光纤通信原理第04节

合集下载

光纤通信系统模型介绍课件

光纤通信系统模型介绍课件
01
更宽频带:光纤通信系 统正在向更宽频带的方 向发展,以满足各种不 同应用的需求。
03
02
更长距离:光纤通信系 统正在向更长距离的方 向发展,以满足全球范 围内的通信需求。
04
更智能化:光纤通信系 统正在向更智能化的方 向发展,以满足网络管 理和维护的需求。
光纤通信系统的挑战与机遇
D
机遇:光纤通信技术不断发展,未来应用前景广阔
03
力、振动等物理量 光纤激光器:用于医疗、科研、
04
工业等领域的高精度激光设备
团队协作:鼓励学生组成团队,共同完成光纤 通信系统的设计和实施,培养团队协作能力。
光纤通信系统的研究方法
01
理论研究:研究光纤通信系 统的原理、技术、应用等
03
仿真研究:利用计算机仿真 技术,模拟光纤通信系统的 运行情况
05
跨学科研究:结合其他学科 的知识和技术,提高光纤通 信系统的性能和可靠性
02
光纤通信系统广泛应用于电信、互 联网、广播电视等领域。
光纤通信系统的组成
01
光源:产生光信号的设备,如激光 器或发光二极管
02
光纤:传输光信号的介质,如单模 光纤或多模光纤
03
光信号处理设备:对光信号进行放 大、调制、解调等处理的设备,如 光放大器、光调制器、光解调器等
05
网络设备:实现光纤通信系统互联 互通的设备,如交换机、路由器等
C 挑战:光纤网络的建设和维护成本较高
B 机遇:高速传输、大容量、长距离传输等优势
A 挑战:光纤损耗、传输距离、信号衰减等问题
光纤通信系统的教学策略
理论与实践相结合:讲解光纤通信系统的基本 原理,并让学生动手实践操作。

光纤通信新技术

光纤通信新技术
总结词
光网络智能化技术
THANKS
感谢观看
新型光网络技术
05
总结词
光传送网(OTN)是一种新型的光网络技术,它通过使用数字封装技术将客户信号封装在光层进行传输,具有高带宽利用率、低延迟、高可靠性等优点。
详细描述
OTN通过将客户信号封装在数字容器中,实现了对客户信号的透明传输,同时提供了强大的故障恢复和保护能力。此外,OTN还支持多播和广播功能,能够实现灵活的带宽管理和调度。
软件定义光网络(SDON)
未来展望
06
随着数据流量的快速增长,超高速光传输技术成为光纤通信领域的研究重点。
超高速光传输技术通过提高信号传输速率,实现更大容量的数据传输。目前已经实现了Tbps级别的传输速率,未来还有望进一步提高。
超高速光传输技术
详细描述
总结词
超长距离光传输技术
总结词
超长距离光传输技术是实现跨洲际、跨大洋光传输的关键技术。
详细描述
自动交换光网络(ASON)
总结词
软件定义光网络(SDON)是一种基于软件的光网络技术,它通过使用软件编程的方式实现光网络的配置和控制。
详细描述
SDON通过将光网络的配置和控制功能抽象化,使得网络管理员可以通过软件编程的方式实现光网络的配置和管理。这大大提高了网络的灵活性和可扩展性,同时也降低了运营成本。此外,SDON还支持多种协议和标准,能够与其他网络技术进行无缝集成。
详细描述
通过采用先进的信号处理技术和新型的光纤材料,超长距离光传输技术能够实现数千公里甚至上万公里的光信号传输,为全球通信网络的建设提供有力支持。
VS
光网络智能化技术是实现光网络高效运维和智能控制的重要发展方向。
详细描述

光纤通信(第3版)

光纤通信(第3版)

