数量关系行程问题基本公式

合集下载

小学数学中的行程问题公式及解析

小学数学中的行程问题公式及解析

小学数学中的行程问题公式及解析一、基本行程问题行程问题的三个基本量是距离、速度和时间,按所行方向的不同可分为三种:(1)相遇问题:(2)相离问题;(3)追及问题。

行程问题的主要数量关系是:距离=速度x时间。

它大致分为以下三种情况:(1)相向而行:相遇时间=距离÷速度和(2)相背而行:相背距离=速度和*时间。

(3)同向而行:速度慢的在前,快的在后。

追及时间=追及距离÷速度差在环形跑道上,速度快的在前,慢的在后。

追及距离=速度差x时间。

解决行程问题时,要注意充分利用图示把题中的情节形象地表示出来,有助于分析数量关有助于迅速地找到解题思路。

(一)相遇问题行程问题是研究相向运动中的速度、时间和路程三者之间关系的问题,(涉及两个或两个物体运动的问题)指两个运动的物体同时由两地出发相向而行,在途中相遇,这类应用题相遇问题。

数量关系:路程÷速度和=相遇时间路程÷相遇时间=速度和速度和x相遇时间=路程温馨提示:(1)在处理相遇问题时,一定要注意公式的使用时二者发生关系那一时刻所处的状态;(2)在行程问题里所用的时间都是时间段,而不是时间点(非常重要);(3)无论是在哪类行程问题里,只要是相遇,就与速度和有关。

(2)解题秘诀:(3)(1)必须弄清物体运动的具体情况,运动方向(相向),出发地点(两地),出发时间(同时、先后),运动路径(封闭、不封闭),运动结果(相遇)等。

(4)(2)要充分运用图示、列表等方法,正确反映出数量之间的关系,帮助我们理解题意,迅速的找到解题思路。

(二)追及问题追及问题也是行程问题中的一种情况。

这类应用题的特点是:①两个物体同时同一方向运动;②出发的地点不同(或从同一地点不同时出发,向同一方向运动);迫及路程=路程差=两个物体之间相距的路程迫及速度=速度差=快的速度-慢的速度慢的物体追上快的物体的所用的时间为追及时间③慢者在前,快者在后,因而快者离慢者越来越近,最后终于可以追上。

行程问题基本数量关系式有

行程问题基本数量关系式有

行程问题基本数量关系式有:速度×时间=距离距离÷速度=时间距离÷时间=速度1.相遇问题:速度之和×相遇时间=两地距离两地距离÷速度之和=相距时间两地距离÷相遇时间=速度之和2.追及问题:追及距离÷速度之差=追及时间速度之差×追及时间=追及距离追及距离÷追及时间=速度之差快速-慢速=速度差一、选择题(本题共10小题,每小题4分,满分40分)1、下列运算正确的是()A.4 =±2 B.2-3=-6 C.x2•x3=x6 D.(-2x)4=16x42、随着中国综合国力的提升,近年来全球学习汉语的人数不断增加.据报道,2006年海外学习汉语的学生人数已达38 200 000人,用科学记数法表示为()人(保留3个有效数字)A.0.382×10 B.3.82×10 C.38.2×10 D.382×104、在元旦游园晚会上有一个闯关活动:将5张分别画有等腰梯形、平行四边形、等腰三角形、圆、菱形的卡片任意摆放,将有图形的一面朝下,从中任意翻开一张,如果翻开的图形是轴对称图形,就可以过关,那么一次过关的概率是()A.B.C.D.5、如图,⊙O的直径CD过弦EF的中点G,∠EOD=44°, 则∠DCF等于()A.22° B.44° C.46° D.88° 6、甲、乙、丙三名同学参加风筝比赛,三人放出风筝线长、线与地面夹角如下表(假设风筝线是拉直的,三位同学身高忽略不计),则三人所放的风筝中()同学甲乙丙放出风筝线长100m I00m 90m 线与地面夹角40° 45°60° A .甲的最高B .丙的最高C .乙的最低D .丙的最低7、国家为九年义务教育期间的学生实行“两免一补”政策,下表是我市某中学国家免费提供教科书补助的部分情况.七八九合计每人免费补助金额(元)110 90 50 人数(人)80 300 免费补助总金额(元)4000 26200 如果要知道空白处的数据,可设七年级的人数为x,八年级的人数为y,根据题意列出方程组为()A.B .C.D .8、有六个等圆按甲、乙、丙三种形式摆放,使相邻两圆相互外切,且如图所示的连心线分别构成正六边形,平行四边形和正三角形,将圆心连线外侧的六个扇形(阴影部分)的面积之和依次记为S、P、Q则()11、因式分解:= 12、如图,△OP A ,△A P A 是等腰直角三角形,点P 、P 在函数y= 的图像上,斜边OA 、A A 都在横轴上,则点A 的坐标是____________. 13、如图所示的阴影部分是某种商品的商标图案。

小学奥数行程问题及公式

小学奥数行程问题及公式

小学奥数《行程问题及公式》1、 行程问题:行程问题可以大概分为简单问题、相遇问题、时钟问题等。

2、常用公式:1)速度×时间=路程;路程÷速度=时间;路程÷时间=速度;2)速度和×时间=路程和;3)速度差×时间=路程差。

3、常用比例关系:1)速度相同,时间比等于路程比;2)时间相同,速度比等于路程比;3)路程相同,速度比等于时间的反比。

4、行程问题中的公式:1)顺水速度=静水速度+水流速度;2)逆水速度=静水速度-水流速度。

3)静水速度=(顺水速度+逆水速度)/2 4)水流速度=(顺水速度–逆水速度)/25、基本数量关系是火车速度×时间=车长+桥长1)超车问题 (同向运动,追及问题) 路程差=车身长的和 超车时间=车身长的和÷速度差2)错车问题 (反向运动,相遇问题)路程和=车身长的和 错车时间=车身长的和÷速度和3)过人(人看作是车身长度是0的火车)4)过桥、隧道(桥、隧道看作是有车身长度,速度是0的火车)例1:A、B两城相距240千米,一辆汽车计划用6小时从A城开到B城,汽车行驶了一半路程,因故障在中途停留了30分钟,如果按原计划到达B 城,汽车在后半段路程时速度应加快多少?例2:两码头相距231千米,轮船顺水行驶这段路程需要11小时,逆水每小时少行10千米,问行驶这段路程逆水比顺水需要多用几小时?例3:汽车以每小时72千米的速度从甲地到乙地,到达后立即以每小时48千米的速度返回到甲地,求该车的平均速度。

