数200,故196= 200 —4,则此题可化为(200 —4 ) 2,利用完全平方公式计算.解:1962①(200— 4) 22002-2X 200 X 4 + 42 =40000 — 1600+ 16 = 38416说明:1 .可转化为完全平方的形式的数必须较接近一个整数才较易进行计算. 12. 思路:先分别表示出新旧正方形的边长,再根据“正方形面积=边长X 边长” ,表示出两个正方形的面积,用“大-小”即可得出所求.计算的关键在完全平方式的展开.解:原正方形面积:a 2 现正方形面积:(a — 3) 2面积减少了 a 2—( a — 3) 2 = a 2—( a 2 — 6a + 9)= a 2— a 2 + 6a — 9=( 6a — 9) (cm 2) 答:面积减少了( 6a — 9) cm 2. 13. 解:因为 x+y=1,所以(x+y ) 2=1,即 x 2+2xy+y 2=1.11 1 1 1 所以一 x 2+xy+— y 2= — (x 2+2xy+y 2) =— X =— .22 222点拨:通过平方将已知条件转化为完全平方公式,从而巧妙求值.1 1 1 所以(a —) 2=a 2+ 2 — 2a- =23 — 2=21.aaa点拨:注意公式的一些变形形式,例如: a F +b 2= (a+b ) 2 — 2ab, a 2+b 2= ( a — b )2+2ab , (a+b )2=( a — b ) 2+4ab , ( a — b ) 2=(a+b ) 2 — 4ab 等等.15. 解:设这个正方形花坛的边长为 x 米,依题意列方程得,(x+3 ) 2 — x 2=39, ?即 x 2+6x+9 — x 2=39, 6x=30, x=5. 答:这个正方形花坛的边长为 5米.点拨:适当引进未知数,?根据题中的相等关系得到方程,解方程即可. 16. 解:知道,做法如下:______ 200920082 ______ _________ 200920082 ___________ 200920072200920092 2 (20092008 1)2(20092008 1)2 22_____________________ 20092008 200920082 2 200920081 200920082 ____________2 20092008 1 2200920082 12 20092008^ 2点拨:由 200920072= (20092008 — 1) 2,200920092= ( 20092008+1) 2,运用完全平方公式化简即可.17. 点拨:同时存在a + b ,ab, a 2+ b 2的公式为完全平方公式(a + b ) 2 = a 2 +2ab + b 2,将题目中所给条件分别看作整体,代入公 式即可.注意:1.不要分别求出 a 和b ,运算繁琐.n.若已知a +b (或a — b), ab , a 2+ b 2中的二者,都可利用完全平方公式求出第三者.解:a 2+ b 2 =( a + b ) 2 — 2ab14. 因为 a+^=5,所以 a 2+4 =a1 1(a+ ) 2 — 2 a •=52 —2=23,aa当 a + b = — 5, ab =— 6 时原式=(—5) 2 —2 X(— 6)= 25 + 12 = 37.18. 点拨:可分别用完全平方公式或平方差公式两种方法得到相同的答案. 19. 【点拨】(1)符合平方差公式的特征,只要将 ab 看成是a , 1看成是b 来计算.( 2)利用加法交换律将原式变形为 ( 32x)( 3 2x) , 然后运用平方差公式计算 .22(3) 可将 1022改写为 (1002) ,利用两数和的平方公式进行简便运算 .22(4) 可将 99 改写为 (100 1) ,利用两数差的平方公式进行简便运算 . 解:(1) (ab 1)(ab 1) =(ab)2 1 a 2b 21;(2)( 2x 3)(2x 3)= ( 3 2x)( 3 2x) =( 3)2(2x)2 9 4x 2;(3)1022 = (100 2) 2 =100 2 2 100 2 2210000 400 4 10404 ; (4)992 =(100 1) 2=10022 100 1 1 10000 200 1 9801.【点拨】(5,6)两个因式中都含有三项,把三项看成是两项,符号相同的看作是一项,符号相反的看作是一项,运用公式 计算,本题可将 (a b) 看作是一项 .先将三项看成是两项,用完全平方公式,然后再用完全平方公式计算解:(5) (a b 1)(a b 1) =[(a b) 1][( a b) 1] (a b)2 1 a 2 2ab b 21;( 6) (m 2np)2=[(m 2n) p]2 (m 2n)2 2(m2n) p2p 22=m4mn 224n 2mp 4np p .【点评 】 1. 在运用平方差公式时 , 应分清两个因式中是不是有一项完全相同, 有一项互为相反数 , 这样才可以用平方差公式, 否则不能用; 2. 完全平方公式就是求一个二项式的平方,其结果是一个完全平方式,两数和或差的平方,等于这两个数的平方2 2 2 2 2 2和,加上或减去这两个数乘积的 2倍,在计算时不要发生:(a b) a b 或(a b) a b 这样的错误; 3.当因式中含有三项或三项以上时,要适当的分组,看成是两项,用平方差公式或完全平方公式. 20.【点拨】如果设原正方形的边长为 xcm,根据题意和正方形的面积公式可列出方程求解 . 解:设原正方形的边长为xcm,则 (x 3)2 x 239即 x 2 6x 9 x 2 39,解得 X=5.答:这个正方形的边长是 5cm . 21.【点拨】先用乘法公式计算,去括号、合并同类项后,再将 a 、b 的值代入计算出结果.2 2 2 2 2解: (3a 2b)(3a 2b) (a 2b)2 9a 2 4b 2 (a 2 4ab 4b 2)=9a 24b 2 a 24ab4b 2 8a 24ab 8b 2;当a 1,b 1时,(3a 2b)(3a 2b) (a 2b)28a 22 24ab 8b =8(-1)4( 1) 18=-4【点拨】运用完全平方公式将 (2n1)2(2n 21)化简,看所得的结果是否是8整数倍.2证明:(2n 1)(2n 1)2=4n 24n 21 (4n 4n 1)= 4n24n 1 4n 24n 1 8n ,又T n 为整数,二8n 也为整数且是8的倍数.23. 【点拨】本题是属于阅读理解,探索规律的题目,认真观察、分析已知的等式的特点,从中总结出规律 .同学们相互研讨交流一下.答案为:n2(n 1)2 2n 1(n 1且n 为整数).24. 【点拨】已知条件是一个二次三项式,且是一个完全平方式, x 2 与 y 2项的系数分别为4和9,所以这个完全平方式应该是2(2x 3y),由完全平方公式就可以求出 M .2 2 2解:根据(2x 3y) =4x 12xy 9y 得: M 12.二M 12答:M 的值是土 12.2 225. 【点拨】因为每个星期都有7天,要求再过2005天的后一天是星期几,可以想办法先求出 2005是7的多少倍数还余几天.解: 20052 = (7 286 3)2 (7 286)22 (7 286)3 9=(7 286)2(6 286) 7 7 2.2显然2005年12月1日是星期四,再过2005 天的后一天实际上要求星期四再过两天后的一天是星期日。
完全平方公式知识点分解
完全平方公式知识点分解1.完全平方公式的定义:(a+b)² = a² + 2ab + b²2.完全平方公式的推导:完全平方公式可以通过将一个二次多项式展开后进行适当的合并得到。
假设有一个二次多项式:(x+a)²,我们可以将其展开为:x² + 2ax + a²。
而这个结果恰好是完全平方公式的一种形式。
根据这种思路,可以得到完全平方公式的一般形式:(a+b)² = a² + 2ab + b²。
3.完全平方公式的应用:-求解二次方程:通过将一个二次方程转化为完全平方公式的形式,可以更容易地解得方程的根。
-分解因式:对于一个多项式,如果它是一个完全平方公式的形式,那么可以通过完全平方公式的逆运算,将其分解为两个一次多项式的乘积。
-求解二次特殊图形问题:例如,求解一个面积已知的正方形边长,可以通过构造一个面积为完全平方公式的方程,然后利用完全平方公式求解。
4.完全平方公式的推广:除了一般形式的完全平方公式,还存在其他推广形式的完全平方公式。
例如,如果一个三次多项式可以表示为两个一次多项式的平方之差,那么可以利用完全平方公式的推广形式进行分解。
常见的推广形式包括:- 差平方公式:(a-b)² = a² - 2ab + b²-完全平方差公式:a²-b²=(a+b)(a-b)- 三次平方差公式:a³ - b³ = (a-b)(a² + ab + b²)5.完全平方公式的相关例题:下面列举几个常见的完全平方公式的例题,以进一步说明其应用:例题1:求解方程x²+6x+9=0的解。
解:将方程转化为完全平方公式的形式:(x+3)²=0。
由此可得,x+3=0,所以x=-3例题2:将多项式x²+4x+4分解为两个一次多项式的乘积。
完全平方数特征知识点总结
完全平方数特征:
1.末位数字只能是:0、1、4、5、6、9;反之不成立。
2.除以3余0或余1;反之不成立。
3.除以4余0或余1;反之不成立。
4.约数个数为奇数;反之成立。
5.奇数的平方的十位数字为偶数;反之不成立。
6.奇数平方个位数字是奇数;偶数平方个位数字是偶数。
7.两个相临整数的平方之间不可能再有平方数。
n(n+1)(n+2)(n+3)+1是一奇数的平方,只需将它通过因式分解而变成一个奇数的平方即可。
ห้องสมุดไป่ตู้证明:设这四个整数之积加上1为m,则
m=n(n+1)(n+2)(n+3)+1=(n^2+3n+1)^2=[n(n+1)+(2n+1)]^2
而n(n+1)是两个连续整数的积,所以是偶数;又因为2n+1是奇数,因而n(n+1)+2n+1是奇数。这就证明了m是一个奇数的平方。
(2)-(1)可得 n^2-m^2=89, (n+m)(n-m)=89
但89为质数,它的正因子只能是1与89,于是。解之,得n=45。代入(2)得。故所求的自然数是1981。
