核磁共振氢谱课件教学内容

合集下载

《核磁共振氢谱》PPT课件

《核磁共振氢谱》PPT课件

各向异性效应
化合物中非球形对称的电子云,如 电子系统,对邻近质 子会附加一个各向异性的磁场,即这个附加磁场在某些区 域与外磁场 B0的方向相反,使外磁场强度减弱,起抗磁性 屏蔽作用,而在另外一些区域与外磁场 B0方向一样,对外 磁场起增强作用,产生顺磁性屏蔽的作用。
通常抗磁性屏蔽作用简称为屏蔽作用,产生屏蔽作用的区 域用“ + 〞表示,顺磁性屏蔽作用也称作去屏蔽作用,去 屏蔽作用的区域用“ -〞表示。
芳烃的各向异性效应
H: 7.3
环外氢受到强的去屏蔽作用: 8.9 ;环内H 在受到高度的屏蔽作用 ,故 : -1.8
双键的各向异性效应
屏蔽
去屏蔽
H
O
R
H: 56
H: 9-10
三键的各向异性效应
三键是一个 键〔sp杂化〕 和两 键组成。sp 杂化形成 线性分子,两对 p 电子相互 垂直,并同时垂直于键轴, 此时电子云呈圆柱状绕键轴 运动。炔氢正好处于屏蔽区 域内,所以在高场共振。同 时炔碳是 sp杂化轨道,C— H 键成键电子更靠近碳,使 炔氢去屏蔽而向低场移动, 两种相反的效应共同作用使 炔氢的化学位移为 2-3 ppm 。
氢化学位移
1. 化学位移值能反映质子的类型以及所处的化学环境,与分子 构造密切相关
2. (TMS)=0 (TMS)=10 =10-
3. 影响化学位移的因素:
4.
= d + p + a + s
5. H核外只有s电子,故d 起主要作用, a 和s对也有一 定的作用。
6.
影响化学位移的因素---诱导效应
X的电负性 4.0 3.5
(ppm) 4.26 3.24
3.1
2.8

核磁氢谱解析ppt课件

核磁氢谱解析ppt课件
三键,双键,苯环由于磁各项异性都会产生屏蔽区和去屏蔽区,所以 这些也是影响化学位移的重要因素,经常借此因素来区分异构体。单 键也有磁各向异性,所以C3CH>C2CH2>CCH3
4) 共轭作用和诱导作用(对不饱和烷烃影响) 对不饱和烷烃共轭作用和诱导作用要综合考虑。
共轭作用有p-π共轭给电子,π-π共轭吸电子;诱导效 应主要是吸电子效应。
2. 在有机化学中使苯环活化的邻, 对位定位基, 主要是有 p-π共轭作用. 这类有: -OH, -OR, -NH2, -NHR.
3. 第三类取代基是有机化学中使苯环钝化的间位定位基. 主要是纯在π-π共轭, 同时杂原子拉电子性, 使苯电子云密 度降低, 尤其是邻位.这类集团有: -CHO, -COR, -COOR, COOH, -CONHR, -NO2, -N=NR 等.
谢谢!
感谢亲观看此幻灯片,此课件部分内容来源于网络, 如有侵权请及时联系我们删除,谢谢配合!
2)S-P杂化 从sp3(碳碳单键)到sp2(碳碳双键)s 电子的成分从25%增加到33%,键电子 更靠近碳原子,因而对相连的氢原子有 去屏蔽作用,即共振位移移向低场. (芳 环与烯烃比饱和烷烃的化学位移低场的 原因)
3)磁各向异性 根据S-P杂化原理, 炔烃应该比烯烃更低场,苯环与烯烃相近.但实
还有些化合物在一种溶剂里不稳定,做出来的谱图比较杂,这时可 以换一种溶剂来做。
如 成盐后氮旁边的CH2会低场偏移0.5 ppm,同 样在CDCl3或DMSO做溶剂的谱图中没有成盐之前的氨活 泼氢在0.5-4.0ppm处,但成盐后活泼氢会出在10- 12ppm处,并且是两个NH.HCl,这也是鉴定氨是否成盐 的一种方法。
下面是我们比较常见的两种结构的互变异构.在有些化合物中只表现一种 构型.有些化合物中两种构型皆有,此时在核磁管里面加入浓盐酸1-2滴,会 发现变为单一的构型,这样的方法比升温要方便。