例4:一辆汽车从甲地出发到300千米外的乙地去,在一开始的120千米内平均速度为每小时40千米,要想使这辆车从甲地到乙地的平均速度为每小时50千米,剩下的路程应以什么速度行驶?例5:骑自行车从甲地到乙地,以每小时10千米的速度行驶,下午1时到;以每小时15千米的速度行驶,下午1时到;以每小时15千米的速度行进,上午11时到;如果希望中午12时到,应以怎样的速度行进?例6:一架飞机所带的燃料最多可以用6小时,飞机去时顺风,时速1500千米,回来时逆风,时速为1200千米,这架飞机最多飞出多远就需往回飞?例7:有一座桥,过桥需要先上坡,再走一段平路,最后下坡,并且上坡,平路及下坡的路程相等,某人骑车过桥时,上坡平路,下坡的速度分别为每秒4米、6米、8米,求他过桥的平均速度。

第二讲 行程问题

第二讲  行程问题

第二讲行程问题(一)1、相遇问题重点知识归纳及讲解。

1、行程问题的基本数量关系式是:速度=距离÷时间时间=距离÷速度距离=速度×时间2、相遇问题的基本数量关系式是:速度和=相遇距离÷相遇时间相遇时间=相遇距离÷速度和相遇距离=速度和×相遇时间例1甲、乙两车同时从A、B两地相向而行,在距A地80千米处相遇,相遇后两车继续前进,甲车到达B地、乙车到达A地后均立即按原路返回,第二次在距B地60千米处相遇。

求A、B两地间的路程。

例2甲、乙两车同时从A、B两地相向而行,在距A地80千米处相遇,相遇后两车继续前进,甲车到达B地、乙车到达A地后均立即按原路返回,第二次在距A地60千米处相遇。

求A、B两地间的路程。

例3小明和小红分别从甲、乙两地同时相向而行。

小明每分钟走45米,小红每分钟走65米。

两人在距甲地900米处相遇。

求甲、乙两地相距多少米?例4两地之间相距3千米,甲、乙两人同时从两地出发相向而行,甲每分行80米,乙每分行70米,如果有一只信鸽与甲从同时同地出发,信鸽每分飞150米,当信鸽遇到乙时立即返回,遇到甲后又迎乙跑去。

这样,信鸽不停地在甲、乙之间往返飞行,直到两人相遇为止。

那么信鸽在两人中间飞行的路程是多少米?例5有甲、乙、丙三人,甲每分钟行60米,乙每分钟行65米,丙每分钟行50米。

甲在A地,乙、丙在B地,他们同时相向而行,当甲、乙相遇后6分钟甲、丙相遇。

求A,B两地的距离。

练习1、小强和小明同时从甲、乙两地相对而行,小强骑自行车每小时行驶12千米,小明骑摩托车的速度是小强骑自行车速度的4倍,经过3小时两人相遇。

求甲、乙两地相距多少千米?2、东西两城相距405千米。

一列货车以每小时55千米的速度从西城开往东城,开出3小时后,一列客车以每小时65千米的速度从东城开往西城。

货车再经过几小时与客车相遇?3、一辆汽车和一辆自行车从相距172.5千米的甲、乙两地同时出发,相向而行,3小时后两车相遇。

小学奥数行程问题

小学奥数行程问题

小学奥数行程问题行程问题知识要点1、行程问题的三个基本量是距离、速度和时间。

其互逆关系可用乘、除法计算。

由于方法简单,但应注意行驶方向的变化,按所行方向的不同可分为三种:(1)相遇问题;(2)相离问题;(3)追及问题。

2、行程问题的主要数量关系是:距离=速度某时间。

它大致分为以下三种情况:(1)相向而行:相遇距离=速度和某时间(2)相背而行:相背距离=速度和某时间(3)同向而行:速度慢的在前,快的在后。

追及时间=追及距离÷速度差3、在环形跑道上,速度快的在前,慢的在后。

追及距离=速度差某时间在行程问题中,与环形有关的行程问题的解决方法与一般行程问题的方法类似,但有两点值得注意:一是两人同地背向运动,从第一次相遇到下次相遇共行一个全程;二是同地、同向运动,甲追上乙时,甲比乙多行一个全程。

4、解行程问题时,要注意充分利用图示把图中的情节形象地表示出来,有助于分析数量关系,有助于迅速地找到解题思路。

5、船在江河航行时,除了本身的前进速度外,还受到流水的扒送和顶倪,在这种情况下计算船只的航行速度,时间和所行的路程,叫做流水行程问题。

流水行程问题,是行程问题中的一种,因此行程问题中的三个量(速度、时间、路程)的关系在这里将要反复地用到,此外流水行程问题还有以下两个基本公式:顺水速度=船速+水度(船速:船本身的速度)逆水速度=船速—水度(水速:流水的速度)根据加减法互逆关系可得:顺水航行中:水速=顺水速度—船速船速=顺水速度—水速逆水航行中:水速=船速—逆水速度船速=逆水速度+水速知道顺水速度和逆水速度还可以得出:水流速度=(顺水速度—逆水速度)÷2静水速度=(顺水速度+逆水速度)÷26、列出过桥是生活中常见的现象,要正确理解这类问题,首先要懂得从车头上桥到车尾离开桥行驶的路程是多少,即列车过桥总路程=桥长+车长。