例2、求证:四个连续的整数的积加上1,等于一个奇数的平方。
分析:设四个连续的整数为n,(n+1),(n+2),(n+3),其中n为整数。欲证
平方差公式:X2-Y2=(X-Y)(X+Y)
完全平方和公式:(X+Y)2=X2+2XY+Y2
完全平方差公式:(X-Y)2=X2-2XY+Y2
经典例题:
五年级下第11讲 完全平方数
第11讲完全平方数一、知识要点1.完全平方数的定义:一个自然数与自身相乘的乘积叫做完全平方数或平方数.2.完全平方数表:3.完全平方数的常用性质:完全平方数乘完全平方数是完全平方数。
二、例题精选【例1】计算:215,225,235,245,255,并说明规律。
【巩固1】计算:162,262,362,462,562,并说明规律。
【例2】试判断下列数是否是完全平方数,若不是请在横线上简述判断理由;若是请在横线上写出它是哪个数的平方。
997:____________________;6983:____________________;5112:____________________;6478:____________________;【巩固2】试判断下列数是否是完全平方数,若不是请在横线上简述判断理由;若是请在横线上写出它是哪个数的平方。
1199:____________________;7886:____________________;1834:____________________;1275:____________________;【例3】A 是由2017个“9”组成的多位数,即920179999个 ,A 是不是某个自然数B 的平方?如果是,写出B ;如果不是,请说明理由.【巩固3】A 是由2018个“56”组成的多位数,即 5620185656...5656个,A 是不是某个自然数B 的平方?如果是,写出B;如果不是,请说明理由.【例4】1016与正整数a的乘积是正整数b的平方,则a的最小值是多少?b的最小值是多少?【巩固4】已知3528a恰是自然数b的平方数,a的最小值是多少?b的最小值是多少?【例5】因为快乐学校的孩子都很喜欢平方数,所以将年份数是平方数的年份定义为“快乐年”。
如公元900年,900=302,所以公元900年是快乐年。
那么从1000年到今年(2018年),有多少个“快乐年”?【巩固5】黑暗世界的小朋友不喜欢年份数是平方数的年份,因为这些年份总会遭遇困恼,其他年份则不会。
完全平方公式-2023年新七年级数学核心知识点与常见题型(沪教版)(解析版)
完全平方公式【知识梳理】一.完全平方公式(1)完全平方公式:(a±b)2=a2±2ab+b2.可巧记为:“首平方,末平方,首末两倍中间放”.(2)完全平方公式有以下几个特征:①左边是两个数的和的平方;②右边是一个三项式,其中首末两项分别是两项的平方,都为正,中间一项是两项积的2倍;其符号与左边的运算符号相同.(3)应用完全平方公式时,要注意:①公式中的a,b可是单项式,也可以是多项式;②对形如两数和(或差)的平方的计算,都可以用这个公式;③对于三项的可以把其中的两项看做一项后,也可以用完全平方公式.二.完全平方公式的几何背景(1)运用几何直观理解、解决完全平方公式的推导过程,通过几何图形之间的数量关系对完全平方公式做出几何解释.(2)常见验证完全平方公式的几何图形(a+b)2=a2+2ab+b2.(用大正方形的面积等于边长为a和边长为b的两个正方形与两个长宽分别是a,b 的长方形的面积和作为相等关系)【考点剖析】一.完全平方公式(共21小题)1.(2022秋•徐汇区期末)下列等式中,能成立的是()A.(a+b)2=a2+ab+b2B.(a﹣3b)2=a2﹣9b2C.(1+a)2=a2+2a+1D.(a+4)(a﹣4)=a2﹣4【分析】根据完全平方公式和平方差公式求出每个式子的值,再判断即可.【解答】解:A、(a+b)2=a2+2ab+b2,故本选项错误;B、(a﹣3b)2=a2﹣6ab+9b2,故本选项错误;C、(1+a)2=1+2a+a2,故本选项正确;D、(a+4)(a﹣4)=a2﹣16,故本选项错误;故选:C.【点评】本题考查了完全平方公式,平方差公式的应用,注意:平方差公式是:(a+b)(a﹣b)=a2﹣b2,完全平方公式是:(a±b)2=a2±2ab+b2.2.(2022秋•静安区校级期中)计算:(a﹣2b+c)2.【分析】原式利用完全平方公式展开即可得到结果.【解答】解:原式=(a﹣2b)2+c2+2c(a﹣2b)=a2﹣4ab+4b2+c2+2ac﹣4bc.【点评】此题考查了完全平方公式,熟练掌握完全平方公式是解本题的关键.3.(2022秋•静安区校级期中)计算:(a﹣2b﹣3c)2=.【分析】原式可化为[(a﹣2b)﹣3c]2,再应用完全平方公式进行计算即可得出答案.【解答】解:(a﹣2b﹣3c)2=[(a﹣2b)﹣3c]2=(a﹣2b)2﹣6c(a﹣2b)+9c2=a2﹣4ab+4b2﹣6ac+12bc+9c2.【点评】本题主要考查了完全平方公式,熟练掌握完全平方公式进行求解是解决本题的关键.4.(2022秋•静安区校级期中)已知a+b=6,a2+b2=20,则ab的值为.【分析】根据a2+b2=(a+b)2﹣2ab,把相应数值代入即可求解.【解答】解:∵a+b=6,∴a2+b2=(a+b)2﹣2ab=20,即36﹣2ab=20,解得ab=8.故答案为:8.【点评】本题主要考查了完全平方公式,熟记公式是解答本题的关键.5.(2022秋•青浦区校级期末)计算:(x+2)(4x﹣3)﹣(2x﹣1)2.【分析】先根据多项式乘以多项式,完全平方公式计算,再合并同类项,即可求解.【解答】解:(x+2)(4x﹣3)﹣(2x﹣1)2=4x2﹣3x+8x﹣6﹣4x2+4x﹣1=9x﹣7.【点评】本题主要考查了整式的混合运算,熟练掌握多项式乘以多项式法则,完全平方公式是解题的关键.6.(2022秋•静安区校级期中)已知ab=3,a﹣b=4,求2a2+7ab+2b2的值.【分析】根据a2+b2=(a﹣b)2+2ab,由ab=3,a﹣b=4,即可算出a2+b2的值,再由2a2+7ab+2b2,可得2(a2+b2)+7ab,代入计算即可得出答案.【解答】解:a2+b2=(a﹣b)2+2ab=42+2×3=22,2a2+7ab+2b2=2(a2+b2)+7ab=2×22+7×3=44+21=65.【点评】本题主要考查了完全平方公式,熟练掌握完全平方公式的变式应用进行求解是解决本题的关键.7.(2022秋•宝山区校级期中)计算:(a+2b)2﹣2b(a﹣b).【分析】根据完全平方公式及整式加减法则进行计算即可得出答案.【解答】解:原式=a2+4ab+4b2﹣2ab+2b2=a2+2ab+6b2.【点评】本题主要考查了完全平方公式,熟练掌握完全平方公式及整式加减法则进行求解是解决本题的关键.8.(2022秋•黄浦区期中)计算:(x+y)2﹣2(x﹣y)(2x+y).【解答】解:原式=x2+2xy+y2﹣2(2x2﹣xy﹣y2)=x2+2xy+y2﹣4x2+2xy+2y2=﹣3x2+4xy+3y2.【点评】此题主要考查了完全平方公式和平方差公式,掌握其公式结构是解题关键.9.(2022秋•奉贤区期中)计算:(2a+b)(a﹣2b)﹣(2a﹣b)2.【分析】根据完全平方公式、平方差公式即可求出答案.【解答】解:原式=2a2﹣3ab﹣2b2﹣(4a2﹣4ab+b2)=2a2﹣3ab﹣2b2﹣4a2+4ab﹣b2=﹣2a2+ab﹣3b2.【点评】本题考查完全平方公式、多项式乘多项式法则,本题属于基础题型.10.(2022秋•黄浦区期中)计算:(a﹣b+2c)2=.【分析】原式利用完全平方公式展开即可得到结果.【解答】解:原式=(a﹣b)2+4c(a﹣b)+4c2=a2﹣2ab+b2+4ac﹣4bc+4c2.故答案为:a2﹣2ab+b2+4ac﹣4bc+4c2.【点评】此题考查了完全平方公式,熟练掌握公式是解本题的关键.11.(2022秋•嘉定区校级期中)计算:(2x﹣5)2﹣(2x+3)(3x﹣2).【分析】利用完全平方公式以及多项式乘多项式运算法则计算得出答案.【解答】解:(2x﹣5)2﹣(2x+3)(3x﹣2)=4x2﹣20x+25﹣(6x2﹣4x+9x﹣6)=4x2﹣20x+25﹣6x2﹣5x+6=﹣2x2﹣25x+31.【点评】此题主要考查了整式的混合运算,正确掌握相关运算法则和公式是解题的关键.12.(2022秋•浦东新区期中)今年各地疫情时有出现,为了不影响学习,学校组织同学们进行网上学习,课堂上老师布置了四个运算题目,小刚给出了四个题的答案,小刚做对的题数是()A.0个B.1个C.2个D.3个【分析】根据积的乘方的运算法则、同底数幂的乘法法则、完全平方公式、合并同类项法则分别判断得出答案.【解答】解:①(﹣3a2)3=﹣27a6,原计算错误;②(﹣a2)⋅a3=﹣a5,原计算错误;③(2x﹣y)2=4x2﹣4xy+y2,原计算错误;④a2+4a2=5a2,原计算错误.所以小刚做对的题数是0个,故选:A.【点评】此题主要考查了积的乘方、同底数幂的乘法、完全平方公式、合并同类项,正确掌握积的乘方的运算法则、同底数幂的乘法法则、完全平方公式、合并同类项法则是解题的关键.13.(2022秋•浦东新区期中)如果a﹣b=4,ab=1,则a2+b2=.【分析】先根据完全平方公式进行变形,再代入求出即可.【解答】解:∵a﹣b=4,ab=1,∴a2+b2=(a﹣b)2+2ab=42+2×1=18,故答案为:18.【点评】本题考查了完全平方公式和立方差公式的应用,能灵活运用公式进行变形是解此题的关键.14.(2022秋•闵行区期中)已知x+y=6,xy=7,那么(3x+y)2+(x+3y)2的值为.【分析】先利用完全平方公式展开合并得到原式=10(x2+y2)+12xy,再进行配方得到原式=10(x+y)2﹣8xy,然后利用整体代入的方法计算即可.【解答】解:原式=9x2+6xy+y2+x2+6xy+9y2=10x2+12xy+10y2=10(x2+y2)+12xy=10(x+y)2﹣8xy,当x+y=6,xy=7,原式=10×62﹣8×7=304.故答案为:304.【点评】本题考查了完全平方公式.解题的关键是熟练掌握完全平方公式:(a±b)2=a2±2ab+b2.15.