04-核磁共振氢谱-总PPT课件

04-核磁共振氢谱-总PPT课件

质量数 原子序数 自旋量子数I
偶数
偶数
0
偶数
奇数
1,2,3….
奇数
奇数或偶数 1/2;3/2;5/2….
.
6
表 常见核的核磁共振数据
核 天然丰度% 自旋量子数I 磁矩μ/μ0
1H 99.985
1/2
4.83724
磁旋比
共振频率/MHz
γ / 107rad·s-1·T-1 (H0=2.3488T)
26.7519
三氯乙酸
CCL3COOH
二氧六环
P-C2H6O2
环己烷
C6H12
四氯化碳
CCl4
二硫化碳
CS2
二氯甲烷
CH2Cl2
7.27
76.9
2.05
206,29.1
4.0**
/
2.5
39.6
7.20
128.0
3.34,4.11
49.0
7.18,7.57,8.57 149.9,135.5,123.5
2.31,7.10
(3)I=1/2的原子核 1H,13C,19F,31P
原子核可看作核电荷均匀分布的球体,并象陀螺一样自
旋,有磁矩产生,是核磁共振研究的主要对象,C,H也是有
机化合物的主要组成元素。 .
9
讨论:
在1950年,Proctor等研究发现:质子的共振频率与其结 构(化学环境)有关。在高分辨率下,吸收峰产生化学位移 和裂分,如右图所示。
.
15
表4-3 常见溶剂及其化学位移
名称
分子式
化学位移/ppm*
1H
13C
氯仿-d1
CHCl3- d1
丙酮- d6

核磁共振氢谱PPT课件

核磁共振氢谱PPT课件


m=I, I-1, I-2, ……-I
• 每种取向各对应一定能量状态
• I=1/2的氢核只有两种取向
• I=1的核在B0中有三种取向
.
10
z
z
z
m =+1
m =
B0
m = +1/2
m =
m =
m =
m = 1/2
m = 1
m = 1 m = 2
I = 1/2
I=1
I=2
I=1/2的氢核 与外磁场平行,能量较低,m=+1/2, E 1/2= -B0
与外磁场方向相反, 能量较高, m= -1/2, .
E -1/2=1B1 0
• 核磁矩与外磁场相互作用而产生的核磁场作用能 E, 即各能级的能量为 E=-ZB0
E 1/2= -B0 E-1/2= B0
.
12
I=1/2的核自旋能级裂分与B0的关系
• 由式 E = -ZB0及图可知1H核在磁场 中,由低能 级E1向高能级E2跃迁,所需能量为 △E=E2-E1= B0 -(-B0) = 2 B0
代入上式得: h I(I1) 2
当I=0时,P=0,原子核没有自旋现象,只有I﹥0,原 子核才有自旋角动量和自旋现象
.
9
二、核自旋能级和核磁共振
(一)核自旋能级
• 把自旋核放在场强为B0的磁场中,由于磁矩 与磁 场相互作用,核磁矩相对外加磁场有不同的取向,共 有2I+1个,各取向可用磁量子数m表示
.
6
• 自旋角动量
– 一些原子核有自旋现象,因而具有自旋角动 量。由于核是带电粒子,故在自旋同时将产 生磁矩。核磁矩与角动量都是矢量,磁矩的 方向可用右手定则确定。

核磁共振氢谱解析ppt课件

核磁共振氢谱解析ppt课件
第三章 核磁共振氢谱
1. 核磁共振的基本原理 2. 核磁共振仪与实验方法 3. 氢的化学位移 4. 各类质子的化学位移 5. 自旋偶合和自旋裂分 6. 自旋系统及图谱分类 7. 核磁共振氢谱的解析
前言
过去50年,波谱学已全然改变了化学家、生物学家和 生物医学家的日常工作,波谱技术成为探究大自然中 分子内部秘密的最可靠、最有效的手段。NMR是其中 应用最广泛研究分子性质的最通用的技术:从分子的 三维结构到分子动力学、化学平衡、化学反应性和超 分子集体、有机化学的各个领域。 1945年 Purcell(哈佛大学) 和 Bloch(斯坦福大学) 发现核磁共振现象,他们获得1952年Nobel物理奖 1951年 Arnold 发现乙醇的NMR信号,及与结构的关 系 1953年 Varian公司试制了第一台NMR仪器
• 驰豫时间与谱线宽度的关系 :即谱线宽度与驰豫 时间成反比。
• 饱和:高能级的核不能回到低能级,则NMR信号 消失的现象。
核磁共振仪
分类:按磁场源分:永久磁铁、电磁铁、超导磁场 按交变频率分:40 ,60 ,90 ,100 , 200 ,500,--,800
MHZ(兆赫兹),频率越高,分辨率越高 按射频源和扫描方式不同分:连续波NMR谱仪(CW-NMR) 脉冲傅立叶变换NMR谱仪(FT-NMR)
频率扫描(扫频):固定磁场强度,改变射频频率 磁场扫描(扫场):固定射频频率,改变磁场强度 实际上多用后者。 各种核的共振条件不同,如:在1.4092特斯拉的磁场,各 种核的共振频率为:
1H
60.000 MHZ
13C
15.086 MHZ
19F
56.444 MHZ
31P
24.288 MHZ
对于1H 核,不同的频率对应的磁场强度:

《核磁共振H谱》PPT课件

《核磁共振H谱》PPT课件

上式表明;核(1H 及13C)由低能级向高能级跃迁时
需要的能量(⊿E)与外加磁场强度(H0)及核磁矩()成
正比。显然,随着H0增大,发生核跃迁时需要的能 量也相应增大;反之,则相应减小。
2019/10/15
2、核在能级间的定向分布及核跃迁
通常在热力学平衡条件下,自旋核在两个能级
间的定向分布数目遵从Boltzmann分配定律,即低能 态核的数目比高能态的数目稍多一些(仅百万分之
– 具有非球形电荷分布,有电四极矩,核磁共振的谱 线加宽,不利于检测。
27
2019/10/15
第一节、基础原理
二)磁性原子核在外加磁场中的行为特性
原子核在强磁场中,吸收无线电波而产
生核自旋能级跃迁,导致核磁矩方向改变而产

三 章
生感应电流,这种现象称为核磁共振。测定核

磁 共
磁共振时电流的变化信号就可以判断原子核的
2019/10/15
⑵碳—13 核磁共振谱(13C-NMR spectrum, 13CNMR),简称碳谱。碳谱弥补了氢谱的不足, 可给出丰富的碳骨架信息。特别对于含碳较多的 有机物,具有很好的鉴定意义。
缺点 峰面积与碳数一般不成比例关系, 因而氢谱 和碳谱可互为补充。
⑶氟与磷核磁共振用于鉴定,研究含氟及含磷化 合物,用途远不如氢谱及碳谱广泛。氮—15NMR (15N—NMR)用于研究含氮有机物的结构信息,是 生命科学研究的有力工具。
5.了解1H-NMR及13C-NMR的测定条件

三 以及简化图谱的方法,并能综合应用谱图提供

核 磁
的各种信息初步推断化合物的正确结构。




3
2019/10/15

《NMR核磁共振氢谱》课件

《NMR核磁共振氢谱》课件

数据采集:进行氢谱实验, 采集数据
数据处理:对采集到的数据 进行处理和分析,如基线校 正、峰面积计算等
结果解释:根据数据处理结 果,对样品进行定性和定量 分析
实验报告:撰写实验报告, 包括实验目的、方法、结果、 讨论和结论等
样品准备:确保样品纯净、 无杂质
仪器设置:正确设置仪器 参数,如温度、磁场强度 等
更宽范围:拓宽氢 谱检测范围,实现 更广泛的应用
更智能化:开发智 能化氢谱分析软件, 提高分析效率和准 确性
技术挑战:提高分辨率、灵敏度、 速度等性能指标
应用领域:拓展到生物医学、材料 科学、环境科学等领域
添加标题
添加标题
添加标题
添加标题
技术展望:发展新型核磁共振技术, 如超导核磁共振、量子核磁共振等
药物筛选:通过氢 谱分析药物与靶点 的结合情况
药物设计:通过氢 谱分析药物的化学 结构,优化药物设 计
药物代谢:通过氢 谱分析药物在体内 的代谢情况
药物毒性:通过氢 谱分析药物的毒性 ,评估药物的安全 性
更高分辨率:提高 氢谱分辨率,实现 更精细的谱图分析
更快速度:提高 氢谱采集速度, 缩短实验时间
数据采集:确保数据采集 的准确性和完整性
数据处理:正确处理和分 析数据,避免误判和错误 结论
实验安全:遵守实验室安 全规定,确保实验安全进 行
峰的位置:根据化学位移确定 峰的强度:根据峰面积确定 峰的形状:根据峰形确定
峰的分裂:根据峰的分裂情况确定
峰的耦合:根据峰的耦合情况确定
峰的归属:根据峰的位置、强度、形状、 分裂、耦合等信息综合判断
PPT,a click to unlimited possibilities
汇报人:PPT