小结
实践项目与教学情 境
思考题与练习题
2.1光纤的结构、分 类和标准
2.2光纤的导光原理
2.3光纤特性
2.4光缆的结构和种 类
1
2.5光纤的熔 接
2
2.6光纤的冷 接
3
实践项目与教 学情境
4
小结
5
思考题与练习 题
1
3.1光源
2
3.2光电检测 器
3
3.3无源光器 件
4
3.4光放大器
5
实践项目与教 学情境
7.3波分复用系统的 设计
7.4应用举例
小结
实践项目与教学情 境
思考题与练习题
8.1 MSTP技术 8.2 ASON技术
8.3 OTN技术 8.4 PTN技术
1
8.5光接入技 术
2
8.6全光通信
3
8.7相干光通 信技术
4
8.8光孤子通 信技术
5
实践项目与教 学情境
小结
思考题与练习 题
9.1 2M塞绳的制作
5.9 SDH故障处理与 案例分析
实践项目与教学情境
小结 思考题与练习题
1
6.1 WDM技术 概述
2
6.2 WDM系统 结构与设备
3
6.3 WDM系统 的关键技术
4
6.4 WDM系统 规范
5
6.5 WDM系统 案例分析
小结
实践项目与教学情 境
思考题与练习题
7.1损耗受限系统设 计
7.2色散受限系统设 计
小结
思考题与练习 题
4.2光接收机
4.1光发送机
4.3光中继器
小结
实践项目与教学情 境

光技术与光纤通信经典教材

光技术与光纤通信经典教材

05 光网络技术与发展趋势
光网络的基本概念与架构
光网络:利用光信号进行数据传输的网络
光信号:由光波长、频率、强度等参数组 成的信号
光网络架构:包括光传输、光交换、光接 入等部分
光传输:利用光纤进行长距离、高速率数 据传输
光交换:实现光信号的交换和路由选择
光接入:将光信号接入到用户终端设备
光网络的路由与交换技术
纤类型
光纤的铺设: 考虑光纤的弯 曲半径、铺设 方式等因素保 证光纤的传输
性能
光纤的维护: 定期检查光纤 的传输性能及 时发现和解决 光纤传输问题
光纤通信系统的性能指标
传输速率:衡量数据传输速度的重要 指标
传输距离:光纤通信系统的传输距离 通常较远
误码率:衡量数据传输质量的重要指 标
信号衰减:光纤通信系统中信号的衰 减程度
FTTH的优点包括高速、稳定、低延迟、抗干扰等。
TC)案例
光纤到路边(FTTC)是一种光纤通信技术将光纤网络延伸到用户家门口。 FTTC可以提高网络传输速度降低网络延迟提高用户体验。 FTTC可以应用于家庭、企业、学校等场所提供高速稳定的网络连接。 FTTC可以支持多种网络应用如视频会议、在线游戏、远程教育等。
光纤到小区(FTTZ)案例
光纤到小区(FTTZ)是 一种光纤通信技术将光 纤直接铺设到小区内部 实现高速、稳定的网络 连接。
FTTZ技术可以提供高达 100Mbps的宽带接入 速度满足家庭、企业等 用户的高速上网需求。
FTTZ技术可以支持多 种网络应用如视频会议、 远程教育、在线游戏等 提高用户的生活质量和 工作效率。
光发射机的工作原理:电信号通过光调制器转换为光信号再通过光放大器放大最后通过光纤 传输

光通信:第04章常用光无源器

光通信:第04章常用光无源器

光隔离器的应用场景
光隔离器是一种用于防止光信 号反方向传输的无源器件,主 要用于光纤放大器和激光雷达 等光通信系统。
在光纤放大器中,光隔离器可 以防止反向传输的光信号对放 大器的工作产生干扰,提高系 统的稳定性。
在激光雷达中,光隔离器可以 防止反向传输的光信号对激光 源的工作产生干扰,提高系统 的测量精度。
光通信第04章常用光无源器
contents
目录
• 光无源器件概述 • 常用光无源器件 • 光无源器件的工作原理 • 光无源器件的应用场景 • 光无源器件的挑战与解决方案
01 光无源器件概述
定义与分类
定义
光无源器件是指那些在光通信网络中 ,不需要外部电源直接驱动,只起到 传输、控制或变换光信号作用的器件 。
光衰减器的工作原理
光衰减器是一种用于降低光信号 强度的器件,它可以通过吸收或 散射等方式将光信号能量损耗掉
一部分。
光衰减器通常由光学玻璃、陶瓷 等材料制成,其结构可分为均匀
损耗和渐变损耗两种类型。
光衰减器在光通信系统中主要用 于调整光信号的功率、测试光路 的损耗以及保护光接收器件等。
光分路器的工作原理
光环形器的应用场景
光环形器是一种用于实现光信 号环形传输的无源器件,主要 用于光纤传感和激光雷达等光
通信系统。
在光纤传感中,光环形器可 以将多个传感光纤环形连接 在一起,实现多点同时测量
和数据采集。
在激光雷达中,光环形器可以 将多路激光信号环形连接在一 起,实现多目标同时测量的功
能。
05 光无源器件的挑战与解决 方案
应用
WDM系统等领域。
03 光无源器件的工作原理
光纤连接器的工作原理
光纤连接器是用于连接两根光纤的器件,通过精确对准光纤的纤芯和包层,实现光 信号的传输。