(2022秋•嘉定区校级期末)计算:(2x+y)2﹣y(y+4x)+(﹣2x)2.【分析】根据完全平方公式、单项式乘多项式的运算法则和积的乘方的运算法则进行计算即可.【解答】解:(2x+y)2﹣y(y+4x)+(﹣2x)2=4x2+4xy+y2﹣y2﹣4xy+4x2=8x2.【点评】本题考查整式的混合运算,解题的关键是明确整式的混合运算的计算方法.16.(2022秋•嘉定区期中)已知(a+b)2=17,(a﹣b)2=13,求下列各式的值:(1)a2+b2;(2)ab.【分析】(1)先利用完全平方公式将等式(a+b)2=17,(a﹣b)2=13的左边展开,然后两式相加即可求得a2+b2的值;(2)先利用完全平方公式将等式(a+b)2=17,(a﹣b)2=13的左边展开,然后两式相减即可求得ab的值.【解答】解:(1)∵(a+b)2=a2+2ab+b2=17,(a﹣b)2=a2﹣2ab+b2=13,∴a2+b2=[(a+b)2+(a﹣b)2]÷2=(17+13)÷2=15;(2)∵(a+b)2=a2+2ab+b2=17,(a﹣b)2=a2﹣2ab+b2=13,∴ab=[(a+b)2﹣(a﹣b)2]÷4=(17﹣13)÷4=1.【点评】本题主要考查的是完全平方公式,能够运用完全平方公式对等式进行变形是解题的关键.17.(2022秋•闵行区期中)计算:(2x﹣3y)(3x+2y)﹣(2x﹣3y)2.【分析】先根据多项式乘多项式的运算法则和完全平方公式计算,再合并同类项即可求解.【解答】解:原式=6x²+4xy﹣9xy﹣6y²﹣(4x²﹣12xy+9y²)=6x²﹣5xy﹣6y²﹣4x²+12xy﹣9y²=2x²+7xy﹣15y².【点评】本题考查整式的运算,正确使用多项式乘多项式的运算法则和完全平方差公式是求解本题的关键.18.(2022秋•宝山区校级月考)解方程:2(x﹣3)2=(x+3)(2x﹣5).【分析】根据完全平方公式和多项式乘多项式的运算法则解答即可.【解答】解:2(x﹣3)2=(x+3)(2x﹣5),2(x2﹣6x+9)=2x2﹣5x+6x﹣15,2x2﹣12x+18=2x2+x﹣15,﹣13x=﹣33,∴x=.【点评】本题考查了完全平方公式和多项式乘多项式,解答本题的关键是熟练掌握完全平方公式和多项式乘多项式的运算法则.19.(2022秋•长宁区校级期中)已知x﹣=3,求x2+和x4+的值.【分析】把该式子两边平方后可以求得x2+的值,再次平方即可得到x4+的值.【解答】解:∵x﹣=3,(x﹣)2=x2+﹣2∴x2+=(x﹣)2+2=32+2=11.x4+=(x2+)2﹣2=112﹣2=119.【点评】本题考查了完全平方公式,利用x和互为倒数乘积是1与完全平方公式来进行解题.20.(2022秋•长宁区校级期中)已知x﹣y=2,xy=80,求x2+y2的值.【分析】利用完全平方公式得出x2+y2=(x﹣y)2+2xy,即可求出答案.【解答】解:∵(x﹣y)2=x2﹣2xy+y2,(2分)∴x2+y2=(x﹣y)2+2xy(2分),当x﹣y=2,xy=80时,x2+y2=22+2×80=164.(3分)若有其他方法,可参照答案,给分.【点评】此题主要考查了完全平方公式的应用,根据题意得出x2+y2=(x﹣y)2+2xy是解决问题的关键.21.(2022秋•静安区校级期中)阅读并思考:计算472时,山桂娜同学发现了一个简单的口算方法,具体步骤如下:第一步:47接近整十数50,50﹣47=3;第二步:取50的一半25,25﹣3=22;第三步:32=9第四步:把第二、三步综合起来,472=(25﹣3)×100+32=2209.(1)依此方法计算49:第一步:49接近整十数50,50﹣49=1;第二步:取50的一半25,25﹣1=24;第三步:12=1492=(﹣)×100+2=2401.(2)请你根据山桂娜同学的方法,填写出一个正确的计算公式.(50﹣n)2=(﹣)×100+2.(3)利用乘法运算说明第(2)小题中这个公式的正确性.(4)写出利用这个公式计算562=3136的过程.(5)计算63×67也有一个简单的口算方法,具体步骤如下:第一步:6×(6+1)=42;第二步:3×7=21第三步:前面两步的结果综合起来,63×67的结果是4221.写出上述过程所依据的计算公式.(6)利用乘法运算说明第(5)小题中这个公式的正确性.【分析】(1)根据材料中的方法计算即可;(2)同理可得结论;(3)根据乘法运算分别计算(2)中等式的左边和右边,从而得结论;(4)代入(2)中的公式可得结论;(5)根据材料中的具体步骤可得计算公式即可;(6)根据多项式乘以多项式法则计算即可.【解答】解:(1)依此方法计算49:第一步:49接近整十数50,50﹣49=1;第二步:取50的一半25,25﹣1=24;第三步:12=1;第四步:把第二、三步综合起来,492=(25﹣1)×100+12=2401.故答案为:25,1,1;(2)(50﹣n)2=(25﹣n)×100+n2.故答案为:25,n,n;(3)∵左边=2500﹣100n+n2,右边=n2﹣100n+2500,∴左边=右边,∴(50﹣n)2=(25﹣n)×100+n2;(4)562=(50+6)2=(25+6.(5)写出上述过程所依据的计算公式:(10a+b)[10a+(10﹣b)]=a(a+1)×100+b(10﹣b);故答案为:(10a+b)[10a+(10﹣b)]=a(a+1)×100+b(10﹣b);(6)∵左边=(10a+b)[10a+(10﹣b)]=(10a+b)(10a﹣b+10)=100a2﹣10ab+100a+10ab﹣b2+10b=100a2+100a+10b﹣b2,右边=a(a+1)×100+b(10﹣b)=100a(a+1)+b(10﹣b)=100a2+100a+10b﹣b2,∴(10a+b)[10a+(10﹣b)]=a(a+1)×100+b(10﹣b).【点评】本题考查了有理数的乘方和乘法的简便算法,理解材料中计算的方法和运用是解本题的关键.二.完全平方公式的几何背景(共5小题)22.(2022秋•嘉定区校级期末)一个正方形的边长为acm,若它的边长增加5cm,则新正方形面积增加了()cm2.A.25B.10a C.25+5a D.25+10a【分析】完全平方公式(a+b)=a2+2ab+b2的应用.【解答】解:原正方形的面积=a2(cm2)新正方形的面积=(a+5)2=(a2+10a+25)cm2所以增加的面积=(10a+25)cm2.故本题选D.【点评】本题主要是考查了完全平方公式的应用.23.(2022秋•宝山区校级期中)如图,将一张正方形纸片剪成四个面积相等的小正方形纸片,然后将其中一张小正方形纸片再剪成四个面积相等的小正方形纸片,如此剪下去,第n次剪好后,所得到的所有正方形纸片的个数是()A.4n B.3n C.3n+1D.2n+2【分析】通过观察已知图形可得:每剪一次都比上一次增加3个正方形纸片;所以可得规律为:第n次操作后共得到4+3(n﹣1).【解答】解:分析可得:每次都比上一次增加3个.∴第n次操作后共得到4+(n﹣1)×3=(3n+1)个.故选:C.【点评】本题考查学生通过观察、归纳、抽象出数列的规律的能力.24.(2022秋•浦东新区期中)如果一个正方形的周长为(2a+b)(其中a>0,b>0),则该正方形的面积为()A.B.C.4a2+b2D.【分析】根据正方形的面积等于边长的平方求解.【解答】解:()2==++,故选:A.【点评】本题考查了完全平方公式,正方形的面积是解题的关键.25.(2022秋•静安区校级期中)如果一个正方形的周长为(8a+4b)(其中a>0,b>0),则该正方形的面积为.【分析】根据正方形的周长公式求出其边长,再根据面积公式进行计算即可.【解答】解:一个正方形的周长为(8a+4b),所以边长为(2a+b),所以面积为(2a+b)2=4a2+4ab+b2,故答案为:4a2+4ab+b2.【点评】本题考查完全平方公式的几何背景,掌握完全平方公式的结构特征是正确解答的前提.26.(2022秋•嘉定区校级期中)如图是用四张相同的长方形纸片拼成的图形,请利用图中空白部分的面积的不同表示方法写出一个关于b的等式.【分析】空白部分为一个正方形,找到边长,表示出面积;也可用大正方形的面积减去4个矩形的面积表示,然后让这两个面积相等即可.【解答】解:空白部分为正方形,边长为:(a﹣b),面积为:(a﹣b)2.空白部分也可以用大正方形的面积减去4个矩形的面积表示:(a+b)2﹣4ab.∴(a﹣b)2=(a+b)2﹣4ab.【点评】本题考查了完全平方公式的几何意义,用不同的方法表示相应的面积是解题的关键.【过关检测】一、单选题1.(2023·上海·七年级假期作业)下列各式中,能用完全平方公式计算的是( ) A .()()4774x y y x −−− B .()()4774x y x y −−+ C .()()4774x y y x −−+ D .()()4747x y x y −+【答案】C【分析】根据完全平方公式判断即可.【详解】A :()()4774(47)(47)x y y x x y x y −−−=−−+,不能用完全平方公式运算,不符合题意; B :()()()()47744774x y x y x y x y −−+=−++,不能用完全平方公式运算,不符合题意;C :()()()2477447x y y x x y −−+=−+,能用完全平方公式运算,符合题意;D :()()4747x y x y −+,不能用完全平方公式运算,不符合题意; 故选:C .【点睛】本题考查完全平方公式的应用,掌握完全平方公式的形式是解题的关键. 2.(2018秋·上海浦东新·七年级校联考期中)已知5x y +=−,3xy =,则22x y +=( )【答案】C【分析】根据完全平方公式,即可解答. 【详解】解:∵5x y +=−,3xy =, ∴()()2222252325619x y x y xy +=+−=−−⨯=−=,故选:C .【点睛】本题考查了完全平方公式,解决本题的关键是熟记完全平方公式. 3.(2023秋·上海青浦·七年级校考期末)下列计算中错误的有( )①()23320x x x −+⋅=;②222()2x y x xy y −−=−+;③248236x x x ⋅=;④22()()x y x y x y −−+=−A .1个B .2个C .3个D .4个【答案】D【分析】根据积的乘方、完全平方公式、单项式乘法的计算法则计算出结果即可判断.