经典例题1甲乙两人同时从A、B两地出发,相向而行,甲每小时行5千米,乙每小时行4.5千米,3.6小时后相遇。

完整版数量关系公式

完整版数量关系公式

数量关系常用公式总结:1.行程问题基础公式:路程=速度*时间一、相遇追及型追及问题:追及距离=(大速度-小速度)×追及时间相遇问题:相遇距离=(大速度+小速度)×相遇时间背离问题:背离距离=(大速度+小速度)×背离时间二、环形运动型反向运动:第N次相遇路程和为N个周长,环形周长=(大速度+小速度)×相遇时间同向运动:第N次相遇路程差为N个周长,环形周长=(大速度-小速度)×相遇时间三、流水行船型顺流路程=(船速+水速)×顺流时间逆流路程=(船速-水速)×逆流时间静水速度=(顺水速度+逆水速度)÷2水流速度=(顺水速度-逆水速度)÷2四、扶梯上下型扶梯总长=人走的阶数×[1±(V梯÷V人)],顺行用加法,逆行用减法,根据公式带入级,速度为v解析:设扶梯为s v=1 1) 解得×S=30×1(1+v÷S=20×2×(1+v÷2) s=60,所以选择B。

五、队伍行进型队头→队尾:队伍长度=(人速+队伍速度)×时间队尾→队头:队伍长度=(人速-队伍速度)×时间解析:假设通讯员和队伍的速度分别为v和u,所求时间为t,则: 600=(v-u)×3 解得 v=250600=v×(2+24÷60) u=50600=(v+u)×t t=2,所以选择D六、往返相遇型左右点出发:第N次迎面相遇,路程和=全程×(2N-1)第N次追上相遇,路程差=全程×(2N-1)同一点出发:第N次迎面相遇,路程和=全程×2N第N次追上相遇,路程差=全程×2N解析:a汽车第二次从甲地出发后与b汽车相遇,实际上是两辆车第3次迎面相遇,根据公式,路程和为5个全程,即5×210=1050(公里),使用的时间为1050÷(90+120)=5(小时),所以b汽车共行驶了120×5=600(公里),选择B七、典型行程模型等距离平均速度=(2速度1×速度2)÷(速度1+速度2)(调和平均数公式)(速度1和速度2分别代表往﹑返的速度)解析:代入公式v=2×60×120÷(60+120)=80等发车前后过车:发车间隔T=(2t1×t2) ÷(t1+t2);V车/V人=(t2+t1) ÷( t2-t1)例:某人沿电车线路匀速行走,每分钟有一辆电车从后面追上,每4分钟有一辆电车迎面开来,假设两个起点站的发车间隔相同,则这个发车间隔为多少?解析:依据公式,发车间隔T=(2t1×t2) ÷(t1+t2)=2×12×4÷(12+4)=6(分钟)。