核磁共振氢谱教育课件

核磁共振氢谱教育课件
17
组成:磁铁、射频发生器、检测器、放大器、记录仪(放大器)、样品管
脉冲频率发射器
核磁管
脉冲频率放大器
检测器
扫描发生器
核磁共振光谱仪的简单构造示意图 原理:扫频--固定 H0,改变υ射,使υ射与H0匹配;
扫场--固定υ射,改变H0,使H0与υ射匹配;
10
高能级与低能级的能量差△E应由下式定:
△E= E (-1/2)- E (+1/2) =(h/2)B0
式中: B0 外加磁场强度
磁矩与外加磁场相反 高能自旋取向
E2 = (+1/2)(h/2)B0 m = +1/2
磁距与外加磁场一致 低能自旋取向 E1 = (-1/2)(h/2)B0 m = -1/2
• 晶格泛指环境,即高能态自旋核把能量传给周围环境 (同类分子、溶剂小分子、固体晶格等)转变为热运 动而本身回到低能态维持Boltzmann分布。
• 自旋-晶格弛豫过程的半衰期用T1表示 (T1与样品状 态及核的种类、温度有关),液体T1~1s,固体或粘度 大的液体T1 很大。
• 自旋-晶格弛豫又称纵向弛豫。
原子核的自旋
原子核的自旋量子数:ms 与原子的质量数和原子序数之间的关系:
A、Z均为偶数,ms=0
A Z
X
A为偶数,Z为奇数, ms=1,2,3…整数 A为奇数,Z为奇或偶数, ms=1/2,3/2,
5/2…半整数
当ms≠0时,原子核的自旋运动有NMR讯号。
6
由自旋量子数与原子的质量数及原子序数的关系可知: 原子质
11
2.核磁共振
如果以射频照射处于外磁场H0 中的核,且照射频 率υ恰好满足下列关系时
hυ= △E 或 υ= ( /2)B0 处于低能级的核将吸收射频能量而跃迁至高能 级, 这种现象称为核磁共振现象。 由上式可知, 一个核的跃迁频率与磁场强度B0 成正比, 使1H 核发生共振,由自旋m = ½取向变成m = -1/2 的取向。应供给△E 的电磁波(射频)。照射频率 与外加磁场强度成正比。

《核磁共振氢谱》课件

《核磁共振氢谱》课件

芳烃的氢谱解析
芳烃的氢谱特征
芳烃的氢谱峰形较复杂,有多个峰,且峰与峰之间的距离较近。
芳烃的氢谱解析要点
根据峰的数量和位置,确定芳烃的类型和碳原子数;根据峰的强度 和形状,确定氢原子的类型和数量。
实例分析
以苯为例,其氢谱有多个峰,分别对应于不同位置上的氢原子。
PART 04
氢谱解析中的常见问题与 解决策略
偶合常数
当两个氢原子之间的距离足够近时, 它们的核磁共振信号会发生偶合,导 致峰分裂成双重峰。偶合常数是衡量 两个氢原子之间距离的指标。
氢谱解析的一般步骤
确定峰的位置和强度
根据核磁共振氢谱中的峰位置和强度,可以推断出分子中氢原子 的类型和数量。
确定氢原子的连接关系
通过分析峰的偶合常数,可以确定氢原子之间的连接关系,从而确 定分子的结构。
峰的简化问题
总结词
峰的简化问题是指某些情况下氢谱峰的数量过多,使得解析变得复杂。
详细描述
在某些情况下,由于分子结构中存在多个等效氢原子,会产生大量的重叠峰。这增加了氢谱解析的难 度。解决策略包括利用分子对称性来简化氢谱,以及利用去偶技术来消除某些峰的干扰,从而使得氢 谱更加简洁明了。
解析中的不确定性问题
多核共振技术
总结词
多核共振技术能够同时研究多个原子核的相 互作用和动态行为,有助于更全面地了解分 子结构和化学反应过程。
详细描述
多核共振技术是一种新兴的技术,它通过同 时研究多个原子核的相互作用和动态行为, 能够提供更全面、更深入的分子结构和化学 反应过程信息。这一技术的应用,将有助于 推动化学、生物学、物理学等领域的发展, 为解决复杂体系的研究提供新的手段。
2023-2026
ONE