【详解】解:①()2523630x x x x x −++=⋅≠,原计算错误;②22222()22x y x xy y x xy y −−=++≠−+,原计算错误;③24682366x x x x ⋅=≠,原计算错误;④()22222(2)()x y x y y xy x y x x y =−−+=−+−≠−−−,原计算错误.综上,四个计算都是错误的, 故选:D .【点睛】本题考查了积的乘方、完全平方公式、单项式乘法,掌握运算法则是解题的关键.4.(2022秋·七年级单元测试)在数学活动课上,一位同学用四张完全一样的长方形纸片(长为a ,宽为b ,a b >)搭成如图一个大正方形,面积为132,中间空缺的小正方形的面积为28.下列结论中,正确的有( ).① ()228a b −=;② 26ab =;③ 2280a b +=;④ 2264a b −= A .①②③ B .①②④ C .①③④ D .②③④【答案】A【分析】根据拼图得出,(a+b )2=132,(a-b )2=28,ab=26,再根据公式变形逐项进行判断即可. 【详解】解:由拼图可知,大正方形的面积的边长为a+b ,中间的小正方形的边长为a-b ,∴(a+b )2=132,(a-b )2=28,ab=132284−=26,故①,②正确,∴a2+2ab+b2=132,∴a2+b2=132-2×26=80,故③正确, 由于(a+b )2=132,(a-b )2=28,而a >b ,∴,∴a2-b2=(a+b )(a-b )=④不正确, 故选:A .【点睛】本题考查平方差公式、完全平方公式的几何背景,掌握完全平方公式、平方差公式的结构特征是正确判断的前提.5.(2023秋·上海嘉定·七年级上海市育才中学校考期末)一个正方形的边长为cm a ,若它的边长增加5cm ,则新正方形面积增加了( )2cm .A .25B .10aC .255a +D .2510a +【答案】D【分析】根据题意列出算式,计算即可得到结果.【详解】解:根据题意得:22(5)1025a a a +−=+,即新正方形的面积增加了()2510a +2cm ,故选:D .【点睛】本题考查了完全平方公式,熟练掌握完全平方公式是解本题的关键.6.(2023·上海·七年级假期作业)已知:3a b c ++=,2223a b c ++=,则201120112011a b c ++的值是( ) A .0 B .3C .20052D .200532⋅【答案】B【分析】根据已知,得到()()222230a b c a b c ++−+++=,再利用完全平方公式,得出()()()2221110a b c −+−+−=,然后根据平方的非负性,求得1a b c ===,代入计算即可求出201120112011ab c ++的值.【详解】解:3a b c ++=,2223a b c ++=,()()2222332330a b c a b c ∴++−+++=−⨯+=,()()()2222121210a ab bc c ∴−++−++−+,()()()2221110a b c ∴−+−+−=,10a ∴−=,10b −=,10c −=, 1a b c ∴===,0201201120112111201120111111113a b c ∴++=+=++=+,故选B .【点睛】本题考查了完全平方公式的应用,平方的非负性,代数式求值,有理数的乘方,根据已知得出()()()2221110a b c −+−+−=是解题关键.二、填空题7.(2022秋·上海宝山·七年级校考期中)多项式291x +加上一个单项式后,使它能成为一个整式的完全平方,则加上的单项式可以是____________(填上你认为正确的一个答案即可)【答案】6x (答案不唯一)【分析】利用完全平方公式解答即可.【详解】解:()2296131x x x ++=+.故答案为:6x (答案不唯一)【点睛】本题考查完全平方公式,解题的关键是熟练掌握完全平方公式.8.(2022秋·上海·七年级校联考期末)若29x kx ++是完全平方式,则k 的值为__________. 【答案】6±【分析】这里首末两项是x 和3这两个数的平方,那么中间一项为加上或减去x 和3的积的2倍,故6k =±. 【详解】解:由题意可知,中间一项为加上或减去x 和3的积的2倍,6k ∴=±故答案为:6±.【点睛】本题是完全平方公式的应用,两数的平方和,再加上或减去它们积的2倍,就构成了一个完全平方式.注意积的2倍的符号,避免漏解.9.(2021秋·上海嘉定·七年级统考期中)已知:二次三项式239x mx −+是一个完全平方式,则 m =__________. 【答案】2±【分析】由于m 的正负未知,根据完全平方公式可知()22239369x mx x x x −+=±=±+,从而得到2m =±.【详解】解:由完全平方公式可知()22239369x mx x x x −+=±=±+,36m ∴−=±,解得2m =±,故答案为:2±.【点睛】本题考查完全平方公式的运用,熟记并理解完全平方公式是解决问题的关键.10.(2022秋·上海·七年级校考阶段练习)已知3a b +=,2ab =,则代数式22a b +的值为_______. 【答案】5【分析】首先将22a b +变形为2()2a b ab +−,然后代入求解即可.【详解】∵3a b +=,2ab =,∴22a b +2()2a b ab =+−2322=−⨯5=.故答案为:5.【点睛】此题考查了代数式求值,完全平方公式,解题的关键是将22a b +变形为2()2a b ab +−.11.(2022秋·上海静安·七年级上海市市西中学校考期中)已知6a b +=,2220a b +=,则ab 的值为________. 【答案】8【分析】先把6a b +=两边进行平方,再根据2220a b +=,即可得到ab 的值.【详解】解:∵6a b +=,2220a b +=,∴222()236a b a b ab +=++=,即20236ab +=,∴8ab =, 故答案为:8.【点睛】此题主要考查代数式求值,解题的关键是熟知完全平方公式的变形运用.【答案】2【分析】根据题意可知,12m m +=,将等式左右两边同时平方即可求出221m m +的值. 【详解】∵12m m +=, ∴21()4m m +=, ∴22124m m ++=, ∴2212m m +=【点睛】本题主要考查完全平方公式的变形,熟记完全平方公式的常见变形公式是解此类题的关键. 13.(2023·上海·七年级假期作业)已知3x y −=,2229x y +=,那么xy =________. 【答案】10【分析】根据完全平方公式变形即可求解.【详解】解:∵3x y −=,2229x y +=,∴()()222292920x y x y xy −−+=−=−=−∴10xy =, 故答案为:10.【点睛】本题考查了完全平方公式变形求值,掌握完全平方公式是解题的关键.【答案】 14 194【分析】根据完全平方公式得出2221112x x x x x x ⎛⎫+=+−⋅⋅⎪⎝⎭,代入求出即可;根据完全平方公式得出2424211x x x x ⎛⎫+=+− ⎪⎝⎭ 2212x x ⋅⋅,代入求出即可.【详解】解: 14x x +=,∴2116x x ⎛⎫+= ⎪⎝⎭,∴221216x x ++=,∴22114x x +=∴2221196x x ⎛⎫+= ⎪⎝⎭∴4412196x x ++=∴441194x x +=.故答案为:14;194.【点睛】本题主要考查了完全平方公式的应用,能正确运用完全平方公式进行变形是解答此题的关键,注意:完全平方公式为()2222a b a ab b +=++和()2222a b a ab b −=−+.本题主要考查完全平方公式的变形转换的能力以及注意积累1x x +的变化方式.15.(2022秋·上海嘉定·七年级统考期中)若216x ax ++是一个完全平方式,则实数a 的值为___________ 【答案】8±/8−或8/8或8−【分析】根据完全平方式的一般形式222a ab b ±+求解即可.【详解】解:216x ax ++是一个完全平方式,248ax x x ∴=±⋅=±, 8a ∴=±,故答案为:8±.【点睛】本题考查完全平方式,熟记完全平方式的一般形式是解答的关键.【答案】7【分析】将方程两边同时除以字母x ,把整式方程化为分式方程,再结合完全平方公式及其变式即可求解. 【详解】解:将方程2310x x −+=两边同时除以字母x 得:130x x −+=,13x x ∴+=21()9x x ∴+=22129x x ∴++=2217x x ∴+=故答案为:7.【点睛】本题考查完全平方公式及其变式,掌握相关知识是解题关键.17.(2023·上海·七年级假期作业)如果25m m +=,那么代数式的()()222m m m −++值为___________. 【答案】14【分析】利用完全平方公式和单项式乘多项式的运算法则先计算乘方和乘法,然后合并同类项进行化简,最后利用整体思想代入求值. 【详解】解:()()222m m m −++22244m m m m =−+++ 2224m m =++∵25m m +=,∴原式()2=24=254=14m m ++⨯+.故答案为:14.【点睛】本题考查整式的混合运算,理解整体思想解题的应用,掌握完全平方公式()2222a b a ab b ±=±+是解题关键.18.(2023·上海·七年级假期作业)请同学运用计算()2222222a b c a b c ab ac bc ++=+++++,解决问题:已知x 、y 、z 满足2224y x z ++=,求()()()222x y y z z x −+−+−的最大值是______. 【答案】12【分析】根据已知条件化简()()()222x y y z z x −+−+−,根据完全平方公式的非负性求得原式的最大值,进而即可求解.