五年级奥数-环形道路上的行程问题

五年级奥数-环形道路上的行程问题

第五讲环形道路上的行程问题一、知识要点和基本方法1.行程问题中的基本数量关系式: 速度×时间=路程;路程÷时间=速度; 路程÷速度=时间. 2.相遇问题中的数量关系式:速度和×相遇时间=相遇路程; 相遇路程÷速度和=相遇时间; 相遇路程÷相遇时间=速度和. 3.追及问题中的数量关系式:速度差×追及时间=追及距离; 追及距离÷速度差=追及时间; 追及距离÷追及时间=速度差. 4.流水问题中的数量关系式:顺水速度=船速十水速; 逆水速度=船速一水速;船速=(顺水速度+逆水速度)÷2; 水速=(顺水速度-逆水速度)÷2. 5.应该注意到:(1)顺逆风中的行走问题与顺逆水中的航行问题考虑方法类似; (2)在一条路上往返行走与在环形路上行走解题思考方法类似,因此不要机械地去理解环形道路长的行程问题.二、例题精讲例1 李明和王林在周长为400米的环形道路上练习跑步.李明每分钟跑200米,是王林每分钟所跑路程的89.如果两人从同一地点出发,沿同一方向前进,问至少要经过几分钟两人才能相遇?分析 由于两人从同一地点同向出发,因此是追及问题,追及距离是400米,可用公式“追及距离÷速度差=追及时间”. 解 追及距离=400米;返及时的速度差=200÷89-200.由公式列出追及时间=400÷(200÷89-200)=400 ÷(225-200) =400 ÷ 25 =16(分).答 至少经过16分钟两人才能相遇.例2 如图5-1,A、B是圆的直径的两个端点,亮亮在点A,明明在点B,他们同时出发,反向而行.他们在C点第一次相遇,C点离A点100米;在D 点第二次相遇,D点离B点80米.求这个圆的周长.图5-1分析第一次相遇,两人合起来走了半圈,第二次相遇,两个人合起来又走了一圈,所以从开始出发到第二次相遇,两个人合起来走了一圈半.也就是说,第二次相遇时两人合起来所走的行程是第一次相遇时合起来所走的行程的3倍,也就是每个人在第二次相遇时所走的行程是第一次相遇时所走的行程的3倍,所以从A到D(A→C→B→D)的距离应该是从A到C(A直接到C)的距离的3倍.于是有解法如下.解 A 到D(A→C→B→D)的距离:100 × 3=300(米).半个圆圈长:300-80=220(米).整个圆圈长:220 × 2=440(米).答这个圆的周长是440米.例3 一个圆的周长为1.44米,两只蚂蚁从一条直径的两端同时出发,沿圆周相向爬行.l分钟后它们都调头而行,再过3分钟,他们又调头爬行,依次按照1、3、5、7,…(连续奇数)分钟数调头爬行.这两只蚂蚁每分钟分别爬行5.5厘米和3.5厘米.那么经过多少时间它们初次相遇?再次相遇需要多少时间?分析半圆的周长是÷..(米)=72(厘米).1442=072先不考虑往返的情况,那么两只蚂蚁从出发到相遇所花时间为÷(..)=8(分).7255+35再考虑往返的情况,则有表5-1.表5-1经过时间(分) 1 3 5 7 9 11 13 15 16在上半圆爬行时间 1 3 5 7 8在下半圆爬行时间 2 4 6 8此可求出它们初次相遇和再次相遇的时间.解由题意可知它们从出发到初次相遇经过时间=1+3+5+7+9+11+13+15=64(分).第一次相遇时,它们位于下半圆,折返向上半圆爬去,须爬行17分钟,此时,爬行在下半圆的时间仍为8分钟(与上次在下半圆爬行时间相同),爬行在上半圆的时间应为9(=17-8)分钟,但在上半圆(相向)爬行8分钟就会相遇,此时总时间又用去了16(=8+8)分钟,因此,第二次相遇发生在第一次相遇后又经过了16分钟(从总时间计算则为64+16=80(分)).此时,相遇位置在上半圆.答它们经过时分钟初次相遇,再经过16分钟再次相遇,例4 一个圆周长70厘米,甲、乙两只爬虫从同一地点,同时出发同向爬行,用以每秒4厘米的速度不停地爬行,乙爬行15厘米后,立即反向爬行,并且速度增加1倍,在离出发点30厘米处与甲相遇,问爬虫乙原来的速度是多少?图5-2分析根据题意画出示意图5-2.观察示意图可知:甲共行了70-30=40(厘米),所需时间是40÷4=10(秒).在10秒内,乙按原速度走了15厘米,按2倍的速度走了15+30=45(厘米),假如全按原速走,乙10秒共走15+45÷2=37.5(厘米),由此可求出乙原来的速度.解(70-30)÷4=40 ÷ 4=10(秒),[(30+15)÷2+15]÷ 10.÷10=375?.(厘米/秒).=375?答爬虫乙原来的速度是每秒爬3.75厘米例5 如图5-3,沿着边长为90米的正方形,按逆时针方向,甲从A出发,每分钟走65米,乙从B出发,每分钟走72米,当乙第一次追上甲时是在正方形的哪一条边上?图5-3分析这是环形追及问题.这类问题可以先看成“直线”追及问题,求出乙追上甲所需要的时间,再回到“环形”追及问题,根据乙在这段时间内所走路程,推算出乙应在正方形哪一条边上.解设追上甲时乙走了x分钟.依题意,甲在乙前方3 × 90=270(米),故有72x =65x + 270, 解得x =2707在这段时间内乙走了72×2707=277717由于正方形边长为90米,共四条边,所以由277717=3 0× 90+7717=(4× 7+2)×90+7717,可以推算出这时甲和乙应在正方形的AD 边上.答 当乙第一次追上甲时在正方形的AD 边上.例6 150人要赶到90千米外的某地去执行任务.已知步行每小时可行10千米.现有一辆时速为70千米的卡车,可乘50人.请你设计一种乘车及步行的方案,能使这150人在最短的时间内全部赶到目的地.其中,在中途每次换车(上、下车)时间均忽略不计.解 显然,只有人、车不停地向目标前进,车一直不停地往返载人,最后使150人与车同时到达目的地时,所用的时间才会最短.由于这辆车只能乘坐50人,因此将150分为3组,每组50人来安排乘车与步行.图5-4中,实线表示汽车往返路线(AE →EC →CF →FD →DB ),虚线表示步行路段.显然每组乘车、步行的路程都应一样多.所以图5-4AE =CF =DB ,且AC =CD =EF =FB . 若没AE =CF =DB =x ,AC =CD =EF =FB =y ,则290x y +=.且因为汽车在AE 十EC 上所用的时间与步行AC 所用时间相同,所以 ()7010x x y y+-= 解方程组290x y +=()7010x x y y+-=得60,15x y ==.则150人全部从A 到B 最短时间为602156370107⨯+=小时 答 方案是50人一组,共分3组,先后分别乘60千米车,先后分段步行30千米,由A 同时出发,最后同时到B ,最短时间是637小时.例7 甲、乙二人沿椭圆形跑道作变速跑训练:他们从同一地点出发,沿相反方向跑,每人跑完第一圈到达出发点后立即回头加速跑第二圈。

公务员行测考试数量关系:行程问题详解

公务员行测考试数量关系:行程问题详解

行程问题是国家公务员考试中数学运算的常考题型之一,涉及最多的是相遇问题与追及问题。

专家提醒各位考生,在复习数学运算的过程中,应重点掌握行程问题中的几种题型和解题方法。

一、行程问题知识要点(一)行程问题中的三量行程问题研究的是物体运动中速度、时间、路程三者之间的关系。

这三个量之间的基本关系式如下:路程=速度×时间;时间=路程÷速度;速度=路程÷时间。

上述三个公式可称为行程问题的核心公式,大部分的行程问题都可通过找出速度、时间、路程三量中的两个已知量后利用核心公式求解。

(二)行程问题中的比例关系时间相等,路程比=速度比;速度相等,路程比=时间比;路程一定,速度与时间成反比。

二、行程问题的主要题型(一)平均速度问题平均速度问题公式:(二)相遇问题1.相遇问题的特征(1)两人(物体)从不同地点出发作相向运动;(2)在一定时间内,两人(物体)相遇。

与基本的行程问题相比,专家认为,相遇问题涉及两个或多个运动物体,过程较为复杂。

一般借助线段图来理清出发时间、出发地点等基本量,进而利用行程问题核心公式解题。

2.相遇问题公式公式中的相遇路程指同时出发的两人所走的路程之和。

如果不是同时运动,要转化为标准的同时出发、相向运动的问题来套用相遇问题公式。

(三)追及问题1.追及问题的特征(1)两个运动物体同地不同时(或同时不同地)出发做同向运动。

后面的比前面的速度快。

(2)在一定时间内,后面的追上前面的。

与相遇问题类似,专家建议考生可通过线段图来理清追及问题的运动关系。

2.追及问题公式在追及问题中,我们把开始追及时两者的距离称为追及路程,大速度减小速度称为速度差。

由此得出追及问题的公式:(四)多次相遇问题相遇问题的复杂形式是多次相遇问题,多次相遇问题按照运动路线不同分为直线多次相遇和环形多次相遇两类。

多次相遇问题重要结论:1.从两地同时出发的直线多次相遇问题中,第n次相遇时,路程和等于第一次相遇时路程和的(2n-1)倍;每个人走的路程等于他第一次相遇时所走路程的(2n-1)倍。