核磁共振氢谱PPT课件

核磁共振氢谱PPT课件

TMS
7.0 6.0 5.0 4.0 3.0 2.0 1.0 0
图1:乙基苯(10% CCpplt精4 选溶版液)于100兆赫的NMR
25
2. 化学位移的表示
由于化学位移的差别范围很小(10×10-6), 所以精确测出绝对数 值比较困难。现均以相对数表示:即以被测质子共振时的磁场 强度B0样与某一标准物质的质子共振时的磁场强度B0标之差和标 准物质共振时磁场强度B0标的比值δ来表示:
ppt精选版
24
例如: 图1给出了乙基苯在100MHz时的高分辨率核
磁共振图谱. 在乙基苯的分子中, -CH3 上的三个质子, -CH2- 上的两个质子, C6H5-上的五个质子.它们在 不同的磁场强度下产生共振吸收峰, 也就是说,它们
有着不同的化学位移.
C6H5-
3H 2H
-CH3
5H
-CH2-
21
高场
低频
0
ppm
ppt精选版
28
位移的标准
四甲基硅烷 Si(CH3)4 (TMS)
规定:TMS=0
为什么用TMS作为基准?
(1 ) 12个氢处于完全相同的化学环境,只产生一个吸收峰;
(2)屏蔽强烈,位移最大(0)。与一般有机化合物中的质子峰 不重叠;
(3)化学惰性;易溶于有机溶剂;沸点低,易回收。
H+
H+
H+
自旋
H+
β
能量较高 ΔE
H+
H+
H+
α 自旋
H+
能量较低
没有磁场
有磁场B0
质子在没有磁场和有磁场情况下的磁矩方向 ppt精选版
B0

《核磁共振氢谱解析》PPT课件

《核磁共振氢谱解析》PPT课件

在解析糖类的氢谱时,需要注意 区分不同糖环类型的影响,以便 准确推断出糖类分子的结构特征 。
由于糖类分子结构的复杂性,其 氢谱信号可能会出现重叠现象, 需要仔细解析以获得准确的结论 。
05
氢谱解析的挑战与展望
复杂样品与混合物的解析
挑战
复杂样品和混合物中的多种成分可能 导致谱线重叠和干扰,增加了氢谱解 析的难度。
峰面积
表示某一峰的强度或高 度,通常与产生该峰的
质子数成正比。
积分线
对谱线进行积分,得到 积分线,可以用于定量
分析。
校正因子
由于不同化学环境对质 子自旋耦合的影响,需 要引入校正因子来准确
计算质子数。
03
氢谱解析实践
简单分子的氢谱解析
总结词
掌握基础解析方法
01
总结词
熟悉常见峰型
03
总结词
注意杂质的干扰
解决方案
采用先进的谱图解析技术和化学位移 差异法,结合分子结构和物理状态信 息,对重叠的谱线进行分离和鉴别。
高磁场下的氢谱解析
挑战
高磁场条件下,氢谱的分辨率和灵敏度得到提高,但同时也带来了谱线复杂化 和解析难度增加的问题。
解决方案
利用高磁场下的多量子跃迁和异核耦合等效应,结合计算机模拟和量子化学计 算,对高磁场下的氢谱进行解析。
氢谱解析技巧与注意事项
总结词
重视峰的归属与确认
总结词
在复杂氢谱中,应注意分辨和区分重 叠的峰,运用适当的技巧和方法进行 解析。
详细描述
在解析氢谱时,应重视每个峰的归属 与确认,确保解析结果的准确性。
详细描述
注意峰的重叠与分辨
04
氢谱解析案例分析
案例一:醇类的氢谱解析