光纤通讯原理

光纤通讯原理

光纤通讯原理
光纤通信原理是指利用光纤作为传输介质,在发送端将电子信号转换为光信号,通过光纤传输后,在接收端将光信号再转换为电子信号,实现信号的传输和通信的过程。

在光纤通信中,光信号的传输主要依靠光纤中的光波导效应。

光波在光纤中的传输是通过全反射和衍射来实现的。

当光信号沿光纤传输时,会经历折射和反射。

由于光纤的芯层具有较高的折射率,光信号在芯层中传播时会发生全反射现象,从而避免信号的能量损失。

光信号在光纤中的传播速度非常快,接近于光速,因此可以实现高速的数据传输。

光纤通信中的光信号的调制是指将电子信号转换为光信号的过程。

在发送端,电子信号被调制成具有相应信息的光信号,通常采用的调制方式有直接调制和外差调制两种。

直接调制是指将电子信号直接作用于激光器,通过改变激光器的电流或电压来调制光信号的强度。

外差调制是指通过两个激光器,一个作为信号激光器,一个作为参考激光器,通过在光纤中进行相互干涉来调制光信号的相位或频率。

光纤通信中的光信号的解调是指将光信号转换为电子信号的过程。

在接收端,光信号经过光纤传输后到达光电探测器,光电探测器将光信号转换为相应的电流或电压信号。

常用的光电探测器有光电二极管和光电二极管阵列。

通过光电探测器转换后的电信号经过放大、滤波等处理后,可以恢复出原始的电子信号。

总的来说,光纤通信通过光纤中的光波导效应实现信号的传输,利用调制和解调技术将电子信号转换为光信号和光信号转换为电子信号,实现了高速、大容量的数据传输和通信。

光纤通信已经成为现代通信领域的重要技术,广泛应用于通信网络、互联网、电视传输等领域。

高速光纤通信技术

高速光纤通信技术
发展趋势
未来光纤通信技术将朝着更高速率、更大容量、更长距离的方向发展,同时还将 与5G、物联网等新兴技术相融合,推动通信行业的快速发展。此外,光纤到户、 光纤到桌面等应用也将逐渐普及,为人们的生活带来更多便利。
02 光纤传输介质及器件
光纤类型与结构
01
单模光纤
芯径较小,仅允许单一模式的光波传输,适用于长距离、大容量的通信
宽带接入
通过光纤到户(FTTH)等方式, 提供高速、稳定的宽带接入服务。
业务融合
支持语音、数据和视频等多种业务 的融合传输,满足用户多样化的需 求。
网络安全
采用先进的光纤通信加密技术和安 全机制,确保用户信息的安全传输。
数据中心内部互联方案
高速互联
采用高速光纤通信技术,实现数 据中心内部服务器、存储设备和
传输距离远
由于光的传输衰减小,光 纤通信可实现长距离的传
输,且无需中继器。
抗干扰能力强
光纤通信不易受到电磁干扰 和射频干扰的影响,保证了
传输的稳定性和可靠性。
安全性高
光纤通信采用光信号传输 ,不易被窃听和截获,具
有较高的安全性。
发展历程与趋势
发展历程
光纤通信技术的发展经历了多模光纤、单模光纤、波分复用技术等阶段,传输速 率和传输容量不断提升。
04 高速光纤通信网络应用
长距离干线传输网络
高速大容量传输
采用先进的光纤通信技术 和高性能光电器件,实现 长距离、大容量的信息传 输。
灵活的网络架构
支持多种拓扑结构和保护 方式,提供灵活的网络扩 展和升级能力。
高效的网络管理
采用智能化的网络管理系 统,实现网络的实时监控、 故障定位和性能优化。
城域网和接入网应用