(完整版)数量关系公式

(完整版)数量关系公式

数量关系常用公式总结:1.行程问题基础公式:行程 =速度 * 时间一、相遇追及型追及问题:追及距离 =(大速度 - 小速度)×追及时间相遇问题:相遇距离=(大速度+小速度)×相遇时间背叛问题:背叛距离=(大速度+小速度)×背叛时间二、环形运动型反向运动:第 N次相遇行程和为N个周长,环形周长=(大速度+小速度)×相遇时间同向运动:第 N次相遇行程差为 N个周长,环形周长=(大速度- 小速度)×相遇时间三、流水行船型顺水行程 =(船速 +水速)×顺水时间逆流行程 =(船速 - 水速)×逆流时间静水速度 =(顺水速度 +逆水速度)÷ 2水流速度 =(顺水速度 - 逆水速度)÷ 2四、扶梯上下型扶梯总长 =人走的阶数× [1 ±( V 梯÷ V 人) ] ,顺行用加法,逆行用减法剖析 : 设扶梯为 s 级,速度为 v,依照公式带入S=30×1×(1+v ÷1) 解得 v=1S=20×2×(1+v ÷2)s=60,所以选择B。

五、队伍行进型队头→队尾:队伍长度 =(人速 +队伍速度)×时间队尾→队头:队伍长度 =(人速 - 队伍速度)×时间v 和u,所求时间为t,则:剖析:假设通讯员和队伍的速度分别为600= (v-u )× 3解得v=250600=v ×(2+24 ÷60)u=50600=(v+u)× t t=2,所以选择D六、往返相遇型左右点出发:第N 次迎面相遇,行程和 =全程×( 2N-1)第N 次追上相遇,行程差 =全程×( 2N-1)同一点出发:第 N 次迎面相遇,行程和 =全程× 2N第N 次追上相遇,行程差 =全程× 2N剖析: a 汽车第二次从甲地出发后与3 次迎面相遇,依照公式,行程和为b 汽车相遇,实际上是两辆车第5 个全程,即 5×210=1050(公里),使用的时间为 1050÷( 90+120)=5(小时),所以 b 汽车共行驶了 120×5=600(公里),选择 B七、典型行程模型等距离平均速度 =(2 速度 1×速度 2)÷(速度 1+速度 2)(调停平均数公式)(速度 1 和速度 2 分别代表往﹑返的速度)剖析:代入公式v=2×60×120÷( 60+120)=80等发车前后过车:发车间隔 T=(2t1 ×t2)÷(t1+t2);V车/V 人=(t2+t1) ÷( t2-t1)例:某人沿电车线路匀速行走,每分钟有一辆电车从后边追上,每4分钟有一辆电车迎面开来,假设两个起点站的发车间隔相同,则这个发车间隔为多少?剖析:依照公式,发车间隔T=(2t1 × t2)÷(t1+t2)=2× 12×4÷(12+4)=6(分钟)。

应用题常用公式及数量关系

应用题常用公式及数量关系

应用题常用公式及数量关系
1、行程问题(s路程、t时间、v速度)
①路程=速度×时间②时间=路程÷速度③速度=路程÷时间
S=vt t=s÷v v=s÷t
2、单价问题
①总价=单价×数量②单价=总价÷数量③数量=总价÷单价
3、产量问题
①总产量=单产量×亩数②单产量=总产量÷亩数
③亩数=总产量÷单产量
4、效率问题
①工作总量=工作效率×工作时间
②工作效率=工作总量÷工作时间
③工作时间=工作总量÷工作效率
5、平均数问题
平均数=总数量÷总份数
用公式表示,即:平均数=(a+b+c……+d)÷n
6、比例尺问题
①比例尺=图上距离:实际距离
②图上距离=比例尺×实际距离
③实际距离=图上距离÷比例尺
7、利率问题
①利息=本金×利率×时间(存期)
②本金=利息÷(利率×时间)
③利率=利息÷(本金×时间)
④时间=利息÷(本金×利率)
8、纳税问题
①纳税额=营业额×营业税率
9、收支问题
①结余=收入-支出
②收入=结余+支出
③支出=收入-结余。

行程问题

行程问题

在行车、行船、行走时,按照速度、时间和距离之间的相依关系,已知其中的两个量,要求第三个量,这类应用题,叫做行程应用题。

也叫行程问题。

行程应用题的解题关键是掌握速度、时间、距离之间的数量关系:距离=速度×时间速度=距离÷时间时间=距离÷速度按运动方向,行程问题可以分成三类:1、相向运动问题(相遇问题)2、同向运动问题(追及问题)3、背向运动问题(相离问题)一、相向运动问题相向运动问题(相遇问题),是指地点不同、方向相对所形成的一种行程问题。

两个运动物体由于相向运动而相遇。

解答相遇问题的关键,是求出两个运动物体的速度之和。

基本公式有:两地距离=速度和×相遇时间相遇时间=两地距离÷速度和速度和=两地距离÷相遇时间例1:两列火车同时从相距540千米的甲乙两地相向而行,经过3.6小时相遇。