谱图分析课件第2章核磁共振氢谱

谱图分析课件第2章核磁共振氢谱
表示不同氢原子核之间的相互作用, 通过测量偶合常数可以了解分子内部 的结构和相互位置关系。
峰的裂分与自旋系统
峰的裂分
由于相邻氢原子核的相互作用,一个峰可能会分裂成多个小峰。根据裂分的程 度和规律,可以推断出分子内部的氢原子排列方式和相互位置关系。
自旋系统
表示一组相互作用的氢原子核,根据自旋系统的类型,可以判断分子内部的结 构和对称性。
05
氢谱的局限性与发展趋势
氢谱的局限性
分辨率较低
由于氢原子在分子中的分布较为 广泛,导致氢谱的分辨率较低, 难以区分相近的化学环境。
受样品限制
氢谱分析需要使用液体样品,对 于固体样品和不易溶解的物质, 氢谱分析存在局限性。
对仪器要求高
氢谱分析需要高精度和高灵敏度 的核磁共振谱仪,仪器成本较高, 普及程度有限。

氢谱的表示方法
氢谱通常以频率或波数表示,横 坐标为化学位移,纵坐标为信号
强度。
化学位移表示氢原子核所处的化 学环境,即周围的官能团类型, 通过化学位移可以推断出氢原子
所属的化合物类型。
信号强度表示该化学环境下氢原 子核的数量,信号强度越大,表
示该类型的氢原子数量越多。
02
氢谱的组成与特征
峰的位置与化学位移
注意事项
确保实验过程中样品温度和磁场稳定性,避免外界干扰,及时记录异常情况。
数据处理与分析方法
数据处理
对采集的原始数据进行预处理,如基线校正、相位调整等,以提 高谱图质量。
峰识别与标注
根据峰的位置、强度和形状,识别和标注不同氢原子类型。
数据解析与推断
结合化学位移、耦合常数等信息,解析氢原子所处的化学环境, 推断分子结构。
人工智能技术在数据处理和分析方面具有 优势,与核磁共振技术结合有望提高氢谱 分析的效率和准确性。

《核磁共振氢谱》课件

《核磁共振氢谱》课件

《核磁共振氢谱》课件课程目标:1. 理解核磁共振氢谱的基本原理2. 学会分析核磁共振氢谱图3. 掌握核磁共振氢谱在有机化学中的应用第一部分:核磁共振氢谱的基本原理1. 核磁共振现象核磁共振的定义核磁共振的产生条件核磁共振的物理过程2. 核磁共振氢谱的化学位移化学位移的定义化学位移的影响因素化学位移的计算方法3. 核磁共振氢谱的耦合常数耦合常数的定义耦合常数的影响因素耦合常数的计算方法4. 核磁共振氢谱的积分强度积分强度的定义积分强度的影响因素积分强度的计算方法第二部分:核磁共振氢谱的解析1. 核磁共振氢谱图的解读谱线的数量和位置谱线的形状和积分强度谱线的耦合情况2. 等效氢的判断等效氢的定义等效氢的判断方法等效氢的例外情况3. 核磁共振氢谱的应用实例简单有机化合物的分析复杂有机化合物的分析手性化合物的分析第三部分:核磁共振氢谱的实验操作1. 核磁共振氢谱的样品制备样品的选择和制备方法样品的纯化和干燥样品的装载和测试2. 核磁共振氢谱的仪器操作核磁共振仪的基本结构核磁共振仪的操作步骤核磁共振氢谱的获取和保存3. 核磁共振氢谱的数据处理核磁共振氢谱的数据分析核磁共振氢谱的峰拟合核磁共振氢谱的定量分析第四部分:核磁共振氢谱的实践练习1. 练习题目简单有机化合物的核磁共振氢谱分析复杂有机化合物的核磁共振氢谱分析手性化合物的核磁共振氢谱分析2. 练习解答分析过程和思路核磁共振氢谱的解析步骤最终答案和讨论总结:核磁共振氢谱是一种重要的有机化学分析方法,通过对氢原子的核磁共振现象进行研究,可以得到有机化合物的结构和性质信息。