【详解】∵2224y x z ++=, ∴()()()222x y y z z x −+−+−222222222x y y z z x xy yz xz =+++++−−−()2222x y z xy yz xz =++−−−()82xy yz zx =−++;∵()2222222x y z x y z xy xz yz++=+++++,∴()()2222222xy xz yz x y z x y z ++=+++−+∴原式=()22228x y z x y z +++−++()212x y z =−++, ()2x y z ++≥,∴原式12≤.故原式的最大值是12; 故答案为:12.【点睛】本题考查运用已知公式,及平方的非负性,掌握灵活运用题中给的公式是解题的关键.三、解答题【答案】222x y +,42【分析】根据完全平方公式展开,单项式乘以多项式把括号去掉,合并同类项,代入求值即可.【详解】解:22()[2()]x y x x x y −−−+22222(22)x xy y x x xy =−+−−− 2222222x xy y x x xy =−+−++222x y =+,把12x =,=2y −代入得,原式222211122(2)244242x y ⎛⎫=+=⨯+−=⨯+= ⎪⎝⎭. 【点睛】本题主要考查完全平方公式,整式的混合运算,掌握整式的混合运算法则是解题的关键. 20.(2022秋·上海·七年级校考期末)计算:()()()224321x x x +−−−. 【答案】97x −【分析】先根据多项式乘以多项式,完全平方公式计算,再合并同类项,即可求解.【详解】解:()()()224321x x x +−−224386441x x x x x =−+−−+−97x =−.【点睛】本题主要考查了整式的混合运算,熟练掌握多项式乘以多项式法则,完全平方公式是解题的关键. 21.(2023秋·上海浦东新·七年级校考期中)利用完全平方公式计算:230.2. 【答案】912.04【分析】根据完全平方公式计算即可. 【详解】解:230.2()2300.2=+22302300.20.2=+⨯⨯+900120.04=++912.04=【点睛】本题考查了完全平方公式,掌握2222a b a ab b ±=±+()是解题的关键. 22.(2022秋·上海·七年级上海市西延安中学校考期中)解方程:22(12)(1)3(1)(1)x x x x −−−=−+. 【答案】32x =【分析】利用完全平方公式及平方差公式去括号,再根据解方程的步骤求解即可.【详解】解:22(12)(1)3(1)(1)x x x x −−−=−+,2221441233x x x x x +−−−+=−,14123x x −−+=−, 23x −=−,解得:32x =.【点睛】此题考查了平方差公式,熟记平方差公式、完全平方公式及解一元一次方程的步骤是解题的关键.【答案】正方形ABGH 和ADEF 的面积之和为268cm .【分析】先根据题意列出长方形ABCD 关于周长和面积的代数式,再根据完全平方公式的变式应用即可求出答案.【详解】解:设长方形ABCD 的长为cm a ,则宽为cm b , ∵长方形ABCD 的周长为20cm ,面积为216cm , ∴1016a b ab +==,,正方形ABGH 和ADEF 的面积之和为22a b +,∵()()2222221021668cma b a b ab+=+−=−⨯=.∴正方形ABGH和ADEF的面积之和为268cm.【点睛】本题主要考查完全平方公式变式应用,根据题意列出等式是解决本题的关键.24.(2023·上海·七年级假期作业)一个正方形的边长增加3cm,它的面积增加了452cm.求这个正方形原来的边长.若边长减少3cm,它的面积减少了452cm,这时原来边长是多少呢?【答案】6cm;9cm【分析】设原来正方形的边长为x cm,根据:一个正方形的边长增加3cm,它的面积增加了452cm,列出方程即可求解;同样的方法即可解答边长减少问题.【详解】设原来正方形的边长为x cm.则()22345x x+=+,解得:6x=.∴正方形原来的边长为6cm.设原来正方形的边长为y cm,则()22345y y−=−,解得:9y=.∴正方形原来的边长为9cm.【点睛】本题主要考查完全平方公式在实际问题中的运用,正确理解题意、得出方程是解题的关键.【答案】(1)12(2)①6;②17 (3)92【分析】(1)利用完全平方公式即可求解;(2)注意整体法的运用,将(4-x )、(5-x )看成一个整体去求解;(3)表示两个正方形的面积1S 、2S ,得到2218AC BC +=,结合22()6AC BC +=,推出9AC BC =,再去计算阴影部分面积.(1)∵8x y +=,∴22()8x y +=,22264x xy y ++=, 又∵2240x y +=, ∴22264()xy x y =−+=64-40=24,∴12xy =;(2)①222(4)(4)2(4)x x x x x x −+=−+−−=16-10=6;②222(4)(5)[(4)(5)]2(4)(5)x x x x x x −+−=−−−+−−=2(1)28−+⨯=17;(3)∵AB =6,∴22()6AC BC +=,∴22236AC AC BC BC ++=,又∵1218S S +=,∴2218AC BC +=,∴9AC BC =,∵BC =CF , ∴1922ACF S AC CF ∆==.【点睛】本题考查了完全平方公式的灵活运用,其中既要注意整体法的运用,又要注意数形结合思维的培养.26.(2022秋·七年级单元测试)若x满足(9﹣x)(x﹣4)=4,求(4﹣x)2+(x﹣9)2的值.解:设9﹣x=a,x﹣4=b,则(9﹣x)(x﹣4)=ab=4,a+b=(9﹣x)+(x﹣4)=5,∴(9﹣x)2+(x﹣4)2=a2+b2=(a+b)2﹣2ab=52﹣2×4=17请仿照上面的方法求解下面问题:(1)若x满足(5﹣x)(x﹣2)=2,求(5﹣x)2+(x﹣2)2的值(2)已知正方形ABCD的边长为x,E,F分别是AD、DC上的点,且AE=1,CF=3,长方形EMFD的面积是48,分别以MF、DF作正方形,求阴影部分的面积.【答案】(1)5;(2)28.【分析】(1)设(5﹣x)=a,(x﹣2)=b,根据已知等式确定出所求即可;(2)设正方形ABCD边长为x,进而表示出MF与DF,求出阴影部分面积即可.【详解】解:(1)设(5﹣x)=a,(x﹣2)=b,则(5﹣x)(x﹣2)=ab=2,a+b=(5﹣x)+(x﹣2)=3,∴(5﹣x)2+(x﹣2)2=(a+b)2﹣2ab=32﹣2×2=5;(2)∵正方形ABCD的边长为x,AE=1,CF=3,∴MF=DE=x﹣1,DF=x﹣3,∴(x﹣1)·(x﹣3)=48,∴(x﹣1)﹣(x﹣3)=2,∴阴影部分的面积=FM2﹣DF2=(x﹣1)2﹣(x﹣3)2.设(x﹣1)=a,(x﹣3)=b,则(x﹣1)(x﹣3)=ab=48,a﹣b=(x﹣1)﹣(x﹣3)=2,∴a=8,b=6,a+b=14,∴(x﹣1)2﹣(x﹣3)2=a2﹣b2=(a+b)(a﹣b)=14×2=28.即阴影部分的面积是28.【点睛】本题考查了完全平方公式的几何背景,应从整体和部分两方面来理解完全平方公式的几何意义,主要围绕图形面积展开分析.。
完全平方公式(基础)知识讲解
完全平方公式(基础)【学习目标】1. 能运用完全平方公式把简单的多项式进行因式分解.2. 会综合运用提公因式法和公式法把多项式分解因式; 3.发展综合运用知识的能力和逆向思维的习惯. 【要点梳理】要点一、公式法——完全平方公式两个数的平方和加上(减去)这两个数的积的2倍,等于这两个数的和(差)的平方.即()2222a ab b a b ++=+,()2222a ab b a b -+=-.形如222a ab b ++,222a ab b -+的式子叫做完全平方式.要点诠释:(1)逆用乘法公式将特殊的三项式分解因式;(2)完全平方公式的特点:左边是二次三项式,是这两数的平方和加(或减)这两数之积的2倍. 右边是两数的和(或差)的平方.(3)完全平方公式有两个,二者不能互相代替,注意二者的使用条件. (4)套用公式时要注意字母a 和b 的广泛意义,a 、b 可以是字母,也可以是单项式或多项式.【高清课堂400108 因式分解之公式法 知识要点】 要点二、因式分解步骤(1)如果多项式的各项有公因式,先提取公因式; (2)如果各项没有公因式那就尝试用公式法;(3)如用上述方法也不能分解,那么就得选择分组或其它方法来分解(以后会学到). 要点三、因式分解注意事项(1)因式分解的对象是多项式; (2)最终把多项式化成乘积形式;(3)结果要彻底,即分解到不能再分解为止. 【典型例题】类型一、公式法——完全平方公式1、 下列各式是完全平方式的是( ). A .412+-x xB .21x +C .1++xy xD .122-+x x【思路点拨】完全平方式是二次三项式,是这两数的平方和加(或减)这两数之积的2倍. 【答案】A ;【解析】221142x x x ⎛⎫-+=- ⎪⎝⎭.【总结升华】形如222a ab b ++,222a ab b -+的式子叫做完全平方式. 举一反三:【变式】(1)如果多项式219x kx ++是一个完全平方式,那么k 的值为 ;(2)如果多项式24x kx -+是一个完全平方式,那么k 的值为 .【答案】(1)23k =±;(2)4k =±. 2、分解因式:(1)21449x x ++; (2)29124x x -+; (3)214a a ++; (4)22111162a b ab -+. 【答案与解析】解:(1)22221449277(7)x x x x x ++=+⋅⋅+=+. (2)22229124(3)2322(32)x x x x x -+=-⋅⋅+=-.(3)2222111124222a a a a a ⎛⎫⎛⎫++=+⋅⋅+=+ ⎪ ⎪⎝⎭⎝⎭.(4)222221111112111162444a b ab ab ab ab ⎛⎫⎛⎫-+=-⋅⋅+=- ⎪ ⎪⎝⎭⎝⎭.【总结升华】本题的关键是掌握公式的特征,套用公式时要注意把每一项同公式的每一项对应. 举一反三:【变式】分解因式:(1)29()12()4a b a b +-++; (2)222()()a a b c b c ++++;(3)21025a a --; (4)22()4()()4()x y x y x y x y +++-+-.