已知客车每小时行80千米,货车每小时行多少千米?1、一辆客车和一辆货车同时从两站相对开出,客车每小时行35千米,货车每小时行45千米,2.5小时相遇,两站相距多远?2、两个县城相距52.5千米,甲、乙二人同时从两城相对开出,甲每小时行5千米,乙每小时行5.5千米,他们几小时相遇?3、甲、乙二人分别从相距110千米的两地相对开出,5小时相遇,甲每小时行12千米,乙每小时行多少千米?4、甲、乙两站相距486千米,两列火车同时相对而行,5小时相遇,第一列火车比第二列火车每小时多行1.7千米,两列火车的速度各是多少?5、两列火车同时从相距650千米的两地相向而行,甲车每小时行50千米,乙车每小时行52千米,四小时后两车相距多远?例2:两城市相距138千米,甲乙两人骑自行车分别从两城出发,相向而行。

甲每小时行13千米,乙每小时行12千米,乙在行进中因修车候车耽误1小时,然后继续行进,与甲相遇。

求从出发到相遇经过几小时?二、同向运动问题(追及问题)两个运动物体同向而行,一快一慢,慢在前快在后,经过一定时间快的追上慢的,称为追及。

第五讲环形道路上的行程问题

第五讲环形道路上的行程问题

第五讲环形道路上的行程问题一、知识要点和基本方法1.行程问题中的基本数量关系式:速度×时间=路程;路程÷时间=速度;路程÷速度=时间.2.相遇问题中的数量关系式:速度和×相遇时间=相遇路程;相遇路程÷速度和=相遇时间;相遇路程÷相遇时间=速度和.3.追及问题中的数量关系式:速度差×追及时间=追及距离;追及距离÷速度差=追及时间;追及距离÷追及时间=速度差.4.流水问题中的数量关系式:顺水速度=船速十水速;逆水速度=船速一水速;船速=(顺水速度+逆水速度)÷2;水速=(顺水速度-逆水速度)÷2.5.应该注意到:(1)顺逆风中的行走问题与顺逆水中的航行问题考虑方法类似;(2)在一条路上往返行走与在环形路上行走解题思考方法类似,因此不要机械地去理解环形道路长的行程问题.二、例题精讲例1 李明和王林在周长为400米的环形道路上练习跑步.李明每分钟跑200米,是王林每分钟所跑路程的89.如果两人从同一地点出发,沿同一方向前进,问至少要经过几分钟两人才能相遇?分析 由于两人从同一地点同向出发,因此是追及问题,追及距离是400米,可用公式“追及距离÷速度差=追及时间”.解 追及距离=400米;返及时的速度差=200÷89-200. 由公式列出追及时间=400÷(200÷89-200) =400 ÷(225-200)=400 ÷ 25=16(分).答 至少经过16分钟两人才能相遇.例2 如图5-1,A、B是圆的直径的两个端点,亮亮在点A,明明在点B,他们同时出发,反向而行.他们在C点第一次相遇,C点离A点100米;在D 点第二次相遇,D点离B点80米.求这个圆的周长.图5-1分析第一次相遇,两人合起来走了半圈,第二次相遇,两个人合起来又走了一圈,所以从开始出发到第二次相遇,两个人合起来走了一圈半.也就是说,第二次相遇时两人合起来所走的行程是第一次相遇时合起来所走的行程的3倍,也就是每个人在第二次相遇时所走的行程是第一次相遇时所走的行程的3倍,所以从A到D(A→C→B→D)的距离应该是从A到C(A直接到C)的距离的3倍.于是有解法如下.解 A 到D(A→C→B→D)的距离:100 × 3=300(米).半个圆圈长:300-80=220(米).整个圆圈长:220 × 2=440(米).答这个圆的周长是440米.例3 一个圆的周长为1.44米,两只蚂蚁从一条直径的两端同时出发,沿圆周相向爬行.l分钟后它们都调头而行,再过3分钟,他们又调头爬行,依次按照1、3、5、7,…(连续奇数)分钟数调头爬行.这两只蚂蚁每分钟分别爬行5.5厘米和3.5厘米.那么经过多少时间它们初次相遇?再次相遇需要多少时间?分析半圆的周长是÷..(米)=72(厘米).1442=072先不考虑往返的情况,那么两只蚂蚁从出发到相遇所花时间为÷(..)=8(分).7255+35再考虑往返的情况,则有表5-1.表5-1经过时间(分) 1 3 5 7 9 11 13 15 16在上半圆爬行时间 1 3 5 7 8在下半圆爬行时间 2 4 6 8此可求出它们初次相遇和再次相遇的时间.解由题意可知它们从出发到初次相遇经过时间=1+3+5+7+9+11+13+15=64(分).第一次相遇时,它们位于下半圆,折返向上半圆爬去,须爬行17分钟,此时,爬行在下半圆的时间仍为8分钟(与上次在下半圆爬行时间相同),爬行在上半圆的时间应为9(=17-8)分钟,但在上半圆(相向)爬行8分钟就会相遇,此时总时间又用去了16(=8+8)分钟,因此,第二次相遇发生在第一次相遇后又经过了16分钟(从总时间计算则为64+16=80(分)).此时,相遇位置在上半圆.答它们经过时分钟初次相遇,再经过16分钟再次相遇,例4 一个圆周长70厘米,甲、乙两只爬虫从同一地点,同时出发同向爬行,用以每秒4厘米的速度不停地爬行,乙爬行15厘米后,立即反向爬行,并且速度增加1倍,在离出发点30厘米处与甲相遇,问爬虫乙原来的速度是多少?图5-2分析根据题意画出示意图5-2.观察示意图可知:甲共行了70-30=40(厘米),所需时间是40÷4=10(秒).在10秒内,乙按原速度走了15厘米,按2倍的速度走了15+30=45(厘米),假如全按原速走,乙10秒共走15+45÷2=37.5(厘米),由此可求出乙原来的速度.解(70-30)÷4=40 ÷ 4=10(秒),[(30+15)÷2+15]÷ 10.÷10=375?.(厘米/秒).=375?答爬虫乙原来的速度是每秒爬3.75厘米例5 如图5-3,沿着边长为90米的正方形,按逆时针方向,甲从A出发,每分钟走65米,乙从B出发,每分钟走72米,当乙第一次追上甲时是在正方形的哪一条边上?图5-3分析这是环形追及问题.这类问题可以先看成“直线”追及问题,求出乙追上甲所需要的时间,再回到“环形”追及问题,根据乙在这段时间内所走路程,推算出乙应在正方形哪一条边上.解设追上甲时乙走了x分钟.依题意,甲在乙前方3 × 90=270(米),故有72x =65x + 270,解得x =2707 在这段时间内乙走了72×2707=277717 由于正方形边长为90米,共四条边,所以由277717=3 0× 90+7717=(4× 7+2)×90+7717, 可以推算出这时甲和乙应在正方形的AD 边上.答 当乙第一次追上甲时在正方形的AD 边上.例6 150人要赶到90千米外的某地去执行任务.已知步行每小时可行10千米.现有一辆时速为70千米的卡车,可乘50人.请你设计一种乘车及步行的方案,能使这150人在最短的时间内全部赶到目的地.其中,在中途每次换车(上、下车)时间均忽略不计.解 显然,只有人、车不停地向目标前进,车一直不停地往返载人,最后使150人与车同时到达目的地时,所用的时间才会最短.由于这辆车只能乘坐50人,因此将150分为3组,每组50人来安排乘车与步行.图5-4中,实线表示汽车往返路线(AE →EC →CF →FD →DB ),虚线表示步行路段.显然每组乘车、步行的路程都应一样多.所以图5-4AE =CF =DB ,且AC =CD =EF =FB .若没AE =CF =DB =x ,AC =CD =EF =FB =y ,则290x y +=.且因为汽车在AE 十EC 上所用的时间与步行AC 所用时间相同,所以()7010x x y y +-= 解方程组290x y += ()7010x x y y +-=得60,15x y ==.则150人全部从A 到B 最短时间为602156370107⨯+=小时 答 方案是50人一组,共分3组,先后分别乘60千米车,先后分段步行30千米,由A 同时出发,最后同时到B ,最短时间是637小时. 例7 甲、乙二人沿椭圆形跑道作变速跑训练:他们从同一地点出发,沿相反方向跑,每人跑完第一圈到达出发点后立即回头加速跑第二圈。