通过对核磁共振氢谱的基本原理、解析方法和实验操作的学习,可以更好地理解和应用核磁共振氢谱,为有机化学研究和教学提供有力的工具。

科学性:1. 内容准确:课件中的概念、原理和实验操作应基于有机化学和核磁共振氢谱的现有科学知识,确保无误。

2. 信息更新:课件中所引用的文献和数据应是最新的,以保证教学内容的时效性。

核磁共振氢谱图课件

核磁共振氢谱图课件
号的灵敏度。
由于超导材料的零电阻特性,超 导核磁共振技术具有高稳定性、 高信噪比和高质量的实验数据。
超导核磁共振技术主要应用于高 分辨率的核磁共振实验,如蛋白
质结构解析等。
代谢组学中的核磁共振应用
代谢组学是一种研究生物体内代谢过程的学科。
核磁共振技术在代谢组学中具有广泛的应用,包括代谢产物的检测、代谢过程的解析等。
峰的位置
峰的移动
峰的强度与对称性
峰的强度
峰的强度反映了产生共振的氢原子的数量。一般来说,峰的强度越高,产生共振 的氢原子数量越多。通过对峰强度的分析,可以获得关于分子中氢原子分布的信 息。
峰的对称性
峰的对称性反映了氢原子在分子中的构型或构象。某些分子可能具有多个构型或 构象,这些构型或构象可以通过氢谱的峰对称性来区分。通过对峰对称性的分析, 可以获得关于分子构型或构象的信息。
核磁共振技术能够提供代谢产物的分子结构和含量信息,有助于深入了解代谢过程的变化和 疾病的发生机制。
CHAPTER
氢谱图实验操作与注意事项
实验操作流程与规范
实验准备 数据处理与分析
数据采集
样品处理 仪器调整
数据处理与分析方法
01
数据导入
02
基线校正
03
峰识别与标注
04
定量分析
实验误差与注意事项
氢谱图的发展与新技术
三维核磁共振技术
三维核磁共振技术是一种利用核磁共振现象对样品进行多维度分析的实验技术。 它能够提供分子的更多细节信息,包括分子的空间构型、相互作用等。
三维核磁共振技术广泛应用于结构生物学、化学、医学等领域。
超导核磁共振技术
超导核磁共振技术利用超导材料 作为射频线圈,提高核磁共振信
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