光纤通信基础知识ppt课件

光纤通信基础知识ppt课件
应用场景
光检测器广泛应用于光纤通信、光传 感、激光雷达等领域,特别是在高速、 长距离的光纤通信系统中,光检测器 的作用尤为关键。
光放大器
光放大器是光纤通信系统中的关键器件之一,主要分 为掺铒光纤放大器(EDFA)和拉曼光纤放大器(RA)
两类。
输入 标题
作用
光放大器的作用是对光信号进行放大,补偿光纤传输 过程中的光信号损耗,提高光纤通信系统的传输距离 和稳定性。
光检测器
分类
光检测器是光纤通信系统中的另一重 要器件,主要分为光电二极管(PIN) 和雪崩光电二极管(APD)两类。
性能参数
光检测器的性能参数包括响应度、带 宽、噪声等,这些参数直接影响着光 纤通信系统的接收灵敏度和动态范围。
作用
光检测器的作用是将光信号转换为电 信号,从而实现光信号的接收和检测。
模拟光纤通信系统的应用
03
在音频广播、视频传输等领域得到广泛应用。
光纤通信系统设计
01
光纤通信系统设计的基本原则
确保系统的传输性能、稳定性、可靠性和经济性。
02
光纤通信系统设计的主要内容
包括光源、光检测器、光纤、中继器和放大器等器件的选择和配置。
03
光纤通信系统设计的优化
通过采用先进的调制技术、编码技术等手段,提高系统的传输性能和容
性能参数
光源的性能参数包括波长、光谱宽度、输出功率、阈值电 流等,这些参数对光纤通信系统的性能和稳定性有着重要 影响。
作用
光源的作用是将电能转换为光能,为光纤通信系统提供光 信号。
应用场景
光源广泛应用于光纤通信、光传感、光谱分析等领域,特 别是在长距离、大容量的光纤通信系统中,光源的作用尤 为重要。
光纤通信发展历程
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Ê(6)
随着用户通信网规模的扩大、WDM 的普及、电信网/数据网的光纤化乃至多 媒体大容量信息处理设备的发展均推动着 光缆向多芯、高密度方向深入发展,带状 多芯光缆需要用多芯光纤连接器进行连接, 多芯带状光纤MT连接器就应运而生。
ý4.1.2
评价一个连接器的主要指标有4个, 即插入损耗、回波损耗、重复性和互换性。
式中:Pin1代表总注入光功率;Pin2代 表输入端非注入光端口的输出光功率。
š5.
均匀性就是衡量均分器件的“不均匀 程度”的参数。它定义为在器件的工作带 宽范围内,各输出端口输出功率的最大变 化量。其数学表达式为
式 中 : M I N ( Pout) 为 最 小 输 出 光 功 率 ; MAX(Pout)为最大输出光功率。
第四章 常用光无源器件
4.1 光 纤 连 接 器 4.2 光纤耦合器 4.3 波分复用/解复用器 4.4 光 开 关
4.1 光 纤 连 接 器
ý4.1.1 光纤连接器的结构与种类
光纤(缆)活动连接器是实现光纤(缆)之 间活动连接的光无源器件,它还具有将光 纤(缆)与其他无源器件、光纤(缆)与系统和 仪表进行活动连接的功能。
š2.
附加损耗(Excess Loss,EL)定义为所 有输出端口的光功率总和相对于全部输入 光功率的减小值。该值以分贝(dB)表示的 数学表达式为
式中:Pouti为第i个输出口的输出功率;Pin 为输入光功率。
š3.
分光比(Coupling Ratio,CR)是光耦 合器所特有的技术术语,它定义为耦合器 各输出端口的输出功率相对输出总功率的 百分比,在具体应用中常用数学表达式表 示为
例如对于标准X形耦合器,1∶1或50∶50 代表了同样的分光比,即输出为均分的器 件。
š4.
方向性也是光耦合器所特有的一个技 术术语,它是衡量器件定向传输性的参数。 以标准X形耦合器为例,方向性定义为在 耦合器正常工作时,输入端非注入光端口 的输出光功率(图4.8中的I2)与总注入光功 率的比值,以分贝(dB)为单位的数学表达 式为:
图4.3 V形槽结构
Ê(4)
球面定心结构由两部分组成,一部分 是装有精密钢球的基座,另一部分是装有 圆锥面(相当于车灯的反光镜)的插针。