行程问题方法总结

行程问题方法总结

行程问题方法总结行程问题是一类具有特定情境的数学问题,其核心是研究物体运动中的数量关系和位置关系。

在解决行程问题时,我们需要掌握一些基本的方法和策略。

本文将对常见的行程问题解决方法进行总结。

一、基本公式和定理1.路程 = 速度×时间(S = V × T)2.相对速度 = 甲的速度 + 乙的速度(当甲乙相向而行)或甲的速度 - 乙的速度(当甲乙同向而行)3.追及问题中,追及时间 = 路程差÷速度差(T = S/V)4.相遇问题中,相遇时间 = 路程和÷速度和(T = S/V)二、解题思路1.仔细审题,明确已知量和未知量,以及需要解决的问题。

2.画出简图,帮助理解题意,确定物体运动的方向和地点。

3.根据公式和定理,列出方程或表达式,求解未知量。

4.检验答案是否符合实际情况。

三、常见问题类型及解决方法1.简单行程问题:直接利用基本公式和定理求解。

2.例题:一辆汽车从A地到B地,速度为60km/h,需要4小时。

问两地之间的距离是多少?3.解法:根据公式 S = V × T,可得 S = 60 × 4 = 240km。

4.相遇问题:利用相遇时间 = 路程和÷速度和的方法求解。

5.例题:甲、乙两辆车从相距100km的两地同时出发,速度分别为50km/h和70km/h。

问它们相遇需要多长时间?6.解法:根据公式 T = S/V,可得 T = 100 / (50 + 70) = 1小时。

7.追及问题:利用追及时间 = 路程差÷速度差的方法求解。

8.例题:甲、乙两辆车从同一地点同时出发,甲车速度为60km/h,乙车速度为80km/h。

甲车比乙车早到终点1小时。

问两车之间的距离是多少?9.解法:根据公式 T = S/V,可得 T = 1 / (80 - 60) = 1/2小时。

再根据公式S = V × T,可得 S = (60 + 80) × (1/2) = 70km。

(完整版)数量关系公式

(完整版)数量关系公式

数量关系常用公式总结:1.行程问题基础公式:路程=速度*时间一、相遇追及型追及问题:追及距离=(大速度-小速度)×追及时间相遇问题:相遇距离=(大速度+小速度)×相遇时间背离问题:背离距离=(大速度+小速度)×背离时间二、环形运动型反向运动:第N次相遇路程和为N个周长,环形周长=(大速度+小速度)×相遇时间同向运动:第N次相遇路程差为N个周长,环形周长=(大速度-小速度)×相遇时间三、流水行船型顺流路程=(船速+水速)×顺流时间逆流路程=(船速-水速)×逆流时间静水速度=(顺水速度+逆水速度)÷2水流速度=(顺水速度-逆水速度)÷2四、扶梯上下型扶梯总长=人走的阶数×[1±(V梯÷V人)],顺行用加法,逆行用减法解析:设扶梯为s级,速度为v,根据公式带入S=30×1×(1+v÷1) 解得 v=1S=20×2×(1+v÷2) s=60,所以选择B。