而达到饱和,不再有NMR信号。
n
E
e kT
1.0000099
n
驰豫过程
n* 非电磁辐射形式释放能量 n0
驰豫现象:高能态的核以非辐射形式释放能量,回到低能
态,维持n-略大于n+,致使核磁共振信号存在,这种过程称
为“驰豫”。
1) 自旋-晶格驰豫(纵向驰豫):处于高能态的自旋体系与周 围的环境之间的能量交换过程,半衰期T1可以用来表示 自旋-晶格弛豫过程所需的时间。
在强磁场中,原子核发生自旋能级分裂(能级极小:在1.41T磁场中, 磁能级差约为2510-3J),当吸收外来电磁辐射(109-1010nm, 4900MHz)时,将发生核自旋能级的跃迁----产生所谓NMR现象。
测定有机化合物的结构,1H NMR─氢原子的位置、环境以 及官能团和C骨架上的H原子相对数目)
E
E 2
E
E
1
+
B 0
m=+1/2
E= -μB0,B0:磁场强度;E:作用能
E1= -μ1B0 E2= -μ2B0
ΔE= hγB0/2π
当用一频率为υ射=γB0/2π的射频波照射磁场中的氢核时,核的自
旋取向就会由高能级跃迁,产生核磁共振。磁场强度越高,发生
核磁共振所需的射频越高。
核磁共振条件
(1) 核有自旋 (磁性核) (2) 外磁场,能级裂分;
2) 自旋-自旋驰豫(横向驰豫)一些高能态的自旋核把能量转 移给同类的低能态核,同时一些低能态的核获得能量跃
迁至高能态。过程所需时间用T2表示。
液体样品的弛豫时间远小于固体样品,易于得到高分辨的NMR谱图
小结
核磁共振的条件 核磁共振与自旋弛豫的关系
3 核磁共振仪的分类
与UV-Vis和红外光谱法类似,NMR也属于吸收光谱,只是研究 的对象是处于强磁场中的原子核自旋能级对射频辐射的吸收。
3.2 核磁共振基本原理
3.2.1 原子核的自旋 原子核是由质子和中子组成的带正电荷的粒子,存在自旋,
其自旋运动将产生磁矩( μ )。 核的自旋角动量(ρ)是量子化
的,不能任意取值,可用自旋量子数(I)来描述。
I(I1) h 2
自旋量子数: I=0、1/2、1…
μ= γ*ρ,γ:磁旋比
I = 0, ρ =0, 无自旋,不能产生自旋角动量,不会产生共振信号。 ∴ 只有当I > O时,才能发生共振吸收,产生共振信号。
I 的取值可用下面关系判断:
质量数(A) 原子序数(Z)
奇数
奇数或偶数
偶数
奇数 偶数
(3) 照射频率与外磁场的比值 / B0 = / (2 ) (4)对于同一种核 ,磁旋比 为定值, H0变,射频频率变。 (5)不同原子核,磁旋比 不同,产生共振的条件不同,需要
的磁场强度H0和射频频率不同。 (6)固定H0 ,改变(扫频) ,不同原子核在不同频率处发
生共振(图)。也可固定 ,改变H0 (扫场)。扫场方
式应用较多。
无磁场
有磁场
共振
弛豫
3.2.3 核的自旋弛豫
饱和现象
n0
吸收电磁辐射
n*
不同温度下,处于高能态的核数(n-)和处于低能态(n+)
的核数的比例不同,根据波尔兹曼分布定律,在常温下低能
态的核数占有极其微弱的优势,如果低能态的核跃迁不能有
效地释放能量回到低能态,则低能态的核数会越来越少,进
空间取向总数为:2 I + 1 。
H' H' 1H核 :自 旋 取 向 数=2× 1/2+1=2
即 : H核 在 外 场 有 两 个 自 旋 方 向 相 反 的 取 向 。
H' H' 1H核:自旋取向数=2×1/2+1=2
一致H0相反
即:H核在外场有两个自旋方向相反的取向。 一致H0相反
m=-1/2
第三章 核磁共振氢谱
核磁共振基本原理 核磁共振仪与实验方法 1H的化学位移 各类质子的化学位移 自旋偶合和自旋分裂 自选系统及图谱分类 核磁共振氢谱的解析
3.1 核磁共振氢谱发展史
NMR简介
NMR是研究处于磁场中的原子核对射频辐射(Radio-frequency Radiation)的吸收,它是对各种有机和无机物的成分、结构进行 定性分析的最强有力的工具之一,有时亦可进行定量分析。
自旋量子数为1/2的核的核磁共振信号相对简单已广泛用于化 合物的结构测定,然而,核磁共振信号的强弱与被测磁性核的 天然丰度和旋磁比的立方成正比,有些核因为天然丰度太小, 核磁共振信号很弱。
3.2.2 自旋核在外加磁场中的取向和能级及共振
具有磁矩(μ)的核在外磁场中的自旋取向是量子化的,可用m 表示核自旋的不同的空间取向,m=I,I-1,I-2,…,-I。
2 .射频振荡器:线圈垂直于 外磁场,发射一定频率的电 磁辐射信号。60MHz800MHz。
3 .射频信号接受器(检测 器):当质子的进动频率与 辐射频率相匹配时,发生能 级跃迁,吸收能量,在感应 线圈中产生毫伏级信号。
4.样品管:外径5mm的玻璃管, 测量过程中旋转, 磁场作用均匀。
3.3.3 样品的处理
自旋量子数(I) 半整数 n + 1/2。n = 0,1,2,…
整数 0
A(1)
H
Z(1)
A(12)
C
Z(6)
A(14)
N
Z(7)
奇-奇
I为半整数(1/2)I=1/2原子核
有共振吸收 的自旋形状
偶-偶
I=0

I=1、3/2、 2…原子核 的自旋形状
偶-奇
I为整数
有共振吸收
13C,15N,19F,31P; 11B, 33S, 35Cl,79Br,81Br,39K,63Cu, 5Cu,17O,25Mg,27Al,55Mn,67Zn(P98表3-1)
分类:按磁场源分:永久磁铁、电磁铁、超导磁场 按交变频率分:40 ,60 ,90 ,100 , 200 ,500,-800 MHZ(兆赫兹),频率越高,分辨率越高 按射频源和扫描方式不同分: 连续波NMR谱仪(CW-NMR) 脉冲傅立叶变换NMR谱仪(FT-NMR)
3.3.2 构造
1.永久磁铁:提供外磁场, 要求稳定性好,均匀,不均 匀性小于六千万分之一。扫 场线圈。
1.非粘稠的液体样品,可以直接测定。 2.难溶解的物质,如高分子化合物,矿物,可用固体核磁共振
仪。 3.通常情况下,均是将样品配成溶液进行测定。
对溶剂的要求:不含质子,对样品溶解性好,不与样品发生 缔合作用等,常用溶剂有:四氯化碳、二硫化碳、氘代试剂 等。 氢谱标准物为::四甲基硅烷(TMS)
相关文档
最新文档