【答案】解:(1)29()12()4a b a b +-++22[3()]23()22a b a b =+-⋅+⋅+22[3()2](332)a b a b =+-=+-.(2)222()()a a b c b c ++++22[()]()a b c a b c =++=++. (3)()2210251025a a a a --=--+2(5)a =--. (4)22()4()()4()x y x y x y x y +++-+-22()2()2()[2()]x y x y x y x y =+++-+- 22[()2()](3)x y x y x y =++-=-.3、分解因式:(1)2234162x y xy y ++;(2)4224168a a b b -+;(3)222(3)(1)x x x +--. 【答案与解析】解:(1)2234162x y xy y ++22222()()1624x xy x y y y y =++=+. (2)4224168a a b b -+222222(4)[(2)(2)](2)(2)a b a b a b a b a b =-=+-=+-.(3)222(3)(1)x x x +--22(31)(31)x x x x x x =++-+-+2222(41)(21)(41)(1)x x x x x x x =+-++=+-+.【总结升华】分解因式的一般步骤:一“提”、二“套”、三“查”,即首先有公因式的提公因式,没有公因式的套公式,最后检查每一个多项式因式,看能否继续分解. 举一反三:【高清课堂400108 因式分解之公式法 例4】 【变式】分解因式:(1)224()12()()9()x a x a x b x b ++++++. (2)22224()4()()x y x y x y +--+-. (3)2244x y xy --+; (4)322344x y x y xy ++; (5)()()2222221x x x x -+-+;【答案】解:(1)原式22[2()]22()3()[3()]x a x a x b x b =++⋅+⋅+++22[2()3()](523)x a x b x a b =+++=++.(2)原式22[2()]22()()()x y x y x y x y =+-⋅+⋅-+-22[2()()](3)x y x y x y =+--=+.(3)原式()()222442x y xy x y =-+-=--(4)原式=()()222442xy x xy y xy x y ++=+(5)原式()()242211x x x =-+=-类型二、配方法4、若x 731,则223x x ++=________.【思路点拨】此题不能直接代入求值,先将原式配方后代入比较简便. 【答案】75;【解析】()2222321212x x x x x ++=+++=++,将x 731代入得273275+=.【总结升华】对于数据比较复杂的代入求值问题,要先观察式子的特点,看能不能将式子进行变形,以简便计算. 举一反三:【变式】已知x 为任意有理数,则多项式x -1-142x 的值为( ). A .一定为负数 B .不可能为正数 C .一定为正数 D .可能为正数,负数或0 【答案】B ;提示:x -1-142x =221111042x x x ⎛⎫⎛⎫--+=--≤ ⎪ ⎪⎝⎭⎝⎭.【巩固练习】一.选择题1. 将224144a a ++因式分解,结果为( ).A.()()188a a ++B.()()1212a a +-C.()212a +D.()212a -2.2()nm x y -是下列哪一个多项式分解的结果( )A .22nm x y - B .2n n m m x x y y -+ C .222nn m m xx y y -+ D .2n n m m x x y y --3. 下列各式可以化为完全平方式的是( ).A.21x x ++ B.221x x +- C.244a a ++ D.22a b + 4. 如果222536a mab b ++可分解为()256a b -,那么m 的值为( ).A.30B.-30C.60D.-60 5. 如果229x kxy y ++是一个完全平方公式,那么k 是( ) A.6 B.-6 C.±6 D.18 6. 下列各式中,是完全平方式的是( )A.2991x x -- B.2691y y -++ C.2169y y -- D.2931y y --二.填空题7. 若()22416-=+-x mx x ,那么________m =.8. 因式分解:()()225101a b a b -+-+=____________. 9. 分解因式:214m m ---=_____________. 10. 分解因式:221nn xx -+=_____________.11. 分解因式:()()154a a +++ =_____________. 12. (1)()()225=a a -+;(2)()()22412m mn -+=.三.解答题13. 若13x x +=,求221x x+的值. 14. 已知1x y +=,316xy =,求32232x y x y xy -+的值.15. 把()()3322x y x y x xy y +=+-+称为立方和公式,()()3322x y x y x xy y -=-++称为立方差公式,据此,试将下列各式因式分解: (1)38a +; (2)3271a -. 【答案与解析】 一.选择题1. 【答案】C ;2. 【答案】C ; 【解析】2222()nn m m n m xx y y x y -+=-.3. 【答案】C ;【解析】()22442a a a ++=+.4. 【答案】D ;【解析】()22256256036a b a ab b -=-+.5. 【答案】C ;【解析】()22222229239693x kxy y x x y y x xy y x y ++=±⋅⋅+=±+=±.6. 【答案】B ;【解析】()2269131y y y -++=-.二.填空题7. 【答案】8;【解析】()224816x x x -=-+.8. 【答案】()2551a b -+;【解析】()()()()()222251015251551a b a b a b a b a b -+-+=-+⋅-+=-+⎡⎤⎣⎦.9. 【答案】212m ⎛⎫-+ ⎪⎝⎭;【解析】222111442m m m m m ⎛⎫⎛⎫---=-++=-+ ⎪ ⎪⎝⎭⎝⎭.10.【答案】()21nx -; 【解析】()()222212111nn n n n xx x x x -+=-⋅⋅+=-.11.【答案】()23a +;【解析】()()()22154693a a a a a +++=++=+.12.【答案】(1)255,42a -;(2)29,23n m n -. 三.解答题13.【解析】解:222222111222327x x x x x x ⎛⎫+=++-=+-=-= ⎪⎝⎭.14.【解析】解:原式=()()()222224xy x xy yxy x y xy x y xy ⎡⎤-+=-=+-⎣⎦∵1x y +=,316xy =, ∴原式=316(1-4×316)=316×(1-34)=316×14=364.15. 【解析】解:(1)()()333282224a a a a a +=+=+-+ (2)()()()3322713131931a a a a a -=-=-++.。
完全平方公式(完整知识点)
完全平方公式(完整知识点)完全平方公式完全平方公式即(a±b)²=a²±2ab+b²该公式是进行代数运算与变形的重要的知识基础,是因式分解中常用到的公式。
该知识点重点是对完全平方公式的熟记及应用。
难点是对公式特征的理解(如对公式中积的一次项系数的理解)。
必须注意的:①漏下了一次项②混淆公式(与平方差公式)③运算结果中符号错误④变式应用难于掌握。
学会用文字概述公式的含义:两数和(或差)的平方,等于它们的平方和,加上(或减去)它们的积的2倍。
叫做完全平方公式.为了区别,我们把前者叫做两数和的完全平方公式,后者叫做两数差的完全平方公式。
这两个公式的结构特征:1、左边是两个相同的二项式相乘,右边是三项式,是左边二项式中两项的平方和,加上或减去这两项乘积的2倍;2、左边两项符号相同时,右侧各项全用“+”号毗连;左边两项符号相反时,右侧平方项用“+”号毗连后再“-”两项乘积的2倍(注:这里说项时未包括其符号在内).完全平方公式口诀前平方,后平方,二倍乘积在中心。
同号加、异号减,符号添在异号前。
(可以背下来)即(a+b)2=a2+2ab+b2(a-b)2=a2-2ab+b2(注意:后面一定是加号)公式变形(题)变形的方法(一)、变符号:例1:应用完全平方公式计较:(1)(-4x+3y)2(2)(-a-b)2阐发:本例改变了公式中a、b的符号,以第二小题为例,处理该问题最简朴的方法是将这个式子中的(-a)看成原来公式中的a,将(-b)看成原来公式中的b,即可直接套用公式计较。
解答:(1)原式=16x2-24xy+9y2(2)原式=a2+2ab+b2(二)、变项数:例2:计算:(3a+2b+c)2分析:完全平方公式的左边是两个相同的二项式相乘,而本例中出现了三项,故应考虑将其中两项结合运用整体思想看成一项,从而化解矛盾。
所以在运用公式时,(3a+2b+c)2可先变形为[(3a+2b)+c]2,直接套用公式计算。
完全平方公式讲解
完全平方公式讲解完全平方(perfectsquare)公式是数学中最重要的公式之一,它可以用于快速解决许多数学问题的解法。
它的用处非常广泛,由于它的实用性,它被广泛应用于学校,大学,实验室和工作岗位中。
完全平方公式有三种基本形式:一是把一个根号中的式子化简为一个完全平方;二是将一个简单的数学表达式转换为另一个完全平方;三是将一个复杂的数学表达式化简为一个完全平方。
首先,要讲解完全平方公式,先来讲解求根数的完全平方形式。
这种情况下,要求根数是将一个数x开方,例如求根162,就是求x=162的根号,其公式的形式为:y=a^2+bx+c由此可得:y=(a-b)^2 + 2ab + c,a,b,c是常数。