五、队伍行进型队头→队尾:队伍长度=(人速+队伍速度)×时间队尾→队头:队伍长度=(人速-队伍速度)×时间解析:假设通讯员和队伍的速度分别为v和u,所求时间为t,则: 600=(v-u)×3 解得 v=250600=v×(2+24÷60) u=50600=(v+u)×t t=2,所以选择D六、往返相遇型左右点出发:第N次迎面相遇,路程和=全程×(2N-1)第N次追上相遇,路程差=全程×(2N-1)同一点出发:第N次迎面相遇,路程和=全程×2N第N次追上相遇,路程差=全程×2N解析:a汽车第二次从甲地出发后与b汽车相遇,实际上是两辆车第3次迎面相遇,根据公式,路程和为5个全程,即5×210=1050(公里),使用的时间为1050÷(90+120)=5(小时),所以b汽车共行驶了120×5=600(公里),选择B七、典型行程模型等距离平均速度=(2速度1×速度2)÷(速度1+速度2)(调和平均数公式)(速度1和速度2分别代表往﹑返的速度)解析:代入公式v=2×60×120÷(60+120)=80等发车前后过车:发车间隔T=(2t1×t2) ÷(t1+t2);V车/V人=(t2+t1) ÷( t2-t1)例:某人沿电车线路匀速行走,每分钟有一辆电车从后面追上,每4分钟有一辆电车迎面开来,假设两个起点站的发车间隔相同,则这个发车间隔为多少?解析:依据公式,发车间隔T=(2t1×t2) ÷(t1+t2)=2×12×4÷(12+4)=6(分钟)。

行程问题

行程问题

行程问题训练11.行程问题的基本公式走路、行车、一个物体的移动,总是要涉及到三个数量:距离,走了多远,行驶多少千米,移动了多少米等等;速度,在单位时间内(例如1小时内)行走或移动的距离;时间,行走或移动所花时间。

这三个数量之间的关系,可以用下面的公式来表示:距离=速度×时间;时间=路程÷速度;速度=路程÷时间。

例1、小王骑车到城里开会,以每小时12千米的速度行驶,2小时可以到达。

车行了15分钟后,发现忘记带文件,以原速返回原地,这时他每小时行多少千米才能按时到达?解答:要求小王返回原地后到城里的速度,就必须知道从家到城里的路程和剩下的时间。

根据题意,这两个条件都可以求出。

15分钟=小时从家到城里的路程:12×2=24(千米)返回后还剩的时间:2-×2=1(小时)返回后去城里的速度:24÷1=16(千米/时)答:他每小时行16千米才能按时到达。

2.相遇问题距离=速度和×相遇时间;相遇时间=距离÷速度和;速度和=距离÷相遇时间。

例2、如图,从A到B是1千米下坡路,从B到C是3千米平路,从C到D是2.5千米上坡路.小张和小王步行,下坡的速度都是6千米/小时,平路速度都是4千米/小时,上坡速度都是2千米/小时。

问:(1)小张和小王分别从A, D同时出发,相向而行,问多少时间后他们相遇?(2)相遇后,两人继续向前走,当某一个人达到终点时,另一人离终点还有多少千米?解答:(1)小张从 A到 B需要1÷6×60= 10(分钟);小王从 D到 C也是下坡,需要 2.5÷6×60= 25(分钟);当小王到达 C点时,小张已在平路上走了 25-10=15(分钟),走了4×=1(千米)。

因此在 B与 C之间平路上留下 3-1= 2(千米)由小张和小王共同相向而行,直到相遇,所需时间是:2 ÷(4+ 4)×60= 15(分钟)。

四年级下册数学应用题中常用公式及数量关系知识点汇总

四年级下册数学应用题中常用公式及数量关系知识点汇总

四年级下册数学应用题中常用公式及数量关系知识点汇总一、应用题中常用数量关系公式1、行程问题:速度×时间=路程路程÷速度=时间路程÷时间=速度2、工程问题:工效×时间=工作总量工作总量÷时间=工效工作总量÷工效=时间3、价格问题:单价×数量=总价总价÷数量=单价总价÷单价=数量4、产量问题:单产量×数量=总产量总产量÷数量=单产量总产量÷单产量=数量5、和差问题:(和+差)÷2=大的数(和-差)÷2=小的数6、和倍问题:和÷(倍数+1)=小的数小的数×倍数=大的数7、差倍问题:差÷(倍数-1)=小的数小的数×倍数=大的数8、相遇问题:相遇路程=速度和×相遇时间相遇时间=相遇路程÷速度和速度和=相遇路程÷相遇时间相二、应用题中常用的单位换算(1)长度换算1千米=1000米1米=10分米1分米=10厘米1厘米=10毫米1千米=1公里(2)面积单位换算1平方千米=100公顷1公顷=10000平方米1平方米=100平方分米1平方分米=100平方厘米1平方厘米=100平方毫米(3)质量单位换算1吨=1000 千克1千克=1000克1千克=1公斤(4)图形周长、面积有关的公式1、长方形的周长=(长+宽)×2 C=(a+b)×2长=周长÷2-宽宽=周长÷2-长长+宽=周长÷22、正方形的周长=边长×4C=4a边长=周长÷43、长方形的面积=长×宽S= a×b长=面积÷宽宽=面积÷长4、正方形的面积=边长×边长S= a×a。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数量关系行程问题基本公式
基本概念:行程问题是研究物体运动的,它研究的是物体速度、时间、行程三者之间的关系。

基本公式:路程=速度×时间;路程÷时间=速度;路程÷速度=时间
关键问题:确定行程过程中的位置
相遇问题:速度和×相遇时间=相遇路程(请写出其他公式)
相遇问题(直线):甲的路程+乙的路程=总路程
相遇问题(环形):甲的路程 +乙的路程=环形周长
追击问题:追击时间=路程差÷速度差(写出其他公式)
追击问题(直线):距离差=追者路程-被追者路程=速度差X追击时间
追击问题(环形):快的路程-慢的路程=曲线的周长
流水问题:顺水行程=(船速+水速)×顺水时间逆水行程=(船速-水速)×逆水时间
顺水速度=船速+水速逆水速度=船速-水速
静水速度=(顺水速度+逆水速度)÷2水速=(顺水速度-逆水速度)÷2流水问题:关键是确定物体所运动的速度,参照以上公式。

过桥问题:关键是确定物体所运动的路程,参照以上公式。

流水问题=流水速度+流水速度÷2水速=流水速度-流水速度÷2。

相关文档
最新文档