Ê(5)
透镜耦合又称远场耦合,它分为球透 镜耦合和自聚焦透镜耦合两种,其结构分 别如图4.5、图4.6所示。
图4.5 球透镜耦合结构 图4.6 自聚焦透镜耦合
M=V2/2
式中:V为归一化频率。
ý4.2.2
š1.
插入损耗(Insertin Loss,IL)定义为指 定输出端口的光功率相对全部输入光功率 的减少值。该值通常以分贝(dB)表示,数 学表达式为
其中:ILi是第i个输出端口的插入损 耗;Pouti是第i个输出端口测到的光功率值; Pin是输入端的光功率值。
š1.
光纤连接器基本上是采用某种机械和 光学结构,使两根光纤的纤芯对准,保证 90%以上的光能够通过,目前有代表性并 且正在使用的光纤连接器主要有五种结构。
Ê(1)
套管结构的连接器由插针和套筒组成。
Ê(2)
双锥结构连接器是利用锥面定位。
பைடு நூலகம்Ê(3) V
V形槽结构的光纤连接器是将两个插 针放入V形槽基座中,再用盖板将插针压 紧,利用对准原理使纤芯对准,(如图4.3所 示)。
š6.
偏振相关损耗(Polarization Dependent Loss,PDL)是衡量器件性能对 于传输光信号的偏振态的敏感程度的参量。 它是指当传输光信号的偏振态发生360°变 化时,器件各输出端口输出光功率的最大 变化量:
在实际应用中,光信号偏振态的变化 是经常发生的,因此,为了不影响器件的 使用效果往往要求器件有足够小的偏振相 关损耗。
š2.
光纤活动连接器的品种、型号很多, 其中有代表性的有:FC、ST、SC、D4、 双锥、VF O(球面定心)、F-SMA、MTRJ连接器等等。
下面针对FC、SC和ST这三种连接器 作简单的介绍。
Ê(1) FC
FC型连接器是一种用螺纹连接,外部 零件采用金属材料制作的连接器,它是我 国电信网采用的主要品种,我国已制定了 FC型连接器的国家标准。
Ê(3) ST
ST型连接器采用带键的卡口式锁紧机 构,确保连接时准确对中。
Ê(4) 不同型号插头互相连接的转换器
对于上述FC、SC、ST三种连接器, 在对不同型号插头连接时,需要转换器进 行连接。
Ê(5)
由于实际使用情况非常复杂,因而跳 线的规格也多种多样。在选择跳线时,至 少有下述几个参数是需要明确的。
ý4.2.1 光纤耦合器的结构与原理
制作光耦合器可以有多种方法,大致 可分为分立光学元件组合型、全光纤型、 平面波导型等。
下面主要介绍熔融拉锥法的原理。
熔融拉锥法就是将两根(或两根以上) 除去涂覆层的光纤以一定的方式靠拢,在 高温加热下熔融,同时向两侧拉伸,最终 在加热区形成双锥体形式的特殊波导结构, 实现传输光功率耦合的一种方法。
Ar=-10lgPR/P0 (dB)
式中:Ar表示回波损耗;P0表示输入光功 率;PR表示后向反射光功率。
š3.
重复性是指光纤(缆)活动连接器多次 插拔后插入损耗的变化,用dB表示。互换 性是指连接器各部件互换时插入损耗的变 化,也用dB表示。
4.2 光纤耦合器
光耦合器是将光信号进行分路或合路、 插入、分配的一种器件。
š1.
插入损耗是指光纤中的光信号通过活 动连接器之后,其输出光功率相对输入光 功率的比率的分贝数,表达式为:
Ac=-10lgP1/P0 (dB)
式中:A c为连接器插入损耗;P0为输入 端的光功率;P1为输出端的光功率。
š2.
回波损耗又称为后向反射损耗。它是 指光纤连接处,后向反射光对输入光的比 率的分贝数,表达式为:
Ê(1)
在单模光纤中,传导模是两个正交的 基模(HE11)信号。图4.9所示是单模光纤耦 合器的迅衰场耦合示意图,其中归一化频 率
Ê(2)
在多模光纤中,传导模是若干个分立 的模式,不仅应在数值孔径角内,还要同 时 满 足 4 a n1sinθ=mλ(m=1,2,3,…)。 其 中,a为纤芯半径,n1是纤芯折射率,θ为 传导模与光轴的夹角,λ为传输光的波长。 总的模式数为:
相关文档
最新文档