若要求根数,要满足 y=a^2+bx+c=0,那么可以得到x=(-b+(b^2-4ac))/2a,此就可以得到x的值,也就是我们要求的根数。
其次,要解释完全平方公式,要讲解如何将一个简单的数学表达式转换成另一个完全平方的形式。
以熟悉的表达式y= ax^2+ bx+ c为例,如果要将它化简成完全平方的形式,可以这样做:令y=(ax+b)^2+c,y=a^2x^2+2axb+b^2+ c,令a^2=d,d减去b^2就是c的值,最后可以得到y=(ax+b)^2+d-b^2,也就是常见的完全平方形式。
最后,要讲解完全平方公式,要讲解如何将一个复杂的数学表达式化简为完全平方。
在这种情况下,我们通常会使用一些数学方法,根据原数学表达式的结构,把它分解分解成多个部分,每一部分作为一个完全平方求解,最后把这些部分综合起来,就可以得到一个完全平方的表达式。
总之,完全平方公式是一种非常有用的数学工具,它可以帮助我们快速解决许多数学问题。
通过对它的正确使用,我们可以提高我们的解题能力,从而获得更好的成绩。
完全平方公式讲解
完全平方公式讲解(a + b)^2 = a^2 + 2ab + b^2这里,a和b可以是任意数,a^2和b^2分别被称为二次项,2ab被称为二次项的第一次乘积。
我们从(a+b)^2入手进行推导。
(a+b)^2=(a+b)(a+b)(根据平方定义)=a(a+b)+b(a+b)(分配律)= a^2 + ab + ab + b^2 (使用分配律)= a^2 + 2ab + b^2通过这个推导过程,我们可以得到完全平方公式。
通过完全平方公式,我们可以将二次多项式转化成完全平方的形式,进而进行一些简化操作。
这对于解方程、求解二次函数的最值等问题非常有用。
1.解二次方程:当我们需要解二次方程时,可以使用完全平方公式将其转化为完全平方形式,从而更方便地求解。
例如,对于方程x^2+6x+9=0,我们可以将其写成完全平方的形式(x+3)^2=0,然后解得x=-32.求解二次函数的最值:对于二次函数 f(x) = ax^2 + bx + c,其中a不等于0,完全平方公式可以帮助我们求解该二次函数的最值。
例如,对于函数 f(x) = x^2+ 6x + 8,我们可以将其转化成完全平方形式 f(x) = (x + 3)^2 + 1,从而可以很容易地看出该函数的最小值为1,并且该最小值在x = -3时取得。
3.分解因式:在分解二次多项式的过程中,我们可以使用完全平方公式将其转化为完全平方形式,从而更容易地进行因式分解。
例如,对于多项式x^2+4x+4,我们可以将其写成完全平方的形式(x+2)^2,并且可以进一步分解为(x+2)(x+2)。
通过以上几个例子,我们可以看到完全平方公式在解方程、求解二次函数的最值以及分解因式时的重要性。
在这些应用中,一个关键的步骤就是将二次多项式转化为完全平方的形式,通过完全平方公式,我们可以很容易地完成这一步骤。
总结:完全平方公式是一种将二次多项式转化为完全平方的方法。
它可以帮助我们解方程、求解二次函数的最值,以及分解因式。
完全平方公式知识点
完全平方公式知识点完全平方公式是高中数学中常用的一个重要公式,它在解决二次方程相关问题时起到了关键作用。
它的形式为:若a是实数,那么二次方程ax^2+bx+c=0的解为x=(-b±√(b^2-4ac))/(2a)。
完全平方公式的应用范围很广泛,涉及到解方程、求根、求解问题等多个方面。
接下来我们将从不同角度来讲解完全平方公式的相关知识点。
一、完全平方公式的推导过程完全平方公式的推导过程相对简单,我们可以通过配方法将二次方程化简为完全平方的形式,从而得到该公式。
具体推导过程如下:对于二次方程ax^2+bx+c=0,我们可以通过配方法将其化简为(a·x^2+b·x+c)=a(x^2+(b/a)·x+(c/a))=a((x+(b/2a))^2-(b/2a)^2+c/a)=a(x+(b/2a))^2+(c-b^2/4a)。
由此可得,原二次方程的解为x=(-b±√(b^2-4ac))/(2a)。
二、完全平方公式的含义和应用完全平方公式的含义在于,它可以将一个二次方程转化为一个完全平方的形式,使得求解过程更加简便。
在实际应用中,完全平方公式常被用来求解二次方程的根,解决与二次方程相关的各种问题。
1. 求解二次方程的根完全平方公式可以帮助我们求解任意形式的二次方程的根。
通过将二次方程化简为完全平方的形式,我们可以直接得到方程的解。
2. 求解几何问题在几何问题中,完全平方公式也有重要的应用。
例如,求解一个矩形的对角线长度时,我们可以将其转化为一个二次方程,并利用完全平方公式求解。
3. 解决实际问题完全平方公式不仅仅在数学问题中有应用,它还可以帮助我们解决一些实际问题。
例如,在物理学中,通过将一些物理量表示为二次方程的形式,再利用完全平方公式求解,可以得到一些有用的结果。
三、完全平方公式的注意事项在应用完全平方公式时,我们需要注意以下几点:1. 判断二次方程是否适合使用完全平方公式。
完全平方公式知识点总结
完全平方公式知识点总结一、完全平方公式的定义在代数中,完全平方是指一个数的平方能够整除另一个数。
在一元二次方程中,如果其二次项和一次项可以写成一个完全平方的形式,那么我们就可以利用完全平方公式来求解方程的根。
二、完全平方公式的形式一元二次方程的标准形式为ax^2 + bx + c = 0,而完全平方公式的一般形式为(a+b)^2 =a^2 + 2ab + b^2,其中a、b为任意实数。
根据这个形式,我们可以进一步推导出完全平方公式的常用形式,即(a+b)^2 = a^2 + 2ab + b^2。
三、完全平方公式的推导要理解完全平方公式的推导过程,我们可以通过简单的代数运算来进行推导。
假设我们有一个二次方程x^2 + 6x + 9 = 0,我们可以将其写成完全平方的形式,即(x+3)^2 = 0。
通过这个例子,我们可以看到完全平方公式的推导过程,即将一元二次方程的一次项系数分解成两个相同的系数,然后将其写成完全平方的形式。
四、完全平方公式的应用技巧在使用完全平方公式求解一元二次方程时,我们需要注意以下几点应用技巧:1.将一元二次方程转化为完全平方的形式2.确定完全平方公式的形式,即(a+b)^2 = a^2 + 2ab + b^23.利用完全平方公式求解方程的根4.注意判断方程的解的情况,即判断判别式的正负性五、完全平方公式的拓展应用除了求解二次方程外,完全平方公式还可以在数学和科学领域的其他问题中进行拓展应用。
比如在几何学中,我们可以利用完全平方公式来求解圆的面积和周长;在物理学中,我们可以利用完全平方公式来分析物体的运动规律等。
总之,完全平方公式是求解一元二次方程的重要方法之一,它有着广泛的应用领域,对于学生来说掌握完全平方公式是十分重要的。
通过以上的知识点总结,相信大家对完全平方公式有了更深入的理解和掌握,希望能够帮助大家更好地学习和应用完全平方公式。
完全平方数-初中数学知识点
77完全平方数(一)定义1 .如果一个数恰好是某个有理数的平方,那么这个数叫做完全平方数. 例如401,?0.3612125,,, 都是完全平方数,在整数集合里,完全平方数都是整数的平方. 2 .如果一个整式是另一个整式的平方,那么这个整式叫做完全平方式.如果没有特别说明,完全平方式是在实数范围内研究的.例如:在有理数范围()222,24129,144m a b x x +--+, 都是完全平方式在实数范围(22,2,3a x +++ 也都是完全平方式.(二)整数集合里,完全平方数的性质和判定 1 .整数的平方的末位数字只能是0,1,4,5,6,9.所以凡是末位数字为2,3,7,8 的整数必不是平方数. 2 .若n 是完全平方数,且能被质数p 整除,则它也能被2p 整除..若整数m 能被q 整除,但不能被2q 整除,则m 不是完全平方数.例如: 3402 能被2 整除,但不能被4 整除,所以3402 不是完全平方数.又如: 444 能被3 整除,但不能被9 整除,所以444 不是完全平方数.(三)完全平方式的性质和判定在实数范围内如果()20ax bx c a ++≠ 是完全平方式,则240b ac -= 且0a >如果240b ac -= 且0a > ;则()20ax bx c a ++≠ 是完全平方式.在有理数范围内240b ac -= 且a 是有理数的平方时,2ax bx c ++是完全平方式(四)、完全平方式和完全平方数的关系1 .完全平方式()2ax b + 中当,a b 都是有理数时,x 取任何有理数,其值都是完全平方数: .当,a b 中有一个无理数时,则x 只有-些特殊值能使其值为完全平方数. 2 .某些代数式 虽不是完全平方式,但当字母取特殊值时,其值可能是完全平方数 例如: 29n + ,当4n = 时,其值是完全平方数.所以,完全平方式和完全平方数,既有联系又有区别.(五)完全平方数与-元二次方程的有理数根的关系 1 .在整系数方程()20ax bx c a ++≠ 中 ①若24b ac -是完全平方数,则方程有有理数根; ②若方程有有理数根,则24b ac -是完全平方数. 2 .在整系数方程20x px q ++= 中①若24p q -是整数的平方,则方程有两个整数根: ②若方程有两个整数根,则24p q -是整数的平方.。
完全平方公式讲解
完全平方公式讲解完全平方公式是数学中重要的基本定理,它可以将复杂的高等数学问题简化成简单的形式。
它通过分解复数式,使得许多数学问题变得简单明了,也可以用于求解非线性方程,是一个必不可少的数学理论的重要组成部分。
完全平方公式的定义:如果a和b是整数,那么a的完全平方公式表示为:a2 + b2 = c2,其中c也是一个整数。
这里的a和b是两个不同的整数,而c是由a和b构成的两个不同数字的和。
完全平方公式的算法:1.于两个不同的整数a和b,将它们求和,即a+b,然后将该和平方,即(a+b)2。
2.该平方值减去a2和b2,求出它们的差值,即(a+b)2 - a2 - b2。
3.后,根据此差值,结合a和b的值,求出c的值,即a2 + b2 = c2,即 c =(a2 + b2)。
完全平方公式的应用:1.以用完全平方公式来求解非线性方程,即求解x2+2x+1=0,在这个例子中,它可以转化为x2+2x= -1,那么用到完全平方公式,即x2+2x+1=0可以求得x=-1±√2。
2.全平方公式还可以帮助我们解决类似于a2+b2+c2+d2的多项式的求根问题。
例如:a2+b2+c2+d2=3,那么用到完全平方公式,可以求得a2+b2=3-c2-d2,即a2+b2=1,这样就可以把这个问题转变成一个完全平方的求根问题。
3.全平方公式还可以用来解决类似于a2+2ab+b2=c2+2cd+d2的多项式方程。
例如,a2+2ab+b2=4,c2+2cd+d2=9,那么可以分别求出a2,b2和c2,d2,即a2=2,b2=2,c2=7,d2=7,从而求出a,b,c,d的值。
完全平方公式是数学中重要的基本定理,它可以将复杂的高等数学问题简化成简单的形式,给予解决数学问题带来极大的便利,是研究数学理论的最佳工具之一。
它的应用非常广泛,几乎可以用于各种数学问题的解决,也可以用来解决复杂的非线性方程,对于提高数学水平有重要的意义。
八上完全平方公式
八上完全平方公式完全平方公式是在数学中非常有用的公式之一,主要用于求解几个数的平方和。
下面将详细介绍完全平方公式的概念、应用和示例。
一、完全平方公式的基本概念完全平方公式是指:如果有一个数x,那么(a ± b)² = a²± 2ab + b²其中,a和b是两个数,表示它们之间的差或和。
这个公式可以用来求解a、b的平方和。
二、完全平方公式的应用完全平方公式在数学中有很多应用,比如求多项式的平方和、解方程组等等。
其中最常见的是求解一元二次方程的根。
例如,对于方程x² + 2x + 3 = 0,可以通过求二次项系数a²和常数项b²的和的平方减去4倍的二次项系数a²来求解这个方程。
三、完全平方公式的示例以下是一些完全平方公式的示例:1. 求两个数的平方和:(3 + 4)² = 3² + 4² + 2 × 3 ×4 = 53 2. 求三个数的平方和:(1 - 2)² + (2 - 3)² + (4 -5)² = 2 - 2 × (2 × 2 +3 × 4 + 5 × 5) = -14以上这些示例说明完全平方公式不仅在求解两个数的平方和非常有用,而且也可以解决三个数的平方和的问题。
当然,当数字超过三个时,可以考虑其他数学方法。
四、总结通过上述介绍,我们了解了完全平方公式的基本概念、应用以及一些示例。
完全平方公式是数学中的一个重要工具,它能够解决许多数学问题,特别是求几个数的平方和的问题。
通过灵活运用完全平方公式,可以提高解题效率和准确性。
初一人教版七年级下册数学完全平方公式
初一人教版七年级下册数学完全平方公式知识点归纳总结一、完全平方公式的概念完全平方公式是数学中一种重要的恒等式,它描述了一个二次多项式如何表示为一个平方的形式。
具体地说,完全平方公式是形如a²±2ab+b²=(a±b)²的等式。
其中,a和b 是任意实数或代数式,它们可以是数字、字母、单项式或多项式。
二、完全平方公式的定义完全平方公式可以定义为:一个二次多项式,如果它可以表示为(a±b)²的形式,则称该二次多项式为完全平方公式。
其中,a和b可以是任意实数或代数式。
三、完全平方公式的性质唯一性:对于给定的a和b,完全平方公式(a±b)²是唯一的。
这意味着没有其他形式的二次多项式可以表示为完全平方。
展开性:完全平方公式可以展开为a²±2ab+b²的形式。
这是完全平方公式的一个重要性质,它允许我们将一个看似复杂的二次多项式简化为一个更简单的形式。
对称性:完全平方公式具有对称性,即(a+b)²=(b+a)²和(a-b)²=(b-a)²。
这意味着在完全平方公式中,a和b的位置可以互换而不影响公式的值。
四、完全平方公式的特点平方项:完全平方公式的第一项和最后一项都是平方项,即a²和b²。
这两项代表了公式中的主要部分,它们决定了公式的整体形状。
乘积项:完全平方公式的中间项是a和b的乘积的两倍,即±2ab。
这项是公式中的关键部分,它连接了平方项并使整个公式成为一个整体。
正负号:完全平方公式中的正负号取决于中间项是正是负。
如果中间项是正数,则公式为(a+b)²;如果中间项是负数,则公式为(a-b)²。
五、完全平方公式的规律二次项和一次项的关系:在完全平方公式中,二次项(a ²)和一次项(±2ab)之间存在密切的关系。
完全平方公式讲解
完全平方公式讲解完全平方公式是一种常见的数学公式,可以用来解决方程和多项式中的完全平方的技巧,是学习数学的必备技能之一。
完全平方公式的知识包括本质上的概念和方法以及它的计算方法与应用。
本文将详细讲解完全平方公式的定义、公式的计算方法和应用,以便读者能够更加全面的了解这一概念和方法。
完全平方公式的本质概念是指任何一个多项式的平方,可以表示为一个乘积公式,其中一个项称为完全平方项(Perfect Square),完全平方公式中,其它项也可以化简表示,这就是完全平方公式的本质概念。
完全平方公式的计算方法和应用主要有三种:(1)完全平方的求解:完全平方公式可以用来求解任何一个多项式的完全平方,首先要将多项式化简为一元二次方程,然后用完全平方公式对多项式求完全平方,最后将该完全平方进行拆解,得到完全平方根,从而解决问题。
(2)将含平方项的多项式化简:完全平方公式也可以用来将多项式中有平方项的含有x的项整理成完全平方,以便更容易求解多项式,进而求解多项式方程的解。
(3)求多项式的最小完全平方根:可以通过分解多项式的完全平方,来求出所求多项式的最小完全平方根,这样就可以求出多项式问题的最终解。
完全平方公式在数学上有很多应用,以上讲解的三种应用方法只是其中常见的应用。
完全平方公式也可以应用到复数、矩阵、非线性方程等情况,以求解更复杂的数学问题,比如求解复数的线性方程组和求解非线性方程组等。
此外,完全平方公式也可以用来求解更大的数学问题,如求解椭圆的矩阵、求解多项式的极值问题等。
完全平方公式是学习数学的必备技能,数学学习者只要能够理解完全平方公式的概念和方法,就可以通过完全平方公式求解多项式、矩阵、复数、非线性方程组等数学问题。
完全平方公式是一种具有广泛应用的数学工具,只要学习者掌握了完全平方公式,就能更好地解决数学问题。
完全平方知识点总结
完全平方知识点总结完全平方数具有一些特殊的性质和规律,下面我们就来详细总结一下完全平方数的知识点。
一、完全平方数的定义完全平方数是指一个数能够被另一个数整除,并且商也是一个整数,这两个数就是完全平方数。
比如4就是一个完全平方数,因为它可以被2整除,而商也是2。
二、完全平方数的性质1. 完全平方数的性质(1)完全平方数的个位数只能是0, 1, 4, 5, 6或9。
(2)如果一个数是完全平方数,那么它的个数为1、4、9、6或5。
2. 完全平方数的判定法一个数是否是完全平方数,可以通过取其个位数判断。
若个位数为1、4、9、6或5,则这个数是一个完全平方数,否则不是。
3. 完全平方数的性质(1)若一个自然数的个位数是1、4、9、6或5,则这个数是完全平方数。
(2)一个完全平方数的个位数只能是0、1、4、5、6、9。
(3)若一个数能被n(n为自然数)个连续奇数相加的和表示,那么它一定是个完全平方数。
4. 完全平方数的几何意义一个完全平方数可以表示成一个正方形的面积,这也是完全平方数的几何意义。
比如,9就可以表示成一个边长为3的正方形的面积。
5. 完全平方数的规律完全平方数的规律:一个完全平方数后面的完全平方数可以用前一个完全平方数的差来表示。
比如25是5的平方,36是25加11的平方,49是36加13的平方。
三、完全平方根的概念1. 完全平方根的定义一个数的完全平方根就是这个数的一个因数。
2. 完全平方根的性质(1)一个数的完全平方根的值一定是一个整数。
(2)一个完全平方数一定有正整数的完全平方根。
3. 完全平方根的求法求一个数的完全平方根,可以用试除法或开平方的方法进行求解。
四、完全平方数的应用1. 完全平方数在数学中的应用完全平方数在数学中有着广泛的应用,比如在因式分解中,完全平方数可以用来简化复杂的因式分解式子,简化计算。
2. 完全平方数在几何中的应用完全平方数在几何中也有着重要的应用,可以表示成一个正方形的面积,可以用来计算图形的面积等。
完全平方公式讲解
完全平方公式讲解完全平方公式是数学中的一种重要概念,作为学习数学的基本概念,它在帮助我们掌握数学的过程中发挥了重要作用。
完全平方公式是一种表明数学关系的工具,有助于理解数学中的概念和现象。
下面将对完全平方公式做一个详细的说明。
完全平方公式可以表达多项式中数学性质的关系,对于指定的数学现象能够有效地剖析。
完全平方公式的形式一般为$ax^2 +bx+c=0$,其中a,b,c是实数,a≠0。
完全平方公式可以解释如下:$ax^2+bx+c$表示等式左侧,等式右侧也可以写成一个完全平方形式:$(x+α)^2+β=0$。
α和β是两个实数,α=-b/2a,β=c/a。
完全平方公式可以用来解决多项式的根,即求出多项式的原根,也可以直接得出结果。
下面用完全平方公式来解决求解多项式根的问题,$ax^2 +bx+c=0$,求解x的值:$(x+α)^2+β=0$将其化为一元二次方程,有:$x^2+2αx+α^2+β=0$根据二次公式:$x_1,x_2=-αpm sqrt{α^2-4(1)β}$将α和β的值代入,可得:$x_1,x_2=frac{-bpm sqrt{b^2-4ac}}{2a}$将该公式带入到多项式中,就能得出多项式的根:$x_1=frac{-b+sqrt{b^2-4ac}}{2a},x_2=frac{-b-sqrt{b^2-4ac}}{2a}$完全平方公式还可以用来解决含有绝对值的一元二次不等式,新的形式如下:$|ax^2 +bx+c|=0$。
可以看出,此类不等式左侧的绝对值变成了括号,这就使其转换成普通的一元二次不等式,此时就可以使用完全平方公式来解决了。
完全平方公式的用途还不止如此,它还可以用来处理有理函数,特别是能够使有理函数形式更清楚、更简便,更具有可读性。
因此,完全平方公式也被广泛应用于高等数学中。
完全平方公式也可以解决三次方程,其具体步骤如下:首先,将三次方程转化为一次二次mixed型方程,即有如下形式:$ax^3+bx^2+cx+d=0$,然后,利用完全平方公式将其中的二次项处理,将它变成完全平方的形式,有:$(x^2+2αx+α^2)+β=0$,将α和β的值代入,即可得出解,最后,将解代入原方程中,检查解的有效性。